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Abstract	
Quality	control	of	morphometric	neuroimaging	data	is	essential	to	improve	reproducibility.	Owing	
to	the	complexity	of	neuroimaging	data	and	subsequently	the	interpretation	of	their	results,	visual	
inspection	by	trained	raters	is	the	most	reliable	way	to	perform	quality	control.	Here,	we	present	a	
protocol	for	visual	quality	control	of	the	anatomical	accuracy	of	FreeSurfer	parcellations,	based	on	
an	easy-to-use	open	source	tool	called	VisualQC.	We	comprehensively	evaluate	its	utility	in	terms	of	
error	detection	rate	and	inter-rater	reliability	on	two	large	multi-site	datasets,	and	discuss	site	
differences	in	error	patterns.		This	evaluation	shows	that	VisualQC	is	a	practically	viable	protocol	
for	community	adoption.		
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Introduction 
Morphometric	analysis	is	central	to	much	of	neuroimaging	research,	as	a	structural	T1-
weighted	magnetic	resonance	imaging	(sMRI)	scan	is	almost	always	acquired	in	all		
neuroimaging	studies	for	a	variety	of	reasons.	The	sMRI	scans	are	used	in	a	number	of	
important	ways	including	as	a	reference	volume	for	multimodal	alignment,	delineating	
anatomical	regions	of	interest	(ROIs),	and	deriving	a	number	of	imaging	markers	such	as	
volumetric,	shape	and	topological	properties.		FreeSurfer	(FS)	is	a	popular	software	
package	for	fully-automated	processing	of	structural	T1	weighted	MRI	(T1w-MRI)	scans,	
often	to	produce	whole-brain	cortical	reconstruction	of	the	human	brain,	including	the	
aforementioned	outputs	(Fischl	2012).	Hence,	rigorous	quality	control	(QC)	of	FS	outputs	is	
crucial	to	ensure	the	quality,	and	to	improve	the	reproducibility	of	subsequent	
neuroimaging	research	results.		
	
FreeSurfer	processing	is	often	completed	without	any	issues	when	the	properties	of	input	
sMRI	scans	are	favorable	for	automatic	processing.	The	ideal	characteristics	of	the	input	
sMRI	scans	include,	but	are	not	limited	to,	strong	tissue	contrast,	high	signal-to-noise	ratio	
(SNR),	absence	of	intensity	inhomogeneities,	absence	of	imaging	artefacts	(e.g.,	due	to	
motion	and	other	challenges	during	acquisition)	and	lack	of	pathology-related	confounds.	
In	the	absence	of	one	or	more	of	such	ideal	characteristics,	which	is	often	the	case	in	large	
multi-site	neuroimaging	studies,	and	owing	to	the	challenging	nature	of	the	fully	automatic	
whole-brain	reconstruction,	FS	processing	leads	to	errors	in	parcellation.	Failure	to	identify	
and/or	correct	such	errors	could	result	in	inaccurate	and	irreproducible	results.	Hence,	
robust	FS	QC	is	crucial.		
	
Research	into	developing	assistive	tools	and	protocols	for	the	QC	of	morphological	data	can	
be	roughly	divided	into	the	following	categories:		

• visual	protocols	for	rating	the	quality	of	the	sMRI	scan	as	a	whole	(Backhausen	et	al.	
2016;	Marcus	et	al.	2013).	These	protocols	are	helpful	as	QC	of	input	sMRI	is	
required	at	the	MRI	acquisition	stage	(e.g.,	to	increase	sample	sizes)	as	well	as	at	the	
subsequent	archival	and	sharing	stages	(to	improve	the	quality	and	reproducibility	
of	analyses)		

• assistive	tools	(manual	as	well	as	automatic)	to	expedite	the	algorithms	for	
automated	assessment	of	the	sMRI	quality	(Raamana	2018;	SIG	2019;	Woodard	and	
Carley-Spencer	2006;	Gedamu,	Collins,	and	Arnold	2008;	Rosen	et	al.	2017;	Esteban	
et	al.	2017;	Keshavan	et	al.	2018;	Klapwijk	et	al.	2019;	White	et	al.	2018).	Some	of	
these	tools	may	employ	image	quality	metrics	(IQMs)	(Shehzad	et	al.	2015),	or	
metrics	from	derived	outputs	produced	by	FreeSurfer	and	related	tools,	to	aid	in	the	
prediction	of	scan	quality.	The	IQMs	can	be	extracted	directly	from	the	scan	itself	
(e.g.,	properties	of	intensity	distributions)	or	be	based	on	one	or	more	of	the	
FreeSurfer	outputs	(e.g.	Euler	number,	volumetric	and	thickness	estimates	etc)	
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• image	processing	algorithms	to	detect	imaging	artefacts	such	as	motion,	ghosting	
etc	(Pizarro	et	al.	2016;	Alfaro-Almagro	et	al.	2018;	Mortamet	et	al.	2009).	

	
However,	much	of	the	previous	research	has	been	limited	to	rating	the	quality	of	input	
sMRI	scan,	but	not	the	quality	of	subsequently	derived	outputs	such	as	FreeSurfer	
parcellation.	The	FreeSurfer	team	provides	a	troubleshooting	guide	(Freesurfer	Team	
2017),	that	is	a	series	of	visual	checks	and	manual	edits	for	a	diverse	set	of	the	outputs	it	
produces.	While	this	guide	is	comprehensive,	it	is	quite	laborious	to	perform	even	for	a	
single	subject,	presents	a	steep	learning	curve	to	typical	neuroimaging	researchers,	and	is	
simply	infeasible	to	employ	on	the	large	datasets	that	are	commonplace	today.	Hence,	
assistive	tools	and	protocols	to	expedite	or	automate	this	tedious	FS	QC	process	are	
essential.	There	has	been	notable	effort	in	developing	protocols	(ENIGMA	Consortium	
2017)	as	well	as	assistive	tools	(Keshavan	et	al.	2018;	Klapwijk	et	al.	2019)	for	the	QC	of	
FreeSurfer	outputs.	While	the	mindcontrol	webapp	(Keshavan	et	al.	2018)	is	more	
accessible	(being	browser-based)	and	provides	easy	navigation	through	the	dataset,	the	
overall	QC	process	is	no	different	from	the	FreeSurfer’s	recommended	troubleshooting	
guide	(which	employs	tkmedit	and	slice-by-slice	review),	and	hence	is	still	slow	and	labor-
intensive.	While	operating	in	the	cloud	using	a	browser	interface	may	present	some	
benefits	of	accessibility,	the	complicated	initial	setup	creates	an	additional	barrier	for	non-
expert	users	(large	amounts	of	costly	cloud	storage	space),	issues	related	to	privacy	and	
anonymization	(transferring	imaging	data	to	the	cloud),	as	well	as	creating	a	major	
dependency	on	the	cloud	makes	it	unreliable	and/or	slow.	Moreover,	it	does	not	present	
the	important	visualizations	for	pial	surface	(see	Figure	1,	Panel	B),	which	are	necessary	to	
identify	any	topological	defects.		
	
In	another	related	effort	to	reduce	the	QC	burden	as	well	as	rater	subjectivity,	(Klapwijk	et	
al.	2019)	developed	a	statistical	model	to	automatically	predict	a	composite	quality	rating	
based	on	a	combination	of	properties	of	input	T1w	MRI	scan	(presence	of	motion)	and	a	
few	checks	on	the	FS	outputs.	Their	predictive	model	demonstrated	very	good	performance	
(>80%	accuracy;	varying	depending	on	evaluation	setup)	in	discriminating	“Failed	scans”	
from	the	rest	(rated	as	Excellent,	Good	or	Doubtful).	However,	the	rater	agreement	in	this	
manual	QC	protocol	was	as	low	as	7.5%	i.e.	only	six	subjects	out	of	80	had	ratings	with	a	
complete	agreement	among	the	five	raters,	increasing	to	>85%	when	majority	rating	is	
used	to	evaluate	agreement.		This	may	likely	be	due	to	the	composite	rating	used	(based	on	
both	input	T1w	MRI	scan	and	FS	outputs),	which	confounds	the	ratings,	making	it	harder	to	
disambiguate	the	source	of	bad	quality	(input	vs.	output),	and	hence	making	it	a	non-ideal	
comparison	target.	Moreover,	their	extensive	analyses	clearly	highlight	an	important	need	
of	reliable	and	accurate	ratings	with	high	inter-rater	reliability	(IRR).	
	
Aiming	to	deliver	a	quick	method	to	QC	FreeSurfer	outputs	from	multiple	large	datasets,	
the	Enhancing	Neuro	ImaGing	through	Meta-Analysis	(ENIGMA)	consortium	(Thompson	et	
al.	2020)	developed	a	fast	and	useful	visual	rating	protocol	for	FS	QC	(denoted	by	ENQC)	
based	on	a	set	of	batch	processing	scripts,	visualizations	embedded	in	html	and	manual	
ratings	collected	in	a	spreadsheet.	ENQC	is	a	practical	approach	to	greatly	expedite	an	
otherwise	tedious	process	by	selecting	4	volumetric	slices	for	inspection.	While	drastically	
reducing	the	amount	of	work	for	the	rater,	this	also	greatly	increases	the	likelihood	of	
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missing	subtle	errors,	as	they	may	fall	between	or	outside	the	limited	number	of	views.	
Moreover,	having	to	deal	with	multiple	disparate	tools	without	clear	integration	
(spreadsheets,	shell	scripts	and	html	etc)	leads	to	much	higher	human	error	(in	
maintaining	integrity	across	multiple	spreadsheets	with	complex	identifiers),	especially	in	
large	datasets.		
	
To	address	the	complexity	and	limitations	of	the	various	tools	we	mentioned	so	far	
(including	ENQC)	and	the	need	for	more	reliable	and	accurate	QC	ratings,	we	developed	
VisualQC	(Raamana	2018),	a	new	open	source	QC	rating	framework,	designed	to	ease	the	
burden	involving	any	visual	QC	tasks	in	neuroimaging	research.	The	tool	to	rate	the	quality	
of	FS	parcellations	is	one	of	the	many	within	VisualQC,	which	are	built	on	a	generic	visual	
rating	framework	that	is	modular	and	extensible,	allowing	for	manual/visual	QC	of	
virtually	any	digital	medical	data.	Other	tools	within	VisualQC	include	quality	rating	and	
artefact	identification	within	T1w	MRI,	EPI	and	DTI	scans,	as	well	as	tools	to	easily	check	
the	accuracy	of	registration,	defacing,	and	volumetric	segmentation	algorithms.	VisualQC’s	
custom-designed	rating	interface	for	FreeSurfer	parcellation	provides	a	seamless	
workflow,	integrating	all	the	necessary	data	and	visualizations	to	achieve	a	high	rating	
accuracy.		
	
Based	on	a	systematic	study	of	two	large	multi-site	datasets,	from	the	Ontario	Brain	
Institute	(OBI):	the	Canadian	Biomarker	Integration	Network	in	Depression	(CAN-BIND)	
and	the	Ontario	Neurodegeneration	Research	Initiative	(ONDRI)	programs,	we	show	that	
the	VisualQC	protocol	leads	to	a	higher	and	more	reliable	error	detection	rate	(EDR)	than	
ENQC.	As	visual	inspection	is	a	subjective	process,	it	is	prone	to	bias	or	variation	in	a	rater’s	
judgement	and	interpretation,	especially	in	the	case	of	subtle	errors	and	those	within	tricky	
regions	(with	convoluted	contours	on	2D	cross-sectional	slices)	such	as	entorhinal	cortex,	
parahippocampal	gyrus	and	superior	temporal	sulcus	etc.	Hence,	we	also	quantify	the	
inter-rater	reliability	(IRR)	for	each	combination	of	dataset,	for	the	two	protocols	ENQC	
and	VisualQC.	Our	goal	in	choosing	these	two	datasets	is	to	evaluate	the	protocols	on	a	
diverse	range	of	participants.	In	addition,	we	also	chose	to	evaluate	the	QC	protocols	for	
two	different	versions	of	FreeSurfer:	v5.3	and	v6.0,	as	the	parcellation	accuracy	and	error	
patterns	differ	for	different	versions,	and	these	two	have	been	in	use	widely.	These	
combinations	would	expose	our	study	to	diverse	range	of	issues,	as	well	as	test	the	
reproducibility	and	robustness	of	the	protocol	to	differing	datasets	and	software	versions.	
Given	the	multi-site	nature	of	these	datasets,	we	also	investigated	site-wise	differences	in	
error	patterns	of	FreeSurfer	cortical	parcellations.	In	particular,	we	built	a	predictive	model	
of	site	to	identify	the	factors	influencing	site-wise	differences	in	FS	error	patterns.	Based	on	
this	comprehensive	evaluation,	we	show	that	VisualQC	outperforms	ENQC	for	FreeSurfer	
QC,	becoming	a	strong	candidate	for	a	community	consensus	protocol	for	the	visual	QC	
rating	of	FS	parcellations.	
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Methods 

Datasets 
We	analyzed	two	large	multi-site	datasets	that	were	drawn	from	previous	studies	1)	the	
Canadian	Biomarker	Integration	Network	in	Depression	(CAN-BIND)	with	308	participants	
(MacQueen	et	al.	2019;	Lam	et	al.	2016),		and	2)	the	Parkinson's	disease	cohort	from	the	
Ontario	Neurodegeneration	Research	Initiative	(ONDRI)	(Farhan	et	al.	2017;	Scott	et	al.	
2020),	with	140	participants.	The	demographics	of	the	two	datasets	are	shown	in	Table	1.	
More	detailed	information	on	site-differences,	in	terms	of	vendors,	models	and	acquisition	
parameter	information,	is	presented	in	Appendix	A.	
	
TABLE	1:	Demographics	for	the	two	multi-site	datasets	in	this	study	

Dataset	 N	 Male/Female	 Age		 Group	

CANBIND	 308	 110/198	 34.45	(12.13)	 Healthy	controls	(n=111)	
Major	depressive	disorder	(n=197)	

ONDRI	 140	 109/31	 67.94	(6.35)	 Parkinson’s	Disease	(n=140)	

All	statistics	here	are	displayed	in	mean	(SD)	format.	

Processing 
All	scans	in	the	two	datasets	were	processed	with	the	FreeSurfer	cross-sectional	pipeline	
(Fischl	2012),	to	obtain	the	default	whole-brain	reconstruction	with	no	special	flags.	No	
manual	editing	was	performed	on	the	output	parcellation	from	FreeSurfer,	to	focus	the	
analysis	purely	on	fully	automatic	processing.	Each	dataset	was	processed	with	two	widely-
used	versions	of	5.3	and	6.0,	on	a	CentOS	6	Linux	operating	system	in	a	Compute	Canada	
high-performance	computing	cluster.	

Rating Methodology 
The	primary	purpose	of	FS	QC	via	manual	visual	rating	is	to	identify	parcellation	errors	and	
rate	their	level	e.g.	as	Pass,	Major	error,	Minor	error,	[complete]	Fail	etc.	An	error	in	FS	
cortical	parcellation	occurs	when	the	pial	or	white	surface	do	not	follow	their	respective	
tissue-class	boundaries,	such	as	gray	matter	(GM)	and	white	matter	(WM)	respectively.	
		
Initially	error	inspection	was	completed	by	three	raters,	following	protocols	from	ENQC.	
Briefly,	ENQC	rates	the	quality	of	the	parcellation	based	on	two	types	of	visualizations:	1)	
Internal	QC:	four	cross-sectional	slices	in	coronal	and	axial	views	overlaying	the	labels	
voxel-wise	on	top	of	the	input	T1w	MRI	in	opaque	color	(see	Figure	1),	and	2)	External	QC:	
four	views	of	the	anatomical	regional	labels	visualized	on	the	fsaverage	surface1.	If	there	
are	no	issues	of	any	kind	in	the	internal	or	external	QC,	it	is	rated	as	Pass	in	that	

 
1 Please refer to the VisualQC manual for illustrations of the two protocols at URL: 
https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf 
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corresponding	section.	Parcellation	errors	localized	to	particular	regions	are	labelled	as	
Moderate,	whereas	presence	of	severe	errors,	large	mislabeling,	mis-registration	and	
imaging	artefacts	as	well	as	global	failures	would	be	rated	as	Fail.	Location	of	the	error,	in	
terms	of	left	(L)	or	right	(R)	hemispheres	as	well	as	the	particular	region	of	interest	(ROI),	
are	also	noted,	following	the	FreeSurfer	Color	Lookup	Table	(FSCLUT)	[link].	

	
	
FIGURE	1:	Panel	(A):	Example	illustrations	of	a	single	slice	presented	in	the	ENQC	and	
VisualQC	workflows	respectively.	The	opaque	overlay	of	cortical	labels	in	ENQC	makes	it	
harder	to	see	the	boundaries	of	white	and	gray	matter,	and	leads	to	errors	in	judging	the	
accuracy	of	pial/white	surfaces.	Panel	(B):	Illustration	of	external	surface	visualizations	
annotating	a	typical	FS	parcellation	on	the	fsaverage	surface.	These	are	integrated	into	the	
default	interface	of	VisualQC	to	enable	easy	detection	of	any	topological	defects	and	
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mislabellings,	which	is	not	the	case	with	ENQC	creating	additional	sources	of	error	and	
burden.		
	
The	FS	QC	interface	for	VisualQC	is	shown	in	Figure	2.	This	is	highly	customized	for	rating	
the	accuracy	of	FS	parcellation,	and	presents	a	comprehensive	picture	in	all	the	relevant	
views:	contours	of	pial	and	white	surfaces	in	all	three	cross-sectional	views	with	at	least	12	
slices	per	view	(default	is	two	rows	of	six	slices,	but	it	is	customizable),	along	with	six	views	
of	the	pial	surface	(in	the	top	row).	The	cortical	labels	in	both	the	cross-sectional	and	
surface	views	are	color-annotated	in	the	same	manner	as	the	Freesurfer’s	tksurfer	tool	to	
leverage	the	familiarity	of	the	default	color	scheme.	This	design,	while	rigorous,	still	allows	
for	rapid	review	of	the	quality	and	bookkeeping	of	the	rating	along	with	any	other	notes.	
For	our	three	raters,	compared	to	ENQC,	VisualQC	enabled	recording	additional	
intermediate	levels,	encoded	as	Pass,	Minor	Error,	Major	Error	and	[complete]	Fail.	The	
locations	of	parcellation	errors	are	also	noted	in	VisualQC	using	the	Notes	section	in	the	
rating	interface	below	the	radio	buttons	for	rating,	using	the	same	names	and	codes	as	in	
the	FSCLUT.		
	
FreeSurfer	parcellation	errors	can	be	roughly	categorized	as	in	Table	2	below.	Their	names	
are	self-explanatory,	and	their	frequencies	for	these	common	errors	are	estimated	from	the	
ratings	data	presented	in	this	manuscript.	The	detailed	rating	system,	along	with	
definitions	and	examples	for	different	levels	of	errors	is	presented	in	Section	3.4	of	the	
VisualQC	manual	at	github.com/raamana/visualqc.	The	direct	URL	for	the	current	version	
v1.4	of	manual	is	
https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4
.pdf.	
	

Common	Error	 Location	 Severity	 Frequency		

Global	Fail	 Large	portions	of	brain	missing	 Fail	 <1%	

Pial	Overestimate	 postcentral,	precentral,	superior	
parietal	

Moderate	 ~30%	

Pial	Underestimate	 temporal	pole,	superior	temporal,	
inferior	temporal	

Moderate	 ~35%	

ROI	
Misclassification	

banks	of	superior	temporal	sulcus	 Moderate	 ~25%	

pericalcarine,	lingual,	cuneus	 Moderate	 ~25-30%	

insula	 Minor	 ~30%	

entorhinal	cortex,	
parahippocampal	

Minor	 ~80-100%	

cingulate	 Minor	 ~5-10%	
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Table	2:	Rough	categorization	of	the	common	parcellation	errors	from	Freesurfer,	their	
locations		and	frequencies.	

Exceptions to Rating 
Accurate	parcellation	in	highly	convoluted	areas	such	as	the	entorhinal	cortex	(EC),	
parahippocampal	gyrus	(PH)	and	insula	(IN)	is	highly	challenging.	Although	FreeSurfer	is	
generally	accurate	in	many	regions	of	the	cortex	in	the	absence	of	imaging	quality	issues,	it	
routinely	is	erroneous	in	these	ROIs	(see	Figure	3,	and	quantification	below).	Minor	errors	
in	these	ROIs	are	so	common,	ENQC	protocol	chose	to	rate	them	as	Pass	(ignoring	them	for	
the	overall	quality	for	the	whole	brain	parcellation),	so	long	as	the	errors	are	minor	and	the	
parcellation	is	free	from	any	other	issues.	This	is	in	line	with	the	official	troubleshooting	
guide	(Freesurfer	Team	2017)	which	recommends	avoiding	editing	these	minor	errors	to	
avoid	introducing	bias	and	reducing	reliability.	In	the	VisualQC	protocol,	we	choose	to	note	
them	as	Minor	Error	in	the	interest	of	recording	the	most	accurate	reflection	of	the	
parcellation	quality.	Our	data	confirms	these	errors	are	almost	universal:	only	4/2688	
ratings	from	three	raters	(0.1%)	were	free	from	errors	in	EC,	PH	and	IN.		
	
In	our	statistical	analyses	comparing	error	frequencies,	we	have	recoded	minor	errors	in	
EC,	PH	and	IN	with	no	other	issues	in	VisualQC	ratings	as	Pass,	to	make	them	
commensurable	with	ENQC.	A	similar	approach	is	taken	with	minor	errors	(over-	and	
underestimates)	in	superior	frontal	(interacting	with	the	cingulate	gyrus),	superior	parietal	
(interacting	with	cuneus	and/or	precuneus),	supramarginal	gyrus	(also	impacts	superior	
temporal	(ST)),	and	middle	temporal	(MT)	gyrus	(interacting	with	inferior	temporal	(IT)).	
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Figure	2:	An	instance	of	the	VisualQC	interface	for	the	rating	of	parcellation	accuracy	of	
FreeSurfer	output.	This	customized	interface	presents	a	comprehensive	picture	of	the	
parcellation	in	all	the	relevant	views:	contours	of	pial	and	white	surfaces	in	all	three	cross-
sectional	views	with	12	slices	each,	along	with	six	views	of	the	pial	surface,	color-annotated	
with	corresponding	cortical	labels.	This	design,	while	rigorous,	still	allows	for	rapid	review	
of	the	quality	and	bookkeeping	of	the	rating	along	with	any	other	notes.	

Error statistics 

Error detection rate 
Error	detection	rate	(EDR)	for	a	brain	region	was	calculated	as	the	number	of	participants	
with	detected	errors,	divided	by	the	total	number	of	participants	in	that	dataset.	For	valid	
comparison	with	VisualQC	in	quantifying	EDR,	we	considered	a	parcellation	as	Pass	in	
ENQC	only	when	it	is	rated	as	Pass	in	both	Internal	and	External	evaluations,	and	as	Fail	for	
all	other	combinations.	Under	the	VisualQC	protocol,	only	Pass	is	considered	Pass	and	any	
other	rating	as	Fail.	This	statistic	helps	us	judge	which	FS	version	is	generally	more	
accurate,	and	how	that	performance	is	related	to	experimental	conditions	(e.g.	site,	
scanner).	EDR	was	calculated	separately	for	each	dataset,	FreeSurfer	version,	and	rating	
protocol.	
	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2020.09.07.286807doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286807
http://creativecommons.org/licenses/by/4.0/


 10 

Inter-rater reliability 
The	ratings	were	hierarchical	in	nature	as	each	rating	was	initially	approached	with	a	Fail	
vs.	Pass	mindset,	which	was	then	followed	by	dividing	the	Fail	category	further	into	
multiple	levels	(Major	vs.	Minor	vs.	complete	Fail).	As	the	interval	between	the	Major	vs.	
Minor	errors	and	Minor	vs.	Fail	can	and	does	differ,	they	cannot	be	treated	as	simple	
numerical	variables.	Given	subjectivity	in	rating	error	severity	-	what	one	rater	may	
perceive	as	minor	error	could	be	perceived	as	major	error	by	another	reviewer,	esp.	when	
traversing	across	the	entire	brain	covering	diverse	ROIs,	the	ordering	of	error	severities	is	
not	preserved	across	raters,	and	hence	they	cannot	treated	as	ordinal	variables	either.	
Therefore,	we	encoded	them	as	categorical	variables	to	produce	valid	statistics	to	respect	
their	properties	and	measurement	methods.	Inter-rater	reliability	(IRR)	for	ratings	was	
computed	based	on	the	most	native	form	of	ratings	possible,	such	as	“Pass”,	“Major	Error”,	
“Minor	Error”,	"Fail"	for	VisualQC.	For	ENQC,	the	concatenated	ratings	from	Internal	and	
External	QC	used	for	IRR	calculations	are	“Pass_Pass”,	“Pass_Fail”,	“Fail_Pass”	and	
“Fail_Fail”.		
	
We	quantified	IRR	using	the	Fleiss	Kappa	statistic	on	ratings	from	the	three	raters	(Fleiss	
1971;	Randolph	2005),	separately	for	each	dataset,	FreeSurfer	version,	and	rating	protocol.	
In	addition,	we	have	also	bootstrapped	this	computation	100	times	selecting	80%	of	the	
sample	for	each	combination,	to	analyze	the	stability	of	estimates.		

Automatic Site Identification 
Another	way	to	demonstrate	the	site	differences	is	by	trying	to	automatically	predict	the	
site	based	on	morphometric	features,	as	they	play	a	direct	role	in	tissue	contrast	and	hence	
FS	accuracy.	Towards	this,	we	computed	region-wise	descriptive	statistics	(such	as	mean,	
SEM,	kurtosis,	skew,	and	range)	on	all	cortical	features	(i.e.,	thickness,	area,	curvature)	and	
contrast-to-noise	ratio	(CNR)2	values	in	all	FS	labels.		
	
For	site-identification,	a	random	forest	classifier	was	trained	on	the	aforementioned	
features	to	predict	the	site	label.	We	evaluated	its	performance	with	neuropredict	
(Raamana	2017;	Raamana	and	Strother	2017)	using	repeated-holdout	cross-validation	
(80%	training,	repeated	30	times;	feature	selection	based	on	f-value).	To	clarify,	this	
analysis	is	performed	to	demonstrate	the	presence	of	large	site/scanner-differences	in	
tissue	contrast	patterns	as	they	play	a	key	role	in	FS	parcellation	accuracy.	This	may	not	be	
directly	related	to	the	central	goal	of	this	paper	i.e.,	evaluate	and	compare	the	visual	QC	
protocols	for	Freesurfer.	However,	it	tests	our	expectation	that	the	primary	site/scanner	
specific	differences	will	be	driven	by	basic	CNR	effects,	and	not	other	derived	measures.	

 
2 CNR is computed as (Mean(WM)-Mean(GM)) / sqrt((Var(WM)+Var(GM))), 
where	all	data	used	to	compute	means	and	variances	are	intensity	values	in	WM/GM.	

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2021. ; https://doi.org/10.1101/2020.09.07.286807doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.286807
http://creativecommons.org/licenses/by/4.0/


 11 

Software 
All	calculations	were	performed	based	on	the	scientific	Python	ecosystem	(Python	version	
3.6),	with	the	Fleiss	Kappa	implementation	coming	from	the	statsmodels	package	
version	0.10.1	(Seabold	and	Perktold	2010).	
	
VisualQC	is	an	open	source	QC	rating	framework	(Raamana	2018)	freely	and	publicly	
available	at	https://github.com/raamana/visualqc.	The	tool	to	rate	the	quality	of	FS	
parcellations	is	one	of	the	many	within	VisualQC,	which	are	built	on	a	generic	visual	rating	
framework	that	is	modular	and	extensible,	allowing	for	manual/visual	QC	of	virtually	any	
digital	medical	data.	Other	tools	within	VisualQC	include	quality	rating	and	artefact	
identification	within	T1w	MRI,	EPI	and	DTI	scans,	as	well	as	tools	to	easily	check	the	
accuracy	of	registration,	defacing	and	volumetric	segmentation	algorithms.	They	are	
documented	in	detail	at	https://raamana.github.io/visualqc/,	which	also	includes	a	
comprehensive	manual	to	train	the	rater	to	learn	and	use	VisualQC3.	

Results 

Error detection rate 
	
The	EDR	measured	by	different	raters	in	the	CANBIND	and	ONDRI	datasets	for	FS	v6	are	
shown	in	Figure	3,	which	reveals	the	following:	1)	there	are	some	ROIs	that	are	
consistently	picked	up	as	erroneous	by	all	raters	using	both	QC	packages,	e.g.	in	the	medial	
temporal	lobe	(MTL),	such	as	the	ET,	ST	and	PH.	This	is	not	surprising	given	the	challenges	
involved	in	producing	an	accurate	parcellation	in	these	challenging	areas	in	a	fully	
automatic	fashion;	2)	beyond	the	MTL,	we	notice	variability	in	EDR	patterns	across	the	
three	raters,	both	between	the	two	protocols,	and	even	within	the	same	protocol;	3)	There	
is	clear	variability	in	EDR	per	region	either	across	the	raters	within	the	same	protocol,	or	
across	the	protocols	for	the	same	rater.	This	is	only	to	be	expected	given	the	subjective	task	
across	human	raters.	The	regions	where	this	variability	is	large,	both	across	raters	and	
protocols,	are	the	hard-to-segment	temporal	lobe	ROIs	as	well	as	the	central	sulcus.	
	

 
3 URL: https://github.com/raamana/visualqc/blob/master/docs/VisualQC_TrainingManual_v1p4.pdf 
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Differences	in	EDR: 	
	
FIGURE	3:	Visualization	showing	the	differences	in	EDR	across	multiple	raters	for	
FreeSurfer	v6.0	parcellations	in	the	CANBIND	and	ONDRI	datasets	for	ENQC	and	VisualQC	
protocols.	All	the	visualizations	in	this	paper	are	annotated	with	the	default	Desikan-
Killiany	parcellation	unless	otherwise	stated.	The	non-coloured	areas	in	gray	are	regions	
without	any	parcellation	errors	or	where	there	is	no	cortex	present	(e.g.	corpus	callosum).	

Error Comparison 
	
Differences	in	EDR	found	between	VisualQC	and	ENQC,	computed	as	EDR(VisualQC)-
EDR(ENQC)	are	shown	in	Figure	4,	on	the	default	Desikan-Killiany	parcellation.	We	observe	
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some	interesting	patterns	in	the	difference	plot.	The	majority	of	those	differences	in	EDR	
can	be	divided	into	two	categories:	

• a	higher	percentage	of	errors	detected	in	the	temporal	poles	by	VisualQC,	in	slices	
below	that	of	the	lowest	available	view	using	ENQC,	and		

• a	higher	percentage	of	errors	detected	by	ENQC	in	the	upper	pial	surface	(superior	
parietal	lobule,	superior	frontal,	pre-	and	postcentral	sulcus),	primarily	in	the	
CANBIND	cohort.		

	
Due	to	ENQC’s	choice	of	an	opaque	overlay	of	segmentation	labels	onto	the	anatomical	MRI	
(see	Figure	1),	this	increased	rate	of	error	detection	is	likely	due	to	a	reduction	in	visibility	
of	the	structural	scan	itself,	resulting	in	a	higher	false	positive	rate	(FPR).	Note:	we	believe	
errors	identified	via	VisualQC	are	inherently	more	accurate	by	virtue	of	its	superior	design	
(much	expanded	coverage	of	the	parcellation/brain,	non-opaque	contour	overlay	with	the	
ability	to	tweak	their	transparency	levels,	including	switching	them	off	etc).	
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FIGURE	4:	Percentage	differences	of	error	detection	found	between	ENQC	and	VisualQC,	
where	negative	value	(in	blue)	indicates	that	ENQC	detected	a	greater	percentage	of	errors,	
whereas	a	positive	value	(in	red)	indicates	that	VisualQC	found	greater	percentage	of	
errors,	for	that	dataset	and	version	of	Freesurfer.	The	color	bars	for	all	panels	visualizing	
the	EDR	differences	range	from	-0.2	to	0.2.	The	four	panels	shown	below	are:	(A)	CAN-
BIND,	FS	v5.3,	(B)	CAN-BIND,	FS	v6.0,	(C)	ONDRI,	FS	v5.3	and	(D)	ONDRI,	FS	v6.0.	Each	
panel	shows	lateral/medial	views	of	the	EDR	map	in	top/bottom	rows	respectively.		
	

Inter-rater reliability 
	
The	IRR	estimates	for	different	combinations	of	datasets	and	FreeSurfer	versions	are	
presented	in	Table	3	for	the	two	protocols.	This	shows	that	VisualQC	is	more	reliable	across	
the	board.		In	addition,	the	bootstrapped	estimates	(presented	in	Appendix	B)	are	quite	
identical	to	those	shown	in	Table	3.	We	believe	this	is	due	to	presenting	the	rater	with	a	
vastly	more	comprehensive	view	of	parcellation,	the	ability	to	zoom-in	to	each	slice	as	well	
as	toggle	the	tissue	contour	overlay	to	evaluate	the	anatomical	accuracy	in	a	confident	
manner.	
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CANBIND	v6.0	 ONDRI	v6.0	 CANBIND	v5.3	 ONDRI	v5.3	

ENQC	 0.28	 0.215	 0.36	 0.25	

VisualQC	 0.64	 0.54	 0.58	 0.56	

	
TABLE	3:	Inter-rater	reliability	(IRR)	estimates	for	the	three	raters	for	different	
combinations	of	the	dataset	and	FreeSurfer	versions.		

Site differences 
	
Given	FS	performance	is	dependent	on	the	quality	of	the	input	T1w	MRI	scan	and	the	
underlying	tissue	contrast,	we	wanted	to	study	if	the	acquisition	site	played	any	role	in	EDR	
and	whether	different	sites	presented	different	error	patterns.	Hence,	we	visualized	the	
parcellation	errors	segregated	by	site,	which	are	presented	in	Fig.	5	for	the	CANBIND	
dataset	processed	with	FS	v6.0.	This	visualization	illustrates	the	large	variability	across	
sites	in	multiple	ROIs	of	the	brain	across	the	cortex.	This	variability	can	also	be	observed	
even	in	the	frequently	erroneous	temporal	lobe	regions.		
	

	
	
FIGURE	5:	Visualization	of	the	site	differences	in	error	ratings	(average	of	the	percent	
errors	across	the	three	raters)	across	different	sites	for	the	CANBIND	dataset	(FS	v6.0)	
	
The	corresponding	site	differences	for	the	ONDRI	dataset	(FS	v6.0)	are	shown	in	Figure	6.	
We	observe	some	clear	patterns	common	across	the	sites	here,	such	as	the	relatively	higher	
error	rate	observed	in	the	medial	temporal	lobe	(MTL)	and	superior	frontal	(SF)	cortex.	
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Although	higher	error	rate	is	expected	in	MTL,	which	was	also	observed	in	the	CANBIND	
dataset,	similar	high	error	rate	in	SF	is	an	interesting	surprise.	
	

	
FIGURE	6:	Visualization	of	the	site	differences	in	error	ratings	(average	of	the	percent	
errors	across	the	three	raters)	across	different	sites	for	the	ONDRI	dataset	(FS	v6.0)	
	

Automatic Site Identification 
The	performance	estimates	of	a	predictive	model	for	automatic	site	identification	on	the	FS	
v6	outputs	from	the	CANBIND	dataset	are	visualized	in	the	confusion	matrix	shown	in	
Figure	7.	This	shows	some	sites,	especially	UBC	and	QNS,	are	readily	identifiable	with	over	
80%	accuracy.	Given	the	chance	accuracy	in	this	6-class	experiment	is	16%,	sites	TGH,	MCU	
and	UCA	seem	relatively	easily	identifiable	as	well.		
	
It	is	rather	interesting	CAM	and	MCU	have	often	been	misclassified	(>25%)	as	UCA,	which	
can	also	be	seen	in	the	similarity	of	site-wise	error	patterns	in	Figure	5.	Moreover,	all	these	
3	sites	use	the	same	scanner	(GE	3.0T	Discovery	MR750),	which	might	explain	the	
confusion	exhibited	by	the	site-predicting-classifier.	However,	it	must	be	noted	CAM	also	
got	misclassified	as	TGH	47%	of	the	time,	whereas	TGH	has	never	been	misclassified	as	
CAM	(1.39%).	Such	asymmetric	prediction	might	have	been	a	result	of	small	sample	size	
for	CAM	(n=16),	which	might	be	causing	challenges	for	the	predictive	model	in	learning	a	
unique	profile	for	this	site	and/or	skew	towards	majority	classes	to	improve	performance.	
This	anomaly	is	interesting	and	worthy	of	further	future	investigation.	Please	refer	to	
Appendix	A	for	more	details	on	the	scanner	models	and	acquisition	parameters.	
	
The	corresponding	feature	importance	values	(median	values	from	the	30	repetitions	of	
cross-validation)	are	visualized	in	Figure	8.	It	is	quite	clear	from	the	top	10	features	that	
CNR	played	a	crucial	role	in	site	identification,	and	their	source	ROIs	are	in	challenging	
areas	such	as	the	lateral	occipital	cortex,	fusiform	gyrus,	cuneus,	postcentral	gyrus,	
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superior	parietal	cortex	and	temporal	lobe.	These	site-differentiating	ROIs	are	difficult	to	
identify	just	based	on	raw	patterns	shown	in	visualizations	such	as	Figure	5.	
	

	
Figure	7:	Confusion	matrix	from	a	simple	machine	learning	experiment	to	identify	site	
from	the	morphometric	features	extracted	from	FreeSurfer	outputs	(v6.0)	from	the	
CANBIND	dataset,	such	as	the	region-wise	statistics	on	all	cortical	features	(thickness,	area,	
curvature)	and	CNR	values	in	the	FS	labels.	We	notice	some	sites,	esp.	UBC	and	QNS,	are	
quite	identifiable.	Given	the	chance	accuracy	in	this	6-class	experiment	is	16%,	sites	TGH,	
MCU	and	UCA	seem	easily	identifiable	also.	
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Figure	8:	Feature	importance	values	from	the	random	forest	predictive	model	for	site	
identification	on	CANBIND	dataset	FS	v6.0.	
	
We	have	also	performed	the	site	differences	analysis	on	the	ONDRI	dataset	(FS	v6.0)	with	
results	shown	in	Figure	9.	Similar	to	CANBIND,	we	can	see	that	a	few	sites	are	quite	
identifiable	in	ONDRI	as	well,	such	as	TOH	and	TWH	with	84%	and	71%	accuracy.	Given	
the	chance	accuracy	in	this	5-class	experiment	is	20%,	we	can	consider	the	sites	LHS	and	
SBH	to	be	identifiable	as	well.	The	features	contributing	most	to	the	automatic	site	
identification	model	were	sulcal	depth	in	rostral	anterior	cingulate	and	precentral	gyrus,	
thickness	distributional	statistics	(such	as	mean,	skew,	range,	SEM)	in	paracentral,	inferior	
temporal,	lingual	and	precentral	gyri,	along	with	precuneus	volume	(fraction	relative	to	the	
whole	brain).	It	is	interesting	to	note	these	features	are	a	different	set	compared	to	those	in	
CANBIND	which	were	mostly	based	on	CNR	profiles	in	different	ROIs.	Although	the	site	
prediction	analyses	presented	here	are	based	on	derived	features,	and	error	patterns		
across	sites	are	based	on	raw	parcellations	of	white	and	gray	matter	surfaces,	the	site-
prediction	results	from	the	two	datasets	show	the	importance	of	being	cognizant	about	site	
differences	while	QCing	FS	parcellations.	
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Figure	9:	Confusion	matrix	(left	panel)	from	of	the	predictive	model	for	site	identification	
based	on	FS	outputs	(v6.0)	from	the	ONDRI	dataset.	We	utilize	the	same	features	as	were	
extracted	in	the	CANBIND	dataset.	The	corresponding	feature	importance	values	are	shown	
in	the	right	panel.	

Discussion 
	
In	this	paper,	we	visualize	the	patterns	in	EDR	for	two	different	external	protocols	and	
evaluate	their	utility	and	reliability	in	different	dimensions.	In	the	context	of	FS	QC	broadly	
speaking,	the	Troubleshooting	guide	(TSG)	recommended	by	the	Freesurfer	team	is	
another	common	occurrence.	TSG	is	a	useful	practical	guide	to	not	just	identify	common	
issues	but	also	fix	them	with	specific	changes	to	intermediate	outputs	and	with	some	
additional	processing.	However,	it	is	not	a	quality	rating	protocol	per	se,	like	ENQC	or	
VisualQC,	as	it	is	a	guide	towards	identifying	common	errors	Freesurfer	makes	and	how	to	
fix	them	via	manual	editing.	The	approach	recommended	in	the	TSG	boils	down	to	
traversing	every	single	slice	one	at	a	time	and	checking	the	parcellation	accuracy,	which	
although	being	close	to	the	best	one	can	do	(gold	standard),	is	quite	time	consuming	and	
simply	not	feasible	for	even	for	somewhat	small	datasets,	let	alone	large	datasets.	That’s	
the	basis	for	the	development	of	protocols	like	ENQC	and	VisualQC.		As	for	the	EDR,	
following	the	TSG	would	result	in	labeling	almost	all	the	parcellations	as	erroneous.	Based	
on	our	experience	of	QCing	1000s	of	scans	from	many	datasets	covering	a	gamut	of	
demographics	and	sites,	we	are	confident	the	EDR	would	be	100%	when	following	the	TSG	
or	any	other	process	requiring	inspection	of	every	single	slice/ROI.	EDR	would	be	very	
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close	to	100%	not	just	because	Freesurfer	algorithms	have	issues	but	mainly	due	to	the	
immense	complexity	involved	in	the	whole	brain	reconstruction	process	in	a	fully	
automatic	fashion.	As	noted	in	the	Methods	sub-section	“Exceptions	to	Rating”,	the	EDR	for	
VisualQC	taking	all	the	minor	errors	identified	into	account,	is	99.9%	(only	4	combinations	
out	of	2688	were	free	from	any	errors).	To	reinforce	the	point,	this	was	based	on	only	
looking	at	the	36	cross-sections,	and	if	we	increased	them	further,	we	would	very	likely	
identify	issues	in	those	4	combinations	as	well.	This	implies	1)	there	were	no	false	positives	
and	2)	there	is	no	loss	of	quality	of	rating	in	employing	VisualQC	protocol,	and	there	are	
only	benefits	to	be	had	in	terms	of	efficiency	and	productivity.	
	
In	addition	to	rating	accuracy,	protocol	efficiency	is	important	given	the	steadily	increasing	
size	of	the	neuroimaging	datasets.	Relative	to	VisualQC,	ENQC	is	slower	and	more	
erroneous	because	of	need	to	obtain	and	manage	a	disparate	collection	of	tools	(n>3:	
external	QC,	internal	QC,	separate	spreadsheets	for	note	taking,	outlier	prompts	etc)	to	rate	
a	single	subject,	whereas	that	is	all	fully	integrated	and	seamless	in	a	single	VisualQC	
interface.	We	estimate	our	interface	would	be	roughly	at	least	3-5	times	faster.	In	the	
default	configurations,	we	estimate	it	takes	about	20	secs	for	a	trained	rater	in	VisualQC	
whereas	it	may	take	a	minute	or	two	in	ENQC.	That	is	reinforced	further	when	we	take	the	
ease	of	initial	installation	and	future	upgrades	into	account	(one	command	for	us	vs.	
manual	management	of	many	for	ENQC).	That	is	reinforced	further	when	we	take	the	ease	
of	initial	installation	and	future	upgrades	into	account	(one	command	for	us	vs.	manual	
management	of	many	for	ENQC).	It	must	be	noted	the	efficiency/processing	times	can	vary	
based	on	the	type	of	configuration	one	may	choose	for	VisualQC	and	goals	of	the	specific	QC	
task	(#	slices	per	view,	series	and	type	of	checks	made,	along	with	how	thorough	is	with	the	
notes	they	make).	
	
While	we	find	the	IRR	for	VisualQC	is	relatively	higher	than	ENQC,	we	can	further	improve	
it	in	a	few	ways	e.g.	by	reducing	the	subjectivity	in	the	rating	system	when	possible.	
Discounting	the	irreducible	human	subjectivity,	we	can	design	the	training	protocol	to	be	
more	comprehensive	to	develop	consensus	on	typical	disagreements.	Another	possibility	
could	be	to	increase	the	number	of	checkpoints	to	review	before	rating,	but	this	option	
comes	with	the	tradeoffs	of	additional	burden	and	slower	processing	time. 
	
As	easy	and	integrated	as	VisualQC	is,	manual	QC	still	is	not	effortless,	especially	with	the	
increasingly	large	sample	sizes	reaching	many	10s	of	thousands	today.	Hence,	an	
automated	tool	to	predict	the	quality	of	a	given	FS	parcellation	without	human	rating	
would	be	useful	in	reducing	the	QC	burden.	A	frequently	requested	feature	is	an	automatic	
tool	to	identify	clear	failures	and	major	errors	sufficiently	accurately,	so	the	raters	can	
focus	on	the	subtle	and	minor	errors,	which	would	expedite	the	QC	process	significantly.		
However,	as	highlighted	by	previous	efforts	in	this	direction	(Klapwijk	et	al.	2019),	the	
development	of	accurate	automatic	predictive	QC	tools	require	that	we	have	a	reliable		
approach	to	create	ground	truth	(via	visual	QC)	for	these	tools	to	be	trained	on	and	
optimized	for.	Development	of	such	a	reliable	protocol	as	a	candidate	for	community	
adoption	was	the	main	thrust	of	this	paper.	Based	on	this	protocol,	we	plan	to	pursue	to	
development	of	a	predictive	tool	and	validate	it	for	different	application	scenarios	such	as	
high	sensitivity	(not	missing	even	a	single	bad	parcellation)	or	more	narrowly	to	clear	
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certain	ROIs	(posterior	cingulate	gyrus	or	medial	temporal	lobe	etc)	of	any	errors.	Other	
frequently	requested	features	that	VisualQC	does	not	currently	support,	but	plan	to	
develop	in	the	future,	are	1)	the	ability	to	correct	the	errors	as	they	are	identified	on	the	
VisualQC	interface,	2)	automatic	recording	of	the	location(s)	of	the	erroneous	parcellation,	
3)	ability	to	dig	deeper	(via	zooming	in	or	selective	highlights	)	on	a	single	ROI	(such	as	
precuneus)	while	switching	off	everything,	and	4)	intelligent	slice	selection	or	
incorporating	application-specific	domain	knowledge	to	improve	the	speed	or	accuracy	of	
the	visual	QC	task	at	hand.	

Conclusions 
In	this	study,	we	presented	a	viable	protocol	for	the	visual	QC	of	FreeSurfer	parcellations	
based	on	an	open	source	QC	library.	Based	on	a	systematic	comparison,	we	demonstrate	
that	this	VisualQC	protocol	leads	to	relatively	higher	EDR,	lower	FPR	and	higher	IRR	for	the	
manual	QC	of	FreeSurfer	parcellation	relative	to	ENQC.	We	characterized	its	utility	and	
performance	on	two	large	multi-site	datasets	showing	it	is	robust	across	two	different	age	
ranges	and	disease	classes.	Moreover,	it	is	seamless	and	is	significantly	faster	than	
following	ENQC	or	the	standard	FreeSurfer	troubleshooting	guide.	Further,	we	highlight	
the	need	to	be	cognizant	of	the	site-differences	in	parcellation	errors.	
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Appendix A – Site information 
The two datasets studied here are large and multi-site by design. The detailed information on 
site-differences in terms of acquisition parameters and scanners have been carefully tabulated in 
the respective dataset papers for ONDRI (Scott et al. 2020) and CANBIND (MacQueen et al. 
2019). 
 
CANBIND: 
 

Site	

Toronto	
General/We

stern	
Hospital	
(TGH)	

Centre	for	
Addition	&	
Mental	
Health	
(CAM)	

McMaster	
University	
(MCU)	

University	of	
Calgary	
(UCA)	

University	of	
British	
Columbia	
(UBC)	

Queens	
University	
(QNS)	

Scanner	
Model	

GE	3T	Signa	
HDxt	

GE	3T	
Discovery	
MR750	

GE	3T	
Discovery	
MR750	

GE	3T	
Discovery	
MR750	

Philips	3T	
Intera	

Siemens	3T	
TrioTim	

Coil	 GE	8HRBRAIN	 GE	8HRBRAIN	 GE	HNS	Head	 GE	HNS	Head	 SENSE-Head-8	
12-channel	
head	matrix	

coil	
Software	
version	

HD16.0_V02_1
131.a	

DV24.0_R01_1
344.a	

DV25.0_R02_1
549.b	

DV25.0_R02_1
549.b	 3.2.3,3.2.3.1	 syngo	MR	B19	

TR	(ms)	 7.5	[1]	 6.4	[2]		 6.4	[2]	 6.4	[2]	 6.57	 1760	[3]	

TE	(ms)	 2.86	[4]	 2.8	[5]	 2.8	[5]	 2.8	[5]	 2.9	[6]	 2.2	[7]	

TI	(ms)	 450	 450	 450	 450	 950	 950	[8]	
Flip	Angle	
(degree)	 15	 15	 15	 15	 8	 15	

Pixel	
Bandwidth	 260	[9]	 260	[9]	 260	[10]	 260	[9]	 241	[11]	 199	

Matrix	
Dimension	
(pixels)	

240	x	240	[12]	 240	x	240	[12]	 240	x	240	[12]	 240	x	240	[12]	 240	x	240	[13]	 256	x	256	

Voxel	
Dimension	
(mm)	

1	x	1	x	1	 1	x	1	x	1	 1	x	1	x	1	 1	x	1	x	1	[14]	 1	x	1	x	1	 1	x	1	x	1	

Number	of	
slices	 176	 180	C1	 180	C1	 180	C1	 180	C2	 192	

Number	of	
Subjects	 71	 16	 50	 66	 72	 31	

 
Notes: 
 
C1 prior to standardization, for an n of 49, the number of slices for GE DISCOVERY was 176 
C2 prior to standardization, for an n of 27, the number of slices for PHILIPS was 170 
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ONDRI: 
 

Site	

Robarts	
Research	
Institute	
(ROB)	

Sunnybrook	
Health	
Sciences	
(SBH)	

St.	Michael’s	
Hospital	
(SMH)	

The	Ottawa	
Hospital	
(TOH)	

Toronto	
Western	
Hospital	
(TWH)	

Center	for	
Addiction	
and	Mental	
Health	(CAM)	

Scanner	 Siemens	3T	
Prisma	fit	

GE	3T	
Discovery	
MR750	

Siemens	3T	
Skyra	

Siemens	3T	
Trio	Tim	

GE	3T	Signa	
HDxt	

GE	3T	
Discovery	
MR750	

TR	(ms)	 [2300:2300]	 [8.156:8.156]	 [2300:2300]	 [2300:2300]	 [6.9:7.3]	 [6.652:6.652]	

TE	(ms)	 [2.98:2.98]	 [3.18:2.18]	 [2.03:2.03]	 [2.96:2.96]	 [2.8:3.1]	 [2.298:2.298]	

TI	(ms)	 [900:900]	 [400:400]	 [900:900]	 [900:900]	 [400:400]	 [400:400]	

Flip	Angle	
(degree)	

[9:9]	 [11:11]	 [9:9]	 [9:9]	 [11:11]	 [11:11]	

Pixel	
Bandwidth	

[240:240]	 [244.141:	
244.141]	 [240:240]	 [240:240]	 [244.141:	

244.141]	
[244.141:	
244.141]	

Matrix	
Dimension	
(pixels)	

[256x256:	
256x256]	

[256x256:	
256x256]	

[256x256:	
256x256]	

[256x256:	
256x256]	

[256x256:	
256x256]	

[256x256:	
256x256]	

Voxel	
Dimension	
(mm)	

[1x1x1	:	
1x1x1]	

[1x1x1	:	
1x1x1]	

[1x1x1	:	
1x1x1]	

[1x1x1	:	
1x1x1]	

[1x1x1	:	
1x1x1]	

[1x1x1	:	
1x1x1]	

Number	of	
slices	

[176:176]	 [176:176]	 [192:192]	 [176:176]	 [176:176]	 [176:176]	

Number	of	
subjects	

17	 29	 12	 38	 30	 13	

 

Appendix B – Bootstrapped results of interrater reliability 
 
The	bootstrapped	estimates	(80%	of	the	sample,	repeated	100	times)	of	the	IRR	for	the	3	
raters	for	different	combinations	of	the	dataset	and	FreeSurfer	versions	are	shown	below: 
	 	

CANBIND	v6.0	 ONDRI	v6.0	 CANBIND	v5.3	 ONDRI	v5.3	

ENQC	 0.279	(0.02)	 0.215	(0.033)	 0.361	(0.022)	 0.249	(0.026)	

VisualQC	 0.635	(0.028)	 0.539	(0.046)	 0.586	(0.03)	 0.555	(0.041)	
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Appendix C: Distributions of derived features in erroneous and accurate 
ROIs 
 
To help us better understand the differences between erroneous and accurate ROIs, we have 
visualized the distributions of derived features such as the cortical thickness between the subjects 
that were rated as erroneous and those that were not, for each Freesurfer label separately. They 
are shown in the plot below for the 12 most erroneous ROIs from the CANBIND dataset 
processed with FS v6.0. Distributions colored with green are from ROIs rated as accurate, and 
those colored with blue and red are from the erroneous ROIs from the healthy and disease 
cohorts respectively. It must be noted that we didn’t collect the exact coordinates of the errors in 
each FS label and are visualizing the distributions of thickness of the entire label from many 
thousands of vertices in each panel. Such massive distribution has the potential to drown any 
subtle differences from the exact location of erroneous vertices. 
 
A clear pattern of errors we can see in these visualizations (shown below) are the peaks at 0mm 
(considered erroneous) for the labels entorhinal (Row 1 Col 3), parahippocampal (R2:C4) and 
temporal pole (R3:C4). While we do see a green peak (although smaller, from some fraction of 
subjects for the ROIs rated as not-erroneous), this is likely coming from slices not reviewed or 
missed by the quality rater, and serves as another reminder of how the complex the review 
process is and how tedious proper QC can be. However, we do notice much larger peaks at 0mm 
for the erroneous groups, which implies we were able to catch those errors with our QC protocol. 
We also see a noticeable difference in the shape of the no-error vs. error distributions in the panel 
corresponding temporal pole (R3:C4). 
 
As noted before, given we are visualizing the distributions of thickness of the entire label from 
many thousands of vertices, we may be drowning any subtle differences, from the typical 
parcellation errors we notice in FS. When big global segmentation failures do happen, it can 
result in the 0mm peaks as identified earlier. 
 
As the overlap of distributions is pretty clear, we don’t think it’s necessary to any statistics to 
show they do not significantly differ from each other. However, we included them (along with 
corresponding versions for sulcal depth and curvature), in the revised version for improved 
readability for the community. 
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Fig C1: Distributions of vertex-wise cortical thickness in different ROIs grouped as erroneous or 
not (and further subdivided by healthy vs. patient). The x-axis refers to the thickness values, that 
are non-negative, with a typical average value of 2.5mm and a typical maximum value of about 
5mm. The y-axis refers to the fraction of the ROIs at a particular value. The name of the ROI is 
noted in each panel’s x-axis label along with the number of erroneous subjects in each category. 
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Fig C2: Distributions of vertex-wise sulcal depth in different ROIs rated and grouped as 
erroneous or not (and further subdivided by healthy vs. patient). The x-axis refers to the sulcal 
depth values, whose range includes negative values, whereas the y-axis refers to the fraction of 
the ROIs at a particular value. The name of the ROI is noted in each panel’s x-axis label along 
with the number of erroneous subjects in each category. 
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Fig C3: Distributions of vertex-wise curvature in different ROIs grouped as erroneous or not 
(and further subdivided by healthy vs. patient). The x-axis refers to the curvature values, whose 
range can include negative values, whereas the y-axis refers to the fraction of the ROIs at a 
particular value. The name of the ROI is noted in each panel’s x-axis label along with the 
number of erroneous subjects in each category. 
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