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Abstract (125/125 words): Eukaryotic plankton are a core component of marine ecosystems 12	

with exceptional taxonomic and ecological diversity. Yet how their ecology interacts with the 13	

environment to drive global distribution patterns is poorly understood. Here, we use Tara 14	

Oceans metabarcoding data covering all the major ocean basins combined with a probabilistic 15	

model of taxon co-occurrence to compare the biogeography of 70 major groups of eukaryotic 16	

plankton. We uncover two main axes of biogeographic variation. First, more diverse groups 17	

display stronger biogeographic structure. Second, large-bodied consumers are structured by 18	

oceanic basins, mostly via the main currents, while small-bodied phototrophs are structured 19	

by latitude, with a comparatively stronger influence of environmental conditions. Our study 20	

highlights striking differences in biogeographies across plankton groups and investigates their 21	

determinants at the global scale. 22	

 23	

One-sentence summary (121/125 characters): Eukaryotic plankton biogeography and its 24	

determinants at global scale reflect differences in ecology and body size. 25	
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 26	

Main text: Marine plankton communities play key ecological roles at the base of oceanic 27	

food chains, and in driving global biogeochemical fluxes (1, 2). Understanding their spatial 28	

patterns of distribution is a long-standing challenge in marine ecology that has lately become 29	

a key part of the effort to model the response of oceans to environmental changes (3–6). Part 30	

of the difficulty lies in the constant  recirculation of plankton communities by ocean currents, 31	

along which many physical, chemical and biological processes - the so-called seascape (7) - 32	

modify community composition (8). Recent planetary-scale ocean sampling expeditions have 33	

revealed that eukaryotic plankton are taxonomically and ecologically extremely diverse, 34	

possibly even more so than prokaryotic plankton (9). Eukaryotic plankton range from pico-35	

sized (0.2-2 µm) to meso-sized (0.2-20 mm) organisms and larger, thus covering an 36	

exceptional range of sizes. Eukaryotic plankton also cover a wide range of ecological roles, 37	

from phototrophs (e.g., Bacillariophyta, Haptophyta, Mamiellophyceae) to parasites (e.g., 38	

Marine Alveolates or MALVs), and from heterotrophic protists (e.g., Diplonemida, 39	

Ciliophora, Acantharea) to metazoans (e.g., Arthropoda and Chordata, respectively 40	

represented principally by Copepods and Tunicates). Understanding how these body size and 41	

ecological differences modulate the influence of oceanic currents and local environmental 42	

conditions on geographic distributions is needed if one wants to predict how eukaryotic 43	

communities, and therefore the trophic interactions and global biogeochemical cycles they 44	

participate in, will change with changing environmental conditions.  45	

Previous studies suggested that all eukaryotes up to a size of approximately 1 mm are 46	

globally dispersed and primarily constrained by abiotic conditions (10). While this view has 47	

been revised, the influence of body size on biogeography is manifest (11, 12). In particular, a 48	

parallel study by Richter et al. (12), which quantified changes in plankton metagenomic 49	

composition and highlighted the underlying dynamics using transport time along main 50	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.09.08.287524doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287524
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	
	

 

3 

currents, found that the turnover is slower, rather than faster, with increasing body size. This 51	

suggests that, rather than influencing biogeography through its effect on abundance and 52	

ultimately dispersal capacity (i.e., larger organisms are more dispersal-limited; 10, 11), body 53	

size influences biogeography through its relationship with ecology and ultimately the 54	

sensitivity of communities to environmental conditions as they drift along currents. Under this 55	

scenario, the distribution of large long-lived generalist predators such as Copepods 56	

(Arthropoda) is expected to be stretched through large-scale transport by main currents (8, 57	

12–14), and yet to be patchy as a result of small-scale turbulent stirring (15). These contrasted 58	

views illustrate that little is known on how the interplay between body size, ecology, currents 59	

and the local environment shapes biogeography (16). 60	

Here, we study plankton biogeography across all major eukaryotic groups in the sunlit 61	

ocean using 18S rDNA metabarcoding data from the Tara Oceans global survey (including 62	

recently released data from the Arctic Ocean; 17). We also used transport times from Richter 63	

et al. (12), and the same environmental data. The data encompass 250,057 eukaryotic 64	

Operational Taxonomic Units (OTUs) sampled globally at the surface and at the Deep 65	

Chlorophyl Maximum (DCM) across 129 stations. We use a probabilistic model that allows 66	

identification of a number of ‘assemblages’, each of which represents a set of OTUs that tend 67	

to co-occur across samples (18, 19; cf. Mat. & Meth.). Each local planktonic community can 68	

then be seen as a sample drawn in various proportions from the assemblages. Across the Tara 69	

Oceans samples and considering all eukaryotic OTUs together, we identified 16 70	

geographically structured assemblages, each composed of OTUs covering the full taxonomic 71	

range of eukaryotic plankton (Fig. 1, S1; Appendix). Local planktonic communities often 72	

cannot be assigned to a single assemblage, as would be typical for terrestrial macro-organisms 73	

on a fixed landscape (20, 21), but are instead mixtures of assemblages (Fig. 1A). This is 74	

consistent with previous findings suggesting that neighbouring plankton communities are 75	
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continuously mixed and dispersed by currents (8, 12). Nevertheless, three assemblages are 76	

particularly represented and most communities are dominated by one of them (Fig. 1A). The 77	

most prevalent assemblage represents a set of OTUs (about one fifth of the total) that are 78	

globally ubiquitous except in the Arctic Ocean (assemblage 1, in dark red). This assemblage 79	

typically accounts for about half the number of OTUs in non-Arctic communities, and is 80	

particularly rich in parasitic groups such as MALV (Fig. 1B). The two others dominate, 81	

respectively, in the Arctic Ocean (assemblage 13, in cyan) and in the Southern Ocean 82	

(assemblage 15, in marine blue), and are particularly rich in diatoms (Fig. 1B). Based on 83	

similarity in their OTU composition, the assemblages cluster into three main categories 84	

corresponding to low, intermediate and high latitudes (Fig. 1B). The transition between 85	

communities composed of high-latitude and lower-latitude assemblages is fairly abrupt, and 86	

occurs around 45° in the North Atlantic and -47° in the South Atlantic, namely at the latitude 87	

of the subtropical front, where the transition between cold and warm waters takes place (Fig. 88	

1A&B; 22).  89	

 90	
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 91	

Fig. 1. Global surface biogeography of eukaryotic plankton. The biogeography of all eukaryotic 92	

OTUs across Tara Oceans stations is characterized by 16 assemblages of co-occurring OTUs, each 93	

represented by a distinct color (in A and left side of B) and identified by a number from 1 to 16 (in B). 94	

(A) Relative contribution of the 16 assemblages to surface plankton community in Tara Oceans 95	

stations, represented as pies on the world map, and as stacked bars vertically ordered by latitude on the 96	

left-hand side of the map. (B) To the left: dendrogram of assemblage dissimilarity with respect to their 97	

composition in OTUs (Simpson dissimilarity). The mean absolute latitude at which each assemblage is 98	

found is indicated. Three clusters can be distinguished: a high-latitude cluster — the most distinctive 99	

— in shades of blue, an intermediate-latidude cluster in shades from yellow to red, and a low-latitude 100	

cluster in shades of green. To the right: barplot displaying the contribution of major eukaryotic groups 101	

(deep-branching monophyletic groups) to assemblages. The 19 groups shown in the barplot are those 102	

tallying more than 1,000 OTUs, grouped by phylogenetic relatedness.  103	
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 104	

 This global analysis hides a strong heterogeneity across the 70 most diversified deep-105	

branching groups of eukaryotic plankton (Table S1). Comparing the biogeography of these 106	

major groups using a normalized information-theoretic metric of dissimilarity (23; cf. Mat. & 107	

Meth.), we found high pairwise dissimilarity values (ranging between 0.64 and 0.97; Fig. S2). 108	

This heterogeneity can be decomposed into two main interpretable axes of variation (Fig. 2; 109	

cf. Mat. & Meth.). The first axis reflects the amount of biogeographic structure: group 110	

position on this axis is positively correlated to short-distance spatial autocorrelation 111	

(Pearson’s correlation coefficient 𝜌 = 0.91 at the surface; Fig. S3A), which measures the 112	

tendency for close-by communities to be composed of the same assemblages (cf. Mat. & 113	

Meth.). Groups scoring low on this axis are characterized by strong local variation, or 114	

“patchiness”. The second axis reflects the nature of the biogeographic structure: group 115	

position on this axis is positively correlated to the scale of biogeographic organization, which 116	

we measured as the characteristic distance at which spatial autocorrelation vanishes (𝜌 =117	

0.53, 𝑝 = 10!! at the surface; Fig. S3B) and which ranges from ~7,000 to ~14,400 km across 118	

groups. Group position on the second axis is also positively correlated to within-basin 119	

autocorrelation (𝜌 = 0.56, 𝑝 = 10!! at the surface; Fig. S3C), which measures the tendency 120	

for communities from the same oceanic basin (e.g., North Atlantic, South Atlantic, 121	

Mediterranean, Southern Ocean) to be composed of the same assemblages, and negatively 122	

correlated with latitudinal autocorrelation (𝜌 = −0.49, 𝑝 = 10!! at the surface; S3D), which 123	

measures the tendency for communities at the same latitude on both sides of the Equator to be 124	

composed of the same assemblages (cf. Mat. & Meth.). Results are similar at the DCM, 125	

although less pronounced (Fig. S4). The 70 groups of eukaryotic plankton cover the full 126	

spectra of biogeographies (Fig. 2, Fig. S5, Table S1), from those with weak spatial 127	

organization, or high patchiness (i.e., scoring low on the first axis, such as Collodaria or 128	
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Basidiomycota), to those organized at large spatial scale by oceanic basin (i.e., scoring high 129	

on both axes, such as Chordata or Arthropoda), and those organized at smaller spatial scale 130	

and according to latitude (i.e., scoring high on the first and low on the second axis, such as 131	

Mamiellophyceae, Haptophyta or MAST 3,12). These striking differences across planktonic 132	

groups suggest that accounting for their specificities is crucial to understanding their 133	

biogeography.    134	

 135	

 136	

Fig. 2. Biogeographic heterogeneity across major eukaryotic plankton groups. (A) Principal 137	

Coordinate Analysis (PCoA) of the biogeographic dissimilarity between 70 major groups of 138	
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eukaryotic plankton. Each dot corresponds to the projection of a specific plankton group onto the first 139	

two axes of variation. Position along the first axis reflects the amount of biogeographic structure 140	

displayed by the group, from a patchy distribution with weak short-distance spatial autocorrelation on 141	

the left to a structured distribution with strong short-distance spatial autocorrelation on the right. 142	

Position along the second axis reflects the nature of biogeographic structure, from a biogeography 143	

structured by latitude at the bottom to a biogeography structured by oceanic basins at the top, as well 144	

as the scale of biogeographic organization, from small to large scale. Dot size is proportional to the log 145	

diversity of the corresponding group, and dot color represents its mean log body-size, from small 146	

(blue) to large (red). (B-G) Surface biogeography of six major eukaryotic plankton groups. The 147	

relative contribution of the 5 to 7 most prevalent assemblages is shown in color, and that of the 148	

remaining assemblages is shown in gray; the color used for the most prevalent assemblage 149	

corresponds to the color used in Fig. 1B for the corresponding group.  150	

 151	

 We investigated how biogeographic differences among major groups relate to their 152	

diversity, body size, and ecology, coarsely defined as either phototroph, phagotroph, 153	

metazoan or parasite (cf. Mat. & Meth.). We found that the amount of biogeographic structure 154	

(group position on the first axis) is strongly correlated to diversity (𝜌 = 0.77, 𝑝 = 10!!" 155	

below 2,000 OTUs; Fig. 3A). This suggests that the maintenance of eukaryotic plankton 156	

diversity over ecological and possibly evolutionary scales is tightly linked to biogeographic 157	

structure, which may for example promote endemism. This relationship vanishes however for 158	

groups larger than about 2,000 OTUs, and two of the most diverse groups (Diplonemida, 159	

38,769 OTUs and Collodaria, 17,417 OTUs) exhibit comparatively weak biogeographic 160	

structure. The amount of biogeographic structure is weakly anticorrelated to body size 161	

(𝜌 = −0.32, 𝑝 = 0.007; Fig. S6A), and after accounting for differences in diversity across 162	

groups, is lower for metazoans than for phototrophs (ANCOVA t-test: 𝑝 = 0.04, Fig. S6B), in 163	

agreement with the expectation of a higher local patchiness in their distribution induced by 164	
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turbulent stirring (15, 24). In contrast, the nature of biogeographic structure (group position 165	

on the second axis) is strongly correlated to body size (𝜌 = 0.64, 𝑝 = 10!!; Fig. 3B) and 166	

ecology (ANOVA F-test: 𝑝 = 10!!, Fig. 3C), and only weakly to diversity (𝜌 = 0.24, 167	

𝑝 = 0.05; Fig. S6C). Metazoan groups score high on the second axis of variation (with the 168	

notable exception of Porifera sponges, probably at the larval stage, which are excluded from 169	

statistical results) and phototrophs score low, while phagotrophs occupy an intermediate 170	

position, spanning a comparatively wider range of biogeographies (Fig. 3C). Parasites are just 171	

below metazoans, which suggests that their biogeography is influenced by that of their hosts. 172	

While body size covaries with ecology (phagotrophs are larger than phototrophs on average, 173	

and metazoans significantly larger than other plankton types; Fig. S7), the positive 174	

relationship between group position on the second axis and body size still holds within each 175	

of the four ecological categories (ANCOVA F-test: 𝑝 = 10!!; Fig. S8). Diatoms 176	

(Bacillariophyta) are a striking example: of all phototrophs, they have the largest body size 177	

and also score highest on the second axis of variation. Conversely, ecology significantly 178	

influences group position on the second axis even after accounting for body size differences 179	

(ANCOVA F-test: 𝑝 = 0.01). Collodaria, which we did not assign to an ecological category, 180	

score lower than expected from their large body size, but close to the average for 181	

phagotrophic groups (Fig. 2, Table S1). These results suggest that biogeographic patterns are 182	

influenced by both body size and ecology. To summarize, diversity-rich groups are 183	

biogeographically structured, with large-bodied heterotrophs (metazoans such as Copepods 184	

and Tunicates) exhibiting biogeographic variations at the scale of oceanic basins or larger, 185	

and small-bodied phototrophs (such as Haptophyta) at smaller spatial scale and following 186	

latitude (Fig. 2).  187	

 188	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.09.08.287524doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287524
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 	
	

 

10 

 189	

Fig. 3. Relationship between biogeography and diversity, mean body size and ecology across 190	

major eukaryotic plankton groups. (A) The position of the 70 plankton groups along the first axis of 191	

biogeographic variation, indicative of the amount of biogeographic structure, increases sharply with 192	

log diversity (number of OTUs in the group) up to approximately 2,000 OTUs, but not beyond (as 193	

exemplified by Diplonemida and Collodaria, two of the most diverse groups). (B) The position of the 194	

70 plankton groups along the second axis, indicative of the nature and spatial scale of biogeographic 195	

structure, increases with log mean body size, indicating that large-bodied plankton is organized at 196	

larger spatial scale and according to oceanic basins rather than latitude. (C) Positions along the second 197	

axis of plankton groups binned into four broad ecological categories (Collodaria and Dynophyceae 198	

were not categorized and are therefore not represented). Pairwise differences are all significant except 199	

between Phagotrophs and Parasites. The grey dot denotes Porifera, an outlier group excluded from 200	

statistical tests. 201	

 202	

A global biogeography matching oceanic basins suggests that communities respond to 203	

environmental variations slowly enough to be homogenised by ocean circulation at the basin 204	

scale (i.e., gyres; 12), but have little ability to disperse between basins, either due to the 205	

comparatively limited connectivity by currents or to environmental barriers, and therefore that 206	

their biogeography is primarily shaped by the main ocean currents (13). Conversely, a 207	

biogeography matching latitude, symmetric with respect to the Equator, suggests a faster 208	

response of communities to environmental variations within basins (which are structured by 209	

latitude and currents, e.g. the cross-latitudinal influence of the Gulf Stream), low cross-basin 210	
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dispersal limitation, and therefore a comparatively more important role of local environmental 211	

filtering in shaping biogeography. To explain the global biogeography of major taxonomic 212	

groups, we compared biogeographic maps to maps of connectivity by currents and 213	

environmental conditions. We transformed the matrix of minimum transport times between 214	

pairs of stations, previously computed from a global ocean circulation model (12, 25), into 215	

spatial patterns at different scales through eigenvector decomposition, thus obtaining a set of 216	

so-called Moran Eigenvector maps (thereafter simply referred to as “connectivity maps”; cf. 217	

Mat. & Meth.). These maps represent the hypothetical geographic patterns expected for 218	

plankton with temporal variation along currents matching these scales (Fig. S9, S10). We 219	

estimated local abiotic conditions using yearly-averaged measurements of temperature, 220	

nutrient concentration and oxygen availability (World Ocean Atlas 2013; 26; cf. Mat. & 221	

Meth.). Because biotic interactions (predation, competition, parasitic and mutualistic 222	

symbiosis) are thought to be important determinants of plankton community structure (27), 223	

we also quantified local biotic conditions using the relative read counts of major eukaryotic 224	

groups (excluding the focal group; cf. Mat. & Meth.). Biotic conditions, similarly to abiotic 225	

ones, have a latitudinal structure, and we refer here to them collectively as ‘environmental 226	

conditions’ (Fig. S11, S12). The resulting environmental maps can be interpreted as the 227	

hypothetical geographic patterns expected for organisms with a fast response to local 228	

environmental conditions and whose dispersal by currents is not limiting. Hence, a 229	

biogeography matching connectivity maps better than environmental maps suggest that the 230	

constraints imposed by the seascape, that is the transport of plankton by oceanic currents 231	

modulated by mixing and ecological drift, but also by the responses to nutrient supplies and 232	

temperature variations during transport, dominate over those imposed by detectable local 233	

environmental filtering (see also 12).  234	
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We found that the total variance in surface community composition that can be 235	

explained by connectivity maps and local environmental conditions (abiotic and biotic) 236	

averages 27% across groups (min. 0% for Porifera, max. 58%) and is, as expected, tightly 237	

correlated to the amount of biogeographic structure (𝜌 = 0.88; Fig. 4A; cf. Mat. & Meth.). 238	

The part of the variance that is statistically explained by connectivity patterns is primarily 239	

contributed by between-basin connectivity patterns (Fig. S10 & S13), and is for most groups 240	

larger than the part of the variance statistically explained by environmental data (at the 241	

surface, on average 40% of the explained variance is purely explained by connectivity versus 242	

22% by the environment; Fig. S14A). This supports a prominent role of transport by the main 243	

current systems and of the processes occurring along those pathways in shaping eukaryotic 244	

plankton biogeography, both by extending the distribution of some taxa beyond their optimal 245	

range (28) and by constraining long-distance dispersal. Unmeasured environmental variations 246	

along currents likely contribute to this role of ocean circulation. As expected from our 247	

previous results, the ratio of the fractions of variance explained by connectivity patterns and 248	

environmental data, which reflects their relative contributions to biogeography, increases with 249	

group position on the second axis of variation (𝜌 = 0.44, 𝑝 = 10!!; Fig. 4B). Accordingly, 250	

the relative contribution of connectivity by currents also increases with average group body 251	

size (𝜌 = 0.42, 𝑝 = 10!!; Fig. 4C) and depends on ecology (ANOVA F-test: 𝑝 = 0.003; Fig. 252	

4D). These results indicate that metazoans are closer to drifting tracers strongly influenced by 253	

currents, and constrained in particular by limited between-basin connectivity, while 254	

phototrophs are more strongly coupled with environmental factors and disperse more readily 255	

between basins. The difference in sensitivity to local environmental conditions can be 256	

explained by differences in ecological requirements and community dynamics. Why there is a 257	

difference in between-basins dispersal is less clear. All basins are connected by currents 258	

within a few years of transport time (29), and small phototrophs may have a higher ability to 259	
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disperse through environmental barriers by forming spores or dormant states (10). 260	

Alternatively, the looser environmental coupling and slower dynamics of metazoan 261	

communities might make them more sensitive to the smaller between-basin compared to 262	

within-basin water flow. Finally, within the variance explained by the local environment, an 263	

approximately equal share can be attributed to biotic and abiotic conditions for most groups 264	

(respectively 29% and 26% purely explained at the surface, on average; Fig. S14B), 265	

irrespective of their body size, ecology, diversity or biogeography (Fig. S15). Results are 266	

similar at the DCM, but are far less pronounced (Fig. S16, S17). Although we cannot exclude 267	

the possibility that local biotic conditions reflect the indirect effect of local abiotic factors that 268	

are not accounted for in our study, such as fluxes of nutrients, which are often more relevant 269	

to planktonic organisms than instantaneous nutrient concentrations (28), these results indicate 270	

an additional role for interspecific interactions in shaping community composition (27, 30).  271	
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Fig. 4. Drivers of surface biogeography across major eukaryotic plankton groups. (A) The total 274	

variance in surface biogeography that can be explained by the combination of connectivity by currents 275	

and (abiotic and biotic) local environmental conditions increases with the position of plankton groups 276	

on the first axis of biogeographic variation. (B-D) Across major plankton groups, the log ratio of the 277	

variance explained by connectivity over the variance explained by (abiotic and biotic) local 278	

environmental conditions (B) increases with group position on the second axis of variation, (C) 279	

increases with log mean body size, and (D) varies across broad ecological categories (pairwise 280	

differences are significant except Metazoans-Parasites and Phagotrophs-Phototrophs). The ratio is 281	

higher than 1 for most groups, reflecting an overall stronger influence of connectivity by currents 282	

compared to local environmental conditions on plankton biogeography at the surface. The grey dot 283	

denotes RAD-C, an outlier group excluded from statistical tests. We did not find any significant 284	

explanatory variable for Porifera and therefore excluded this group from these analyses. 285	

 286	

Our study clarifies the patterns and processes underlying the global biogeography of 287	

the main groups of eukaryotic plankton in the sunlit ocean. Consistent with metagenomic 288	

results at lower taxonomic resolution (12), we find that eukaryotic plankton exhibits a global-289	

scale biogeography, and that community variation is slow enough along currents to allow 290	

them to be the dominant driver of this biogeography. The continuous movement of water 291	

masses generates biogeographic patterns that are better represented by overlapping taxa 292	

assemblages than by the well-delineated biomes characteristic of terrestrial systems. Our 293	

comparison of eukaryotic plankton groups reveals several additional results. First, the 294	

geographic structuring induced by currents may have favored the generation and maintenance 295	

of eukaryotic plankton diversity. Second, plankton ecology matters beyond body size 296	

differences, and reciprocally body size matters beyond ecological differences. Third, body 297	

size and ecology influence primarily the nature of biogeographic patterns, namely their spatial 298	

scale of organization and whether they are organized by oceanic basins or latitude, and only 299	
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secondarily the amount of biogeographic structure, namely local patchiness. Fourth, biotic 300	

conditions appear to be at least as important a driver of biogeography as local abiotic 301	

conditions. Our results reconcile the views that larger-bodied organisms are more dispersal-302	

limited (10, 11) and yet display a slower compositional turnover along currents than smaller 303	

organisms (12): at the global scale, organisms of larger sizes are indeed more dispersal-304	

limited; however at the regional scale, they have wider spatial distributions, presumably 305	

linked to their specific ecologies, longer lifespan and reduced sensitivity to local 306	

environmental variations. At the two extremes, metazoan heterotrophs are structured at the 307	

scale of oceanic basins following the main currents, while small phototrophs are structured 308	

latitudinally with a comparatively larger influence of local environmental conditions, 309	

including biotic ones. Together, our results suggest that predictive modeling of plankton 310	

communities in a changing environment (17, 31) will critically depend on our ability to model 311	

the impact of changes in ocean currents and to develop niche models accounting for both 312	

species ecology and interspecific interactions.  313	
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