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ABSTRACT

Deep neural networks have demonstrated improved performance at predicting the sequence specificities of DNA- and RNA-
binding proteins compared to previous methods that rely on k-mers and position weight matrices. For model interpretability,
attribution methods have been employed to reveal learned patterns that resemble sequence motifs. First-order attribution
methods only quantify the independent importance of single nucleotide variants in a given sequence – it does not provide
the effect size of motifs (or their interactions with other patterns) on model predictions. Here we introduce global importance
analysis (GIA), a new model interpretability method that quantifies the population-level effect size that putative patterns have
on model predictions. GIA provides an avenue to quantitatively test hypotheses of putative patterns and their interactions with
other patterns, as well as map out specific functions the network has learned. As a case study, we demonstrate the utility of
GIA on the computational task of predicting RNA-protein interactions from sequence. We first introduce a new convolutional
network, we call ResidualBind, and benchmark its performance against previous methods on RNAcompete data. Using GIA,
we then demonstrate that in addition to sequence motifs, ResidualBind learns a model that considers the number of motifs,
their spacing, and sequence context, such as RNA secondary structure and GC-bias.

Introduction
To infer sequence preferences of RNA-binding proteins (RBPs), a variety of in vitro and in vivo experimental methods enrich
for protein-bound RNA sequences1–8, and computational methods are used to deduce the consensus RNA sequence and/or
structure features that these bound sequences share9–13. Many computational approaches employ position-weight-matrices
(PWMs) or k-mers to model RNA sequence and, in some cases, its secondary structure context. These methods often make
simplifying assumptions that do not fully consider biologically important features, such as the multiplicity, size, and position of
the features along a given sequence.

Recently, deep neural networks (DNNs), predominantly based on convolutional neural networks (CNNs) or convolutional-
recurrent network hybrids, have emerged as a promising alternative, in most cases, improving prediction performance on
held-out test data13–19. DNNs are a powerful class of models that can learn a functional mapping between input genomic
sequences and experimentally measured labels, requiring minimal feature engineering20–22. DeepBind was the first deep
learning approach to analyze RBP-RNA interactions13. At the time, it demonstrated improved performance over PWM- and
k-mer-based methods on the 2013-RNAcompete dataset, a standard benchmark dataset that consists of 244 in vitro affinity
selection experiments that span across many RBP families5. Since then, other deep learning-based methods have emerged,
further improving prediction performance on this dataset23–25 and other CLIP-seq-based datasets11, 18, 26, 27.

To validate that DNNs are learning biologically meaningful features, learned representations are visualized and compared
to known motifs, previously identified by PWM- and k-mer-based methods28. For RBPs, this has been accomplished by
visualizing first convolutional layer filters and by attribution methods13, 18, 23, 24. First layer filters have been shown to capture
motif-like representations, but their efficacy depends highly on choice of model architecture29, activation function30, and training
procedure31, 32. First-order attribution methods, including in silico mutagenesis13, 33 and other gradient-based methods34–37,
are interpretability methods that identify the independent importance of single nucleotide variants in a given sequence toward
model predictions – not the effect size of extended patterns such as sequence motifs. Representations from attribution methods
are local to an individual sequence. Hence, it can be challenging to to generalize the importance of patterns disentangled from
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contributions by other factors, including competitive/cooperative binding sites and sequence/structure context, from attribution
analysis of individual sequences.

Here we introduce global importance analysis (GIA), an approach that enables hypothesis-driven model interpretability by
quantitatively measuring global effect sizes that patterns have on model predictions across a population of sequences. As a case
study, we highlight the capabilities of GIA on a computational task of predicting RNA sequence specificities of RBPs. We
introduce ResidualBind, a new convolutional network, and demonstrate that it outperforms previous methods on RNAcompete
data. Using GIA, we demonstrate that in addition to sequence motifs, ResidualBind learns a model that considers the number
of motifs, their spacing, and sequence context, such as RNA secondary structure and GC-bias.

Global importance analysis
Global importance analysis measures the population-level effect size that a putative feature, like a motif, has on model
predictions. Given a sequence-function relationship i.e. F : x → y, where x is a sequence of length L (x ∈ AL, where
A = {A,C,G, T}) and y represents a corresponding function measurement (y ∈ R), the global importance of pattern φ
(φ ∈ Al, where l < L) embedded starting at position i in sequences under the data distribution D is given by:

Iglobal = Exφi∼D[y|x]− Ex∼D[y|x] , (1)

where E is an expectation and xφi represents sequences drawn from the data distribution that have pattern φ embedded at
positions [i, i+ l]. Equation 1 quantifies the global importance of pattern φ across a population of sequences while marginalizing
out contributions from other positions. Important to this approach is the randomization of other positions, which is necessary
to mitigate the influence of background noise and extraneous confounding signals that may exist in a given sequence. If the
dataset is sufficiently large and randomized, then Eq. 1 can be calculated directly from the data. However, sequences with the
same pattern embedded at the same position and a high diversity at other positions must exist for a good estimate of Eq. 1.

Alternatively, a trained DNN can be employed as a surrogate model for experimental measurements by generating synthetic
sequences necessary to calculate Eq. 1 and using model predictions as a proxy for experimental measurements. Given a DNN
that maps input sequence to output predictions, i.e. f : x→ y∗, where y∗ represents model predictions, the estimated global
importance of pattern φ embedded starting at position i under the synthetic data distribution D∗ is given by:

Îglobal = Exφi∼D∗ [y∗|x]− Ex∼D∗ [y∗|x] ,

≈ 1

N

N∑
n

f(xφin )− 1

N

N∑
n

f(xn) ,

where Îglobal represents an estimate of Iglobal, the expectation is approximated with an average of N samples from a synthetic
data distribution D∗ ∼ D. Without loss of generality, if we sample the same nth sequence for both expectations with the only
difference being that xφin has an embedded pattern, then we can combine summations, according to:

Îglobal ≈ 1

N

N∑
n

f(xφin )− f(xn) . (2)

The difference between the nth sequence with and without the embedded pattern inside the summation of Eq. 2 estimates the
local effect size – the change in prediction caused by the presence of the pattern for the given sequence. The average across N
samples estimates the global effect size – the change in prediction caused by the presence of the pattern across a population of
sequences.

The synthetic data distribution must be chosen carefully to be representative of the data distribution and to minimize any
distributional shift, which can lead to misleading results. One approach can be to generate randomized sequences from a
position-specific probability model of the sequences from the data distribution – average nucleotide frequency at each position,
also referred to as a profile. A profile model captures position-dependent biases while averaging down position-independent
patterns, like motifs. Alternative sequence models include random shuffling and dinucleotide shuffling of the real sequences
in the dataset. If there exists high-order dependencies in the observed sequences, such as RNA secondary structure or motif
interactions, a distributional shift between the synthetic sequences and the data distribution may arise. A synthetic sequence
model can also sample real sequences directly from the dataset, although this requires careful selection such that unaccounted
patterns do not persist systematically, which can act as a potential confounder. Prior knowledge can help design a suitable
synthetic sequence model.

Using model predictions as a proxy for experimental measurements means that GIA quantifies the effect size for a pattern
under investigation through the lens of a DNN, and hence results should be taken from the perspective of model interpretability.
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While Eqs. 1 and 2 describe the global importance of a single pattern, GIA supports embedding more than one pattern. GIA
can also be extended to multi-task problems when each class is independent.

GIA is related to previous in silico experiments that quantify population-level feature importance, including a previous
version of this paper38, and more recently in some in silico experiments by Avsec et al39. Here, we formalize GIA to distinguish
in silico experiments that measure global effect sizes of patterns from other in silico experiments that use model predictions as
a proxy for experimental measurements40 and occlusion-based in silico experiments that identify the importance of features
local to a sequence under investigation39, 41.

Materials and methods

RNAcompete dataset
Overview. We obtained the 2013-RNAcompete dataset from5, where a full explanation of the data can be found. The
2013-RNAcompete experiments consist of ~241,000 RNA sequences each 38-41 nucleotides in length, split into two sets ‘set
A’ (120,326 sequences) and ‘set B’ (121,031 sequences). Sequences were designed to ensure that all possible combinations of
9-mers are sampled at least 16 times, with each set getting 8 copies of all possible 9-mers. The provided binding score for
each sequence is the log-ratio of the fluorescence intensities of pull-down versus input, which serves as a measure of sequence
preference. The 2013-RNAcompete dataset consists of 244 experiments for 207 RBPs using only weakly structured probes5.

Preparation of RNAcompete datasets. Each sequence from ‘set A’ and ‘set B’ was converted to a one-hot representation.
For a given experiment, we removed sequences with a binding score of NaN. We then performed either clip-transformation
or log-transformation. Clip-transformation is performed by clipping the extreme binding scores to the 99.9th percentile.
Log-transformation processes the binding scores according to the function: log (S − SMIN + 1), where S is the raw binding
score and SMIN is the minimum value across all raw binding scores. This monotonically reduces extreme binding scores
while maintaining their rank order, and also yields a distribution that is closer to a Normal distribution. The processed binding
scores of either clip-transformation or log-transformation were converted to a z-score. We randomly split set A sequences
to fractions 0.9 and 0.1 for the training and validation set, respectively. Set B data was held out and used for testing. RNA
sequences were converted to a one-hot representation with zero-padding added as needed to ensure all sequences had the same
length of 41 nucleotides. Henceforth, all predictions and experimental binding scores are in terms of the z-transformed clip- or
log-transformed binding score.

ResidualBind
Architecture. ResidualBind takes one-hot encoded RNA sequence as input and outputs a single binding score prediction
for an RBP. ResidualBind consists of: (1) convolutional layer (96 filters, filter size 11), (2) dilated residual module, (3)
mean-pooling layer (pool size 10), (4) fully-connected hidden layer (256 units), and (5) fully-connected output layer to a single
output. The dilated residual module consists of 3 convolutional layers with a dilation rate of 1, 2, and 4, each with a filter
size of 3. Each convolutional layer employs batch normalization prior to a rectified linear unit (ReLU) activation and dropout
probabilities according to layers (1) 0.1, (2) 0.2, (4) 0.5. The pre-activated output of the third convolutional layer is added to the
inputs of the dilated residual module, a so-called skipped connection42, the output of which is then activated with a ReLU. The
stride of all convolutions are 1 and set to the pool size for the mean-pooling layer. We found that varying the hyperparameter
settings largely yielded similar results. Choice of the final model was based on slightly better performance on the validation set.

Training ResidualBind. For each RNAcompete experiment, we trained a separate, randomly-initialized ResidualBind model
on ‘set A’ sequences by minimizing the mean squared-error loss function between the model predictions and the experimental
binding scores (which were used as labels). All models were trained with mini-batch stochastic gradient descent (mini-batch of
100 sequences) with Adam updates43 with a decaying learning rate – the initial learning rate was set to 0.001 and decayed by
a factor of 0.3 if the model performance on a validation set (as measured by the Pearson correlation) did not improve for 7
epochs. Training was stopped when the model performance on the validation set does not improve for 25 epochs. Optimal
parameters were selected by the epoch which yields the highest Pearson correlation on the validation set. The parameters of
each model were initialized according to Glorot initialization44. On average, it took about 100 epochs (13 seconds/epoch) to
train an RNAcompete experiment on a single NVIDIA 2080ti RTX graphical processing unit.

Evaluation. We predicted binding scores on ‘set B’ sequences using corresponding experimental binding scores to test the
efficacy of ResidualBind, using the Pearson correlation between model predictions and experimental binding scores on the
held-out test data12, 13.

Incorporation of secondary structure profiles. Paired-unpaired structural profiles were calculated using RNAplfold45.
Structural profiles consisting of predicted paired probabilities of five types of RNA structure – paired, hairpin-loop, internal
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loop, multi-loop, and external loop (PHIME) – were calculated using a modified RNAplfold script10. For each sequence, the
window length (-W parameter) and the maximum spanning base-pair distance (-L parameter) were set to the full length of
the sequence. Secondary structure profiles were incorporated into ResidualBind by creating additional input channels. The
first convolutional layer now analyzes either 6 channels (4 channels for one-hot primary sequence and 2 channels for PU
probabilities) or 9 channels (4 channels for one-hot primary sequence and 5 channels for PHIME probabilities).

Model interpretability
In silico mutagenesis. In silico mutagenesis is calculated by systematically querying a trained model with new sequences
with a different single nucleotide mutation along the sequence and ordering the predictions as a nucleotide-resolution map
(4 × L, where 4 is for each nucleotide and L is the length of the sequence). Each prediction is subtracted by the wildtype
sequence prediction, effectively giving zeros at positions where the variant matches the wildtype sequence. To visualize
the in silico mutagenesis maps, we calculate the L2-norm across variants for each position. A sequence logo is generated
for the wildtype sequence, where heights correspond the sensitivity of each position via the L2-norm, and visualized using
Logomaker46.

Global Importance analysis. 1,000 synthetic RNA sequences, each 41 nucleotides long, were sampled from a profile-based
sequence model, which was estimated by the observed nucleotide frequency at each position of the training data. Patterns under
investigation were embedded in positions specified in each GIA experiment. We queried a trained ResidualBind model with
these sequences with and without the embedded pattern. We refer to the difference between the predictions with and without
the pattern for each sequence as the“local” importance (the value inside the summation of Eq. 2) and the average across the
population as the “global” importance (Eq. 2).

Motif Visualization. Motif representations learned by ResidualBind are visualized with 2 methods, top k-mer motif and
k-mer alignment motif. Top k-mer motif plots the top k-mer as a logo with heights scaled according to the L2-norm of the
global importance of nucleotide variants at each position, which is measured via GIA by systematically introducing a single
nucleotide mutation to the top k-mer embedded at positions 18-24.

A k-mer alignment-based motif was generated by aligning the top 10 k-mers (identified via GIA) to the top k-mer according
to the maximum cross-correlation value. The nucleotide frequency, weighted by the global importance score for each k-mer,
gives a matrix that resemples a position probability matrix which can be visualized as a sequence logo using Logomaker46.

Results
To demonstrate the utility of GIA, we developed a deep CNN called ResidualBind to address the computational task of
predicting RNA-protein interactions. Unlike previous methods designed for this task, ResidualBind employs a residual block
consisting of dilated convolutions, which allows it to fit the residual variance not captured by previous layers while considering
a larger sequence context47. Moreover, the skipped connection in residual blocks foster gradient flow to lower layers, improving
training of deeper networks42. Dilated convolutions combined with skipped connections have been previously employed in
various settings for regulatory genomics16, 17, 39.

ResidualBind yields state-of-the-art predictions on the RNAcompete dataset
To compare ResidualBind against previous methods, including MATRIXReduce9, RNAcontext10, GraphProt11, DeepBind13,
RCK12, DLPRB23, cDeepbind24 and ThermoNet25, we benchmarked its performance on the 2013-RNAcompete dataset (see
Methods for details). We found that ResidualBind (average Pearson correlation: 0.689±0.170) significantly outperforms
previously reported methods based on PWMs (MATRIXReduce: 0.353±0.192, RNAcontext: 0.434±0.130), k-mers (RCK:
0.460±0.140), and DNNs (DeepBind: 0.409±0.167, cDeepbind: 0.582±0.169, DLPRB: 0.628±0.160, and ThermoNet:
0.671±0.171, p-value < 0.01, Wilcoxon sign rank test) (Fig. 1A).

We noticed that the preprocessing step employed by previous methods, which clips large experimental binding scores to
their 99.9th percentile value and normalizing to a z-score, a technique we refer to as clip-transformation, adversely affects the
fidelity of ResidualBind’s predictions for higher binding scores, the most biologically relevant regime (Fig. 1b). Instead, we
prefer preprocessing experimental binding scores with a log-transformation, similar to a Box-Cox transformation, so that its
distribution approaches a normal distribution while also maintaining their rank-order (see Methods). With log-transformation,
we found that ResidualBind yields higher quality predictions in the high-binding score regime (Fig. 1c), although the average
performance was essentially the same (Fig. 1d, average Pearson correlation is 0.685±0.172 for log-transformation). Henceforth,
our results will be based on preprocessing experimental binding scores with log-transformation.
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Secondary structure context does not help ResidualBind
RNA structure is important for RBP recognition49. Previous work, including RCK, RNAcontext, DRPLB, cDeepbind, and
ThermoNet, have found that including RNA secondary structure predictions as an additional input feature significantly improves
the accuracy of their model’s predictions. Despite yielding better predictions when considering only sequences, we wanted
to test whether incorporating secondary structure predictions would also improve ResidualBind’s performance. Similar to
previous methods, we predicted two types of RNA secondary structure profiles for each sequence using RNAplfold45, which
provides the probability for each nucleotide to be either paired or unpaired (PU), and a modified RNAplfold script10, which
provides the probability for each nucleotide to be in a structural context: paired, hairpin-loop, internal loop, multi-loop, and
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Figure 1. Performance comparison on the 2013-RNAcompete dataset. (a) Box-violin plot of test performance by different
computational methods. Each plot represents the Pearson correlation between model predictions and experimental binding
scores on held out test data for all 244 RBPs of the 2013-RNAcompete dataset. Median value is shown as a red line. (b,c)
Scatter plot of ResidualBind’s predicted binding scores and experimental binding scores from the test set of an RBP experiment
in the 2013-RNAcompete dataset (RNCMPT00169) processed according to (b) clip-transformation and (c) log-transformation.
Black dashed line serves as a guide-to-the-eye for a perfect correlation. (d) Box-violin plot of test performance for experimental
binding scores processed according to a clip-transformation and a log-transformation. (e) Box-violin plot of the test
performance for different input features: sequence, sequence and paired-unpaird secondary structure profiles (sequence+PU),
and sequence and PHIME secondary structure profiles (sequence+PHIME). (f) Histogram of the one-to-one performance
difference between ResidualBind trained on sequences and trained with additional PHIME secondary structural profiles.
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Figure 2. Investigation of a ResidualBind model trained on RBFOX1. (a) Scatter plot of experimental binding scores versus
predicted binding scores for test sequences in the 2013-RNAcompete dataset for RBFOX1 (Pearson correlation = 0.832). The
color of each point is determined by the number of mutations between the canonical motif (UGCAUG) and its best match in the
sequence. (i-ii) The inset shows sequence logos for in silico mutagenesis maps for a high binding score sequence with at best:
(i) a perfect match and (ii) a double nucleotide mismatch to the canonical RBFOX1 motif. Box plot of the local importance for
synthetic sequences with varying numbers of the (b) canonical RBFOX1 motif (UGCAUG) and (c) a sub-optimal motif
AGAAUG embedded progressively at positions: 4-9, 11-16, and 18-23. Black dashed line represents a linear fit, red horizontal
dashed line represents the median, and green triangles represents the global importance. (d) Box plot of the local importance
for synthetic sequences with varying degrees of separation between two RBFOX1 motifs (‘N’ represents a position with
random nucleotides). (e) Global importance for synthetic sequences embedded with single nucleotide mutations of the
canonical RBFOX1 motif, with a sequence logo (above) that has heights scaled according to the L2-norm at each position. (f)
Scatter plot of the experimental ln KD ratio of the mutant to wild type measured via surface plasmon resonance48 versus the
global importance for the same RBFOX1 variants. Red dashed line represents a linear fit and the R2 and p-value from a t-test is
shown in the inset. (g) Histogram of the R2 from a linear fit of global importance of embedding different numbers of the top
k-mer (identified by a separate, k-mer-based GIA experiment) at positions: 4-9, 11-16, and 18-23, across the
2013-RNAcompete dataset.

external-loop (PHIME). Surprisingly, secondary structure profiles do not increase ResidualBind’s performance (Figs. 1 e and f,
average Pearson correlation of 0.683±0.182, 0.684±0.183, and 0.682±0.183 for sequence, sequence + PU, and sequence +
PHIME, respectively). One possible explanation is that ResidualBind has already learned secondary structure effects from
sequence alone, an idea we will explore later.

Going beyond in silico mutagenesis with GIA
It remains unclear why ResidualBind, and many other DNN-based methods, including cDeepbind, DLPRB, and ThermoNet,
yield a significant improvement over previous methods based on k-mers and PWMs. To gain insights into what DNN-based
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methods have learned, DLPRB visualizes filter representations while cDeepbind employs in silico mutagenesis. Filter repre-
sentations are sensitive to network design choices29; ResidualBind is not designed with the intention of learning interpretable
filters. Hence, we opted to employ in silico mutagenesis, which systematically probes the effect size that each possible
single nucleotide mutation in a given sequence has on model predictions. For validation purposes, we perform a detailed
exploration for a ResidualBind model trained on a RNAcompete dataset for RBFOX1 (dataset id: RCMPT000168), which
has an experimentally verified motif ‘UGCAUG’6, 48, 50. Figure 2a highlights in silico mutagenesis sequence logos for two
sequences with high predicted binding scores – one with a perfect match and the other with two mismatches to the canonical
RBFOX1 motif (Methods). Evidently, a single intact RBFOX1 motif is sufficient for a high binding score, while the sequence
that contains mismatches to the canonical motif can also have high binding scores by containing several ‘sub-optimal’ binding
sites (Fig. 2a, ii). This suggests that the number of motifs and possibly their spacing is relevant.

While in silico mutagenesis, which is the gold standard of model interpretability of DNNs in genomics, is a powerful
approach to highlight learned representations that resemble known motifs, it cannot inform the effect size of larger patterns,
such as motifs or combinations of motifs. To quantitatively test the hypothesis that ResidualBind learns additive effects from
sub-optimal binding sites, we can employ GIA.

GIA shows ResidualBind learns multiple binding sites are additive
By progressively embedding the canonical RBFOX1 motif (UGCAUG) and a suboptimal motif (AGAAUG, which contains two
mismatches at positions 1 and 3) in synthetic sequences at various positions, 4-9, 11-16, and 18-23, we find ResidualBind has
learned that the contribution of each motif is indeed additive (Fig. 2c). We also validate that the spacing between two binding
sites can decrease this effect when two motifs are too close (Fig. 2d), which manifests biophysically through steric hindrance.

GIA identifies expected sequence motifs with k-mers
In many cases, the sequence motif of a RBP is not known a priori, which makes the interpretation of in silico mutagenesis
maps more challenging in practice. We can use GIA for ab initio motif discovery by embedding all possible k-mers at
positions 18-24. Indeed the top scoring 6-mer that yields the highest importance score for a ResidualBind model trained on
RBFOX1 is ‘UGCAUG’ which is consistent with its canonical motif (Fig. 2e). Using the top scoring k-mer as a base binding
site, we can determine the importance of each nucleotide variant by calculating the global importance for all possible single
nucleotide mutations (Fig. 2e). Figure 2f shows that the global importance for different variants correlate significantly with
experimentally-determined lnKD ratios of the variants and wild type measured by surface plasmon resonance experiments48

(p-value = 0.0015, t-test). Progressively embedding the top k-mer in multiple positions reveals that ResidualBind largely learns
a function where non-overlapping motifs are predominantly additive (Fig. 2g).

A motif representation can be generated from the global in silico mutagenesis analysis in two ways, by plotting the top
k-mer with heights scaled by the L2-norm of the GIA-based in silico mutagenesis scores at each position or by creating an
alignment of the top k-mers and calculating a weighted average according to their global importance, which provides a position
frequency matrix representation that cab be used to generate a sequence logo. ResidualBind’s motif representations and the
motifs generated from the original RNAcompete experiment (which are deposited in the CISBP-RNA database) are quite
similar (Supplementary Table 1).

GIA reveals ResidualBind learns RNA secondary structure context from sequence
The 2013-RNAcompete dataset was specifically designed to be weakly structured5, which means that the inclusion of secondary
structure profiles as input features should, in principle, not add large gains in performance. To better assess whether ResidualBind
benefits from the inclusion of secondary structure profiles, we trained ResidualBind on the 2009-RNAcompete dataset, which
consists of more structured RNA probes that include stem-loops for nine RBPs51. On average, ResidualBind yielded only
a slight gain in performance by including PU secondary structure profiles (average Pearson correlation of 0.711±0.115 and
0.721±0.116 for sequence only and sequence+PU ResidualBind models, respectively).

In this dataset, VTS1 is a well-studied RBP with a sterile-alpha motif (SAM) domain that has a high affinity towards RNA
hairpins that contain ‘CNGG’52, 53. ResidualBind’s performance for VTS1 was comparable (0.6981 and 0.7073 for sequence
only and sequence+PU ResidualBind model, respectively), suggesting that the sequence-only model may be learning secondary
structure context. An in silico mutagenesis analysis for the sequence-only ResidualBind model reveals that the VTS1 motif is
found in sequences with a high and low binding score, albeit with flanking nucleotides given significant importance as well
(Figure 3a). The presence of a VTS1 motif in a sequence is not sufficient to determine its binding score. Nevertheless, each
sequence was accurately predicted by the sequence-only model. The PU secondary structure profile given by RNAplfold for
each sequence reveals that the VTS1 motif is inside a loop region of a stem-loop structure in high binding score sequences and
in the stem region for low binding score sequences. This further supports that the network may be learning positive and negative
contributions of RNA secondary structure context directly from the sequence despite never explicitly being trained to do so.
Moerover, the seemingly noisy importance scores that flank the VTS1 motif may represent signatures of secondary structure.
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Figure 3. Investigation of a ResidualBind model trained on VTS1 from the 2009-RNAcompete dataset. (a) Scatter plot of
experimental binding scores versus predicted binding scores on held-out test sequences. The color of each point is determined
by the number of mutations between the CISBP-RNA-derived motif (GCUGG) and the best match across the sequence. The
inset shows sequence logos for in silico mutagenesis maps generated by a ResidualBind model trained only on sequences for
representative sequences with high predicted binding scores (i-ii) and low predicted binding scores which contain the VTS1
motif (iii-iv). Below each sequence logo is a PU structure logo, where ‘U’ represent unpaired (grey) and ‘P’ represents paired
(black), calculated by RNAplfold. (b) Global importance for synthetic sequences embedded with single nucleotide mutations of
the top scoring 6-mer, GCUGGC. Above is a sequence logo with heights scaled according to the L2-norm at each position. (c)
Box plot of local importance for the top scoring 6-mer embedded in the stem and loop region of synthetic sequences designed
with a stem-loop structure and in the same positions in random RNA sequences. Green triangle represents the global
importance.

To quantitatively validate that ResidualBind has learned secondary structure context, we performed GIA by embedding
the VTS1 motif in either the loop or stem region of synthetic sequences designed to have a stem-loop structure – enforcing
Watson-Crick base pairs at positions 6-16 with 23-33. As a control, a similar GIA experiment was performed with the VTS1
motif embedded in the same positions but in random RNAs. Evidently, ResidualBind learns that the VTS1 motif in the context
of a hairpin loop leads to higher binding scores compared to when it is placed in other secondary structure contexts.

GIA highlights importance of GC-bias
By observing in silico mutagenesis plots across many 2013-RNAcompete experiments, we noticed that top scoring sequences
exhibited importance scores for known motifs along with GC content towards the 3’ end (Figs. 4a and b). We did not observe
any consistent secondary structure preference for the 3’ GC-bias using structure predictions given by RNAplfold. Using GIA,
we tested the effect size of the GC-bias for sequences with a top 6-mer motif embedded at the center. Figures 4c and d show
that GC-bias towards the 3’ end indeed is a systemic feature for nearly all RNAcompete experiments with an effect size that
varies from RBP to RBP (Fig. 4e). We do not know the origin of this effect. Many experimental steps in the RNAcompete
protocol could lead to this GC-bias7, 54, 55.

Discussion
Global importance analysis is a powerful method to quantify the effect size of putative features that are causally linked to model
predictions. It provides a framework to quantitatively test hypotheses of the importance of putative features and explore specific
functional relationships using in silico experiments, for both positive and negative controls.

As a case study, we introduced ResidualBind for the computational task of predicting RNA-protein interactions. By
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Figure 4. GC-bias in high binding score sequences. (a) Representative sequence logos from in silico mutagenesis analysis for
a test sequence with a top-10 binding score prediction for RNAcompete experiments for CG17838 (RNCMPT00131) and HuR
(RNCPT00112). (b) Motif comparison between CISBP-RNA and ResidualBind’s motif representations generated by k-mer
alignments. (c) Box plot of local importance for synthetic sequences with the top scoring 6-mer embedded in position 18-24
and GCGCGC embedded at positions 1-7 (Motif+GC, left) or positions 35-41 (Motif + GC, right). As a control, the GC
content embedded at positions 35-41 without any motif is also shown. Green triangle represents the global importance. (d)
Histogram of the GC-bias effect size, which is defined as the global importance when GC-bias is placed on the 5’ end (orange)
and the 3’ end (blue) of synthetic sequences with a top scoring 6-mer embedded at positions 18-24 divided by the global
importance of the motif at the center without any GC content, for each 2013-RNAcompete experiment. (e) Histogram of the
difference between the GC-bias effect size, GC-bias on the 5’ end minus the 3’ end for each 2013-RNAcompete experiment.

benchmarking ResidualBind’s performance on RNAcompete data, we showed that it outperforms previous methods, including
other DNNs. While DNNs as a class of models have largely improved performance compared to previous methods based on
PWMs and k-mers, model interpretability – based on attribution methods and visualization of first convolutional layer filters –
often demonstrate that they learn similar motif representations as previous PWM-based methods, which makes it unclear what
factors are driving performance gains. Since first-order attribution methods only inform the effect size of single nucleotide
variants on an individual sequence basis, insights have to be gleaned by observing patterns that generalize across multiple
sequences. Without ground truth, interpreting in silico mutagenesis plots can be challenging.

Using GIA, we were able to move beyond speculation from observations of attribution maps by quantitatively testing the
relationships between putative features across a population of sequences. Interestingly, we found that despite ResidualBind’s
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ability to fit complex non-linear functions, it largely learns an additive model for binding sites, which any linear PWM or k-mer
based model is fully capable of capturing. We believe the performance gains arise from positional information of the features,
including spacing between binding sites and the position of sequence context, such as secondary structures and GC-bias. While
these properties are well known features of RBP-RNA interactions, previous computational models were not fully considering
these factors, which may have led to their lower performance on the RNAcompete dataset.

ResidualBind. ResidualBind is a flexible model that can be broadly applied to a wide range of different RBPs without
modifying hyperparameters for each experiment, although tuning hyperparameters for each experiment would almost certainly
boost performance further. While ResidualBind was developed here for RBP-RNA interactions as measured by the RNAcompete
dataset, this approach should also generalize to other data modalities that measure sequence-function relationships, including
high-throughput assays for protein binding, histone modifications, and chromatin accessibility, given the output activation and
loss function are modified appropriately for the task-at-hand.

In vitro-to-in vivo generalization gap. Ideally, a computational model trained on an in vitro dataset would learn principles
that generalize to other datasets, including in vivo datasets. However, models trained on one dataset typically perform worse
when tested on other datasets derived from different sequencing technologies/protocols56, which have different technical
biases7, 54, 55, 57. Learn features like GC-bias may explain why DNNs exhibit large performance gains on held-out RNAcompete
data but only a smaller gain compared to k-mer-based methods when tasked with generalization to in vivo data based on
CLIP-seq23–25. While we focus our model interpretability efforts on sequences with high binding scores, exploration in other
binding score regimes may reveal other sequence context. GIA highlights a path forward to tease out sequencing biases, which
can inform downstream analysis to either remove/de-bias unwanted features from the dataset.

GIA as a surrogate for experiments. The global importance of features can be estimated experimentally with sequences
designed to contain a pattern under investigation and randomizing the other positions. Calculating this through experimental
measurements can be time consuming and costly due to the large number of sequences required to calculate Eq. 1. Here we
demonstrate how a well-trained neural network can be employed as a proxy for these wetlab experiments, generating predictions
(instead of experimental measurements) for sequences necessary to calculate Eq. 1. Of course predictions are based on the
model’s fit of the data and hence GIA is at its core a model interpretability tool.

Availability
Dataset and code: http://github.com/p-koo/residualbind
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