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Abstract 15 

Forests provide essential biodiversity, ecosystem and economic services. Information on 16 

individual trees is important for understanding the state of forest ecosystems but obtaining 17 

individual-level data at broad scales is challenging due to the costs and logistics of data 18 

collection. While advances in remote sensing techniques allow surveys of individual trees at 19 

unprecedented extents, there remain significant technical and computational challenges in 20 
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turning sensor data into tangible information. Using deep learning methods, we produced an 21 

open-source dataset of individual-level crown estimates for 100 million trees at 37 sites across 22 

the United States surveyed by the National Ecological Observatory Network’s Airborne 23 

Observation Platform. Each canopy tree crown is represented by a rectangular bounding box 24 

and includes information on the height, crown area, and spatial location of the tree. Tree crowns 25 

identified using this technique correspond well with hand-labeled crowns, exhibiting both high 26 

levels of overlap and good correspondence in height estimates. These data have the potential 27 

to drive significant expansion of individual-level research on trees by facilitating both regional 28 

analyses at scales of ~10,000 ha and cross-region comparisons encompassing forest types 29 

from most of the United States. 30 

Introduction 31 

Trees are central organisms in maintaining the ecological function, biodiversity and the health of 32 

the planet. There are estimated to be over three trillion individual trees on earth (Crowther et al., 33 

2015) covering a broad range of environments and geography (Hansen et al., 2013). Counting 34 

and measuring trees is central to developing an understanding of key environmental and 35 

economic issues and has implications for global climate, land management and wood 36 

production. Field-based surveys of trees are generally conducted at local scales (~0.1-100 ha) 37 

with measurements of attributes for individual trees within plots collected manually. Connecting 38 

these local scale measurements at the plot level to broad scale patterns is challenging because 39 

of spatial heterogeneity in forests. Many of the key processes in forests, including change in 40 

forest structure and function in response to disturbances such as hurricanes and pest 41 

outbreaks, and human modification through forest management and fire, occur at scales beyond 42 

those feasible for direct field measurement.  43 
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 Satellite data with continuous global coverage have been used to quantify important 44 

patterns in forest ecology and management such as global tree cover dynamics and 45 

disturbances in temperate forests (e.g. Bastin et al., 2018). However, the spatial resolution of 46 

satellite data makes it difficult to detect and monitor individual trees that underlie large scale 47 

patterns. These shortcomings can however be overcome by utilizing higher resolution remotely 48 

sensed data from low Earth orbit satellites, aircraft or drones to capture individual-level changes 49 

in forest structure and composition (Aubry-Kientz et al., 2019; Puliti et al., 2020). These high-50 

resolution data have become increasingly accessible but converting the data into information on 51 

individual trees requires significant technical expertise and access to high-performance 52 

computing environments. This prevents most ecologists, foresters, and managers from 53 

engaging with large scale data on individual trees, despite the availability of the underlying data 54 

products and broad importance for forest ecology and management. 55 

In response to the growing need for publicly available and standardized airborne remote 56 

sensing data over forested ecosystems, the National Ecological Observatory Network (NEON) 57 

is collecting multi-sensor data for more than 40 sites across the US. In this research, we 58 

combine these sensor data with a semi-supervised deep learning approach (Weinstein et al., 59 

2020b, 2019) to produce a dataset on the location, height and crown area of over 100 million 60 

individual canopy trees at 37 sites distributed across the United States. To make these data 61 

readily accessible, we are releasing easy to access data files to spur biological analyses and to 62 

facilitate model development for tasks that rely on individual tree prediction. We describe the 63 

components of this open-source dataset, compare predicted crowns with hand-labeled crowns 64 

for a range of forest types, and discuss how this dataset can be used to address key questions 65 

in forest research.  66 
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The NEON Crowns dataset 67 

The NEON Crowns dataset contains tree crowns for all canopy trees (those visible from 68 

airborne remote sensing) at 37 NEON sites. Since subcanopy trees are not visible from above, 69 

they are not included in this dataset. We operationally define “trees” as plants over 3m tall. The 70 

37 NEON sites represent all NEON sites containing trees with co-registered RGB and LiDAR 71 

data from 2018 or 2019 (see S3 for a list of sites and their locations). Predictions were made 72 

using the most recent year for which images were available for each site. 73 

The dataset includes a total of 104,675,304 million crowns. Each predicted crown 74 

includes data on the spatial position of the crown bounding box, the area of the bounding box 75 

(an approximation of crown area), the 99th quantile of the height of LiDAR returns within the 76 

bounding box above ground level (an estimate of tree height), the year of sampling, the site 77 

where the tree is located, and a confidence score indicating the model confidence that the box 78 

represents a tree. The confidence score can vary from 0-1, but based on results from 79 

(Weinstein et al., 2020b), boxes with less than 0.15 confidence were not included in the dataset. 80 

The dataset is provided in two formats: 1) as 11,000 individual files each covering a 81 

single 1km^2 tile (geospatial ‘shapefiles’ in standard ESRITM format); and 2) as 37 csv files, 82 

each covering an entire NEON site. Geospatial tiles have embedded spatial projection 83 

information and can be read in commonly available GIS software (e.g., ArcGIS, QGIS) and 84 

geospatial packages for most common programming languages used in data analysis (e.g., R, 85 

Python). All data are publicly available, openly licensed (CC-BY), and permanently archived on 86 

Zenodo (https://zenodo.org/deposit/3765872). 87 

 88 
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 89 

Figure 1. Locations of 37 NEON sites included in the NEON Crowns Dataset and examples of 90 

tree predictions shown with RGB imagery for six sites. Clockwise from bottom right: 1) OSBS: 91 

Ordway-Swisher Biological Station, Florida 2) DELA: Dead Lake, Alabama, 3) SJER: San 92 

Joaquin Experimental Range, California, 4) WREF: Wind River Experimental Forest, 93 

Washington, 5) BONA: Caribou Creek, Alaska and 6) BART: Bartlett Experimental Forest, New 94 

Hampshire. Each predicted crown is associated with the spatial position, crown area, maximum 95 

height estimate from co-registered LiDAR data, and a predicted confidence score. 96 

To support the visualization of the dataset have developed a web visualization tool using 97 

the ViSUS WebViewer (www.visus.org) to allow users to view all of the trees at the full site scale 98 
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with the ability to zoom and pan to examine individual groups of trees down to a scale of 20m 99 

(see http://visualize.idtrees.org, Figure 2). This tool will allow the ecological community to assist 100 

in identifying areas in need of further refinement within large area covered by the 37 sites. 101 

 102 

Figure 2. The Neon Crowns Dataset provides individual-level tree predictions at broad scales. 103 

An example from Bartlett Forest, NH shows the ability to continuously zoom from landscape 104 

level to stand level views. A single 1km tile is shown. NEON sites tend to have between 100 to 105 

400 tiles in the full airborne footprint.  106 

Crown Delineation Methods 107 

The location of individual tree crowns was estimated using a semi-supervised deep learning 108 

workflow (Figure 3; Weinstein et al., 2020b, 2019). This workflow uses a one-shot object 109 
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detector with a convolutional neural network backbone to identify trees in RGB imagery. The 110 

model was pre-trained using weak labels generated from a previous published LiDAR tree 111 

detection algorithm using NEON data from 30 sites (Silva et al., 2016). The model was then 112 

trained on 10,000 hand-annotated crowns from 7 NEON sites (Figure 1). This phase of the 113 

workflow was performed using the DeepForest python package (Weinstein et al., 2020a). We 114 

extend the workflow by filtering trees using the LiDAR-derived canopy height model to remove 115 

objects identified by the model with heights of <3m (Supplementary Material). This addition was 116 

important in sparsely vegetated landscapes, such as oak savannah and deserts where it was 117 

difficult for the model to distinguish between trees and low shrubs in the RGB imagery.  118 

 119 

 120 

Figure 3. Workflow diagram adapted from (Weinstein et al., 2020a). The workflow for model 121 

training and development are identical to (Weinstein et al., 2020a) with the exception of 122 

extracting heights from the canopy height model for each bounding box prediction. 123 
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Evaluation and Validation 124 

Building on evaluation methods from Weinstein et al., (2020b, 2020a, 2019), we validated the 125 

dataset using hand-annotated bounding boxes drawn by an observer looking directly at the 126 

sensor data. We refer to this type of evaluation data as ‘image-annotated crowns’. This 127 

approach allows the performance of the crown-delineation algorithm to be evaluated across the 128 

full range of forest types represented in the continental-scale dataset. However, note that these 129 

image-annotated crowns will not be as accurate as field-annotated crowns (S. Graves et al., 130 

2018), where an observer records crown position while physically next to the target tree. Image-131 

annotated crowns may therefore overestimate the performance of the algorithm relative to more 132 

precise ground truth.  133 

We compared predicted tree crowns to image-annotated crowns from 21 NEON sites 134 

(n=207 images, 6926 trees) that were withheld from model training. These sites were selected 135 

to cover a wide range of forest types and geographies. Using a 50% intersection over union 136 

threshold, our workflow yielded a bounding box recall of 72.4% with a precision of 70.5%. Recall 137 

is the proportion of image-annotated crowns matched to a crown prediction and precision is the 138 

proportion of predictions that match image-annotated crowns. Precision and recall are equally 139 

important for developing a tree crown dataset, because it is important to both successfully 140 

identify trees and ignore non-tree objects. Tests indicate that the model generalizes well across 141 

geographic sites and forest conditions (Figure 4; Weinstein et al., 2020a, 2020b), but there is a 142 

general bias towards undersegmenting trees in dense stands where multiple individual trees 143 

with similar optical characteristics are grouped into a single delineation. Additional training data 144 

and the LiDAR threshold added in this implementation resulted in predictions that were 4.1% 145 

more precise, but 2.8% less accurate than (Weinstein et al., 2020a) (Figure 4). The decrease in 146 

recall likely occurs because the NEON field plots that were used for evaluation occur mostly in 147 
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forested areas of the NEON sites, rather than in less dense areas of the sites. Areas with less 148 

dense forest (e.g., agriculture, suburban areas, and bare ground) are not as common within the 149 

NEON field plots used for evaluation and are likely the areas with improved precision from the 150 

use of the new LiDAR threshold (Supplementary Material). The 4% increase in precision is 151 

therefore likely a lower bound and is worth the trade-off in the minimal drop in recall.  152 

153 

Figure 4. Precision and recall scores for the algorithm used to create the NEON Crowns Dataset154 

(red points), as well as the DeepForest model from Weinstein et al., (2020a) (blue points). 155 

Evaluation is performed on 207 image-annotated images (6926 trees) in the 156 

NEONTreeEvaluation dataset (https://github.com/weecology/NeonTreeEvaluation).  157 

 158 

 We also compared crowns delineated by the algorithm to field-collected stems from 159 

NEON’s Woody Vegetation Structure dataset. This data product contains a single point for each 160 

tree with a stem diameter ≥ 10cm. We filtered the raw data to only include trees likely to be 161 

e 
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visible in the canopy (see Appendix S1). These overstory tree field data help us analyze the 162 

performance of our workflow in matching crown predictions to individual trees by scoring the 163 

proportion of field stems that fall within a prediction. Field stems can only be applied to one 164 

prediction, so if two predictions overlap over a field stem, only one is considered a positive 165 

match. This test produces an overall stem recall rate at 69.4%, which is similar to the bounding 166 

box recall rate from the image-annotated data (Figure 5). The analysis of stem recall rate is 167 

conservative due to the challenge of aligning the field-collected spatial data with the remote 168 

sensing data (Appendix S1). We found several examples of good predictions that were counted 169 

as false positives due to errors in the position of the ground samples within the imagery. 170 

 171 

Figure 5. Overstory stem recall rate for NEON sites with available field data. Each data point is 172 

the recall rate for a field-collected plot. NEON plots are either 40mx40m ‘tower’ plots with two 173 

d 
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20x20m subplots, or a single 20mx20m ‘distributed’ plot. See NEON sampling protocols for 174 

details. For site abbreviations see S3.  175 

To assess the utility of our approach for mapping forest structure, we compared remotely 176 

sensed predictions of maximum tree height to field measurements of tree height of overstory 177 

trees using NEON’s Woody Plant Vegetation Structure Data. We used the same workflow 178 

described in Appendix S1 for determining overstory status for both the stem recall and height 179 

verification analysis. Predicted heights showed good correspondence with field-measured 180 

heights of reference trees. Using a linear-mixed model with a site-level random effect, the 181 

predicted crown height had a Root Mean Squared Error of 1.73m (Figure 6). The relationship is 182 

stronger in forests with more open canopies (SJER, OSBS) and predictably more prone to error 183 

in forests with denser canopies (BART, MLBS). Given the challenges of measuring tree heights, 184 

including the difficulty of measuring tree height in the field, the potential for tree growth between 185 

the time of field measurement and image acquisition (often several years), and the automated 186 

workflow to designate whether field-collected trees were visible in the canopy, these results 187 

suggest that overstory height measures are reasonably accurate across the dataset. 188 
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189 

Figure 6. Comparison of field and remote sensing measurements of tree heights for 11 sites in 190 

the National Ecological Observatory Network. Each point is an individual tree. See text and S1 191 

for selection criteria and matching scheme for the field data. The RMSE of a mixed-effects 192 

model with a site level random effect is 1.73m. 193 

Using the NEON Crowns dataset for individual, landscape and 194 

biogeographic scale applications 195 

This dataset supports individual-level cross-scale ecological research that has not been 196 

previously possible. It provides the unique combination of information spanning the entire United197 

States, with sites ranging from Puerto Rico to Alaska, with continuous individual-level data 198 

within sites at scales hundreds of times larger than what is possible using field-based survey 199 

 

ed 
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methods. At the individual level, high-resolution airborne imagery can inform analysis of critical 200 

forest properties, such as  tree growth and mortality (Clark et al., 2004), foliar biochemistry 201 

(Chadwick and Asner, 2016), and landscape-scale carbon storage (S. J. Graves et al., 2018). 202 

Because field data on these properties are measured on individual trees, individual level tree 203 

detection allows connecting field data directly to image data.  In addition, growth, mortality and 204 

changes in carbon storage occur on the scale of individual trees such that detection of individual 205 

crowns allows direct tracking of these properties across space and time.  While it is possible to 206 

aggregate information at the stand level, we believe that individual level data opens new 207 

possibilities in large scale forest monitoring and provides richer insights into the underlying 208 

mechanisms that drive these patterns. 209 

At landscape scales, research is often focused on the effect of environmental and 210 

anthropogenic factors on forest structure and biodiversity. For example, understanding why tree 211 

abundance and biomass vary across landscapes has direct applications to numerous ecological 212 

questions and economic implications (e.g. Laubhann et al., 2009). Often this requires sampling 213 

at a number of disparate locations and either extrapolation to continuous patterns at landscape 214 

scales, or assumptions that the range of possible states of the system are captured by the 215 

samples. Using the individual level data from this dataset, we can now produce continuous high-216 

resolution maps across entire NEON sites for enabling landscape scale studies of multiple 217 

ecological phenomena (Figure 7). These landscape scale responses can then be combined with 218 

high resolution data on natural and anthropogenic drivers (e.g., topography, soils, fire 219 

management) to model forest dynamics at broad scales.  220 
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 221 

Figure 7. Tree density maps for Teakettle Canyon, California (left) and Ordway Swisher 222 

Biological Station, Florida (right). For each 100m^2 pixel, the total number of predicted crowns 223 

were counted. The location of NEON Woody Plant Vegetation sampling plots are shown in black224 

circles. 225 

By focusing on detecting individual trees, this approach to landscape scale forest 226 

analysis does not require assumptions about spatial similarity, sufficiently extensive sampling, 227 

or consistent responses of the ecosystem to drivers across spatial gradients. This is important 228 

because the heterogeneity of forest landscapes makes it difficult to use field plot data on 229 

quantities such as tree density and biomass to extrapolate inference to broad scales (Marvin et 230 

al., 2014). To illustrate this challenge, we compared field-measured tree densities of NEON field 231 

plots to estimated densities of 10,000 remotely sensed plots of the same size placed randomly 232 

throughout the landscapes across footprints of the airborne data. We attempted to change the 233 

Woody Vegetation data as little as possible (i.e. compared to the more refined filtered data in 234 

previous analyses) in order to obtain estimates of tree cover in a plot from the field data. To be 235 

ck 
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included in this analysis, trees needed to have valid spatial coordinates and a minimum height 236 

of 3m. Some older data lacked height estimates, in which case we used a minimum dbh 237 

threshold of 15cm. In each simulated plot, we then counted the total number of predicted tree 238 

crowns to create a distribution of tree densities at the site level (Figure 8). Comparing the field 239 

plot tree densities with the distribution from the full site shows deviations for most sites, with 240 

NEON field plots exhibiting higher tree densities than encountered on average in the airborne 241 

data for some sites (e.g.,Teakettle Canyon, CA) and lower tree densities than from remote 242 

sensing in others (e.g., Ordway-Swisher Biological Station). While this kind of comparison is 243 

inherently difficult due to differing thresholds and filters for data inclusion in field versus remotely 244 

sensed data, it highlights that even well stratified sampling of large landscapes as was done 245 

with NEON plots (see NEON technical documents for NEON.DP1.10098) can produce differing 246 

tree attribute estimates than continuous sampling from remote sensing data. Combining 247 

representative field sampling with remote sensing to produce data products like the NEON 248 

Crowns dataset provides an approach to addressing this challenge to improve estimations of 249 

the abundance, biomass, and size distributions across large geographic areas. 250 
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251 

Figure 8. Comparison of tree counts between the field-collected NEON plots and the predicted 252 

plots from the dataset. For the remote sensing data, 10000 simulated 40m2 plots were 253 

calculated for each site for the full AOP footprint for each year. To mimic NEON sampling, 2 254 

quadrants were randomly sampled in each simulated plot. No plots on water, bare ground, or 255 

herbaceous land classes were included in the comparison. We selected three sites from three 256 

NEON domains to show a sample of sites across the continental US. Both distributed and tower 257 

NEON plots were used for these analyses. 258 

 259 

The NEON Crowns dataset supports the assessment of cross-site patterns to help 260 

understand the influence of large-scale processes on forest structure at biogeographic scales. 261 

For example, ecologists are interested in how and why forest characteristics such as 262 

abundance, biomass, and allometric relationships vary among forest types (e.g. Jucker et al., 263 

2017) and how these patterns covary across environmental gradients (Feldpausch et al., 2011). 264 

 

er 
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Understanding these relationships is important for inferring controls over forest stand structure, 265 

understanding individual tree biology, and assessing stand productivity. By providing 266 

standardized data that span near-continental scales, this dataset can help inform the 267 

fundamental mechanisms that shape forest structure and dynamics. For example, we can 268 

calculate tree allometries (e.g., the ratio of tree height to crown area) on a large number of 269 

individual trees across NEON sites and explore how allometry varies with stand density and 270 

vegetation type (Figure 9). This example analysis shows a continental-scale relationship, with 271 

denser forests exhibiting trees with narrower crowns for the same tree height compared to less 272 

dense forests, but also clustering and variation in the relationship within vegetation types. For 273 

example, subalpine forests illustrate relationships between tree density and allometry that are 274 

distinct from other forest types. By defining both general biogeographic patterns, and deviations 275 

therein, this dataset will allow the investigation of factors shaping forest structure at 276 

macroecological scales. 277 

278 
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Figure 9. Individual crown attributes for predictions made at each NEON site. For site 279 

abbreviations see S1. Crown area is calculated by multiplying the width and height of the 280 

predicted crown bounding box. Crown height is the 99th quantile of the LiDAR returns that fall 281 

inside the predicted crown bounding box. Sites are colored by the dominant forest type to 282 

illustrate the general macroecological relationship among sites in similar biomes. 283 

In addition to these ecological applications, the NEON Crowns dataset can also act as a 284 

foundation for other machine learning and computer vision applications in forest informatics, 285 

such as tree health assessments, species classification, or foliar trait estimation. In each of 286 

these tasks, individual tree delineation is the first step to associate sensor data with ground 287 

measurements. However, delineation requires a distinct set of technical background and 288 

computational approaches and thus many ecological applications either skip an explicit 289 

delineation step entirely (Williams et al., 2020) or apply existing software without detailed 290 

exploration of segmentation performance (e.g. Maschler et al., 2018). Ignoring these factors can 291 

hamper accurate assessments due to mismatches between sensor data and individuals. While 292 

our crown annotations are not perfect, they are specifically tailored to one of the largest and 293 

openly accessible datasets that allows pairing individual tree detections with information on 294 

species identity, tree health, and leaf traits through NEONs field sampling, and we believe they 295 

are sufficiently robust to serve as the basis for broad scale analysis.  296 

Limitations and Further Technical Developments 297 

An important limitation for this dataset is that it only provides information on sun-exposed tree 298 

crowns. It is therefore not appropriate for ecological analyses that depend on accurate 299 

characterization of subcanopy trees and the three-dimensional structure of forest stands. 300 

Fortunately, a number of the major questions and applications in ecology are primarily 301 
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influenced by large individuals (Enquist et al., 2020). For example, biomass estimation is largely 302 

driven by the canopy in most ecosystems, rather than mid or understory trees that are likely to 303 

be missed by aerial surveys. Similarly, habitat classification and species abundance curves can 304 

depend on the dominant forest structure that can be inferred from coarse resolution airborne 305 

data (Shirley et al., 2013) and could be improved using this dataset. It may be possible to 306 

establish relationships between understory and canopy measures using field data that could 307 

allow this dataset to be used as part of a broader analysis (Bohlman, 2015). However, this 308 

would require significant additional research to validate the potential for this type of approach. 309 

An additional limitation is the uncertainty inherent in the algorithmic detection of crowns. 310 

While we found good correspondence between image-based crown annotations and those 311 

produced by the model for many sites, there remained substantial uncertainty across all sites 312 

and reasonable levels of error in some sites. It is important to consider how this uncertainty will 313 

influence the inference from research using this and similar datasets. The model is biased 314 

towards undersegmentation, meaning that multiple trees are prone to being grouped as a single 315 

crown. It is also somewhat conservative in estimating crown extent wherein it tends to ignore 316 

small extensions of branches from the main crown. These biases could impact studies of tree 317 

allometry and biomass if the analysis is particularly sensitive to crown area. When making 318 

predictions for ecosystem features such as biomass, it will be important to propagate the 319 

uncertainty in individual crowns into downstream analyses. While confidence scores for 320 

individual detections are provided to aid uncertainty propagation, the use of additional ground 321 

truth data may also be necessary to infer reliability.  322 

 One aspect of individual crown uncertainty that we have not addressed is the uncertainty 323 

related to image-based crown annotations and measurement of trees in the field (S. Graves et 324 

al., 2018). To allow training and evaluating the model across a broad range of forest types, we 325 
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used image-based crown annotations. This approach assumes that crowns identifiable in 326 

remotely sensed imagery accurately reflect trees on the ground. This will not always be the 327 

case, as what appears to be a single crown from above may constitute multiple neighboring 328 

trees, and conversely, what appears to be two distinct crowns in an image may be two branches 329 

of a single large tree (S. Graves et al., 2018). Targeted field surveys will be always needed to 330 

validate these predictions and community annotation efforts will allow for assessment of this 331 

component of uncertainty. 332 

The machine learning workflow used to generate this dataset also has several areas that 333 

could be improved for greater accuracy, transferability and robustness. The current model 334 

contains a single class ‘Tree’ with an associated confidence score. This representation prevents 335 

the model from differentiating between objects that are not trees and objects for which sufficient 336 

training information is not available. For example, the model has been trained to ignore 337 

buildings and other vertical structures that may look like trees. However, when confronted by 338 

objects data that has never been encountered, it often produces unintuitive results. Examples of 339 

objects that did not appear in the training data, and as a result were erroneously predicted as 340 

trees, include weather stations, floating buoys, and oil wells. Designing models that can identify 341 

outliers, anomalies, and ‘unknown’ objects is an active area of research in machine learning and 342 

will be useful in increasing accuracy in novel environments. In addition, NEON data can 343 

sometimes be afflicted by imaging artifacts due to co-registration issues with LiDAR and raw 344 

RGB imagery (Appendix S2). This effect can lead to distorted imagery that appears fuzzy and 345 

swirled and lead to poor segmentation. An ideal model would detect these areas of poor quality 346 

and label them as ‘unknown’ rather than attempting to detect trees in these regions.  347 

Given these limitations, we view this version of the dataset as the first step in an iterative 348 

process to improve cross-scale individual level data on trees. Ongoing assessment of these 349 
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predictions using both our visualization tool and field-based surveys will be crucial to continually 350 

identify areas for improvements in both training data and modeling approaches. While iterative 351 

improvements are important, the accuracy of the current predictions illustrates that this dataset 352 

is sufficiently precise for addressing many cross-scale questions related to forest structure. By 353 

providing broad scale crown data we hope to highlight the promising integration between deep 354 

learning, remote sensing, and forest informatics, and provide access to the results of this next 355 

key step in ecological research to the broad range of stakeholders who can benefit from these 356 

data.  357 
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