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ABSTRACT 

 

 Antipsychotic treatment can produce a dopamine supersensitive state. In both schizophrenia 

patients and rodents, this is linked to antipsychotic treatment failure. In rodents, dopamine 

supersensitivity is often confirmed by an exaggerated behavioural response to the indirect monoamine 

agonist, d-amphetamine, after discontinuation of antipsychotic treatment. Here we investigated where 

and how d-amphetamine acts to trigger behavioural expression of dopamine supersensitivity, as this 

could uncover pathophysiological mechanisms underlying this supersensitivity. First, we examined the 

contributions of a central increase in dopamine/monoamine activity. Haloperidol-treated rats showed a 

potentiated psychomotor response to systemic d-amphetamine, confirming dopamine supersensitivity. 

However, they showed a normal psychomotor response to an increase in ventral midbrain dopamine 

impulse flow or to intracerebroventricular injection of d-amphetamine. This suggests that d-

amphetamine’s peripheral effects are required for a supersensitive response. Second, we determined 

the specific contributions of dopamine neurotransmission. The D2 agonist quinpirole, but not the D1 

agonist SKF38393 or the dopamine reuptake blocker GBR12783 produced a supersensitive 

psychomotor response in haloperidol-treated rats. In these rats, the D1 antagonist SCH39166 

decreased d-amphetamine-induced psychomotor activity, whereas the D2 antagonist sulpiride 

enhanced it. Thus, when d-amphetamine triggers a supersensitive response, this involves both D1- 

and D2-mediated transmission. Finally, we measured d-amphetamine-induced changes in D1- and 

D2-mediated intracellular signalling pathways in the striatum. In haloperidol-treated rats, a 

supersensitive response to d-amphetamine was linked to enhanced GSK3β activity and suppressed 

ERK1/2 activity in the nucleus accumbens, suggesting increased D2-mediated signalling. These 

findings provide new insights into the neurobiology of antipsychotic-evoked dopamine supersensitivity. 

 

Keywords: Schizophrenia, Rat, D1 receptor, D2 receptor, Dopamine transporter, Mesocorticolimbic 
system  
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INTRODUCTION 

 

 Antipsychotic drugs attenuate schizophrenia symptoms by blunting dopamine D2 receptor 

activity. However, long-term antipsychotic treatment can produce neuroadaptations that lead to 

supersensitivity to dopamine receptor stimulation. Antipsychotic-induced dopamine supersensitivity is 

linked to antipsychotic treatment failure and to an exacerbation of psychosis symptoms [1-7]. In 

animals, a widely-used index of antipsychotic-induced dopamine supersensitivity is an exaggerated 

locomotor response to d-amphetamine [8-18]. In this context, d-amphetamine serves as a 

pharmacological tool to probe the functional consequences of an acute increase in striatal dopamine 

release, as seen during psychosis [19]. D-amphetamine is an indirect monoamine agonist [20] with 

multiple sites of action and neurochemical effects. The anatomical location and nature of the 

neurochemical effects through which d-amphetamine produces a supersensitive behavioural response 

in antipsychotic-treated rats are largely unknown. We investigated these effects here, as the answers 

could reveal underlying biological mechanisms and eventual therapeutic targets to suppress 

antipsychotic-evoked dopamine supersensitivity.  

 

A first question concerns where d-amphetamine acts to trigger the expression of antipsychotic-

evoked dopamine supersensitivity. In dopamine-supersensitive rats, infusing d-amphetamine into the 

striatum does not trigger expression of established supersensitivity, suggesting that d-amphetamine 

actions in extra-striatal sites are also required [13]. Hence, we determined if increasing ventral 

tegmental area (VTA) dopamine impulse flow is sufficient to trigger a supersensitive psychomotor 

response. In other models where rats also show exaggerated d-amphetamine-induced psychomotor 

activity, this requires d-amphetamine actions in the periphery [21, 22]. Thus, we also determined 

whether limiting d-amphetamine’s effects to the brain triggers a supersensitive psychomotor response 

in antipsychotic-treated rats.   
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A second question concerns the role of dopamine-mediated neurotransmission. D-

amphetamine stimulates dopamine, but also noradrenaline and serotonin transmission [20, 23]. 

Noradrenaline and serotonin also modulate the expression of antipsychotic-evoked dopamine 

supersensitivity [24, 25]. Thus, we determined whether selective dopamine reuptake inhibition is 

sufficient to evoke a supersensitive response in antipsychotic-treated rats. Dopamine signals through 

dopamine D1-type and D2-type receptors. Selective D2 receptor stimulation evokes a supersensitive 

behavioural response in antipsychotic-treated rats [25, 26], but whether D1 stimulation does the same 

is unknown. We also addressed this here. Furthermore, we determined whether D1 or D2 receptor 

antagonists suppress the exaggerated response to d-amphetamine in antipsychotic-treated rats. 

Lastly, we assessed the effects of d-amphetamine on D1- and D2-mediated signalling in the striatum 

by quantifying protein activity in the AKT/GSK3β- and cAMP/PKA-dependent pathways [27-30]. This is 

because although injecting d-amphetamine into the striatum is not sufficient to produce an enhanced 

psychomotor response in dopamine-supersensitive rats [13], d-amphetamine-induced signalling in the 

striatum might still be necessary.  

 

METHODS 

 

 See Supplement for further information on rats, drugs, intra-cranial manipulations, 

measurement of psychomotor activity and Western Blots. Experimental procedures were approved by 

the Université de Montréal’s ethics committee and followed the guidelines of the Canadian Council on 

Animal Care. 

 

Antipsychotic treatment 

 

 Adult male Sprague-Dawley rats received haloperidol via osmotic minipumps (Alzet model 

2ML2; Durect Corporation, Cupertino, CA) to achieve steady-state brain concentrations of the drug [9, 

31], as produced by standard antipsychotic treatment regimens in the clinic [32-34]. We used 0.5 
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mg/kg/day haloperidol. This achieves 73% ± 14 SD striatal D2 receptor occupancy (unpublished 

observations, see  [9, 31]), and this is within the occupancy range that is therapeutically-efficacious in 

patients [35-37]. Under isoflurane anaesthesia, minipumps were implanted subcutaneously (s.c.) for 

haloperidol-treated rats, and controls were sham-operated [9]. Seventeen days later, minipumps were 

removed, and controls were sham-operated again.  

 

Psychomotor Activity 

 

 Psychomotor activity was assessed using 2 measures: 1) photocell counts to measure 

horizontal locomotor activity and 2) observer ratings based on a 1-to-9 scale [38]. Ratings between 1 

and 4 indicate no-to-normal locomotor activity, 5 indicates hyperlocomotion without stereotypy, and 

ratings between 6 and 9 indicate stereotypy [38].  

 

Experiments 

 

Fig. 1 illustrates experimental timelines. Locomotion tests started at least 3 days after 

haloperidol discontinuation and were given every 48 hours, 1 test/day. In each experiment below, we 

confirmed antipsychotic-induced dopamine supersensitivity by measuring the psychomotor response 

to s.c. d-amphetamine (0 or 1.5 mg/kg). 

 

Exp. 1: Increasing VTA dopamine impulse flow. We determined if enhancing VTA dopamine 

impulse flow produces a supersensitive psychomotor response in haloperidol-treated rats. We 

evaluated the locomotor response to bilateral infusions of vehicle, neurotensin (1 nmol/hemisphere) or 

DAMGO (0.3 nmol/hemisphere) into the VTA, at concentrations that increase dopamine release in 

terminal regions [39, 40]. Neurotensin increases dopamine impulse flow by producing an inward 

current on dopamine neurons [41], reducing D2 autoreceptor-mediated inhibition [42-44], and 

enhancing glutamatergic inputs to dopamine neurons [45, 46]. DAMGO, a µ-opioid receptor agonist 
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[47], inhibits GABA release thereby disinhibiting dopamine neuron activity [39, 48]. All rats received all 

treatments, counterbalanced. 

 

Exp. 2: Intracerebroventricular d-amphetamine. We determined if limiting d-amphetamine’s 

effects to the brain still triggers a supersensitive response in haloperidol-treated rats. We infused d-

amphetamine into the lateral ventricles (0, 50 or 150 µg/hemisphere [49], counterbalanced, one d-

amphetamine dose/rat), and measured psychomotor activity.  

 

Exp. 3: Selective dopamine reuptake inhibition. We assessed whether selectively blocking 

dopamine reuptake with GBR12783 [50] (0, 5 or 10 mg/kg [51]) produces a supersensitive 

psychomotor response in haloperidol-treated rats. For comparison, we also assessed effects of the 

monoamine reuptake blocker cocaine [52] (0, 2.5 or 10 mg/kg [53])  and the monoamine receptor 

agonist apomorphine [23] (0, 0.25 or 0.5 mg/kg [54, 55]). Each rat received 3 agonist injections, 

counterbalanced.  

 

Exp. 4: D1 and D2 receptor stimulation. We determined whether selective D1 or D2 stimulation 

produces an enhanced psychomotor response in haloperidol-treated rats.  Locomotion was recorded 

for 30 min before administration of a D1 (SKF38393 [56, 57]; 0, 1 or 10 mg/kg [58, 59]) or D2 agonist 

(quinpirole [23]; 0, 0.15 or 0.5 mg/kg [26, 60]) and for 2 hours thereafter. Each rat received 2 agonist 

injections, counterbalanced. 

 

Exp. 5: Systemic d-amphetamine with D1 or D2 receptor blockade. We assessed whether D1 

and/or D2 transmission is necessary for the expression of dopamine supersensitivity. Rats received 

the D2 antagonist sulpiride [61, 62] (0, 25 or 80 mg/kg [63, 64]) or the D1 antagonist SCH39166 [65] 

(0, 0.03 or 0.1 mg/kg [66, 67]), and 30 min later, they received d-amphetamine (0 or 1.5 mg/kg). Each 

rat received 2 d-amphetamine and 2 antagonist injections, counterbalanced. 
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Exp. 6: D-amphetamine effects on D1- and D2-mediated signalling. We measured d-

amphetamine-induced protein activity in the AKT/GSK3β- and cAMP/PKA-dependent pathways. 

Locomotion was recorded for 30 minutes, then control and haloperidol-treated rats received s.c. saline 

or d-amphetamine. One hour later, brains were extracted, samples were taken from the nucleus 

accumbens and the dorsal, ventrolateral and centromedial caudate-putamen. We quantified total and 

phosphorylated protein levels of DARPP-32, ERK1, ERK2, AKT and GSK3β using Western Blot 

procedures. 

 

Statistical analysis 

 

Locomotor activity and protein levels were expressed as the percent change relative to vehicle-

injected controls. Repeated measures or mixed-model ANOVA were used to analyse the influence of 

Dose or Injection or Group on locomotion, psychomotor activity ratings or protein level (Group × Dose 

or Injection × Time, ‘Injection’ as a within-subjects variable in Exp. 1 and ‘Dose’ and ‘Injection’ as 

between-subjects variables in Exps. 2-6). When interaction and/or main effects were significant (p < 

0.05), effects were analysed further using Bonferroni’s multiple comparisons’ tests. Values in figures 

are mean ± SEM. 

 

RESULTS 

 

Across experiments, all haloperidol-treated groups developed dopamine supersensitivity, as 

indicated by enhanced d-amphetamine-induced locomotion relative to controls (Fig. 2; Group × 

Injection interaction; 2A, F1,11 = 25.95; 2C, F1,51 = 19.71; 2D, F1,30 = 8.1; 2E, F1,61 = 5.66; 2F, F1,20 = 

18.76; Group effect; 2A, F1,11 = 5.31; 2B, F1,8 = 5.51; 2C, F1,51 = 9.05; 2D, F1,30 = 5.57; 2E, F1,61 = 7.88; 

2F, F1,20 = 12.67; Injection effect; 2A, F1,11 = 92.63; 2B, F1,8 = 31.77; 2C, F1,51 = 497.5; 2D, F1,30 = 117.0; 

2E, F1,61 = 260.4; 2F, F1,20 = 129; 2-A-C-D-E-F; d-amph > veh in all groups; after d-amph, haloperidol > 
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controls; all P’s < 0.05). Haloperidol and control rats generally showed similar D-amphetamine-

induced psychomotor activity ratings (Fig. S1). 

 

Exp. 1: Increasing VTA dopamine impulse flow 

 

 Across groups, intra-VTA neurotensin and DAMGO increased locomotion and psychomotor 

activity ratings compared to vehicle, without significant group differences (Fig. 3; Injection × Time 

interaction on minutes 10-120; 3B versus 3C, F11,132 = 4.32; 3B versus 3D, F11,132 = 7.75; Injection 

effect; 3B versus 3C, F1,12 = 14.41; 3B versus 3D, F1,12 = 17.04. Fig. 3E; Injection effect; vehicle versus 

neurotensin, F1,12 = 6.92; vehicle versus DAMGO, F1,12 = 13.91; all P’s < 0.05).  

 

Hence, in rats with established antipsychotic-evoked dopamine supersensitivity, increasing 

VTA dopamine impulse flow does not evoke an enhanced psychomotor response. 

 

Exp. 2: Intracerebroventricular d-amphetamine 

 

Across groups, intracerebroventricular d-amphetamine dose-dependently increased locomotion 

and psychomotor activity ratings compared to vehicle, without group differences (Figs. 3F-H; minutes 

10-120; Dose × Time interaction, F22,726 = 6.38; Dose effect, F2,66 = 29.49; Fig. 3I; Dose effect, F2,66 = 

50.43; all P’s < 0.0001). 

 

Hence, circumscribing d-amphetamine’s effects to the brain does not evoke the expression of 

established dopamine supersensitivity. 

  

Exp. 3: Selective dopamine reuptake inhibition  
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 GBR12783 increased locomotion and psychomotor activity ratings above vehicle, without 

group differences (Fig. 4; vehicle not shown; 4A-B versus vehicle; minutes 70-180; Dose × Time 

interaction, F22,1133 = 5.87; Dose effect, F2,103 = 29.72; 4C versus vehicle; Dose effect, F2,91 = 41.4; all 

P’s < 0.0001). Both cocaine and apomorphine increased locomotion and ratings above vehicle, with a 

mildly enhanced response in haloperidol rats (minutes 70-180; 4D-E versus vehicle; Dose × Time 

interaction, F22,957 = 5.98; Dose effect, F2,87 = 47.45; Group effect, F1,87 = 4.35; 4F versus vehicle; Dose 

effect, F2,75 = 53.45;  4G-H versus vehicle; minutes 70-180; Dose × Time interaction, F22,1023 = 6.4; 

Dose effect, F2,93 = 10.3; Group × Time interaction, F11,1023 = 3.05; Group effect, F1,93 = 8.05; 4I versus 

vehicle; Group × Dose interaction, F2,81 = 5.43; Dose effect, F2,81 = 189.8; Group effect, F1,81 = 28.48; 

Fig. 4I; haloperidol > controls at both doses; all P’s < 0.05). 

 

Thus, in dopamine-supersensitive rats, monoamine agonists (cocaine and apomorphine) but 

not a selective dopamine reuptake inhibitor (GBR12783) produce a mildly enhanced psychomotor 

response. 

 

Exp. 4: D1 and D2 receptor stimulation 

 

The D1 agonist SKF38393 evokes stereotypy but little hyperlocomotion [58, 68, 69]. 

Accordingly, SKF38393 increased psychomotor activity ratings, and did so similarly across groups 

(Fig. 5; vehicle not shown; 5A versus vehicle; Dose effect, F2,58 = 15.89, p < 0.0001) without increasing 

locomotion (5B-C versus vehicle). 

 

The D2 agonist quinpirole dose-dependently increased locomotion and ratings relative to 

vehicle, and this effect was greatest in haloperidol rats (5D versus vehicle; Dose effect, F2,58 = 17.85; 

Group effect, F1,58 = 3.89; 5E-F versus vehicle; minutes 40-210; Dose × Time interaction, F34, 986 = 

16.55; Group × Time interaction, F17,986 = 4.57; Dose effect, F2,58 = 32.11; Group effect, F1,58 = 6.8; all 

P’s ≤ 0.05). 
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Hence, rats with antipsychotic-induced supersensitivity show an augmented behavioural 

response to D2, but not D1 receptor stimulation.  

 

Exp. 5: Systemic d-amphetamine with D1 or D2 receptor blockade 

 

Haloperidol-treated rats showed greater d-amphetamine-induced ratings and locomotion than 

controls did (Fig. 6A; Group effect, F1,88 = 14.48; Fig. 6B-C; minutes 40-150; Group × Time interaction, 

F11,968 = 3.48; Group effect, F1,88 = 7.3; all P’s < 0.01), confirming dopamine supersensitivity. Across 

groups, the D1 antagonist SCH39166 decreased both vehicle- (Figs. S2A-C) and d-amphetamine-

induced locomotion and ratings (Fig. 6A; Dose effect, F2,88 = 39.11; Figs. 6B-C; minutes 40-150; Dose 

× Time interaction, F22,968 = 6.33; Dose effect, F2,88 = 28.69; all P’s < 0.0001). Notably, in haloperidol-

treated rats, 0.03 mg/kg SCH39166 restored d-amphetamine-induced locomotion to control levels 

(compare light purple curve in Fig. 6B to white curve in Fig. 6C). 

 

Across groups, the D2 antagonist sulpiride did not influence vehicle-induced ratings or 

locomotion (Fig. S2D-F). Sulpiride suppressed d-amphetamine-induced psychomotor activity ratings in 

controls but, surprisingly, it enhanced this response in haloperidol-treated rats (Fig. 6D; Group × Dose 

interaction, F2,89 = 8.47; Group effect, F1,89 = 38.25; haloperidol > controls at both sulpiride doses; 

haloperidol rats, 0 < 25 and 80 mg/kg; control rats, 0 > 80 mg/kg; all P’s < 0.05). Sulpiride also 

influenced d-amphetamine-induced locomotion (Figs. 6E-F; minutes 40-150; Dose × Time interaction, 

F22,979 = 2.51; Dose effect, F2,89 = 3.09; all P’s ≤ 0.05), with group differences in this effect. Specifically, 

sulpiride decreased d-amphetamine-induced hyperlocomotion in controls but not in haloperidol rats 

(Figs. 6E-F; Group × Time interaction, F11,979 = 3.14, Group effect, F1,89 = 14.38; all P’s ≤ 0.05).  

 

Thus, in dopamine-supersensitive rats, D1- but not D2-mediated activity is required for the 

expression of an enhanced psychomotor response to d-amphetamine. In parallel, D2 receptor 
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blockade potentiated d-amphetamine-induced psychomotor activity in dopamine-supersensitive rats, 

suggesting that D2 receptor activity normally tempers the expression of dopamine supersensitivity.  

 

Exp. 6: D-amphetamine effects on D1- and D2-mediated signalling 

 

Caudate-putamen. D-amphetamine produced similar effects in haloperidol-treated and control 

rats. In the dorsal, ventrolateral and centromedial caudate-putamen, d-amphetamine had mixed 

effects on total proteins levels, but it either decreased or had no effect on phosphorylated/total protein 

ratios (Figs. S3-5). Thus, d-amphetamine did not increase protein phosphorylation in AKT/GSK3β- or 

cAMP/PKA-dependent pathways in the caudate-putamen. Some of our results differ from work 

showing that in otherwise naïve rats, d-amphetamine increases DARPP-32, ERK1/ERK2 and GSK3β 

activity, and decreases AKT activity in the striatum [29, 30, 70, 71]. However, these previous studies 

analysed the caudate-putamen as a whole or with nucleus accumbens included [29, 30, 70, 71].  

 

Nucleus accumbens. Relative to saline, d-amphetamine increased total GSK3β levels only in 

haloperidol-treated rats (Fig. 7C; Group × Injection interaction, F1,20 = 4.23; Injection effect, F1,20 = 

14.61; haloperidol rats, d-amph > saline; all P’s ≤ 0.05). This reflects higher levels of non-

phosphorylated (active) versus phosphorylated (inactive) GSK3β [72], because d-amphetamine 

decreased pGSK3β/total GSK3β ratios across groups (Fig. 7D; Injection effect, F1,20 = 7.57, p = 

0.012). D-amphetamine decreased total AKT levels and increased pAKT/total AKT ratios, with no 

group differences (Injection effect; Fig. 7E; F1,15 = 13.01; Fig. 7F; F1,15 = 6.611; all P’s < 0.05). Hence, 

in the nucleus accumbens, d-amphetamine influences AKT similarly in dopamine-supersensitive and 

control rats, but d-amphetamine enhances GSK3β activity to a greater extent in dopamine-

supersensitive rats. 

 

In haloperidol-treated rats, total DARPP-32 levels were increased at baseline and decreased 

after d-amphetamine (Fig. 7G; Group × Injection interaction, F1,19 = 9.97; Injection effect, F1,19 = 5.47; 
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after saline, haloperidol rats > controls; Haloperidol rats, saline > d-amph; all P’s < 0.05). At baseline, 

total levels of both ERK1 and ERK2 were highest in haloperidol-treated rats (Fig. 7I; Group × Injection 

interaction, F1,20 = 4.13; Group effect, F1,20 = 6.41; haloperidol rats > controls after saline injection; Fig. 

7K; Group effect, F1,20 = 4.56; all P’s ≤ 0.05). D-amphetamine decreased total ERK2 levels similarly 

across groups (Fig. 7K; Injection effect, F1,20 = 17.79; all P’s < 0.05). Hence, d-amphetamine-induced 

expression of dopamine supersensitivity potentially involves decreased total DARPP-32 levels in the 

accumbens, without distinct effects on total ERK1/ERK2 levels. 

 

D-amphetamine enhanced the proportion of phosphorylated (active) versus total ERK1 and 

ERK2 levels in controls (see also [29, 70, 71]), but not in haloperidol-treated rats (Fig. 7J; Group × 

Injection interaction, F1,20 = 9.73; Injection effect, F1,20 = 15.62; Fig. 7L; Group × Injection interaction, 

F1,20 = 8.41; Injection effect, F1,20 = 11.82; Figs. 7J-L; controls, d-amph > saline; after d-amph, controls 

> haloperidol rats; all P’s ≤ 0.05). D-amphetamine did not change the proportion of phosphorylated 

DARPP-32 in either group (Fig. 7H; p > 0.05). Thus, in the accumbens, the expression of dopamine 

supersensitivity is potentially linked to suppressed phosphorylation of ERK1 and ERK2. 

 

In summary, in dopamine-supersensitive rats, enhanced d-amphetamine-induced psychomotor 

activity is accompanied by enhanced GSK3β activity and decreased ERK activity in the nucleus 

accumbens. 

 

DISCUSSION 

 

 In rats given a clinically-relevant antipsychotic treatment regimen, we examined where and 

how d-amphetamine acts to reveal the expression of dopamine supersensitivity. We report four main 

findings. First, systemic d-amphetamine reliably triggered the expression of established dopamine 

supersensitivity, whereas intracerebroventricular d-amphetamine infusion or an increase in VTA 

dopamine impulse flow did not. Second, dopamine-supersensitive rats showed an enhanced 
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psychomotor response to selective D2, but not to D1 receptor stimulation or selective dopamine 

reuptake inhibition. Third, in dopamine-supersensitive rats, blocking D2 receptors enhanced the 

psychomotor response to d-amphetamine, whereas blocking D1 receptors suppressed d-

amphetamine-induced responding. Fourth, in dopamine-supersensitive rats, d-amphetamine 

increased GSK3β levels in the nucleus accumbens, but d-amphetamine failed to increase ERK1/2 

phosphorylation as it did in controls. These results give new insights into the mechanisms underlying 

the behavioural expression of antipsychotic-evoked dopamine supersensitivity. 

 

Central processes 

 

Across experiments, rats withdrawn from haloperidol treatment showed an enhanced 

psychomotor response to systemic d-amphetamine, indicating dopamine supersensitivity [9, 14, 15]. In 

these rats, increasing VTA dopamine impulse flow or restricting d-amphetamine’s effects to the brain 

did not trigger the expression of established dopamine supersensitivity. This concords with findings 

that intra-striatal d-amphetamine infusions also fail to trigger this response [13]. Still, our findings 

contrast with studies showing that antipsychotic-treated rats show a sensitized locomotor response to 

intra-striatal dopamine infusions [73, 74]. However, these previous studies used high and clinically 

unrepresentative antipsychotic doses [31]. Using a clinically representative antipsychotic treatment 

regimen [31, 32, 34, 37], our results suggest that once antipsychotic-evoked dopamine 

supersensitivity has developed, its behavioural expression requires peripheral activity. This could 

involve adrenal glucocorticoids, as these are required for the expression of behavioural 

supersensitivity to d-amphetamine in other contexts (e.g., after repeated exposure to d-amphetamine 

[21] or stress [22]). 

 

Dopamine reuptake 
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Dopamine-supersensitive rats showed a normal psychomotor response to the dopamine 

reuptake blocker GBR12783, and only a marginally enhanced response to the monoamine reuptake 

blocker, cocaine. In contrast, these same rats showed markedly augmented d-amphetamine-induced 

psychomotor activity. GBR12783, cocaine and d-amphetamine all act at the dopamine transporter 

(DAT). D-amphetamine could trigger a more robust supersensitive response through more potent 

effects at the DAT (e.g. by both blocking dopamine uptake and enhancing dopamine release [52]) 

and/or through DAT-independent effects. For instance, in the caudate-putamen, d-amphetamine—but 

not cocaine—depletes dopamine-containing vesicles and enhances tonic dopamine release [75]. The 

effects of antipsychotic treatment on these processes are not yet known, but antipsychotic-treated rats 

have potentially enhanced striatal DAT function [11]. 

 

D2 and D1 receptors 

 

Our results suggest that dopamine-supersensitive rats have enhanced D2-mediated activity, 

extending prior observations of increased striatal D2 receptor density and function [9, 10, 76-78]. First, 

our dopamine-supersensitive rats showed an enhanced psychomotor response to a D2 receptor 

agonist. Second, acute D2 receptor blockade suppressed the psychomotor response to d-

amphetamine in controls, but it potentiated d-amphetamine responding in dopamine-supersensitive 

rats. This potentiation could involve blockade of D2 autoreceptors, which would disinhibit dopamine 

synthesis/release and thus promote psychomotor activity. Indeed, chronic antipsychotic treatment can 

enhance presynaptic D2 receptor activity in the caudate-putamen [79] (but not in the nucleus 

accumbens [80]). Third, dopamine-supersensitive rats showed changes in nucleus accumbens 

cAMP/PKA- and GSK3β/AKT-dependent activity consistent with enhanced D2-mediated signalling. D2 

receptor stimulation disinhibits GSK3β activity and inhibits both cAMP/PKA-dependent activity and 

ERK1/2  phosphorylation [27, 81, 82]. Our dopamine-supersensitive rats showed enhanced d-

amphetamine-induced increases in GSK3β activity, but diminished d-amphetamine-induced ERK1/2 

phosphorylation. Our biochemical and behavioural findings remain correlational. Moreover, we have 
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shown previously that injecting d-amphetamine into the accumbens does not trigger the expression of 

established dopamine supersensitivity [13]. However, future work can determine whether dopamine-

mediated signalling in the accumbens is necessary for the expression of dopamine supersensitivity. 

 

Our findings also suggest that D1 receptor activity could be required for the full expression of 

antipsychotic-induced supersensitivity. Dopamine-supersensitive rats showed a normal psychomotor 

response to a D1 agonist, and d-amphetamine failed to increase ERK1/2 activity in the accumbens in 

these rats, suggesting that D1 transmission is not potentiated. However, blocking D1 receptors 

normalized d-amphetamine-induced locomotion in dopamine-supersensitive rats. This extends 

findings that chronic stimulation of D1 (but not D2) receptors reverses the expression of antipsychotic-

evoked dopamine supersensitivity [83]. However, a caveat is that D1 blockade also supressed basal 

locomotion in our rats, raising the possibility of non-specific motor effects. This requires further 

investigation. Nonetheless, our results show that dopamine-supersensitive rats remain responsive to 

the anti-dopaminergic effects of D1, but not D2 receptor blockade. Indeed, antipsychotic-evoked 

dopamine supersensitivity produces tolerance to the anti-dopaminergic effects of D2 receptor 

antagonists in both rodents [9, 10, 84] and schizophrenia patients [3, 85]. Hence, D1 but not D2 

receptors represent potential targets to temper the behavioural manifestations of antipsychotic-evoked 

dopamine supersensitivity. 

 

Conclusions 

 

 Effective treatments to prevent the expression of antipsychotic-evoked dopamine 

supersensitivity depend on a better understanding of the biological mechanisms through which this 

supersensitivity is expressed. In this context, our findings both extend existing knowledge on the role 

of D2 receptors in antipsychotic-evoked dopamine supersensitivity and suggest two new underlying 

mechanisms. First, the expression of antipsychotic-evoked dopamine supersensitivity requires D1-
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mediated transmission. Second, beyond central processes, the expression of this supersensitivity 

likely involves peripheral mechanisms.  
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 FIGURES 

 

 

 

FIG. 1 ─ Experimental timelines. 

 

 

 

 

 

FIG. 2 ─ Chronic haloperidol treatment produced dopamine supersensitivity, as indicated by an 

exaggerated psychomotor response to d-amphetamine. (A-F) Locomotor response to 

subcutaneous (s.c.) d-amphetamine (0 or 1.5 mg/kg) in each experiment. Dotted lines indicate 

locomotion of vehicle-injected controls. n’s = 5-32/condition.  *p < 0.05; in (B), Injection effect. # p < 

0.05; in (B), Group effect. 
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FIG. 3 ─ Neither increasing ventral tegmental area (VTA) dopamine impulse flow nor injecting 

d-amphetamine into the brain triggers the expression of established dopamine 

supersensitivity. (A) VTA histology. (B-E) Psychomotor response to intra-VTA vehicle, neurotensin 

or DAMGO. (F-I) Psychomotor response to intracerebroventricular d-amphetamine. On the right, 

representative injector placements (arrows indicate injectors). Dotted lines indicate response of 

vehicle-injected controls. n’s = 7-21/condition. *p < 0.05. 
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FIG. 4 ─ Psychomotor effects of GBR12783, cocaine and apomorphine in haloperidol-treated 

rats versus controls. Psychomotor response to (A-C) subcutaneous (s.c.) GBR12783, (D-F) 

intraperitoneal (i.p.) cocaine or (G-I) s.c. apomorphine. Dotted lines indicate response of vehicle-

injected controls. n’s = 7-31/condition. #, *p < 0.05. In (A-B); *Dose × Time interaction and Dose 

effect. In (C); *Dose effect. In (D-E); *Dose × Time interaction and Dose effect, # Group effect. In (F); 

*Dose effect. In (G-H); *Dose × Time interaction and Dose effect, # Group × Time interaction and 

Group effect. In (I); *Dose effect. 
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FIG. 5 ─ Stimulation of D2 but not D1 transmission is sufficient to reveal the expression of 

antipsychotic-evoked dopamine supersensitivity. (A-F) Psychomotor response subcutaneous 

(s.c.) quinpirole or SKF38393. Dotted lines indicate response of vehicle-injected controls. n’s = 7-

32/condition. #, *p < 0.05. In (A); *Dose effect. In (D); *Dose effect, # Group effect. In (E-F), *Dose × 

Time interaction and Dose effect, # Group × Time interaction and Group effect. 
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FIG. 6 ─ D1- but not D2-mediating signalling is necessary to the expression of antipsychotic-

evoked dopamine supersensitivity. (A-F) Psychomotor response to s.c. SCH39166 or sulpiride and 

s.c. d-amphetamine. Dotted lines indicate response of vehicle-injected controls. n’s = 7-32/condition. 

#, *p < 0.05. In (A); *Dose effect, # Group effect. In (B-C, E-F); *Dose × Time interaction and Dose 

effect, # Group × Time interaction and Group effect. 
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FIG. 7 ─ Dopamine-supersensitive rats have enhanced d-amphetamine-induced GSK3β activity 

and suppressed d-amphetamine-induced ERK1/2 activity in the nucleus accumbens. (A-B) 

AKT/GSK3β- and cAMP/PKA-dependent pathways and Western blots in accumbens tissue. Total 

protein levels and phosphorylated/total protein ratios within the (C-F) AKT/GSK3β- and (G-L) 

cAMP/PKA-dependent pathways. Dotted lines indicate mean protein level of vehicle-injected controls. 

n’s = 3-6/condition. # p < 0.05; in (K), Group effect. *p < 0.05; in (D-F, K), Injection effect. 
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