1 Title:

22

2	Leaf form diversification in an heirloom tomato results from alterations in two
3	different HOMEOBOX genes
4	
5	Short Title: Genetic basis of leaf shape variation between tomato cultivars
6	
7	Hokuto Nakayama ^{a,†} , Steven D. Rowland ^a , Zizhang Cheng ^a , Kristina Zumstein ^a , Julie
8	Kang ^b , Yohei Kondo ^c and Neelima R. Sinha ^{a,*}
9	
10	^a Department of Plant Biology, University of California Davis, One Shields Avenue,
11	Davis, CA 95616, U.S.A.
12	^b Biology Department, 144 McCollum Science Hall, University of Northern Iowa, Cedar
13	Falls, IA 50614, U.S.A.
14	°Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National
15	Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji,
16	Higashiyama 5-1, Okazaki, Aichi 444-8787, Japan
17	
18	[†] Current address: Graduate School of Science, Department of Biological Sciences, The
19	University of Tokyo, Science Build. #2, 7-3-1 Hongo Bunkyo-ku Tokyo, 113-0033,
20	Japan
21	*To whom correspondence should be addressed. Email: nrsinha@ucdavis.edu

23 **Contact Information**

- 24 Hokuto Nakayama: hokuto@bs.s.u-tokyo.ac.jp
- 25 Steven D. Rowland: sdrowland@ucdavis.edu
- 26 Zizhang Cheng: chengxiaoyi_01@sina.com
- 27 Kristina Zumstein: kmsarte@ucdavis.edu
- 28 Julie Kang: julie.kang@uni.edu
- 29 Yohei Kondo: y-kondo@nibb.ac.jp
- 30 Neelima R. Sinha: nrsinha@ucdavis.edu

31

- 32 Keywords: BEL-LIKE HOMEODOMAIN, BIPINNATA, evolution, leaf, SOLANIFOLIA, Solanum
- 33 lycopersicum, Tomato, WUSCHEL RELATED HOMEOBOX 1

35 Abstract

36	Domesticated plants and animals display tremendous diversity in various phenotypic
37	traits and often this diversity is seen within the same species. Tomato (Solanum
38	lycopersicum; Solanaceae) cultivars show wide variation in leaf morphology, but the
39	influence of breeding efforts in sculpting this diversity is not known. Here, we
40	demonstrate that a single nucleotide deletion in the homeobox motif of <i>BIPINNATA</i> ,
41	which is a <i>BEL-LIKE HOMEODOMAIN</i> gene, led to a highly complex leaf phenotype
42	in an heirloom tomato, Silvery Fir Tree (SiFT). Additionally, a comparative gene
43	network analysis revealed that reduced expression of the ortholog of WUSCHEL
44	<i>RELATED HOMEOBOX 1</i> is also important for the narrow leaflet phenotype seen in
45	SiFT. Phylogenetic and comparative genome analysis using whole-genome sequencing
46	data suggests that the <i>bip</i> mutation in SiFT is likely a <i>de novo</i> mutation, instead of
	standing genetic variation. These results provide new insights into natural variation in
48	phenotypic traits introduced into crops during improvement processes after domestication.
49	domestication.

51 Main

52	Domestication and subsequent improvement processes have made animals and plants
53	more suitable for agriculture and achieved improvement in their usability, quality, and
54	yield (1). In contrast to domestication, usually occurring once for many crops, selection
55	for improvement happened multiple times and in numerous locations, leading to
56	varieties adapted to local conditions and needs (2). Consequently, many crops show
57	fascinating morphological diversity. Indeed, Darwin focused on this morphological
58	diversity more than 150 years ago and postulated that knowledge of the mechanisms
59	underlying diversity generated under human selection would provide general principles
60	for understanding the process of evolution under natural selection (3). Domesticated
61	tomato, Solanum lycopersicum L. (Solanaceae), is one of the most economically
62	important vegetable crops in the world (4). The domesticated tomato exhibits
63	tremendous morphological variation because of a long breeding history (5).
64	Additionally, many heirloom tomatoes, varieties passed down through several
65	generations within a family or specific regions, have an interesting breeding history
66	predating 1940 when commercial hybrids first started becoming available. These

67	heirloom cultivars, when compared to commercial tomatoes, show morphological
68	variation and flavor profiles that are often favored by gardeners (6). Many heirloom
69	tomatoes contain genetic loci that affect most of the target flavor chemicals to improve
70	the flavor of modern commercial tomato (7), making heirloom tomatoes an interesting
71	resource for research on tomato improvement. Silvery Fir Tree (SiFT) is a traditional
72	Russian heirloom tomato (6). SiFT has a highly complex leaf phenotype, with leaflets
73	that are narrower than those seen in processing tomatoes such as M82 (Figure 1A to
74	1D). Interestingly, SiFT is sometimes used as an ornamental and landscaping plant
75	rather than a crop due to the unique leaf shape in this variety, although SiFT does
76	produce edible fruit (6). However, the genetic basis underlying the unique leaf
77	morphology and breeding history of this cultivar is still unknown.
78	Here, we used a cross between SiFT and M82 to generate a mapping population and
79	identified a single nucleotide deletion in the homeobox motif of a BEL-LIKE
80	HOMEODOMAIN (BELL) gene, leading to a premature stop codon, and the highly
81	complex leaf phenotype in SiFT. Based on genome sequencing, the bip mutation in
82	SiFT is a <i>de novo</i> mutation that was not introgressed from other cultivars or wild

83	species. Further, we use a combination of gene co-expression network analysis and
84	CRISPR-Cas9 knockout mutants to show that reduced expression of the WUSCHEL
85	RELATED HOMEOBOX 1 (WOX1) ortholog is also important for the narrower leaflet
86	phenotype and reduced leaf vascular density in SiFT. Additionally, we show that the
87	classic tomato leaf mutation, solanifolia, is caused by mutations in the same WOX1
88	gene. These results provide insights into natural variation in phenotypic traits
89	introduced into heirloom tomatoes during improvement after domestication.

Results

92	SiFT has increased leaf complexity and reduced vascular density compared to M82
93	Leaf complexity (LC) in SiFT is higher than that in M82 (Fig. 1A to 1C). The
94	observation of gross leaf morphology showed distinct morphological differences
95	between M82 and SiFT starting from the 1st formed leaves (Fig. 1D). While leaf
96	primordia from Plastochron1 (P1) to P3 stages are not strikingly different between the
97	cultivars, from P4 stage onward, difference in the number of leaflet primordia are
98	consistently observed between M82 and SiFT (Fig. 1E). Thus, SiFT leaf primordia at P4
99	and older stages are more active in generating leaflets compared to M82 leaves at the
100	same developmental stage, and have a prolonged morphogenetic window compared to
101	that in M82. Previous studies have shown leaf vascular density (LVD) variation among
102	cultivars and mutants (8). Although no difference was observed in leaf anatomy around
103	the midvein (Supplementary Fig. 1), LVD was different between M82 and SiFT (Fig.
104	1F). Therefore, SiFT differs from M82 in leaf complexity, developmental trajectory,
105	and vascular density.

107 SiFT has a mutation in a BEL-LIKE HOMEODOMAIN gene, BIPINNATA

108	To identify genes involved in the regulation of leaf complexity (LC), bulked segregant
109	analysis (BSA) on an F2 population (198 individuals) derived from a cross between
110	M82 and SiFT was utilized (Supplementary Fig. 2). Two phenotypically defined bulks
111	showing difference in LC (High-LC bulk and Low-LC bulk; Supplementary Fig. 3)
112	were used to detect a locus between 45000000 and 55000000 bp on chromosome 2 that
113	controlled LC (Fig. 2A; top and Supplementary Fig. 4). Whole genome sequencing of
114	SiFT was used to define sequence variants in the genome including the region defined
115	by BSA. However, we detected more than 100 variants in this region in the SiFT
116	genome (Fig. 2A; middle). To narrow down the number of candidates, we used Protein
117	Variation Effect Analyzer (PROVEAN), which allows us to predict whether an amino
118	acid substitution or indel has an impact on the biological function of a protein
119	(Supplementary Fig. 2) (9). The PROVEAN analysis found only one deleterious variant
120	in the region (Fig. 2A; bottom), located in the BIPNNATA (BIP: Solyc02g089940) gene
121	(Fig. 2B), which is known to encode a BEL-LIKE HOMEODOMAIN (BLH) protein
122	(10). BIP is located in the BLH clade in the BELL/KNOX1 phylogeny (Supplementary

123	Fig. 5). The 1 bp deletion at position 1674 within the homeobox domain generates a
124	premature stop codon, and as a result the BIP protein is truncated in SiFT (Fig. 2B and
125	2C, and Supplementary Fig. 6). Additionally, we confirmed that the genome of a
126	different SiFT accession, previously sequenced by Tieman and coworkers, also has the
127	same <i>bip</i> mutation (7) (Supplementary Fig. 7).
128	
129	Highly complex leaf phenotype seen in SiFT is caused by the <i>bip</i> mutation
130	To verify the effect of the <i>bip</i> mutation on leaf phenotypes we investigated the
131	morphology and early development of leaves in <i>bip3</i> , a <i>bip</i> mutant in the M82
132	background (12). LC in <i>bip3</i> was similar to that of SiFT (Fig. 3A and 3B). Additionally,
133	we confirmed that <i>bip3</i> leaf primordia are active in generating multiple leaflets at the P4
134	stage as seen in SiFT (Fig. 3C). Although the BIP gene has been studied in Arabidopsis
135	and tomato, the expression pattern of the <i>bip</i> gene in leaf primordia is not known (10,
136	11). We performed whole-mount <i>in situ</i> hybridization and detected <i>BIP</i> gene expression
137	in the proximal part of leaf primordium, where leaflet primordia emerge (Fig. 3D). A
138	previous study showed that the expression of TOAMTO KNOTTED-1 (Tkn1), the

139	ortholog of Arabidopsis KNOX1 gene BREVIPEDICELLUS, is increased in the bip
140	mutant (10). Quantitative RT-PCR (qPCR) was used to detect elevated level of Tkn1
141	expression in SiFT compared to M82 (Fig. 3E). It is known that KNOX overexpression
142	increases leaf complexity (12). These data suggest that the highly complex leaf
143	phenotype seen in SiFT is caused by high expression of <i>Tkn1</i> facilitated by the <i>bip</i>
144	mutation.
145	Although LC in <i>bip3</i> is quite similar to SiFT, the two genotypes have distinctly
146	different leaflet shapes. Deep learning-based nonlinear PCA with leaflet shapes in M82,
147	<i>bip3</i> , and SiFT suggested that <i>bip3</i> leaf shape is different from that of M82 but not the
148	same as SiFT (Fig. 3F). This trend was confirmed by different methods (Supplementary
149	Fig. 8). Indeed, leaflets of SiFT are narrower than those of bip3 (Fig. 3G). Additionally,
150	LVD in <i>bip3</i> is similar to that of M82 and differs from that of SiFT (Fig. 3H and 3I).
151	Thus, the mutation at the BIP locus is not sufficient to explain all the leaf phenotypes
152	seen in SiFT.

154 Gene co-expression network analysis suggests a role for Sl *WOX1* in regulating leaf

155 phenotypes

156	To investigate the molecular basis for leaf phenotypes seen in SiFT, we performed
157	RNA-seq and compared differentially expressed genes (DEGs) between M82 and SiFT
158	(Supplementary Table 1). However, the large number of DEGs precluded identification
159	of genes critical in generating differences in leaf shape between two genotypes. Gene
160	co-expression network (GCN) analysis can reveal biologically relevant information to
161	identify molecular mechanisms underlying biological processes (13). Therefore, we
162	constructed GCNs with RNA-seq data of M82 and SiFT and compared these networks
163	to identify key genes responsible for the leaf phenotypes seen in SiFT. The genes used
164	for the network analysis included a set of literature-curated genes involved in leaf
165	development (14). The GCN for M82 showed differences in network structure, edge
166	number, node number, and average of degree between genes when compared to the
167	GCN for SiFT (Fig. 4A and Supplementary Table 2), indicating that many genes
168	involved in leaf development are differentially expressed between the two genotypes.
169	Community structure in the networks was analyzed based on the fast greedy modularity

170	optimization algorithm and GO enrichment analysis by community was performed (14).
171	Two communities (community 1: C1 and community 2: C2) predominate in both
172	networks (Fig. 4A), and GO enrichment analysis by community showed that
173	community 1 is enriched for the same GO terms between M82 and SiFT networks, in
174	particular, GO terms with higher Fold enrichment (>50; full result of the GO
175	enrichment analysis, Supplementary Table 3). On the other hand, community 2 is
176	different between the two networks (Fig. 4B and Supplementary Table 3). In
177	community 2 of the M82 GCN, GO terms such as "cytokinin biosynthetic processes"
178	(GO: 0009691), "cytokinin metabolic process" (GO:0009690), "regulation of cell cycle
179	arrest" (GO: 0071156), and "cellular hormone metabolic process" (GO:0034754;
180	Supplementary Table 3) were more than 100 fold enriched. However, there were no
181	enriched GO terms with high fold enrichment in community 2 of the SiFT GCN (Fig.
182	4B and Supplementary Table 3), suggesting that genes in community 2 might be crucial
183	for explaining differences in leaf phenotype between M82 and SiFT. To compare the
184	two networks and identify the differences between them, we performed comparative
185	network analysis using the R package "DiffCorr" (15). DiffCorr allows us to find

186	statistically significant differences between two networks. The DiffCorr analysis
187	identified 160 DiffCorr genes, which are differentially correlated genes between two
188	networks (Supplementary Table 4). Those genes should have distinct expression pattern
189	between M82 and SiFT. The 160 DiffCorr genes have distinct expression profiles
190	between M82 and SiFT (Fig. 4C). Additionally, many genes having more differential
191	correlations between two networks show distinct expression patterns, suggesting that
192	those DiffCorr genes are responsible for the difference between the two networks (Fig.
193	4C). The DiffCorr analysis revealed a WOX-like gene (Solyc03g118770) as the most
194	significantly different between the M82 and SiFT GCNs (Supplementary Table 4) and
195	the gene was located in community 2 of the M82 GCN (Supplementary Table 5). Based
196	on phylogenetic analyses and alignments, the WOX-like gene is the tomato ortholog of
197	Arabidopsis WOX1 (Sl WOX1; Supplementary Fig. 9 and Supplementary Fig. 10). To
198	understand the role of Sl WOX1 in leaf development, we focused on the Sl WOX1 sub-
199	network which consisted of genes showing a direct connection to the Sl WOX1. This
200	sub-network showed that the Sl WOX1 gene is connected to many genes involved in
201	leaf development in M82 GCN (Fig. 4D). Sl WOX1 expression in SiFT leaf primordia

202	was lower than in M82 samples (Fig. 4E). To check the expression pattern of Sl WOX1,
203	we performed whole mount in situ hybridization. Sl WOX1 was expressed at the
204	margins of leaf primordia and leaflet primordia (Figures 4F and 4G). This expression
205	pattern was unaltered in SiFT (Supplementary Fig. 11). WOX1 is known to express in
206	leaf primordia and is involved in leaf lamina expansion in various plant species (16, 17).
207	Moreover, in the Medicago truncatula wox1 mutant, leaf vein density was lower than in
208	wildtype (17). Therefore, Sl WOX1 is likely a candidate gene for controlling both leaf
209	width and leaf vein density in tomato.
210	
211	Sl WOX1 is involved in leaf lamina expansion and leaf vascular development
212	Sl WOX1 is located on the long arm of chromosome 3 (Solyc03g118770;
213	https://solgenomics.net/feature/17777644/details) and previous studies in several plant
214	species indicate that the <i>wox1</i> mutants have narrower leaflets and low LVD (16, 17).
215	Therefore, we mutated Sl WOX1 in M82 plants using the CRISPR/Cas9 system and
216	obtained a null mutation, referred to here as CR-wox1-1 (Fig. 5A). CR-wox1-1 plants
217	showed narrower leaves (Fig. 5B and 5C) and lower LVD than M82 (Fig. 5D),

218	matching the phenotype described in <i>wox1</i> mutants in other species (16, 17). We
219	noticed that these phenotypes are quite similar to those of a classical tomato mutant,
220	solanifolia (sf). sf is known to have narrower leaflets and reduced vascular density (18)
221	and our rough mapping of the solanifolia mutation had identified a genomic location
222	close to that known for the WOX1 locus (at the end of chromosome 3; Supplementary
223	Fig. 12). We obtained the two known alleles of the mutation (sf and $sf^{A}wl$) and another
224	allele (e1862) from the Tomato Genetics Resource Center (TGRC;
225	http://tgrc.ucdavis.edu) and Genes that makes Tomato
226	(http://zamir.sgn.cornell.edu/mutants/), respectively. sf, sf ^A wl, and e1862 arose in the
227	Pearson, ROMA, and M82 backgrounds, respectively. sf has a 1 bp substitution (G to
228	A) at position 230 in SI WOX1 resulting in an amino acid swap from arginine to
229	histidine in the conserved homeodomain (Fig. 5A and Supplementary Fig. 13). sf ⁿ wl
230	and e1862 have a 1 bp substitution (G to A) at a splice site between intron 3 and exon 4,
231	which results in 10 bp shift to the next splice site (Supplementary Fig. 13 and
232	Supplementary Fig. 14). As a result, these mutants have a 10 bp deletion from position
233	595 to 604 resulting in a premature stop codon, which truncates the WOX1 protein such

234	that it lacks the conserved WOX domain (Fig. 5A and Supplementary Fig. 13 and
235	Supplementary Fig. 14). All these mutants showed narrower leaflets and low LVD
236	compared to their background genotypes (Fig. 5B to 5D). Hence, phenotypes seen in
237	these classical mutants were same as that of CR-wox1-1. Hereafter, we refer to the SI
238	WOX1 gene as SOLANIFOLIA (SF). These results indicated that SF functions in leaflet
239	outgrowth and vascular development in tomato leaves, performing a role similar to that
240	of WOX1 in Arabidopsis and Medicago (16, 17, 19). These results confirm the role of
241	reduced expression of SF in conferring narrower leaflet and lower LVD phenotypes in
242	SiFT. Promoter sequences of SF in SiFT show no SNPs compared to the reference
243	tomato genome (Supplementary Fig. 15), coincident with the fact that the pattern of
244	expression SF is unaltered in SiFT compared to M82 (Supplementary Fig. 11). A
245	previous study suggested that ARF3 suppresses WOX1 expression in Arabidopsis (20).
246	In SiFT, expression level of the ARF3 ortholog (Solyc02g077560) was higher than that
247	seen in M82 (Supplementary Fig. 16A) and the ARF3 ortholog is known to be
248	expressed in leaf primordia (21). Additionally, the SiFT ARF3 promoter has a SNP that
249	generated a new ZF-HD motif, which is known to be involved in binding of HB33

250	transcription factor (22) (Supplementary Fig. 16B). This HB33 ortholog in Toamto
251	(Solyc04g080490) is expressed in leaf primordia (Supplementary Fig. 17). Therefore,
252	this gain-of-function SNP might explain the alteration in SF repression in SiFT.
253	
254	bip sf double mutant shows highly complex, narrow leaves, and low LVD
255	Since SiFT has a <i>bip</i> mutation and <i>SF</i> repression, we generated a <i>bip sf</i> double mutant
256	to investigate leaf phenotypes. Leaves in double mutant between <i>bip3</i> and e1862 had
257	more leaflets than those of e1862 and the leaflets were narrower than those of $bip3$ (Fig.
258	6A). Sometimes, secondary leaflets were observed on the 4th leaf (Fig. 6B) and the
259	secondary leaflets became more obvious in higher order leaves in the double mutant
260	(Fig. 6C). Additionally, LVD in the double mutant was lower than that in <i>bip3</i> (Fig.
261	6D), suggesting that these phenotypes are additive. Moreover, these trends were
262	confirmed by another double mutant with a different combination of mutants
263	(Supplemental Fig. 18). However, leaf morphology in the double mutant was not
264	exactly the same as that of SiFT. Leaflets in leaves of SiFT have many robes (Fig 1B),
265	leaves of the double mutant, however, do not have obvious lobes (Fig. 6A and

266	Supplemental Fig. 18). This may be due to the difference between reduced expression
267	and complete loss of function of the SF in the two genotypes. Indeed, sf single mutants
268	having truncated WOX1 protein such as CR-wox1-1, sf^wl, and e1862 do not have any
269	lobes on leaves, whereas a weaker phenotype mutant, sf, shows lobed leaves (Fig. 5B).
270	These results suggest that a mutation at <i>bip</i> and <i>WOX1</i> repression lead to highly
271	complex and narrower leaves with reduced leaf vein density in SiFT, respectively (Fig.
272	6E).
273	
274	Phylogenetic placement of SiFT and the <i>bip</i> mutation
274 275	Phylogenetic placement of SiFT and the <i>bip</i> mutation Several mutations at the <i>BIP</i> locus have been described (10). However, the <i>BIP</i>
275	Several mutations at the <i>BIP</i> locus have been described (10). However, the <i>BIP</i>
275 276	Several mutations at the <i>BIP</i> locus have been described (10). However, the <i>BIP</i> mutation in the SiFT genome is different from these. Although previous studies
275 276 277	Several mutations at the <i>BIP</i> locus have been described (10). However, the <i>BIP</i> mutation in the SiFT genome is different from these. Although previous studies constructed phylogenies with heirloom tomatoes (23), they were generated with whole-
275 276 277 278	Several mutations at the <i>BIP</i> locus have been described (10). However, the <i>BIP</i> mutation in the SiFT genome is different from these. Although previous studies constructed phylogenies with heirloom tomatoes (23), they were generated with whole-genome sequencing data. In order to understand the history of the <i>bip</i> mutation on

282	among them (Supplemental Fig. 19). Subsequently, we constructed a phylogenetic
283	network using the "PhyloNetworks" package in Julia (24) to estimate whether
284	introgressions from other tomatoes occurred in SiFT or not. This package allows us to
285	discern various biological processes such as hybridization, introgression, or horizontal
286	gene transfer. We used sequences around the BIP locus on chromosome 2 from 32
287	representative tomatoes based on the phylogeny with 106 heirloom tomatoes. S.
288	pimpinellifolium, which is thought to be the progenitor wild species for domesticated
289	tomato, was used as an outgroup in the heirloom tomato phylogeny. S. cheesemaniae
290	and S. lycopersicum var. cerasiforme were also used (Fig. 7A). The network indicated
291	that a US heirloom tomato, Giant Oxheart (GiO), is sister to SiFT, however GiO does
292	not show the highly complex leaf phenotype characteristic of SiFT and lacks the
293	mutation in <i>BIP</i> (Fig. 7B and 7C). The phylogeny suggests that Druzba is the result of a
294	cross between an ancestor of Glacier and an ancestor of Giant Oxheart/SFT. However,
295	the <i>bip</i> mutation seen in SiFT does not exist in Druzba either (Fig. 7B and 7C).
296	Additionally, the wild species, S. pimpinellifolium (Fig. 7D), and the other tomato
297	varieties do not harbor the SiFT specific mutation at BIP (Supplemental Fig. 19 and

- Supplementary Table 6). These data suggest that the *bip* mutation in SiFT is likely a *de*
- *novo* mutation, instead of standing genetic variation.

301 Discussion

302	We found that SiFT, an heirloom tomato, has a highly complex leaf phenotype and
303	carries a mutation in the BIP gene, which encodes a BEL-LIKE HOMEODOMAIN
304	protein (Solyc02g089940). Leaf complexity in the <i>bip3</i> mutant was remarkably similar
305	to that of SiFT. BIP is expressed at the proximal end of developing leaf primordia,
306	where leaflet primordia emerge. Previous studies demonstrated that KNOXI genes are
307	overexpressed in leaves of <i>bip</i> mutants (10, 11) and the overexpression of <i>KNOX1</i> gene
308	in leaves dramatically increases leaf complexity by prolonging specific stages of leaf
309	development (25). Indeed, Tkn1, a tomato KNOX1 gene, is highly expressed in SiFT
310	leaf primordia and SiFT and <i>bip3</i> leaf primordia exhibit prolonged morphogenesis. In
311	Arabidopsis, saw1 saw2 double mutant showing ectopic KNOX1 expression has
312	increased leaf serrations (10, 11), indicating that BLH genes including BIP, SAW1, and
313	SAW2 act to limit leaf margin growth and the function appears to be conserved between
314	them. Therefore, the <i>bip</i> mutation found in SiFT is the likely cause of increasing in
315	Tkn1 expression, prolonging morphogenesis, and increasing complexity in SiFT leaf
316	primordia. We also found that leaflet shape in SiFT is narrower than <i>bip3</i> , which is

317	confirmed by deep learning-based nonlinear PCA and leaf shape analysis. Additionally,
318	leaf vein density in SiFT was lower than in <i>bip3</i> . To identify the genetic alterations
319	beyond BIP that explain the rest of leaf phenotypes seen in SiFT, we used comparative
320	gene co-expression network analysis. The WOX1 ortholog (Solyc03g118770) had the
321	most altered correlations between the M82 and SiFT co-expression networks. The
322	expression level of the WOX1 ortholog in SiFT is lower than M82. Additionally, wox1
323	mutants in Arabidopsis and Medicago are known to have narrower leaves compared to
324	WT (16, 17). A CRISPR/Cas9 wox1 mutant in Tomato showed narrower leaves and
325	lower vascular density compared to WT. Moreover, we found that a classical tomato
326	mutant, solanifolia (sf), harbored a deleterious mutation in the WOX1 ortholog and
327	those sf mutants showed narrower leaves and lower vascular density. Whole-mount in
328	situ hybridization demonstrated that, similar to Arabidopsis and Medicago (16, 17), SF
329	is also expressed at the margin of tomato leaf and leaflet primordia, consistent with the
330	phenotype of leaf margins in sf mutants. In Arabidopsis, WOX genes promote lamina
331	outgrowth through regulation of cell proliferation in cells expressing WOX1 and their
332	surrounding cells (16). Since leaf vascular development is influenced by this marginal

333	blade outgrowth (26), we propose that SF functions in leaf lamina outgrowth and
334	couples this growth feature with vascular patterning. The causal mutation that leads to
335	SF repression in SiFT might be a SNP in ARF3 promoter region in the SiFT genome,
336	however this needs further analysis. WOX1 is present in the early-diverging angiosperm,
337	Amborella trichopoda (27), but the ancestral function in angiosperms is still unknown.
338	Additionally, no WOX1 homologs have been identified in monocots (17, 28). These
339	facts suggest that the function of this WOX1 gene in leaf development appears to be
340	conserved at least across the eudicots (e.g. Arabidopsis, Medicago, and Tomato).
341	Leaves of <i>bip</i> and <i>sf</i> double mutants are more complex than those of <i>wox1</i> and narrower
342	than those of <i>bip3</i> . Moreover, the double mutant showed low LVD. A recent study
343	suggested that the regulation of local growth and differentiation in leaf primordia leads
344	to diversity in leaf shape (29). BIP and SF are thought to regulate local growth and
345	differentiation in leaf primordia: BIP functions in the proximal part of leaf primordia
346	and SF functions at the marginal part. Therefore we conclude that the highly complex
347	and narrower leaf with reduced leaf vein density seen in SiFT is caused by a

348	combination of a mutation at <i>bip</i> and another as yet unknown second site mutation that
349	leads to SF repression (Fig. 8).
350	A phylogenetic tree constructed with WGS data and a phylogenetic network constructed
351	with sequences around BIP locus revealed that German Red Strawberry and Giant
352	Oxheart are sister to SiFT, respectively. However, they lack the BIP mutation and have
353	regular leaf shape. Moreover, none of the other varieties or wild species harbor the same
354	mutation at BIP seen in SiFT. Although a wild tomato species S. galapagense has
355	increased leaf complexity, the increased leaf phenotype is linked to promoter alterations
356	in an atypical KNOX1 gene PETROSELENUM, not in BIP (10). Therefore, these data
357	indicate that the BIP mutation seen in SiFT is a de novo mutation that occurred during
358	breeding and is not likely to be an introgression from other varieties or wild species.
359	These are consistent with the fact that there is no cultivated tomato showing SiFT-like
360	leaf shape. This uniqueness of leaf shape in SiFT is achieved by the combination of a
361	mutation at <i>bip</i> and <i>SF</i> repression, leading to use of this variety as an ornamental and
362	landscaping plant (6). Emerging data suggest that leaflet shape affects fruit sugar
363	content in tomato (30, 31). Therefore, identification of these novel mutations not only

- 364 provides new insights into the breeding history of heirloom tomatoes, but also suggests
- ³⁶⁵ potential targets for enhancing sugar content to improve fruit quality in tomato.

369 Plant Materials

- The following lines and mutants were provided by the Tomato Genetics Resource
- 371 Center, University of California, Davis (USA; https://tgrc.ucdavis.edu/): *S*.
- 372 *lycopersicum* cv M82 (LA3475), *sf*[^]wl (LA2012), *sf* (LA2311), and Pearson (LA0012).
- 373 SiFT and ROMA were from our own stocks. *bip3* (e1444m2) was obtained from the
- saturated mutation library of tomato (32). e1862 was obtained from the Genes that
- 375 makes Tomato (Israel; http://zamir.sgn.cornell.edu/mutants/).

376

377 Growth conditions

Tomato seeds were soaked in 50% bleach for 10 min, rinsed 3 times with water, and placed on water dampened paper towel in Phytatrays (Sigma Aldrich). Seeds were incubated in the dark at room temperature for 3 days then transferred to a growth chamber set at 22°C under long-day conditions (16 h light; 8 h dark) for 4 days. After approximately 7 days, seedlings had expanded cotyledons. These were then transplanted to 24-cell seedling propagation trays and grown in the chamber for a 35 days as

384	described previously (33) and arranged in a randomized block design. The shoots or leaf
385	primordia were frozen in liquid nitrogen just after sampling, and then stored at -80°C
386	until use for DNA and RNA extractions. All F2 plants were grown in a field in the
387	University of California, Davis with an interplant spacing of 30 x 30 cm ² for
388	transplanting.
389	
390	Morphological Observations
391	For morphological observations and collecting tissues for RNA extractions, shoots and
392	leaves were dissected under the dissection microscopes (Discovery.V12; ZEISS). To
393	determine the vascular density of leaves, the 6th leaves were used and cleared using an
394	ethanol and 50 % bleach following Rowland et al. (2019). The samples were then
395	photographed under the microscopes (ECLIPSE E600; Nikon), and vascular length per
396	unit area was determined using ImageJ software (http://rsb.info.nih.gov/ij/) (n = 4). Leaf
397	complexity was determined by counting the numbers of leaflets and intercalary leaflets
398	on a fully developed leaf ($n = 29$). Traditional leaf shape analysis was performed
399	following (34). Leaf complexity and leaflet shapes were analyzed for leaves collected

400	from the chamber. The leaf complexity measures included all leaflets present on the
401	leaf. After complexity was obtained the primary leaflets were removed and used for
402	imaging and analysis of shape and size. The intercalary and secondary/tertiary leaflets
403	were not used for shape analysis due to their smaller size and irregular shapes. The
404	binary images were then processed in R using MOMOCS, a shape analysis package
405	(35).

Phylogenetic Analyses of Isolated Genes

408	The predicted amino acid sequences of isolated genes were aligned using ClustalW and
409	readjusted manually. Phylogenetic trees were reconstructed using MEGA6 (36) using
410	the neighbor-joining method (37) (38). Bootstrap values were derived from 1000
411	replicate runs. The ML phylogenetic tree with the highest log likelihood is shown.
412	Initial trees for the heuristic search were obtained automatically: Neighbor-Join and
413	BioNJ algorithms were applied to a matrix of pairwise distances estimated with MCL,
414	and then the topology with a superior log likelihood value was selected. The tree is
415	drawn to scale, with branch lengths measured in the number of substitutions per site.

417 Whole-mount In Situ Hybridization

418	Portions of genes isolated in pCR 2.1 (Invitrogen) were amplified by PCR using the
419	universal primers M13_F (-20) (GTAAAACGACGGCCAC) and M13_R
420	(CAGGAAACAGCTATGAG). The amplified fragments were then used to produce
421	digoxigenin (DIG)-labeled sense and antisense RNA probes using a DIG RNA Labeling
422	Kit (Roche). Whole-mount in situ hybridization was performed following (39). Shoots
423	were fixed in 1x PBST containing 4% (w/v) paraformaldehyde, 1% (w/v) glutaraldehyde.
424	Fixed samples were dehydrated in an ethanol series. The dehydrated samples were stored
425	in 100% methanol at -20° C until use for the experiment. DIG-labeled sense and antisense
426	RNA probes were synthesized with T7 RNA polymerase (Roche). For immunological
427	detection, the samples were incubated in detection buffer containing NBT-BCIP (Roche)
428	at 25 °C for several hours or 4°C overnight. Photographs were taken using an ECLIPSE
429	E600 (Nikon). The experiments were performed at least three times.
430	

430

431 Quantitative Real-Time PCR

439	Expression was normalized to the Sl GAPDH control.
438	Experiments were performed in triplicate from three independent tissue RNA extractions.
437	Universal SYBR (BIO-RAD) in a iQ5 Real-Time PCR Detection System (BIO-RAD).
436	(Supplemental Table 7). Real-time PCR amplification was performed using the iTaq
435	SIWOX1_RT_F and SIWOX1_RT_R; and SIGAPDH_RT_F and SIGAPDH_RT_R
434	using the following gene-specific primer pairs: Tkn1_RT_F and Tkn1_RT_R;
433	synthesize cDNA, as described above. The quantitative RT-PCR analysis was conducted
432	Total RNA was extracted from leaf primordia of plants grown for a month and used to

For nonlinear PCA on image data, we used leaflet images from M82, *bip3*, and SiFT for the analysis (4th leaf; N < 55) and adopted a pre-trained neural network with the ImageNet dataset, VGG19 (40), as feature extractor. Instead of the original scanned images, binary silhouette images were fed into the network in order to avoid the effects of non-morphogenetic features such as leaf color. We extracted images features from an intermediate layer, "block4_pool" through Keras 2.3.1 library (https://keras.io). Then the linear PCA was applied on the image features. We performed no training of the neural
network with our data, so that the feature extraction was completely agnostic on which
genotypes the leaves came from.

451

452 DNA-Seq and RNA-Seq Library Preparation and Sequencing

453 DNA-Seq libraries for BSA were prepared following (41). DNA was extracted using

454 GeneJET Plant Genomic DNA Purification Mini Kit (Thermo Scientific, Waltham, MA,

455 USA) from plants grown for a month. DNA-Seq libraries for phylogenic analysis were

456 prepared based on BrAD-seq (42) with the following modifications: After DNA

457 fragmentation with Covaris E220 (Covaris, Inc. Woburn, MA, USA), the fragmented

458 DNA was end-repaired, A-tailed, and adapter ligated with Y-adapter. Enrichment PCR

459 was then performed with the adapter ligated product as described Townsley et al., 2015.

460 After final library cleanup with AMPure beads (Beckman Coulter, Brea, CA, USA),

461 RNA-Seq libraries were prepared following (42) from four biological replicates of

462 proximal and distal regions of leaf primordia at four developmental stages (meristem +

463 P1-P3; P4; P5). DNA-Seq libraries were sequenced at Novogene Inc.

464	Sacramento, CA, USA). RNA-Seq libraries were sequenced at the University of
465	California Berkeley Vincent J. Coates Genomics Sequencing Laboratory using the HiSeq
466	2000 platform (Illumina Inc. San Diego, CA, USA).
467	
468	SNP calling and Allele frequency analysis with DNA-seq data and Phylogenetic
469	analysis with Whole genome sequencing data
470	To detect SNPs in SiFT genome and perform phylogenetic analysis, all variants detected
471	by CLC Genomics Workbench 11.0 (CLC Bio, a QIAGEN Company, Aarhus, Denmark).
472	After read mapping and local realignment, Fixed Ploidy Variant Detection function was
473	used for calculation of allele frequency. For phylogenetic analysis, the data were exported
474	as vcf files. The SNPRelate package for R (43) was used to determine the variant positions
475	that overlapped between cultivars and then all sequences combined into a single gds file.

This file was run through SNPhylo (44) with the following parameters: The linkage 476

disequilibrium was set to 1.0, as we wanted to exclude as few variants as possible based 477

- on this factor, minor allele frequency was set to 0.05, and the Missing rate was set to 0.1. 478
- One thousand bootstraps were performed for confidence intervals and significance. S. 479

pimpinellifolium was used as the out group. The output bootstrapped tree was displayed
 in MEGA6 (36).

482

483	Mapping, Normalization, and Network analysis with RNA-Seq data
484	The 50 bp single-end sequence reads obtained were quality trimmed and parsed to
485	individual libraries using custom Perl scripts. All reads were mapped to the ITAG2.4
486	genome build (downloadable from http://solgenomics.net/itag/release/2.4/list_files)
487	using RSEM/eXpress with the default parameters (45). The uniquely mapped read data
488	was normalized using the Bioconductor package EdgeR ver. 2.11 with the trimmed
489	mean of M-values method. Bioinformatics and statistical analyses were performed on
490	the iPLANT (Cyverse) Atmosphere cloud server (46). Gene Co-expression network
491	analysis was performed following (14) by using the R script. The R script for RNA-Seq
492	gene coexpression network analysis deposited on GitHub (Link:
493	https://github.com/Hokuto-GH/gene-coexpression-network-script). For GO enrichment
494	analysis, we used GENEONTOLOGY enrichment analysis tools
495	(http://geneontology.org/docs/go-enrichment-analysis/). DiffCorr analysis was

496	performed following (15). The normalized count data from M82 and SiFT was used for
497	the analysis. DiffCorr genes were then analyzed to identify the most different gene
498	between two genotypes at a 0.005 FDR cut-off. To analyze and visualize the DiffCorr
499	genes, Cytoscape was used (https://cytoscape.org/). The number of Edges of each
500	DiffCorr gene was calculated by analyze network function in the Cytoscape. Then, the
501	numbers were compared to figure out the most different gene between two genotypes.
502	
503	CRISPR-Cas9 mutagenesis and plant transformation
504	CRISPR-Cas9 mutagenesis and generation of transgenic plants was performed
505	following REF. Guide (g) RNAs for SF/SlWOX1 (Solyc03g118770) were designed
506	using the CCtop (https://crispr.cos.uni-heidelberg.de/help.html) and two gRNAs were
507	designed (Fig. 5). Vectors were assembled using the Golden Gate cloning system as
508	described (47). Final binary vector was transformed into the tomato cultivars M82 by
509	Agrobacterium tumefaciens-mediated transformation. The transformation was
510	performed at the Ralph M. Parsons Foundation Plant Transformation Facility
511	(University of California, Davis). The first-generation (T ₀) transgenics were genotyped

512	using GT-seq following (48). It revealed a single nucleotide substitution (C to A) in
513	gRNA2 (g2) region. Unfortunately, there were no T_0 transgenics having mutation in the
514	region of gRNA1 (g1) region. After the genotyping and self-pollination in the green
515	house, we obtained T_1 plants having mutated <i>sf/slwox1</i> gene. First, we screened those
516	plants by leaf phenotypes because wox1 mutants must have narrower leaflets compared
517	to WT based on previous studies with various kinds of plant species. Then we did
518	genotyping by sequencing to confirm whether each individual has the <i>sf/slwox1</i>
519	mutation or not.
520	
520 521	PhyloNetwork Analyses
	PhyloNetwork Analyses To perform phylogenetic analysis, all SNPs detected by CLC Genomics Workbench
521	
521 522	To perform phylogenetic analysis, all SNPs detected by CLC Genomics Workbench
521 522 523	To perform phylogenetic analysis, all SNPs detected by CLC Genomics Workbench 11.0 (CLC Bio, a QIAGEN Company, Aarhus, Denmark) from whole genome
521 522 523 524	To perform phylogenetic analysis, all SNPs detected by CLC Genomics Workbench 11.0 (CLC Bio, a QIAGEN Company, Aarhus, Denmark) from whole genome sequencing obtained from the 360 genomes project (49) were exported as a vcf file. The
 521 522 523 524 525 	To perform phylogenetic analysis, all SNPs detected by CLC Genomics Workbench 11.0 (CLC Bio, a QIAGEN Company, Aarhus, Denmark) from whole genome sequencing obtained from the 360 genomes project (49) were exported as a vcf file. The VCFtools package (50) was to convert vcf files to fasta files and these sequences were

528	analyzed using PhyloNetworks with default settings with the following exceptions: the
529	number of runs was set to 10 and Nfail was set to 10. After the hybrid network was
530	obtained bootstrap analysis was done in PhyloNetworks using default settings with the
531	following exceptions: Runs was set to 10 and Nfail was set to 10. These adjustments
532	were made to decrease processing time. The bootstrapped tree was output in
533	Dendroscope (52).
534	
535	Statistical analysis
536	All statistical analyses were performed using JMP (JMP Pro 14.0.0, 2018) software. To
537	determine statistical significance, measurements were modeled using general linear
538	regression model and tested by a one-way ANOVA followed by Tukey's honestly
539	significant difference, if necessary.
540	
541	Data availability
542	All data is available in the main text or the supplementary materials. All DNA-Seq and
543	RNA-Seq raw data are deposited on DDBJ DRA009167- 009182 (BioProject:

544	PRJDB8552). Source Data files for all main and supplementary figures are available in
545	the online version of the paper. All additional data sets are available from the
546	corresponding author on request.
547	
548	Acknowledgements
549	This work was supported by grants from the USDA NIFA (2014-67013-21700), NSF;
550	IOS (1558900), and JSPS KAKENHI (19K23742 and 20K06682 to H.N. and
551	19H05670 to Y.K.). Hokuto Nakayama was a recipient of a JSPS Fellowship
552	(13J00161). We are grateful to Lauren Hughes for generating the initial cross between
553	SiFT and M82, Donnelly West for the F2 seeds, and Amber Flores for helping with field
554	measurements.
555	
556	Author contributions
557	H.N. initiated the project. N.R.S. supervised the project. H.N. and N.R.S. designed

experiments. H.N. performed the majority of the experiments and analyses and prepared

- figures. S.D.R., Z.C., K.Z., J.C., and Y.K. performed experiments. H.N. and S.D.R.
- analyzed the data. H.N. and N.R.S. wrote the paper with the input from all authors.

561

562 Corresponding Author

563 Correspondence to Neelima R. Sinha

564

565 **Competing interests**

566 The authors declare that they have no competing interests.

568 Figure legends

569

570 Figure 1. Gross morphology and development in M82 and SiFT leaves.

- 571 Top view of shoots (A), and mature leaf morphology (B). The 4th leaves were used for
- (B). Left: M82; right: SiFT. (C) Comparison of leaf complexity (N = 14). p = 0.0000059
- 573 (Welch's t-test). (D) Comparison of leaf morphology of M82 (upper) and SiFT (lower).
- All silhouettes are based on photographic images. The youngest leaf is at the right and
- 575 the oldest (cotyledons) is at the left. (E) Developmental trajectory of M82 and SiFT leaf
- 576 primordia. The 4th and 5th leaves were represented. (F) Cleared terminal leaflet images
- of M82 and SiFT. Bars = 2 cm in (A), (B) and (D), 100 μ m in (E), and 1 mm in (F).
- 578
- 579

580 Figure 2. Identification of the causative mutation for the *BIPINNATA* gene.

- (A) Top: allele frequency between different pools of segregating populations (red: high
- complexity pool; blue: low complexity pool) is shown for chromosome 2 (Chr 2).
- 583 Middle: variants (SNPs and indels) in SiFT from whole genome sequencing data. Each
- dot indicates variant position on Chr 2. Bottom: deleterious mutations in SiFT indicated
- from PROVEAN. Each vertical line indicates deleterious mutation on Chr 2. All panels
- (top, middle, and bottom) show the same scale on Chr 2. (B) Exon and intron structure
- of BIPINNATA (BIP). BIP gene contains five exons. SiFT contains an 1 bp deletion,
- which leads truncated protein and an amino acid change in the highly conserved amino acid of homeodomain (C).
- 590 591

592 Figure 3. *bipinnata* leaf phenotypes.

- (A) Mature leaf morphology. The 4th leaves were used. Left: SiFT; right: *bip3*. (B)
- 594 Comparison of leaf complexity (N = 14). (C) Leaf development of *bip3* at P4 stage. (D)
- 595 Whole mount *in situ* localization of *BIP* transcripts in M82. Left: sense probe; Right:
- antisense probe. (E) Expression level of *Tkn1* in leaf primordia (N = 3). p = 0.00107513
- 597 (Welch's *t*-test). (F) Deep learning-based nonlinear PCA with leaflet shapes (N < 55).
- 598 Blue: M82, pink: SiFT, and orange: *bip3*. (G) Comparison of terminal leaflet
- 599 morphology. Left; leaflet morphology used for leaf shape analysis. All silhouettes are

based on scanned images. Right; results of leaf width measurement with terminal

leaflets. $p = 8.8 \times 10^{-8}$ (Welch's *t*-test). (H) Cleared terminal leaflet images of M82,

602 SiFT and *bip3*. (I) Vascular density per unit area. The data was assessed using pair-wise

603 comparisons with Tukey-Kramer HSD test. Bars = 2 cm in (A), 100 μ m in (C), 500 μ m

604 in (D), 1 cm in (G), and 1 mm in (H).

605 606

Figure 4. Gene co-expression network analysis with M82 and SiFT RNA-seq data. 607 (A) Gene co-expression networks for genes involved in leaf development. Each node 608 represents genes. Only nodes with at least one edge are represented. Left: M82; right: 609 SiFT. (B) An overview of the enriched GO terms visualized by bubble plot. The 610 analysis was performed by the community in each network (C1 and C2). Each bubble 611 represents a GO term and only GO terms with higher Fold enrichment (>50) are 612 represented. For full result of the GO enrichment analysis, please see Supplementary 613 614 Table 3. (C) A profile of 160 DiffCorr genes. The plot on the top: the number of differential correlations of each DiffCorr gene. A higher number means more difference 615 between M82 and SiFT networks. The heat map on the bottom: a comparison of 616 expression level of each DiffCorr gene between M82 and SiFT. Each expression level is 617 shown as a blue-to-yellow-colored scale. The 160 DiffCorr genes were sorted by the 618 number of differential correlations (Left: low; right: high). The position of each gene is 619 the same between the top and bottom panels. (D) The SI WOX1 gene network from M82 620 shown in (A). This network is consisted of genes only showing a direct connection to 621 the SI WOX1. (E) Expression level of SI WOX1 in leaf primordia (N = 4). p = 0.011622 (Welch's t-test). (F and G) Whole mount in situ localization of Sl WOX1 transcripts in 623 M82. (F) Leaf primordia. (G) Leaflet primordia. Left: sense probe; right: antisense 624 probe in each panel. Bars = $100 \ \mu m$ in (F) and (G). 625 626

627

628 Figure 5. *solanifolia/slwox1* leaf phenotypes.

(A) Exon and intron structure of *SF/SlWOX1*. The tomato *SF/SlWOX1* gene contains

630 four exons. (B) Mature leaf morphology of *sf/slwox1* mutants. The 4th leaves were used.

631 (C) Comparison of aspect ratio (width/length) and width of terminal leaflet (N = 10).

632 Letters indicate significance groups; samples with the same letters are not significantly

633 different. All data were assessed using pair-wise comparisons with Tukey-Kramer HSD

- 134 test. (D) Comparison of vascular density. Cleared terminal leaflet images. Bars = 2 cm
- 635 in (B) and 1 mm in (D).
- 636
- 637

638 Figure 6. *bip sf* double mutant leaf phenotypes.

(A) Mature leaf morphology of *bip3* e1862 double mutant. From left to right: *bip3*,

e1862, and *bip3* e1862 double mutant. The 4th leaves were used. (B) Close-up view of a

secondary leaflet on a 4th leaf in the double mutant shown in (A). (C) Comparison of

secondary leaflets on matured 6th leaf from 60 days old seedlings. (D) Cleared terminal

leaflet images of *bip3*, e1862, and *bip3* e1862 double mutant. (E) A schematic model

644 for leaf development in SiFT. Bars = 2 cm in (A) and (C), 1 cm in (B), and 1mm = in 645 (D).

645

646

647

648 Figure 7. Reconstruction of breeding history and comparison of SNPs data.

(A) PhyloNetwork with sequences around the *BIP* locus on chromosome 2. The

network describes various biological processes such as hybridization or introgression

(Blue lines). The bootstrap values are indicated on branches (only those more than 50%

are indicated on the tree). (B) Magnified view of the network shown in (A) focusing on

653 SiFT. Comparison of SNPs data around *BIP* locus (Solyc02g089940) with heirloom

tomatoes (C) and a wild species (D). Each vertical black line indicates a SNP.

655 656

Figure 8. Breeding history and diversification of leaf shape in cultivated Toamto.

658 Simplified phylogeny presented in Fig. 7 with leaf morphologies. Boxes indicate

659 presumed key events during evolution. See text for details.

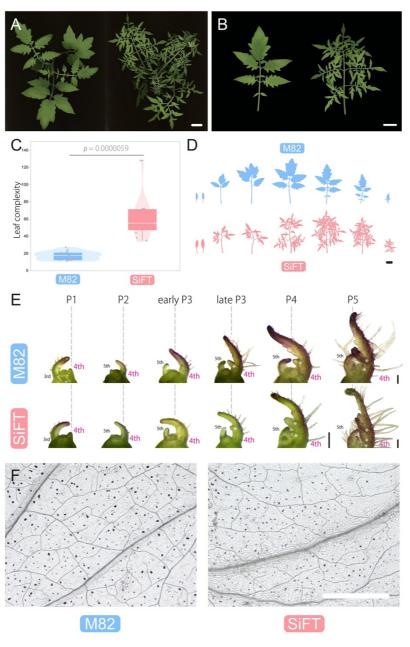
660

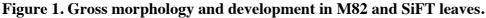
661

663 **References**

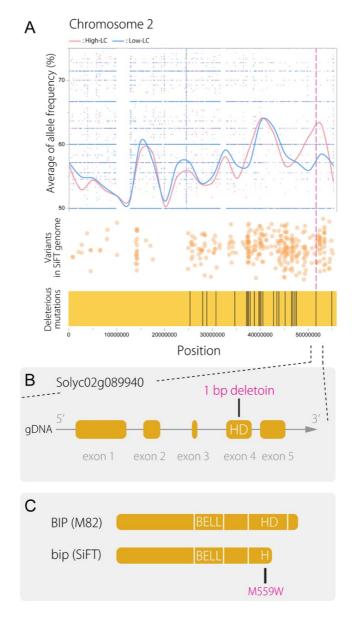
664 1. J. Diamond, Evolution, consequences and future of plant and animal domestication. Nature 418, 700-707 (2002). 665 2. R. S. Meyer, M. D. Purugganan, Evolution of crop species: genetics of domestication and 666 diversification. Nat Rev Genet 14, 840-852 (2013). 667 668 3. C. Darwin, The variation of animals and plants under domestication (O. Judd, 1868), vol. 2. 669 670 4. J. A. Labate et al., "Tomato" in Vegetables, C. Kole, Ed. (Springer Berlin Heidelberg, Berlin, 671 Heidelberg, 2007), 10.1007/978-3-540-34536-7 1, pp. 1-125. 672 5. G. Bauchet, M. Causse, "Genetic diversity in tomato (Solanum lycopersicum) and its wild relatives" in Genetic diversity in plants. (InTech, 2012). 673 A. Goldman, V. Schrager (2008) The Heirloom Tomato: From Garden to Table. 674 6. (Bloomsbury Publishing: New York). 675 676 7. D. Tieman et al., A chemical genetic roadmap to improved tomato flavor. Science 355, 391-394 (2017). 677 S. Kessler, M. Kim, T. Pham, N. Weber, N. Sinha, Mutations altering leaf morphology in 678 8. 679 tomato. International journal of plant sciences 162, 475-492 (2001). 9. Y. Choi, G. E. Sims, S. Murphy, J. R. Miller, A. P. Chan, Predicting the functional effect of 680 amino acid substitutions and indels. PLoS One 7, e46688 (2012). 681 682 10. S. Kimura, D. Koenig, J. Kang, F. Y. Yoong, N. Sinha, Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol 18, 672-677 (2008). 683 684 11. R. Kumar et al., The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 685 act redundantly to regulate KNOX expression spatially in leaf margins. Plant Cell 19, 2719-686 2735 (2007). B. J. Janssen, L. Lund, N. Sinha, Overexpression of a homeobox gene, LeT6, reveals 687 12. 688 indeterminate features in the tomato compound leaf. Plant Physiol 117, 771-786 (1998). 13. P. Tieri et al., Network Inference and Reconstruction in Bioinformatics. (2019). 689 690 14. Y. Ichihashi et al., Evolutionary developmental transcriptomics reveals a gene network 691 module regulating interspecific diversity in plant leaf shape. Proceedings of the National 692 Academy of Sciences of the United States of America 111, E2616-2621 (2014). 693 15. A. Fukushima, DiffCorr: an R package to analyze and visualize differential correlations in 694 biological networks. Gene 518, 209-214 (2013).

M. Nakata *et al.*, Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX
genes in early development of leaves in Arabidopsis. *Plant Cell* 24, 519-535 (2012).

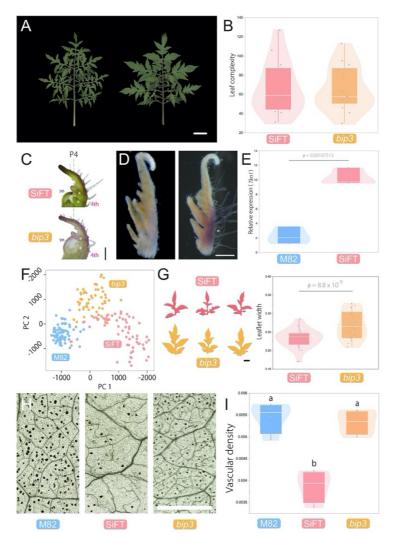

- M. Tadege *et al.*, STENOFOLIA regulates blade outgrowth and leaf vascular patterning in
 Medicago truncatula and Nicotiana sylvestris. *Plant Cell* 23, 2125-2142 (2011).
- K. C. Sekhar, V. Sawhney, Leaf development in the normal and solanifolia mutant of tomato
 (Lycopersicon esculentum). *American journal of botany* 77, 46-53 (1990).
- H. Wang *et al.*, Overexpression of the WOX gene STENOFOLIA improves biomass yield
 and sugar release in transgenic grasses and display altered cytokinin homeostasis. *PLoS genetics* 13, e1006649 (2017).
- C. Guan *et al.*, Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis. *Curr Biol*27, 2940-2950.e2944 (2017).
- T. Yifhar *et al.*, Failure of the tomato trans-acting short interfering RNA program to regulate
 AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. *Plant Cell* 24,
 3575-3589 (2012).
- S.-Y. Hong, O.-K. Kim, S.-G. Kim, M.-S. Yang, C.-M. Park, Nuclear import and DNA
 binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in
 Arabidopsis. *Journal of Biological Chemistry* 286, 1659-1668 (2011).
- S. Soyk *et al.*, Duplication of a domestication locus neutralized a cryptic variant that caused
 a breeding barrier in tomato. *Nature plants* 5, 471-479 (2019).
- C. Solís-Lemus, P. Bastide, C. Ané, PhyloNetworks: A Package for Phylogenetic Networks.
 Molecular Biology and Evolution 34, 3292-3298 (2017).
- E. Shani *et al.*, Stage-specific regulation of Solanum lycopersicum leaf maturation by class
 1 KNOTTED1-LIKE HOMEOBOX proteins. *Plant Cell* 21, 3078-3092 (2009).
- M. G. Sawchuk, A. Edgar, E. Scarpella, Patterning of leaf vein networks by convergent
 auxin transport pathways. *PLoS genetics* 9, e1003294 (2013).
- 720 27. D. E. Soltis *et al.*, The Amborella genome: an evolutionary reference for plant biology.
 721 *Genome biology* 9, 402 (2008).
- F. Zhang *et al.*, STENOFOLIA recruits TOPLESS to repress ASYMMETRIC LEAVES2 at
 the leaf margin and promote leaf blade outgrowth in Medicago truncatula. *Plant Cell* 26,
 650-664 (2014).
- D. Kierzkowski *et al.*, A Growth-Based Framework for Leaf Shape Development and
 Diversity. *Cell* 177, 1405-1418.e1417 (2019).
- 30. S. D. Rowland *et al.*, Leaf shape is a predictor of fruit quality and cultivar performance in


728 tomato. *The New phytologist* 10.1111/nph.16403 (2019).

- D. H. Chitwood *et al.*, Resolving distinct genetic regulators of tomato leaf shape within a
 heteroblastic and ontogenetic context. *Plant Cell* 26, 3616-3629 (2014).
- 731 32. N. Menda, Y. Semel, D. Peled, Y. Eshed, D. Zamir, In silico screening of a saturated
 732 mutation library of tomato. *The Plant journal : for cell and molecular biology* 38, 861-872
 733 (2004).
- 734 33. S. Kimura, N. Sinha, How to grow tomatoes. CSH protocols 2008, pdb.prot5081 (2008).
- 735 34. D. H. Chitwood *et al.*, A modern ampelography: a genetic basis for leaf shape and venation
 736 patterning in grape. *Plant Physiol* 164, 259-272 (2014).
- 737 35. V. Bonhomme, S. Picq, C. Gaucherel, J. Claude, Momocs: outline analysis using R. J Stat
 738 Softw 56, 1-24 (2014).
- K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: Molecular Evolutionary
 Genetics Analysis version 6.0. *Mol Biol Evol* 30, 2725-2729 (2013).
- 741 37. N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing
 742 phylogenetic trees. *Mol Biol Evol* 4, 406-425 (1987).
- 743 38. K. Tamura, M. Nei, Estimation of the number of nucleotide substitutions in the control
 744 region of mitochondrial DNA in humans and chimpanzees. *Mol Biol Evol* 10, 512-526 (1993).
- 745 39. F. Rozier, V. Mirabet, T. Vernoux, P. Das, Analysis of 3D gene expression patterns in plants
 746 using whole-mount RNA in situ hybridization. *Nature protocols* 9, 2464-2475 (2014).
- 747 40. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
 748 recognition. arXiv preprint arXiv:1409.1556 (2014).
- B. A. Rowan, D. K. Seymour, E. Chae, D. S. Lundberg, D. Weigel, Methods for Genotypingby-Sequencing. *Methods in molecular biology (Clifton, N.J.)* 1492, 221-242 (2017).
- 42. B. T. Townsley, M. F. Covington, Y. Ichihashi, K. Zumstein, N. R. Sinha, BrAD-seq: Breath
 Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation
 protocol for strand specific mRNA library construction. *Frontiers in plant science* 6, 366
 (2015).
- X. Zheng *et al.*, A high-performance computing toolset for relatedness and principal
 component analysis of SNP data. *Bioinformatics (Oxford, England)* 28, 3326-3328 (2012).
- T. H. Lee, H. Guo, X. Wang, C. Kim, A. H. Paterson, SNPhylo: a pipeline to construct a
 phylogenetic tree from huge SNP data. *BMC Genomics* 15, 162 (2014).
- B. Li, C. N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or
 without a reference genome. *BMC bioinformatics* 12, 323 (2011).


- 763 47. S. Werner, C. Engler, E. Weber, R. Gruetzner, S. Marillonnet, Fast track assembly of
 764 multigene constructs using Golden Gate cloning and the MoClo system. *Bioengineered bugs*765 3, 38-43 (2012).
- N. R. Campbell, S. A. Harmon, S. R. Narum, Genotyping-in-Thousands by sequencing (GTseq): A cost effective SNP genotyping method based on custom amplicon sequencing. *Molecular ecology resources* 15, 855-867 (2015).
- 769 49. T. Lin *et al.*, Genomic analyses provide insights into the history of tomato breeding. *Nature*770 genetics 46, 1220-1226 (2014).
- 771 50. P. Danecek *et al.*, The variant call format and VCFtools. *Bioinformatics (Oxford, England)*772 27, 2156-2158 (2011).
- N. W. Stenz, B. Larget, D. A. Baum, C. Ané, Exploring Tree-Like and Non-Tree-Like
 Patterns Using Genome Sequences: An Example Using the Inbreeding Plant Species
 Arabidopsis thaliana (L.) Heynh. Syst Biol 64, 809-823 (2015).
- 52. D. H. Huson, C. Scornavacca, Dendroscope 3: an interactive tool for rooted phylogenetic
 trees and networks. Syst Biol 61, 1061-1067 (2012).

^{46.} S. A. Goff *et al.*, The iPlant Collaborative: Cyberinfrastructure for Plant Biology. *Frontiers in plant science* 2, 34 (2011).



Top view of shoots (A), and mature leaf morphology (B). The 4th leaves were used for (B). Left: M82; right: SiFT. (C) Comparison of leaf complexity (N = 14). p = 0.0000059 (Welch's t-test). (D) Comparison of leaf morphology of M82 (upper) and SiFT (lower). All silhouettes are based on photographic images. The youngest leaf is at the right and the oldest (cotyledons) is at the left. (E) Developmental trajectory of M82 and SiFT leaf primordia. The 4th and 5th leaves were represented. (F) Cleared terminal leaflet images of M82 and SiFT. Bars = 2 cm in (A), (B) and (D), 100 μ m in (E), and 1 mm in (F).

Figure 2. Identification of the causative mutation for the BIPINNATA gene.

(A) Top: allele frequency between different pools of segregating populations (red: high complexity pool; blue: low complexity pool) is shown for chromosome 2 (Chr 2). Middle: variants (SNPs and indels) in SiFT from whole genome sequencing data. Each dot indicates variant position on Chr 2. Bottom: deleterious mutations in SiFT indicated from PROVEAN. Each vertical line indicates deleterious mutation on Chr 2. All panels (top, middle, and bottom) show the same scale on Chr 2. (B) Exon and intron structure of *BIPINNATA* (*BIP*). *BIP* gene contains five exons. SiFT contains an 1 bp deletion, which leads truncated protein and an amino acid change in the highly conserved amino acid of homeodomain (C).

Figure 3. bipinnata leaf phenotypes.

(A) Mature leaf morphology. The 4th leaves were used. Left: SiFT; right: *bip3*. (B) Comparison of leaf complexity (N = 14). (C) Leaf development of *bip3* at P4 stage. (D) Whole mount *in situ* localization of *BIP* transcripts in M82. Left: sense probe; Right: antisense probe. (E) Expression level of *Tkn1* in leaf primordia (N = 3). p = 0.00107513(Welch's *t*-test). (F) Deep learning-based nonlinear PCA with leaflet shapes (N < 55). Blue: M82, pink: SiFT, and orange: *bip3*. (G) Comparison of terminal leaflet morphology. Left; leaflet morphology used for leaf shape analysis. All silhouettes are based on scanned images. Right; results of leaf width measurement with terminal leaflets. $p = 8.8 \times 10^{-8}$ (Welch's *t*-test). (H) Cleared terminal leaflet images of M82, SiFT and *bip3*. (I) Vascular density per unit area. The data was assessed using pair-wise comparisons with Tukey-Kramer HSD test. Bars = 2 cm in (A), 100 μ m in (C), 500 μ m in (D), 1 cm in (G), and 1 mm in (H).

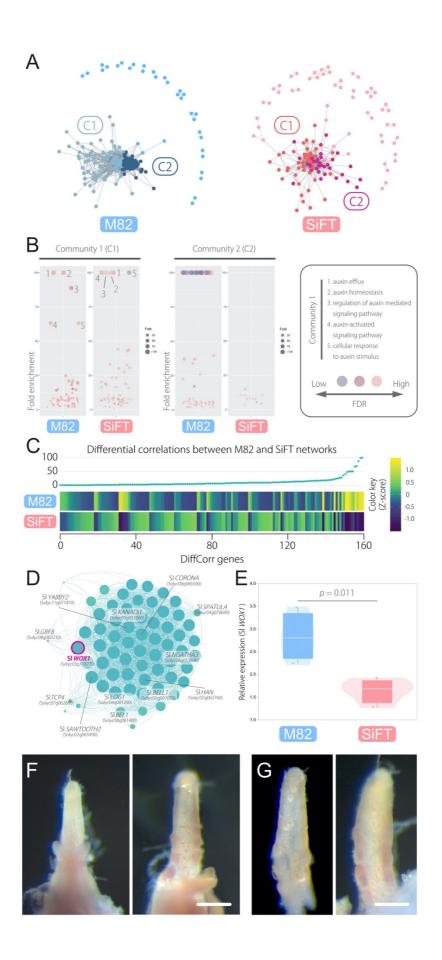
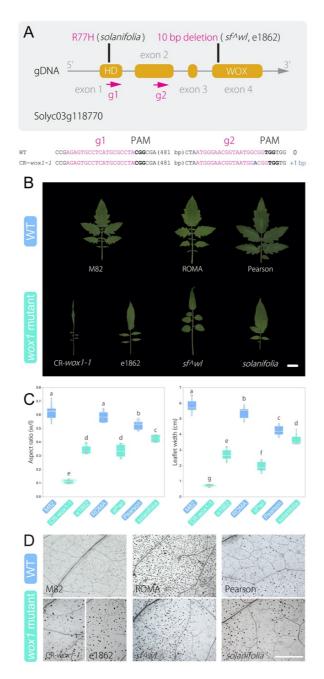
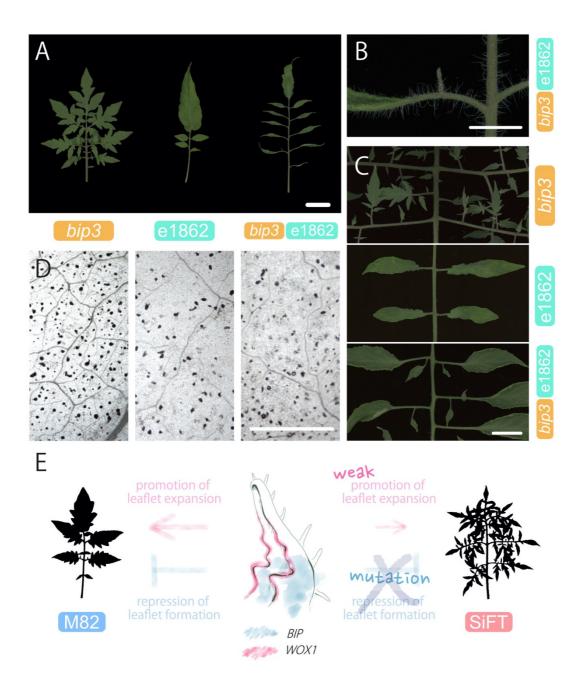
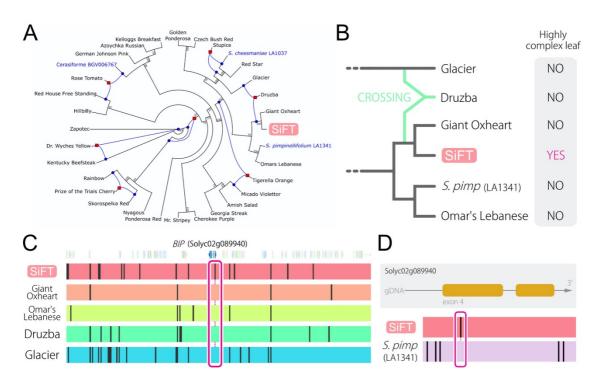
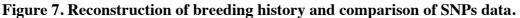
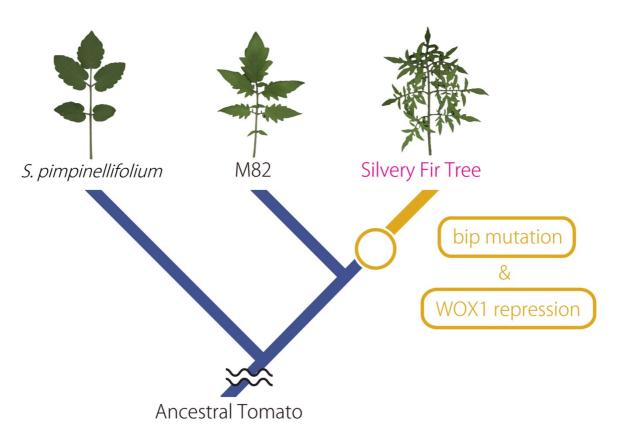
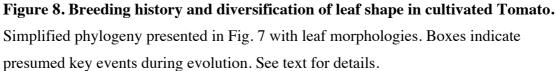




Figure 4. Gene co-expression network analysis with M82 and SiFT RNA-seq data. (A) Gene co-expression networks for genes involved in leaf development. Each node represents genes. Only nodes with at least one edge are represented. Left: M82; right: SiFT. (B) An overview of the enriched GO terms visualized by bubble plot. The analysis was performed by the community in each network (C1 and C2). Each bubble represents a GO term and only GO terms with higher Fold enrichment (>50) are represented. For full result of the GO enrichment analysis, please see Supplementary Table 3. (C) A profile of 160 DiffCorr genes. The plot on the top: the number of differential correlations of each DiffCorr gene. A higher number means more difference between M82 and SiFT networks. The heat map on the bottom: a comparison of expression level of each DiffCorr gene between M82 and SiFT. Each expression level is shown as a blue-to-yellow-colored scale. The 160 DiffCorr genes were sorted by the number of differential correlations (Left: low; right: high). The position of each gene is the same between the top and bottom panels. (D) The SI WOX1 gene network from M82 shown in (A). This network is consisted of genes only showing a direct connection to the SI WOX1. (E) Expression level of SI WOX1 in leaf primordia (N = 4). p = 0.011(Welch's *t*-test). (F and G) Whole mount *in situ* localization of SI *WOX1* transcripts in M82. (F) Leaf primordia. (G) Leaflet primordia. Left: sense probe; right: antisense probe in each panel. Bars = $100 \ \mu m$ in (F) and (G).




(A) Exon and intron structure of *SF/SlWOX1*. The tomato *SF/SlWOX1* gene contains four exons. (B) Mature leaf morphology of *sf/slwox1* mutants. The 4th leaves were used. (C) Comparison of aspect ratio (width/length) and width of terminal leaflet (N = 10). Letters indicate significance groups; samples with the same letters are not significantly different. All data were assessed using pair-wise comparisons with Tukey-Kramer HSD test. (D) Comparison of vascular density. Cleared terminal leaflet images. Bars = 2 cm in (B) and 1 mm in (D).


Figure 6. *bip sf* double mutant leaf phenotypes.


(A) Mature leaf morphology of *bip3* e1862 double mutant. From left to right: *bip3*, e1862, and *bip3* e1862 double mutant. The 4th leaves were used. (B) Close-up view of a secondary leaflet on a 4th leaf in the double mutant shown in (A). (C) Comparison of secondary leaflets on matured 6th leaf from 60 days old seedlings. (D) Cleared terminal leaflet images of *bip3*, e1862, and *bip3* e1862 double mutant. (E) A schematic model for leaf development in SiFT. Bars = 2 cm in (A) and (C), 1 cm in (B), and 1mm = in (D).

(A) PhyloNetwork with sequences around the *BIP* locus on chromosome 2. The network describes various biological processes such as hybridization or introgression (Blue lines). The bootstrap values are indicated on branches (only those more than 50% are indicated on the tree). (B) Magnified view of the network shown in (A) focusing on SiFT. Comparison of SNPs data around *BIP* locus (Solyc02g089940) with heirloom tomatoes (C) and a wild species (D). Each vertical black line indicates a SNP.

