Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Global Importance Analysis: A Method to Quantify Importance of Genomic Features in Deep Neural Networks

View ORCID ProfilePeter K. Koo, Matthew Ploenzke, Praveen Anand, Steffan B. Paul, Antonio Majdandzic
doi: https://doi.org/10.1101/2020.09.08.288068
Peter K. Koo
1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peter K. Koo
  • For correspondence: koo@cshl.edu
Matthew Ploenzke
2Department of Biostatistics, Harvard University, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Praveen Anand
3Dana-Farber Cancer Institute, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steffan B. Paul
4Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antonio Majdandzic
1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2020.09.08.288068
History 
  • September 9, 2020.

Article Versions

  • You are currently viewing Version 1 of this article (September 9, 2020 - 22:01).
  • View Version 2, the most recent version of this article.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Author Information

  1. Peter K. Koo1,*,
  2. Matthew Ploenzke2,
  3. Praveen Anand3,
  4. Steffan B. Paul4 and
  5. Antonio Majdandzic1
  1. 1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
  2. 2Department of Biostatistics, Harvard University, Boston, MA, USA
  3. 3Dana-Farber Cancer Institute, Boston, MA, USA
  4. 4Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA, USA
  1. ↵*koo{at}cshl.edu
Back to top
PreviousNext
Posted September 09, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Global Importance Analysis: A Method to Quantify Importance of Genomic Features in Deep Neural Networks
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Global Importance Analysis: A Method to Quantify Importance of Genomic Features in Deep Neural Networks
Peter K. Koo, Matthew Ploenzke, Praveen Anand, Steffan B. Paul, Antonio Majdandzic
bioRxiv 2020.09.08.288068; doi: https://doi.org/10.1101/2020.09.08.288068
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Global Importance Analysis: A Method to Quantify Importance of Genomic Features in Deep Neural Networks
Peter K. Koo, Matthew Ploenzke, Praveen Anand, Steffan B. Paul, Antonio Majdandzic
bioRxiv 2020.09.08.288068; doi: https://doi.org/10.1101/2020.09.08.288068

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4222)
  • Biochemistry (9096)
  • Bioengineering (6741)
  • Bioinformatics (23922)
  • Biophysics (12069)
  • Cancer Biology (9484)
  • Cell Biology (13722)
  • Clinical Trials (138)
  • Developmental Biology (7614)
  • Ecology (11646)
  • Epidemiology (2066)
  • Evolutionary Biology (15467)
  • Genetics (10611)
  • Genomics (14285)
  • Immunology (9451)
  • Microbiology (22756)
  • Molecular Biology (9057)
  • Neuroscience (48816)
  • Paleontology (354)
  • Pathology (1478)
  • Pharmacology and Toxicology (2559)
  • Physiology (3819)
  • Plant Biology (8307)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2285)
  • Systems Biology (6164)
  • Zoology (1296)