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Abstract 1 

Background: Low-biomass microbiome studies (such as those of the lungs, placenta, and skin) 2 

are vulnerable to contamination and sequencing stochasticity, which obscure legitimate 3 

microbial signal. Since low-biomass microbiome fields have had variable success in establishing 4 

the reality and clinical significance of identified microbiota, we sought to develop and apply an 5 

analytical approach to discriminate signal from noise in low-biomass microbiome studies. We 6 

used this approach to determine the optimal sampling strategy in murine lung microbiome 7 

studies, which will be essential for future mechanistic lung microbiome research. 8 

 9 

Methods: Using a novel, ecology-based analytic approach, we compared bacterial DNA from 10 

the lungs of healthy adult mice collected via two common sampling approaches: homogenized 11 

whole lung tissue and bronchoalveolar lavage (BAL) fluid. We quantified bacterial DNA using 12 

droplet digital PCR, characterized bacterial communities using 16S rRNA gene sequencing, and 13 

systematically assessed the quantity and identity of bacterial DNA in both specimen types. We 14 

compared bacteria detected in lung specimens to each other and to potential source 15 

communities: negative (background) control specimens and paired oral samples.  16 

 17 

Findings: By all measures, whole lung tissue in mice contained greater bacterial signal and less 18 

evidence of contamination than did BAL fluid. Relative to BAL fluid, whole lung tissue exhibited 19 

a greater quantity of bacterial DNA, distinct community composition, decreased sample-to-20 

sample variation, and greater biological plausibility when compared to potential source 21 

communities. In contrast, bacteria detected in BAL fluid were minimally different from those of 22 

procedural, reagent, and sequencing controls. 23 

 24 

Interpretation: An ecology-based analytical approach discriminates signal from noise in low-25 

biomass microbiome studies and identifies whole lung tissue as the preferred specimen type for 26 
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murine lung microbiome studies. Sequencing, analysis, and reporting of potential source 27 

communities, including negative control specimens and contiguous biological sites, is crucial for 28 

biological interpretation of low-biomass microbiome studies, independent of specimen type. 29 

 30 

Funding: National Institutes of Health 31 
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Introduction 32 

Though the development of next-generation sequencing has led to heightened interest in the 33 

study of microbial communities across biological contexts, the study of low-biomass 34 

microbiomes is particularly challenging and requires the development of new methodological 35 

approaches. Low-biomass samples - samples with low densities of bacterial cells and therefore 36 

low quantities of bacterial DNA - are susceptible to contamination with background-derived 37 

signal, which affects the taxonomic composition of low-biomass samples1,2 and makes it 38 

challenging to decipher biological meaning from sequencing data3. These methodological 39 

challenges exist in all fields that study low-biomass microbial communities across 40 

environmental, industrial, and biomedical contexts. 41 

 42 

Low-biomass microbiome fields have had variable success in overcoming these methodological 43 

challenges. Whereas early findings related to the purported placenta microbiome have 44 

subsequently been attributed to contamination4,5, the lung microbiome field has flourished with 45 

robust, validated findings: lung microbiota are detectable in health6–12, correlated with lung 46 

immunity both in health7,8 and disease13–15, correlated with disease severity and predictive of 47 

response to therapy16–19, and prognostic of clinical outcome in multiple conditions20–27. The lung 48 

microbiome field addressed the challenge of low-biomass microbiome sampling by 49 

systematically defining methods that collect representative populations of lung microbiota to 50 

maximize bacterial DNA content and minimize vulnerability to background contamination9–12. As 51 

a result, empirically validated sampling approaches such as bronchoalveolar lavage (BAL) fluid, 52 

which samples a large surface area and yields high sample volumes, and sputum, which 53 

contains concentrated densities of bacterial cells, have been successfully implemented in 54 

human lung microbiome studies28. 55 

 56 
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Yet despite their routine use in human lung microbiome studies, these sampling methods are 57 

not easily adapted for sampling lung microbiota in murine models, which will be critical to 58 

understand the mechanisms that govern the relationship between respiratory tract microbiota 59 

and pulmonary disease. Anatomic considerations make the application of sequencing-based 60 

techniques to murine lung microbiome studies particularly challenging. Collection of BAL fluid is 61 

severely limited by the small (~1 mL) volume of the murine lung29, and sputum collection is not 62 

possible in mice. In contrast, analysis of homogenized lung tissue is more feasible in mice than 63 

humans, and represents a viable option for maximizing the bacterial DNA content in murine lung 64 

samples30. The ability to effectively sample low-biomass microbial communities is inherently 65 

context-dependent and will require new solutions adapted to the particular context of each 66 

study.  67 

 68 

We therefore designed an empirical approach to compare microbial signal detected in two 69 

distinct sample types collected from the same ecological site (murine lungs) with the following 70 

goals: 1) to assess the usefulness of microbial ecology-based analytical techniques repurposed 71 

for the discrimination of legitimate microbial signal from background noise and 2) to determine 72 

the sampling method that is best suited for the characterization of the murine lung microbiome. 73 

To accomplish these goals, we quantified and sequenced the bacterial DNA present in BAL fluid 74 

and whole lung tissue from otherwise genetically- and environmentally-identical healthy mice 75 

and compared them using a novel analytic approach (Figure 1).76 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.08.283259doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.283259
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 77 

Ethics approval: The animal studies described in this manuscript were approved by the 78 

Institutional Animal Care and Use Committee at the University of Michigan. Laboratory animal 79 

care policies at the University of Michigan follow the Public Health Service Policy on Humane 80 

Care and Use of Laboratory Animals.  81 

 82 

Mice: Eight-week-old female C57BL/6 mice (n = 20) were purchased from Jackson Laboratories 83 

and housed under specific pathogen–free conditions. Mice were housed in five-animal cages in 84 

a common animal housing room and did not receive independent ventilation. Mice were allowed 85 

to acclimate for 1 week before harvest at 9 weeks of age. To avoid batch effect, mice were 86 

randomly assigned to specimen type (BAL fluid or whole lung tissue) and evenly sampled 87 

across cages. Animal experimentation was performed in compliance with the ARRIVE 88 

Guidelines31,32. Details regarding tissue collection and processing are reported in the online 89 

supplement (Figure 1, step 1). 90 

 91 

DNA extraction, quantification, and 16S rRNA gene sequencing: DNA was extracted, 92 

amplified, and sequenced according to previously published protocols33,34 (Figure 1, steps 2,4). 93 

Sequencing was performed with the MiSeq platform (Illumina). Bacterial DNA in lung specimens 94 

and negative controls was quantified with a QX200 ddPCR system (Bio-Rad, Hercules, CA) 95 

according to a previously published protocol35. Details are provided in the online supplement. 96 

 97 

Data analysis: 16S rRNA gene sequencing data were processed using mothur (v. 1.43.0) 98 

according to the Standard Operating Procedure for MiSeq sequence data using a minimum 99 

sequence length of 250 base pairs36,37. Overall significance was determined as appropriate by 100 

the Kruskal-Wallis test and by permutational multivariate ANOVA (PERMANOVA) with 10,000 101 

permutations using Euclidean distances (adonis). Pairwise significance was determined as 102 
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appropriate by the Wilcoxon test with the Benjamini-Hochberg correction for multiple 103 

comparisons, Tukey’s HSD test, and two-sample independent Mann-Whitney U test. All 104 

statistical tests used p=0∙05 as a threshold for significance. Details regarding statistical and 105 

ecologic analysis are reported in the online supplement. 106 
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Results 107 

Murine whole lung tissue contains more bacterial DNA than BAL fluid and negative controls 108 

Obtaining quality sequencing data depends on the presence of sufficient bacterial DNA in the 109 

samples to be analyzed. Therefore, we first compared the quantity of bacterial DNA in whole 110 

lung tissue and BAL fluid obtained from healthy C57BL/6 mice (Figure 1, step 3). We 111 

hypothesized that whole lung tissue contains more bacterial DNA compared to BAL fluid. To test 112 

this hypothesis, we determined the number of 16S rRNA gene copies present in DNA isolated 113 

from whole lung tissue, BAL fluid, and negative control specimens using droplet digital PCR 114 

(ddPCR). As seen in Figure 2, BAL fluid and whole lung tissue both contained a significantly 115 

greater quantity of bacterial DNA than the isolation control (p=0∙0084 and 0∙0026, respectively). 116 

In contrast, BAL fluid did not contain more bacterial DNA than sampling controls or no template 117 

controls (p>0∙05). Whole lung tissue contained significantly more bacterial DNA than all other 118 

groups, including all negative controls (p=0∙0001). Whole lung tissue contained 27-fold more 119 

16S rRNA gene copies than BAL fluid (64,110 vs. 2,367 mean copies/mL, respectively; 120 

p=0∙0002). We thus concluded that murine whole lung tissue contains a greater quantity of 121 

bacterial DNA than does BAL fluid. 122 

 123 

Having confirmed the presence of detectable bacterial DNA in whole lung tissue and BAL fluid, 124 

we proceeded with 16S rRNA gene sequencing according to a standard low-biomass protocol. 125 

Along with whole lung tissue and BAL fluid, we sequenced a variety of controls, including cecum 126 

as a high-biomass positive control, tongue as a low-biomass positive control and potential 127 

source community of the lower respiratory tract, a synthetic mock community as a positive 128 

sequencing control, and negative controls for each stage of specimen processing, including 129 

sampling, DNA isolation, and sequencing controls. Details regarding adequacy of sequencing 130 

are provided in the online supplement. 131 

 132 
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Murine whole lung tissue has increased alpha diversity and decreased sample-to-sample 133 

variation relative to BAL fluid and negative controls  134 

We next determined if the alpha (within-sample) diversity also differed across sampling 135 

approaches (Figure 1, step 5). We hypothesized that the increased quantity of bacterial DNA in 136 

whole lung tissue would yield greater diversity of bacterial taxa in whole lung tissue compared to 137 

BAL fluid. To test this hypothesis, we calculated community richness as measured by the 138 

number of unique operational taxonomic units (OTUs) present in each specimen and negative 139 

control. As predicted, whole lung tissue had greater community richness than BAL fluid 140 

(p=0∙001) and sampling, isolation, and sequencing controls (p<0∙001 for all comparisons) 141 

(Figure 3). In contrast, whole lung and BAL specimens did not significantly differ in Shannon 142 

diversity index, which reflects both community richness and evenness (p>0∙05; Supplementary 143 

Figure 2). We therefore concluded that alpha diversity differs across sampling approaches, with 144 

greater alpha diversity in whole lung tissue driven by the detection of greater numbers of unique 145 

OTUs relative to BAL fluid.  146 

 147 

Since BAL fluid contained low quantities of bacterial DNA and fewer unique OTUs than whole 148 

lung tissue, we suspected that incomplete sampling of the respiratory tract via saline lavage 149 

may also result in increased sampling and sequencing stochasticity38, which both lead to 150 

decreased specimen-to-specimen reproducibility of cohoused mice (which have similar lung 151 

microbiota6). We thus hypothesized that whole lung tissue would have decreased sample-to-152 

sample variation relative to BAL fluid, representing greater replicability. To test this hypothesis, 153 

we computed the Bray-Curtis dissimilarity index, a beta-diversity metric based on pairwise inter-154 

sample distances between specimens of the same type (i.e. we compared each whole lung 155 

tissue specimen to each other whole lung tissue specimen, and likewise for BAL fluid). Whole 156 

lung tissue yielded a decrease in average Bray-Curtis dissimilarity index relative to that of BAL 157 

fluid and empty well controls (p<0.0001) (Figure 4). In contrast, the average Bray-Curtis 158 
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dissimilarity index for BAL fluid was not significantly different than the highly dissimilar empty 159 

well controls (p=0∙27). These results indicate that whole lung tissue displays decreased sample-160 

to-sample variation and samples the lung microbiome of mice more reproducibly than BAL fluid.  161 

 162 

The taxonomic composition of murine whole lung tissue is similar to its oral microbiome source 163 

community and is distinct from negative controls, whereas that of BAL fluid is not distinct from 164 

negative controls 165 

Having identified differences in bacterial quantity and diversity across sampling approaches, we 166 

next assessed whether the taxonomic composition of whole lung tissue and BAL fluid differed 167 

from each other and from negative controls (Figure 1, step 6). Since whole lung tissue had 168 

higher bacterial DNA content and alpha diversity than BAL fluid, we hypothesized that the 169 

taxonomic composition of BAL fluid would more closely resemble that of negative control 170 

specimens than would whole lung tissue, reflecting background contamination and sequencing 171 

noise as predominant sources of taxa in BAL fluid. To test this hypothesis, we used principal 172 

component analysis (PCA) to compare the similarity of taxa identified in whole lung tissue, BAL 173 

fluid, and negative control specimens. As seen in Figure 5A, the taxonomic composition of 174 

whole lung tissue was distinct from that of BAL fluid (p=0∙00009) and pooled sampling controls 175 

(p=0∙0004). In contrast, BAL fluid showed prominent overlap with sampling controls and did not 176 

differ in overall community composition (p=0∙46). Similar results were obtained when comparing 177 

whole lung tissue and BAL fluid with isolation and sequencing controls (Supplementary Figure 178 

3A,B). Overall, these data show that the taxonomic composition of whole lung tissue is distinct 179 

from that of BAL fluid and negative controls, whereas BAL fluid is not distinct from most 180 

negative controls.  181 

 182 

We next assessed the biological plausibility of bacterial taxa by comparing whole lung tissue 183 

and BAL fluid communities to their likely source community, the oral microbiome (Figure 1, step 184 
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7). We hypothesized that the taxonomic composition of whole lung tissue would more closely 185 

resemble that of the oral microbiome source community than does BAL fluid. Principal 186 

component analysis confirmed that tongue and whole lung tissue display similar but statistically 187 

different (p=0∙01) taxonomic compositions, whereas BAL fluid clusters separately both from 188 

tongue (p=0∙00009) and whole lung tissue (Figure 5B). The clustering of BAL fluid with negative 189 

controls and tongue with whole lung tissue is also observed when plotting all lung, tongue, and 190 

negative control samples together (Supplementary Figure 3C). We confirmed these results by 191 

calculating the Bray-Curtis dissimilarity index for matched (i.e. from the same mouse) tongue 192 

and lung samples (Figure 5C). Consistent with the PCA results, whole lung tissue more closely 193 

resembled the oral source community than did BAL fluid (p=0∙0004). Rank abundance analysis 194 

revealed that the prominent taxa in whole lung tissue were also common in tongue specimens, 195 

whereas taxa in BAL fluid bore little resemblance to oral taxa and instead resembled taxa in 196 

negative controls (Figure 5D). The similarity of taxa in the whole lung and tongue samples and 197 

the BAL fluid and negative control samples, respectively, can also be observed when ordering 198 

rank abundance plots by the taxa found in the tongue or pooled negative controls 199 

(Supplementary Figure 4). Together, these results confirm that the bacterial taxa identified in 200 

whole lung tissue are more biologically plausible than those detected in BAL fluid.  201 
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Discussion 202 

This study illustrates how an ecology-based analytical approach can determine the reality of 203 

bacterial signal in low-biomass microbiome studies. Our approach revealed the superiority of 204 

murine whole lung tissue relative to BAL fluid in detecting bacterial signal, and validates the use 205 

of whole lung tissue for lung microbiome studies in mice. The bacterial signal in murine whole 206 

lung tissue is stronger than that of BAL fluid by all comparisons: increased quantity of bacterial 207 

DNA, greater diversity of bacterial taxa, and taxonomic composition that is reproducible across 208 

biological replicates, distinct from negative controls, and more similar to the oral microbiome, a 209 

biologically plausible source community (Table 1).  210 

 211 

This study represents the first systematic comparison of sampling methods appropriate for the 212 

study of the murine lung microbiome. The lack of empirically-validated methods for sampling 213 

lung microbiota in mice is particularly concerning in light of the current reproducibility crisis39 and 214 

recent controversial low-biomass studies4,5,40, which highlight the dangers of over-interpreting 215 

noisy sequencing data in the absence of rigorous, field-specific standards. A systematic 216 

examination of methods for sampling lung microbiota in mice is overdue, especially considering 217 

the first report describing the murine lung microbiome was published almost a decade ago41. 218 

Published murine lung microbiome studies to date have used both whole lung tissue6,42–47 as 219 

well as BAL fluid48–50, but no study to date has directly compared sample approaches. Based on 220 

the findings of the current study, we strongly recommend whole lung tissue as a preferred 221 

sampling strategy for subsequent murine lung microbiome studies.  222 

 223 

While BAL fluid in mice contains weak bacterial signal relative to lung tissue, in humans the 224 

opposite has been observed: human BAL specimens contain consistently stronger bacterial 225 

signal than lung tissue acquired via biopsy. This observation is consistent with anatomic and 226 

ecologic differences across species. Anatomically, human lungs are much larger than murine 227 
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lungs, providing increased surface area for sampling (~75 m2 vs. 0∙008 m2) and more airspace 228 

(6 L vs. 0∙001 L) to accommodate the collection of far larger volumes of BAL fluid29,30,51. Biopsy 229 

specimens of human lungs are typically small in volume and peripheral in anatomic location, 230 

meaning they are predominantly composed of interstitium rather than airways and alveolar 231 

space (where bacteria are more likely to be found). In contrast, use of whole lung homogenate 232 

in mice ensures capture of all bacterial DNA within the entire respiratory tract. Thus, anatomic 233 

and ecologic differences between humans and mice necessitates the use of murine-specific 234 

sampling approaches, and illustrates why a “one-size-fits-all” approach to low-biomass 235 

microbiome sampling is unlikely to work: sampling strategies will need to be tailored to their 236 

specific environmental and biologic contexts. 237 

 238 

Numerous sources of false signal can confound detection of bacterial communities in low-239 

biomass microbiome studies, including contamination (procedural, reagent, and sequencing) 240 

and sequencing stochasticity. Salter and colleagues elegantly demonstrated the susceptibility of 241 

low-biomass samples to reagent contamination by sequencing serial dilutions of a pure bacterial 242 

culture, where increasingly diluted specimens contained increasing abundances of taxa found in 243 

the DNA isolation reagents1. Other sources of contamination, such as those introduced during 244 

specimen collection (e.g. bronchoscope, surgical instruments, collection tubes) or sequencing 245 

(e.g. well-to-well contamination or index switching) may also alter the taxonomic composition of 246 

low-biomass samples52,53. Additionally, it has recently been demonstrated via the use of 247 

sequencing replicates that sequencing stochasticity is itself a major source of variability in 248 

microbial signal in low-biomass studies38. Given the numerous sources of potential false signal 249 

in low-biomass microbiome studies, we do not believe this methodological challenge can be 250 

sufficiently addressed with a simple, universal solution (e.g. a single bioinformatic 251 

“decontamination” step). Rather, as illustrated in our approach, we believe the reality of 252 
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microbiologic signal must be assessed within the specific ecologic context from which it is 253 

sampled, and anchored in an understanding of microbial ecology. 254 

 255 

Several alternate approaches to false signal in low-biomass microbiome studies have been 256 

proposed. Strategies used to detect, interpret, and in some cases, eliminate, contamination 257 

have included exclusion of taxa detected in negative controls through statistical packages54,55 or 258 

unbiased subtraction7, extraction and sequencing technical replicates38, calculation of 259 

abundance ratios56, correlation analyses57, hierarchical clustering58, and building neutral 260 

models59. In contrast, we propose a simple analytical approach grounded in principles of 261 

microbial ecology to discriminate true microbial signal from background-derived signal. While 262 

this approach requires the use of several complementary metrics to determine the extent of 263 

background-derived signal in each specimen type, it is relatively accessible for those conducting 264 

microbiome studies due to its dependence on open-source software, conceptual familiarity to 265 

microbial ecologists, and ease of application to other low-biomass sites. Fundamentally, this 266 

approach relies on sampling the low-biomass body site of interest and comparing the size, 267 

diversity, and taxonomic composition of the microbial community identified at that low-biomass 268 

site to all potential source communities, including background signal derived from procedural, 269 

reagent, and sequencing contamination and true microbial signal derived from contiguous body 270 

sites. This approach can thus be applied to a single specimen type to discern true bacterial 271 

signal from background-derived noise, or used to compare multiple specimen types to 272 

determine the optimal sampling method in the absence of a gold standard. Our approach does 273 

not preclude the use of complementary methods (such as those mentioned above), but rather 274 

builds a foundation rooted in thorough experimental design and microbial ecology to support 275 

further analyses.  276 

 277 
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There are several limitations to our study. We selected methods of harvesting BAL fluid and 278 

whole lung tissue which have been used by our lab and others successfully, and thus cannot 279 

directly speak to other approaches (e.g. use of lung portions or pooled BAL specimens from 280 

multiple mice). Our study only tested the use of whole lung tissue and BAL fluid for the purposes 281 

of amplicon-based sequencing, and may yield different results if other sequencing methods (e.g. 282 

metagenomic sequencing) are applied. Whole lung tissue contains much more host DNA than 283 

bacterial DNA, which can confound attempts at metagenomic analyses due to the depth of 284 

sequencing required to return reliable bacterial data60. Given the impossibility of performing both 285 

BAL and whole lung homogenization on the same mouse, we could not perform paired analysis 286 

on the same mice. We assumed, based on prior results6, that co-housed mice from the same 287 

vendor and shipment should have lung bacterial communities with similar taxonomic 288 

composition. Yet it remains possible that mouse-to-mouse variation may have confounded 289 

some comparisons. Finally, despite our efforts to thoroughly account for all possible sources of 290 

bacterial signal found in both types of lung specimens, it is possible that we have not accounted 291 

for all potential source communities, including occult sources of contamination or other body 292 

sites in contact with the lungs, such as the nasopharynx and blood.  293 

 294 

In conclusion, we here present an ecology-based analytical approach for distinguishing true 295 

bacterial signal from background contamination in low biomass microbiome studies and provide 296 

evidence supporting the use of whole lung tissue over BAL fluid in murine lung microbiome 297 

studies. The use of our ecology-based analytic approach highlights the importance of 298 

sequencing, analyzing, and reporting ample negative controls and, to the extent possible, 299 

contiguous anatomical sites or other biological source communities to assess the reality of 300 

bacterial signal in low-biomass microbiome studies.  301 

 302 
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Figures and Tables 519 

 520 

Figure 1: A newly defined experimental and analytic approach can distinguish bacterial 521 

signal from noise in low-biomass microbiome studies. Graphical and conceptual outline of 522 

an experimental and analytic approach to low-biomass microbiome studies. This approach was 523 

applied to murine lung microbiome sampling optimization as a proof-of-concept in this study, 524 

and may be useful in other low-biomass microbiome studies across biological contexts.  525 
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 527 

Figure 2: Murine whole lung tissue contains increased bacterial burden relative to BAL 528 

fluid and negative controls. Whole lung tissue contains more copies of the bacterial 16S rRNA 529 

gene per mL of DNA isolated from lung or control specimens as quantified by ddPCR. Mean ± 530 

SEM and individual data points (representing the average of technical duplicates) are shown. 531 

Overall significance was determined by the Kruskal-Wallis test (p = 0.0001). Pairwise 532 

significance was determined by the pairwise Wilcoxon test and corrected for multiple 533 

comparisons using the Benjamini-Hochberg method (pairwise comparisons including whole lung 534 

or BAL fluid that are not shown were not significant). Significance key: ns p > 0.05; * p ≤ 0.05; ** 535 

p ≤ 0.01; *** p ≤ 0.001; ****p ≤ 0.0001.  536 
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 538 

Figure 3: Bacterial communities in murine whole lung tissue have increased alpha 539 

diversity relative to BAL fluid and negative controls. A. Whole lung tissue contains a greater 540 

number of unique bacterial taxa than BAL fluid and negative controls. Richness of the bacterial 541 

community in each tissue or control specimen was determined by clustering reads with species-542 

level similarity (≥ 97% sequence identity) into operational taxonomic units (OTUs) and 543 

calculating the number of unique OTUs within each specimen, normalized to 1000 reads per 544 

specimen. Mean ± SEM and individual data points are shown. Pairwise significance was 545 

determined by comparing whole lung tissue and BAL fluid to pooled sampling, isolation, and 546 

sequencing controls (respectively, as shown) using Tukey’s HSD test. Significance key: ns p > 547 

0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; ****p ≤ 0.0001.  548 
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 550 

Figure 4: Bacterial communities in murine whole lung tissue show decreased variation 551 

among biological replicates compared to those in BAL fluid. Variation among lung bacterial 552 

communities of healthy mice from the same shipment was quantified using the Bray-Curtis 553 

dissimilarity index. For comparison, Bray-Curtis dissimilarity was also calculated for empty wells 554 

as a representative negative control with high variation, cecal communities as a representative 555 

body site with low variation, and tongue as a representative seed community for the lower 556 

respiratory tract. Median, IQR, and all unique pairwise comparisons (individual data points) are 557 

shown. Pairwise significance was determined by pairwise Wilcoxon test and corrected for 558 

multiple comparisons using the Benjamini-Hochberg method. Significance key: ns p > 0.05; * p 559 

≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; ****p ≤ 0.0001.  560 
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 562 

 563 
 564 

Figure 5:  The taxonomic composition of bacterial communities in murine whole lung 565 

tissue is distinct from the background-dominant taxonomic composition of BAL fluid and 566 

similar to that of the oral microbiome, a biologically plausible source community. A. 567 

Whole lung tissue clusters separately from BAL fluid and sampling controls by principal 568 
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component analysis of Hellinger-transformed 16S rRNA gene sequencing data. Individual data 569 

points represent specimens grouped by sample or control type. B. Whole lung tissue, but not 570 

BAL fluid, clusters near tongue samples by principal component analysis of Hellinger-571 

transformed 16S rRNA gene sequencing data. Individual data points represent specimens 572 

grouped by sample type. C. Bacterial communities in whole lung tissue are more similar to 573 

matched (within-mouse) oral communities than BAL fluid. Similarity of lung bacterial 574 

communities, grouped by sampling approach, to matched oral communities was quantified 575 

using Bray-Curtis dissimilarity index. Median, IQR, and individual data points representing 576 

within-mouse comparisons of oral and lung communities are shown. D. Relative abundance of 577 

bacterial taxa in whole lung tissue are similar to that of oral bacterial communities. In contrast, 578 

the relative abundance of bacterial taxa in BAL fluid are similar to that of negative controls. Bars 579 

are ranked by mean abundance in whole lung tissue and represent mean ± SEM percent 580 

relative abundance of the top 50 bacterial taxa (OTUs) in whole lung tissue across sample 581 

types. Labels denote genus (or most specific taxonomic level if no genus was assigned) and 582 

unique identifier for each OTU. Overall significance was determined by (A, B) permutational 583 

multivariate ANOVA (p = 0.00009 for both). Pairwise significance was determined by (A, B) two-584 

sample PERMANOVA (A only: pooled sampling controls were compared to each lung sample 585 

type), and (C) two-sample unpaired Mann-Whitney U test. Significance key: ns p > 0.05; * p ≤ 586 

0.05; ** p ≤ 0.01; *** p ≤ 0.001; ****p ≤ 0.0001.  587 
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Table 1: Comparison of Sampling Methods for Murine Lung Microbiome Studies.  589 

 
Whole Lung Tissue Bronchoalveolar Lavage Fluid 

Sample description  
All lung lobes 

homogenized in  
sterile water 

Dislodged airway and alveolar 
contents (microbes, leukocytes, 
epithelial cells) in sterile saline 

Biological site  
sampled 

Airway and intra-alveolar 
space, interstitium,  

& blood (if not perfused) 

Airway and intra-alveolar  
space only 

Bacterial biomass Low Low 
Host-to-microbe  

DNA ratio High Low 

Total DNA content High Low 

Number of 16S rRNA  
gene copies ~ 104 ~ 103 

Variation among  
biological replicates Low High  

Similarity to  
contaminating source 

“communities” 
(negative controls) 

Low High 

 Similarity to 
biological source 

community  
(oral microbiome) 

High Low 
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