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Abstract 

Interactomes embody one of the most effective representations of cellular behavior by revealing 

function through protein associations. In order to build these models at the organism scale, high-

throughput techniques are required to identify interacting pairs of proteins. Next-generation 

interaction screening (NGIS) protocols that combine yeast two-hybrid (Y2H) with deep 

sequencing are promising approaches to generate protein-protein interaction networks in any 

organism. However, challenges remain to mining reliable information from these screens and 

thus, limit its broader implementation. Here, we describe a statistical framework, designated Y2H-

SCORES, for analyzing high-throughput Y2H screens that considers key aspects of experimental 

design, normalization, and controls. Three quantitative ranking scores were implemented to 

identify interacting partners, comprising: 1) significant enrichment under selection for positive 

interactions, 2) degree of interaction specificity among multi-bait comparisons, and 3) selection of 

in-frame interactors. Using simulation and an empirical dataset, we provide a quantitative 

assessment to predict interacting partners under a wide range of experimental scenarios, 

facilitating independent confirmation by one-to-one bait-prey tests. Simulation of Y2H-NGIS 

identified conditions that maximize detection of true interactors, which can be achieved with 

protocols such as prey library normalization, maintenance of larger culture volumes and 

replication of experimental treatments. Y2H-SCORES can be implemented in different yeast-

based interaction screenings, accelerating the biological interpretation of experimental results. 

Proof-of-concept was demonstrated by discovery and validation of a novel interaction between 

the barley powdery mildew effector, AVRA13, with the vesicle-mediated thylakoid membrane 

biogenesis protein, HvTHF1. 

Keywords: Interactome inference; high throughput yeast two hybrid (Y2H); ranking interactions; 

interaction prediction; barley; Blumeria graminis; powdery mildew 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.08.288365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Author Summary 

Organisms respond to their environment through networks of interacting proteins and other 

biomolecules. In order to investigate these interacting proteins, many in vitro and in vivo 

techniques have been used. Among these, yeast two-hybrid (Y2H) has been integrated with next 

generation sequencing (NGS) to approach protein-protein interactions on a genome-wide scale. 

The fusion of these two methods has been termed next-generation-interaction screening, 

abbreviated as Y2H-NGIS. However, the massive and diverse data sets resulting from this 

technology have presented unique challenges to analysis. To address these challenges, we 

optimized the computational and statistical evaluation of Y2H-NGIS to provide metrics to identify 

high-confidence interacting proteins under a variety of dataset scenarios. Our proposed 

framework can be extended to different yeast-based interaction settings, utilizing the general 

principles of enrichment, specificity, and in-frame prey selection to accurately assemble protein-

protein interaction networks. Lastly, we showed how the pipeline works experimentally, by 

identifying and validating a novel interaction between the barley powdery mildew effector AVRA13 

and the barley vesicle-mediated thylakoid membrane biogenesis protein, HvTHF1.  Y2H-

SCORES software is available at GitHub repository https://github.com/Wiselab2/Y2H-SCORES. 

 

Introduction 

Investigations into the molecular interactions among hosts and pathogens has benefited from the 

plethora of omics datasets that can be used for the prediction of gene and protein networks. For 

plants, this knowledge can be used to guide modern plant breeding efforts through the 

identification of resistance proteins and their co-functional partners (Dangl et al., 2013; Struk et 

al., 2019). In animal models, accurate networks can lead to the determination of drug targets and 
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vaccines by providing a detailed view of the host-pathogen interactions that shape the host 

immune response (Adams et al., 2011; Arkin et al., 2014; Koff et al., 2013; Oberg et al., 2011). 

 

The reconstruction of signaling networks is one of the most efficient methods to understand 

molecular events during host-pathogen interactions (Braun et al., 2013). These models can be 

depicted using protein interactome networks, where nodes represent proteins and edges 

represent physical interactions (De Las Rivas and Fontanillo, 2010). The yeast two-hybrid (Y2H) 

screen is one of most powerful tools for uncovering new protein-protein interactions (PPI), 

discerning connections between bait and prey proteins while correcting for biases in their cell 

concentrations and affinity (Vidal and Fields, 2014). However, traditional Y2H screens involve a 

labor-intensive step where distinct yeast colonies growing on selective media are picked, and 

Sanger-sequenced to identify prey cDNA fragments. Thus, to optimize genome-scale screens 

and obtain interactome data in a time-efficient manner, more recent approaches, collectively 

termed next-generation interaction screening (NGIS), use deep sequencing to score the result of 

Y2H screens. These innovations facilitate quantitative measures of bait-prey interactions, and 

importantly, do not require open-reading-frame sequence libraries from the organism(s) of interest 

(Lewis et al., 2012; Pashkova et al., 2016; Suter et al., 2015; Trigg et al., 2017; Weimann et al., 

2013; Yachie et al., 2016).  

 

Despite the methodological advantages of Y2H-NGIS, there remain overlooked informatics and 

statistical challenges. 1) Most current pipelines map and quantify total reads while ignoring prey-

fusion reads (reads containing both Y2H plasmid and prey cDNA) that provide frame information 

of the cDNA fusion protein. 2) There is no consensus regarding what control(s) are more 

appropriate to signify the background interactivity of the preys and to help to distinguish true 

interactions (Erffelinck et al., 2018; Kessens et al., 2018; Lewis et al., 2012; Pashkova et al., 2016; 
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Trigg et al., 2017; Weimann et al., 2013; Yachie et al., 2016; Zong et al., 2020). 3) Despite its 

importance, most existing methods do not assess data normalization, or implement inappropriate 

normalization methods for Y2H-NGIS data (Erffelinck et al., 2018; Pashkova et al., 2016; Trigg et 

al., 2017; Weimann et al., 2013; Yachie et al., 2016; Zong et al., 2020). High-throughput 

sequencing datasets, where read counts quantify signal strength, e.g., RNA-Seq, require 

normalization, as there are external factors, aside from experimental treatments, that influence 

read counts (Evans et al., 2018). Normalization methods, such as those used for RNA-Seq, 

assume that most genes in the sample are not differentially enriched (DE). However, in Y2H-

NGIS experiments, the enrichment of each prey is determined by completely different factors 

under the two conditions. In non-selected conditions, the prey's relative abundance in the library 

determines the enrichment, while under selection, it is the prey's ability to activate the reporter, 

via interaction with the bait, or by auto-activation. Most if not all prey will therefore be DE in the 

selected condition. Finally, 4) with no consensus on the appropriate data analysis, nor even how 

to report the results, whether ratios of counts, log fold change from DE analysis, or a custom score 

function, it is nearly impossible to compare Y2H-NGIS studies, and there are reports that Y2H-

NGIS-based interaction predictions suffer high false positive rates (Erffelinck et al., 2018; Kessens 

et al., 2018; Lewis et al., 2012; Pashkova et al., 2016; Trigg et al., 2017; Weimann et al., 2013; 

Yachie et al., 2016; Zong et al., 2020). Hence, there is a need for robust and consistent statistical 

models that make use of all the available information in Y2H-NGIS data. 

 

We optimized the protocol proposed by Pashkova and colleagues (2016) to sub-culture diploid 

yeast populations that carry bait and prey plasmids under two batch conditions: 1) diploid growth 

obtained in what we call the non-selected condition (SC-Leu-Trp), used as background level of 

library prey abundance and 2) interaction test, or the selected condition (SC-Leu-Trp-His), which 

theoretically only allow the growth of diploid populations with positive bait-prey interactions 
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through activation of the reporter gene. Diploids that grow under selection comprise a group of 

preys that can be split into true and false interactors. Here we define true interactors as those 

preys that can be verified as bait-specific in a binary Y2H interaction test with the appropriate 

negative controls. In contrast, false interactors represent the group of selected preys which do 

not produce a positive binary test, nor are bait-specific (i.e., preys that auto-activate the reporter). 

Previously, we developed a robust informatics pipeline, designated NGPINT, to identify candidate 

interacting partners obtained from Y2H-NGIS, including mapping reads to the reference prey 

genome, reconstruction of prey fragments, and distinguishing fusions with the prey activation 

domain (Banerjee et al., 2020). Here, we propose statistical methods to rank the resulting preys, 

distinguish false vs. true interactors, providing to the user a high confidence list of candidates. 

This ranking system, designated Y2H-SCORES, is an aggregate of three experimental outcomes: 

1) the non-selected population as a baseline to detect which preys are significantly enriched under 

selection, 2) selected samples as a control baseline to measure the specificity of a prey, and 3) 

fusion read information to identify in-frame enrichment of the prey fragments under selection.   

 

Using simulation and experimental validation we assessed the ability of Y2H-SCORES to 

successfully rank true vs. false interactions. Simulation of typical Y2H-NGIS data allowed us to 

demonstrate its robustness under different scenarios. Additionally, as a proof of concept, we used 

Y2H-SCORES to identify and confirm the interaction of the barley powdery mildew effector, 

AVRA13, with the barley vesicle-mediated thylakoid membrane biogenesis protein, HvTHF1. This 

interaction, accompanied with previous evidence (Rajaraman et al., 2018) and expression 

quantitative trait loci (eQTL) associations (Surana et al., 2017), support the involvement of 

HvTHF1 with resistance to powdery mildew. 
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Results 

The effect of normalization on Y2H-NGIS data  

Principal component analysis (PCA) of the log-transformed Y2H-NGIS raw read counts identified 

selection as the major source of variability (Fig 1A). The effect of selection and baits (colors in Fig 

1A) under selection are expected sources of variation, but we also expect all non-selected 

samples to resemble the cDNA used to build the prey library and the three replicates to cluster. 

Indeed, if there is more variation among replicates than baits, it could prove difficult to reproducibly 

identify bait interactors. 

 

We considered four normalization methods to reduce the experimental variation, particularly to 

reduce variation across replicates. All preys are expected to be differentially enriched (DE) in 

selected compared to non-selected samples; interactors should grow exponentially and non-

interactors should not reproduce under selection. Our goal is to identify prey whose relative 

abundance in the selected samples increases over the relative abundance in the non-selected 

samples. Normalization methods appropriate for this goal include library size (Dillies et al., 2013), 

transcripts (or in this case, prey fragments) per million (TPM) (Wagner et al., 2012), and remove 

unwanted variation (RUVs) (Risso et al., 2014). Many normalization methods are designed to 

detect enrichment relative to unchanging reference genes, which simply do not exist in Y2H-NGIS 

data. Specifically, we used median-of-ratios (Anders and Huber, 2010), which assumes the 

majority of genes are not DE, as a control method that should fail to normalize Y2H-NGIS data. 

Fig 1B-E show the PCA plots of the total counts after implementation of the different normalization 

methods. TPM, RUVs, and library size reduced the variability in the non-selected samples to 

varying degrees but retained most of the other variation. The median-of-ratios method, in contrast, 
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removed over half of the selected vs. non-selected variation. Thus, inappropriate normalization 

can eliminate part of the biological information that is used to infer interactors.  

 

Ideally, all non-selected samples should resemble the prey library. Indeed, Pearson correlations 

of the count data between all pairs of non-selected samples exceeded 0.98 for all but RUVs 

normalization (Fig 1F), indicating that non-selected prey counts are largely bait-independent, as 

expected. In contrast, prey counts were much less correlated among selected samples, 

presumably reflecting the effect of the baits. Library size and TPM normalizations increased the 

non-selected sample correlation (Wilcoxon signed-rank test p-value of 1.88x10-38 and 1.12x10-17, 

respectively) over the raw counts (S1 Table), but RUVs normalization substantially decreased it 

(Wilcoxon signed-rank test p-value of 5.38x10-81). RUVs, which seeks factors explaining variation 

across replicates, may have retained greater variation within non-selected samples because we 

used just one factor to explain the technical variation. 

 

Appropriate normalization should reduce inter-replicate variability. We measured the variability 

across replicates using the coefficient of variation (CV), computed for each prey. As illustrated in 

Fig 1G and S1 Fig, we found that RUVs, library size, and TPM normalizations reduced the CV 

compared to raw counts (Wilcoxon signed-rank test p-values <0.05, S2 Table). However, there is 

no one single method that works the best in all cases (S2 Table). For non-selected conditions, we 

found that all normalizations performed very well with CV peaks within 0 - 0.5, which indicate a 

low variation between replicates. TPM and median-of-ratios had the best performance with a 

narrower density. The median-of-ratios method can perform well in non-selected conditions since 

as compared with the selected conditions, they do not have any DE preys, resembling the 

transcriptome used to make the prey library (Hunt et al., 2019). Contrast in performance was 

highest when normalizing selected samples. In this case, the ranking of methods was bait specific 
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(S1 Fig, S2 Table), though the median-of-ratios consistently failed to reduce the variation. CV 

distributions for library size, TPM and RUVs peaked within 0 - 1, but the CV distribution for the 

median-of-ratios method peaked in the range 1 - 1.5 (Fig 1G).  After evaluating the results from 

the Pearson correlation and CV analyses we decided to use library size normalization as the main 

method for the Y2H-NGIS dataset. 

 

Fig 1. Effect of count normalization in Y2H-NGIS. A) PCA analysis of raw read counts and B) 

TPM, C) RUVs, D) Median-of-ratios and E) Library size normalized reads for selected (left) and 

non-selected (right) samples for 10 bait screenings (color coded). F) Boxplot of the pairwise 
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correlation coefficients for raw and normalized read counts for all samples in non-selected and, 

separately, selected conditions. G) Coefficient of variation (CV) for each prey using different 

normalization methods in the bait AVRA13. Higher CV values may indicate poor performance 

because of a high variation between replicates.  

 

Y2H-SCORES identifies true interacting partners 

After optimizing normalization, we proposed a set of ranking scores based on statistical 

assessments of the count data to predict interacting partners. We considered the biological 

principles that define PPIs and key aspects of Y2H-NGIS, such as the experimental design, 

normalization, and controls (see methods). Summarizing, we modeled the total prey counts using 

a Negative Binomial (NB) regression and the in-frame fusion counts using the Binomial 

distribution. We designed a modular set of three quantitative ranking scores, called Y2H-

SCORES, to identify interacting partners: 1) Enrichment score: a measure of significant 

enrichment under selection for positive interactions, using as control the non-selected samples; 

2) Specificity score: a measure of the specificity of a bait-prey interaction, using other selected 

baits as controls; and 3) In-frame score: a measure of the enrichment for in-frame translational 

fusions in selected samples. To test Y2H-SCORES, we designed  a Y2H-NGIS simulator, 

motivated by real data. The simulator includes true interactors (preys that are strongly selected 

only in the presence of their co-interacting bait), and auto-active/non-specific interactors. Auto-

active preys activate the selection promoter without an interaction with the bait, while non-specific 

interactors survive selection because the product protein interacts with multiple baits (e.g., 

chaperones).  
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We began by simulating idealized conditions of 10 bait screens with three replicates, a cDNA prey 

library of 20,000 genes, 1 - 20 true interactors per bait, a stickiness factor (percentage of auto-

active/non-specific preys in the library) of 0.1%, and a strength of true interactors above the 99.9th 

percentile. The strength of true interactors was quantified with a fitness coefficient 𝑒𝑖𝑘, which we 

estimated for all prey in our real data. In this simulation, we reserved the top 0.1% of all estimated 

fitnesses for the true interactors, creating a sampling space that covers the maximum percentage 

of preys simulated from this group. This choice is based on experimental validations by library 

size: Pashova et al. (2016) confirmed 8 out of ~15000 preys to be true interactors in their library, 

supported by our experiments which showed a similar trend, confirming between 1 and 25 in a 

~36000 prey population.  

 

We evaluated the performance of Y2H-SCORES using Receiver Operating Characteristic (ROC) 

and Precision Recall (PR) curves. ROC compares the true and false positive rates using different 

score value thresholds, while PR compares true and predicted positives (Davis and Goadrich, 

2006). Fig 2A-C demonstrates that all scores performed well, separating true from auto-

active/non-specific interactors. In this scenario all the scores achieved good performance: the 

enrichment, specificity and in-frame scores had a ROC Area Under the Curve (AUC) of 0.98 for 

enrichment, 1 for specificity and 0.99 for in-frame. The PR AUC was 0.47, 0.62, and 0.54, 

respectively. We plotted the PCA of the Y2H-SCORES under this scenario (Fig 2D) and we found 

the enrichment and specificity scores are more related with each other than with the in-frame 

score, nonetheless the three scores seem to provide different information based on their position 

in the plot.  
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Fig 2. Performance of the ranking scores in an ideal scenario. A) to C) ROC curves of the 

enrichment, specificity, and in-frame scores. Colored sections represent 95% confidence intervals 

for the score values 0.7, 0.5, and 0.3. D) PCA of the Y2H-SCORES calculated under the ideal 

scenario. 

 

Y2H-SCORES overcomes challenging Y2H-NGIS scenarios 

The ideal condition simulated for Fig 2 was discovered from an extensive simulation study where 

we explored the effect of several parameters that vary in experimental datasets, as defined in S3 
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Table. The simulator uses a Galton-Watson branching process followed by a NB model for 

generating total counts, and a binomial model for fusion counts (see S2 Text). To evaluate the 

performance of Y2H-SCORES, we generated scenarios varying different parameters that define 

the simulation: 1) size of the prey library; to assess scalability. 2) stickiness (i.e., the percentage 

of auto-active/non-specific preys in the library) and 3) strength of true interactors; to vary the 

signal-to-noise ratio. 4) overdispersion; to assess increasing levels of biological and experimental 

variation. 5) proportion of true interactors in the prey library; to assess the role of genetic drift. 6) 

number of baits and 7) replicates; to assess power. Aside from the true interaction strength and 

the stickiness, these parameters are directly associated with the cDNA prey library and 

experimental conditions, which can be improved by the researcher. A graphical summary of the 

results is shown in Fig 3. Briefly, the scores were able to correctly identify true interactors even in 

extreme conditions, but the variation in performance helps us identify ideal experimental setting 

for detecting these interactors. 

 

The scalability of the Y2H-SCORES was evaluated by testing three prey library sizes (8000, 

20000 and 40000 preys). We found that increasing the library size maintained the performance 

of the scores (S3 Table). The PR AUC values of the enrichment score oscillated between 0.47 

and 0.68, the specificity from 0.62 and 0.80 and the in-frame score from 0.54 to 0.76, while the 

ROC AUC remained constant. This result shows that even with large library sizes the Y2H-

SCORES perform well and therefore, they can still be used to identify protein-protein interactions. 

 

We then tested the effect of the stickiness of the samples and the strength of true interactors on 

the Y2H-SCORES performance. The results from our simulations, shown in Fig 3A-B, suggest 

that Y2H-SCORES performance is less influenced by changes in the stickiness than by the 

strength of true interactors. Keeping the strength of true interactors above the 99.9 percentile and 
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variations of the stickiness between 0.1% to 10%, did not cause major changes in the ROC and 

PR AUC values. This result indicates that Y2H-SCORES is able to identify auto-active/non-

specific interactors, even in when they comprise 10% of the preys in the sample. In contrast, the 

strength of true interactors had a greater effect on the performance of Y2H-SCORES. As we 

decreased the strength of true interactors from the 99.9th to the 95th percentile, we found that the 

PR AUC values dropped to near zero. ROC curves were more stable, showing a gradual 

decrease. As expected, decreasing the signal-to-noise ratio in the system reduced the 

performance of Y2H-SCORES.  

 

To evaluate the effect of experimental variation we tested changes in the overdispersion. We 

simulated two scenarios, either a high or random overdispersion in both the selected and non-

selected condition. After estimating the overdispersion parameters observed in real data, we 

jointly sampled the proportion of preys and the overdispersion 𝜑𝑘𝑁 in the non-selected samples, 

and the fitness and overdispersion values 𝜑𝑖𝑘𝑆 in the selected samples, from the joint empirical 

distributions. In the overdispersed scenario, we resampled 𝜑𝑘𝑁 and 𝜑𝑖𝑘𝑆 values higher than the 

90th percentile of their densities (2.27 < 𝜑𝑘𝑁 < 13.42,  0.33 < 𝜑𝑖𝑘𝑆 < 2). The scores’ performance 

was maintained in scenarios with high overdispersion as measured by both PR and ROC AUC 

values (Fig 3C). 

 

The initial proportion of each prey before culture expansion depends on the composition of the 

cDNA prey library, which can be controlled through experimental library normalization 

(Bogdanova et al., 2010). We assumed the post-expansion prey proportions in the non-selected 

samples were identical to the unobserved prey proportions at the beginning of selection. Thus, 

we sampled these initial proportions from the observed non-selected proportions. We expect more 

inter-replicate variability and lower power to detect true interactors when the initial true interactor 
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proportion is low because of initial sampling variation and greater genetic drift during culture 

growth. To simulate the effect of a low concentration of preys in the library we used the minimum 

proportion 𝑞𝑖𝑘 that we observed in our experimental dataset, ~1x10-8, as reference value and 

assigned it to the true interactors in the “Low” condition (Fig 3D). Results from this analysis 

showed that the PR AUC decreased for all three scores. The enrichment and specificity scores 

decreased from 0.47 to 0.30, and from 0.62 to 0.17, respectively. The largest decrease was 

observed for the in-frame score, going from 0.54 to 0.005. Scenarios with low proportions of true 

interactors in the prey library caused a low number of total prey reads for that group in the non-

selected condition, and a reduction or even absence of fusion reads (which normally represent a 

small fraction of the total number of reads). This trend was also observed in experimental 

datasets, where we observed a large number of preys with no fusion reads available in the non-

selected samples.  

 

Detection of DE prey with statistical confidence requires replication, but more replicates increase 

the time and cost of the sequencing project. We evaluated the effect of having two, three and five 

replicates. Increasing the number of replicates increased the performance of the enrichment and 

the specificity scores, while the in-frame score was not affected (Fig 3E, S3 Table). The in-frame 

score maintained a good performance even in cases with two replicates, with PR AUC around 

0.53, but the enrichment and specificity scores had reduced performance. The enrichment score 

had the greatest reduction in the PR AUC values going from 0.61 (five replicates) to 0.40 (two 

replicates), and the specificity PR AUC values went from 0.65 to 0.55. Finally, we tested the effect 

of the number of baits using values from two to ten (Fig 3F). The enrichment and in-frame scores 

showed a decrease in their PR AUC values only in the case with two replicates with values of 

0.35 and 0.44, respectively. In contrast, the performance of the specificity score improved with 

more baits in the simulation, with PR AUC values increasing from 0.47 to 0.71. The specificity 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.08.288365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

information provided by the additional bait screenings increases the resolving power of the 

specificity score.  

 

Fig 3. Effect of changes in the parameters that define Y2H-NGIS simulation. Examples of 

challenging scenarios were simulated to determine the Y2H-SCORES classification power. A) 

Stickiness (percentage of auto-active/non-specific preys in the library), B) Strength of true 

interactors, C) Overdispersion, D) Concentration of true interactors in the prey library, E) Number 

of replicates, and F) Number of baits. ROC and PR AUC values were reported for the enrichment, 

specificity, and in-frame scores. 
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Y2H-SCORES discards auto-active interactions and identifies a new interaction 

between AVRA13 and HvTHF1 

As proof of concept, we used Y2H-SCORES to identify interactors of the AVRA13 effector from the 

barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh) (Lu et al., 2016). Our 

framework allowed us to discard auto-active interactors and to confirm the interaction between 

AVRA13 and the barley vesicle-mediated thylakoid membrane biogenesis protein, HvTHF1. We 

screened AVRA13 using an experimental setting of three replicates in the non-selected and 

selected condition. We ran our bioinformatic pipeline to map and quantify reads in the samples 

and obtained the prey regions for cloning. After this, we calculated the three Y2H-SCORES and 

created a Borda ensemble (Lin, 2010) to obtain a list of candidate interactors. Interestingly, after 

running Y2H-SCORES with different normalizations we found an increase in the number of highly 

ranked candidates with the median-of-ratios method. When we dissected this trend, we observed 

an increase in the number of candidates with high enrichment and in-frame scores and low 

specificity score (Wilcoxon ranked-sum test, S4 Table; S2 Fig), theoretically indicating auto-

active/non-specific preys. The top-scoring preys unique to this list had low specificity scores 

across all normalization methods (S5 Table). We performed binary Y2H with two of these preys, 

corresponding to the gene IDs HORVU2Hr1G060120 (TCP family transcription factor 4) and 

HORVU2Hr1G024160 (Chaperone protein DnaJ-related), and confirmed that they were auto-

active (S3 Fig), as they interacted with empty vector and luciferase (non-native protein).  

 

Using Y2H-SCORES calculated from library size normalization, we focused on preys with high 

Borda ensemble scores, and therefore, high Y2H-SCORES values. HvTHF1, corresponding to 

the barley gene ID HORVU2Hr1G041260, was identified as the top candidate interactor of AVRA13 

with the following Y2H-SCORES: enrichment of 0.9743, specificity of 0.8986, in-frame of 1 and 

Borda ensemble of 1203.73. Fig 4A shows the IGV alignment of this prey, depicting part of its 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.08.288365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

fusion reads. To test the binary interaction, the AVRa13 bait sequence was fused with the GAL4 

transcription factor binding domain (GAL4-BD), while the HvThf1 prey sequence was fused with 

the GAL4 DNA activation domain (GAL4-AD). After mating, diploid selection in SC-LW media and 

selection of the interaction with SC-LWH and SC-LWH + 3AT, we obtained a strong and specific 

positive interaction. Fig 4B shows the results from this binary test, validating the interaction 

between this protein and the effector. 

 

The prey consisted of a cDNA fragment of 817 nucleotides with an open reading frame of 162 

amino acids (S1 Text contains fasta files with the prey sequence and protein translation). We 

analyzed the prey fragment peptide to identify the interacting domains and we found it contains a 

thylakoid formation protein domain. To position HvTHF1 in a signaling context we predicted 

protein-protein interactors using interlogs (Gu et al., 2011; Jafari et al., 2015; Nakajima et al., 

2018; Stark, 2005). As illustrated in Fig 4C, we found 18 predicted interactions with four main 

protein families: Homeobox protein BEL1, DOF zinc finger protein, protein kinase, receptor kinase 

and leucin-rich receptor-like kinase. Interestingly, previous expression quantitative trait locus 

(eQTL) analysis indicated that Thf1 associates significantly with the Mla1 (mildew resistance locus 

a1) trans-eQTL (Surana et al., 2017). Many of the predicted interactors for the THF1 protein are 

also associated with trans-eQTL at different powdery mildew infection stages, MlLa (Laevigatum 

resistance locus) at penetration and Mla1 during haustorial development (Surana et al., 2017).  
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Fig 4. Experimental validation of the interaction between the barley powdery mildew effector, 

AVRA13 and the vesicle-mediated thylakoid membrane biogenesis protein, HvTHF1. A) IGV 

mapping of reads to the prey region and zoom to fusion reads, used for primer design and cloning. 

B) Binary Y2H test between AVRA13 and HvTHF1 showing the diploids control (SC-LW), the 

stringent interaction (SC-LWH+3AT), and tests with luciferase and empty-bait vector to show the 

specificity of the interaction. C) Prediction of interlogs for the AVRA13 protein target, HvTHF1 

(validated using Y2H-SCORES). Trans-eQTL associations (Surana et al., 2017) with the Mla1 

(mildew resistance locus a1) and MlLa (Laevigatum resistance locus) are color coded. 

 

Discussion 

Analysis of Y2H-NGIS data 

Analysis of Y2H-NGIS data is challenging due to the complexity of the raw dataset (composed of 

total and fusion prey reads under both selective and non-selective conditions) and the substantial 
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variability across replicates. This variability may be due to different factors in the experiments, 

including stochastic mating, genetic drift, cell viability and composition of the prey library aliquots. 

Banerjee and colleagues (2020) proposed a bioinformatic pipeline to map and quantify raw reads 

from Y2H-NGIS, providing both total and fusion prey counts under selective and non-selective 

conditions. In this report, we outline Y2H-SCORES, a framework to rank candidate prey/bait 

interactions based on these count data. Using a Negative Binomial (NB) regression we modeled 

total counts, and the in-frame fusion counts were analyzed using the Binomial distribution. From 

these models we designed Y2H-SCORES to identify interacting partners based on their 

properties: 1) Enrichment score:  measures the enrichment under selection for positive 

interactions, as compared with non-selected conditions; 2) Specificity score: assigns higher 

values to unique bait-prey interactions, as compared to prey selected in multiple bait screens; and 

3) In-frame score: measures the enrichment for in-frame proteins in selected samples. We 

validated the method and used simulation to evaluate the impact of several experimental factors 

on the power to detect true interactions and the accuracy of the rankings. We found that 

normalization methods and controls have a profound impact on the amount of information that 

can be used to identify interactors.  

 

Normalization significantly modified the variation among replicates. Utilizing methods whose 

assumptions are satisfied by the Y2H-NGIS dataset leads to a more successful interpretation of 

the observed variation to infer protein interactors. Library size, TPM and RUVs are appropriate 

normalization methods for Y2H-NGIS data, but their ability to reduce variance within replicates 

varied, therefore, we recommend that users evaluate them individually and decide which one 

works better for their experiment. Median-of-ratios normalization, commonly used for RNA-seq 

data, is not appropriate for Y2H-NGIS data, and applying this method increased the number of 

candidate interactors with high enrichment and in-frame scores and low specificity score, 
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compared to the other three normalization methods. Median-of-ratios normalization appears to 

promote non-interactors and auto-active/non-specific preys (which activate the selection promoter 

without an interaction with the bait, or interact with multiple baits), since the top-scoring preys 

unique to this list had low specificity scores across all normalization methods (S5 Table) and two 

of them were confirmed as auto-active (S3 Fig). Performing appropriate normalizations removed 

these auto-active preys from the top ranked list. Overall, median-or-ratios normalization produced 

lists with higher enrichment and in-frame scores, but lower specificity scores than the other 

methods (Wilcoxon rank-sum test, S4 Table). 

 

Additionally, different controls that have been proposed for Y2H-NGIS can be used to measure 

different properties of an interactor. First, we used non-selected controls as an enrichment 

baseline of preys, allowing the implementation of the enrichment and in-frame scores. Second, 

we demonstrated the advantage of using screenings under selection for multiple baits as a second 

type of control that provides information for the specificity score. The baits used for this purpose 

may contain an empty bait, a non-native bait, or a set of baits of interest. If a combination of these 

baits is used in the experiment, auto-active preys should have lower specificity scores relative to 

non-specific preys, providing some separation. Our PCA analysis of Y2H-SCORES (Fig 2D) 

suggest independent information coming from each of the three scores, hence we recommend 

using non-selected and multiple selected bait controls to allow the implementation of all three 

scores to obtain a high-confidence list of interactors. The modularity of Y2H-SCORES also allows 

for partial score calculations, which will depend on the type of control used. 

 

Development and testing of Y2H-SCORES has yielded some suggestions for the design of Y2H-

NGIS experiments. Calculating the enrichment and the in-frame scores requires selected and 

non-selected samples. As we demonstrated (Fig 1F), composition of the non-selected sample is 
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almost identical regardless of the bait (Pearson correlation > 0.98), information that can be utilized 

to reduce the number of sequenced samples, e.g., using a few random baits as non-selected 

controls for multiple baits in the same mating design. In contrast, the specificity score requires at 

least two different bait screenings, with better results as the number and type is increased. This 

strategy exploits the count information of multiple selected baits to identify auto-active/non-

specific preys, giving priority to specific candidate interactors. However, researchers are often 

interested in a particular biological process and might screen several baits involved in a specific 

signaling pathway. In this case, preys that interact with multiple baits and exhibit low specificity 

might be prioritized for downstream validation. In that case, we also recommend using empty 

and/or non-native controls to discard auto-active preys. Thus, depending on experimental goals, 

the specificity score can be leveraged to find novel co-interacting partners of multiple proteins of 

interest. 

 

Experimental setting and optimization of Y2H-SCORES 

Different experiment scenarios allowed us to test the robustness of Y2H-SCORES and identify 

the most challenging dataset types (Fig 3). The three scores were affected differently depending 

on the simulation scenario. Scenarios with low strength and low concentration of true interactors 

in the prey library imposed the most challenging conditions for these scores, reducing the ROC 

and PR AUC values. The enrichment score was more affected by the strength of true interactors 

while the in-frame score was more affected by the concentration of true interactors in the prey 

library, due to the inherent lower number of fusion reads. This analysis led us to explore aspects 

of experimental design that could be adjusted to increase the accuracy and sensitivity of interactor 

detection via Y2H-NGIS. These include the experimental prey library normalization, the number 

of replicates and baits in the experiment, sequencing depth, and scaling of the experiment setting.  
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First, library normalization can optimize the proportion of each prey in the library, in the non-

selected samples and at the start of selection. In a typical cDNA library, the relative abundance 

of species derived from different genes can span many orders of magnitude. Normalizing the prey 

library to reduce high-abundance cDNAs reduces the stochasticity and noise in prey counts. After 

normalizing the prey library, experimentalists should also ensure the number of yeast recipient 

cells are sufficient to represent such library in the screens, for which they can use procedures as 

described by Krishnamani et al., 2019. Our simulations found that low abundance interactor preys 

in the library (200 times lower than the expected prey abundance) can be detected in Y2H-NGIS. 

However, as the initial concentration of a true interactor decreases, a stronger affinity for the bait 

(relative to the interaction strength of auto-active/non-specific preys) is required for reliable 

detection. Thus, normalizing the prey library can reveal weaker true interactors.  

 

A second parameter, the number of replicates in Y2H-NGIS, represents a cost-power trade off as 

in most “omics” experiments. For small numbers of replicates, as tested in the simulations, we 

found at least three replicates of Y2H-NGIS were needed to maintain the performance of the three 

scores. As expected, we observed better results as the number of replicates increased, especially 

for the enrichment score. We did not test replicate numbers greater than 5 since this does not 

represent typical experimental practices, and if one had to choose, increasing the number of baits 

would yield more biological information, since it would increase the performance of the specificity 

score. We anticipate that increasing the number of replicates would decrease the false discovery 

rate as it is reported for techniques such as RNA-Seq (Schurch et al., 2016). Controlling for false 

discovery rate also informed our selection of DESeq2 as the tool for calculating differential 

enrichment due to the documented outperformance in low replicate numbers (Evans et al., 2018; 

Schurch et al., 2016). 
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It has been reported that reducing overdispersion in counts can improve sensitivity and accuracy 

of Y2H-NGIS (Pashkova et al., 2016). We did not observe a decrease in the performance of the 

Y2H-SCORES as we increased the overdispersion, which may be explained by the strategies 

that we took in our experiments to control it. As a result, the overdispersions estimated from our 

data may already be lower than what we could have observed with a different experimental 

setting. The main recommended strategies to control overdispersion among samples include 

maintaining a large-scale mating (in our experiment, 1.8x108 bait and 5x107 prey cells, obtaining 

~2x109 diploid cells afterwards) and subsequent high culture volumes of non-selected and 

selected samples (typically 800 ml per sample in 2-liter fluted Erlenmeyer flasks for ca. 36,000 

preys in the library). Increasing the volume reduces the stochasticity of the prey population before 

mating and during culture expansion. Stochasticity is most notable in selected growth, where 

genetic drift dominates as the viable prey population shrinks. Population bottlenecks must be 

avoided throughout the experiment, which implies increasing the aliquot size in every culture step, 

including the final sampling for sequencing, as reported by Pashkova and associates (2016). We 

also recommend adjusting the sequencing depth to match the prey library size and specifically 

increasing depth for the more complex, non-selected samples. Having a high depth in non-

selected samples also increases the number of fusion reads, the major challenge for the 

successful implementation of the in-frame score in our simulations. 

 

Extrapolation of Y2H-SCORES to other yeast-based interaction methods 

The analytical framework we propose here can be extrapolated to other yeast-based interaction 

settings, e.g., testing for DNA-protein interactions through yeast one-hybrid (Reece-Hoyes and 

Marian Walhout, 2012) or multiplexed yeast two-hybrid (Trigg et al., 2017). The similarities and 
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limitations among these techniques make them suitable candidates for the implementation of the 

Y2H-SCORES framework. All share the same true interactor properties: they should be enriched 

in selected samples, be specific to a bait screen and be selected in-frame. In addition, these 

techniques require control for false positives with appropriate statistics. Currently, these 

techniques propose a solid media selection of interactors, nonetheless the batch culture 

experimental setting proposed by Pashkova and colleagues (2016) can also be applied to these 

contexts, increasing the reproducibility and facilitating the experimental workflow. Once output 

counts are obtained, it will be possible to calculate the Y2H-SCORES and use them to identify 

true interactors. 

 

Experimental validation of Y2H-SCORES identifies a new interaction between 

AVRA13 and HvTHF1 

As an example of the effectiveness of our ranking scores, we identified and validated a new 

interaction between the barley powdery mildew effector, AVRA13, and the vesicle-mediated 

thylakoid membrane biogenesis protein, HvTHF1. HvTHF1 has been found to interact in yeast 

and in planta with proteins encoded by the U-box/armadillo-repeat E3 ligase HvPUB15 and a 

partial gene duplicate, HvARM1 (for H. vulgare Armadillo 1) (Rajaraman et al., 2018). Neo-

functionalization of HvARM1 increases resistance to powdery mildew and provides a link between 

plastid function and colonization by biotrophic pathogens. In the broader context of plant-pathogen 

interactions, THF1 and its homologs interact with different protein mediators of plant resistance 

and susceptibility. The wheat homolog of HvThf1, TaToxABP1, encodes a target of the necrotizing 

Toxin A effector from the tan-spot fungal pathogen, Pyrenophora tritici-repentis, which has been 

associated with ROS (reactive oxygen species) burst (Manning et al., 2007; Pandelova et al., 

2012). In addition, THF1 also has been found to destabilize several NB-LRR-type resistance 

proteins by binding their I2-like coiled-coil (CC) domains (Hamel et al., 2016). Previous eQTL 
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analysis performed by our group, combined with an interlogs search, revealed significant 

associations of Thf1 and its primary interactors with the Mla1 and MlLa trans-eQTL (Fig 4; Surana 

et al., 2017). These trans-eQTL associations were observed at different powdery mildew infection 

stages, MlLa at penetration, and Mla1 during haustorial development. This initial analysis provides 

an additional entry point to support the involvement of HvTHF1 with resistance to powdery mildew 

disease. 

.  

Methods  

Normalization 

We implemented library size (Dillies et al., 2013), transcripts per million (TPM)  (Wagner et al., 

2012), removing unwanted variation (RUVs) with replicate control samples (Risso et al., 2014) 

and the median-of-ratios (Anders and Huber, 2010) normalization methods. RUVs was applied to 

selected and non-selected samples separately, using k=1 factor and grouping the three replicates 

for each bait in the selected condition, and all replicates for all baits in the non-selected condition. 

Median-of-ratios was applied for all baits and conditions, grouping the replicates for each bait-

condition combination. The coefficient of variation (CV) for each prey was calculated analyzing 

each bait-condition combination separately and grouping the three replicates for each prey. 

Pairwise differences between the distributions of the CV were detected with a Wilcoxon signed-

rank test on the prey CVs computed after application of each normalization method for each bait. 

Pearson correlation was calculated for each method separately and within replicates for each 

bait-condition combination. Differences between correlations for each normalization method in 

each condition were assessed using a Wilcoxon signed-rank test. 
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Differential enrichment analysis of prey counts 

We modeled the optionally normalized prey count data with Negative Binomial (NB) regression 

(Love et al., 2014). This distribution allows for the effects of selection on the mean counts, while 

accounting for overdispersion across replicates, a consequence of biological and experimental 

variability. Specifically, we calculated the significance and magnitude of the enrichment for each 

prey gene interacting with each bait using the DESeq2 model (Love et al., 2014). Two different 

baseline controls were used to identify interactors: the non-selected condition for enrichment and 

the other selected baits for specificity. 

 

Modeling fusion reads 

Let 𝑌𝑖𝑘𝑐 be the number of in-frame reads out of a total 𝐹𝑖𝑘𝑐 fusion reads for prey 𝑘 mating with bait 

𝑖 in condition 𝑐 = 𝑁, 𝑆 (N=non-selected, S=selected). We modeled 𝑌𝑖𝑘𝑐 ∼ 𝐵𝑖𝑛(𝐹𝑖𝑘𝑐 , 𝜋𝑖𝑘𝑐), where 

𝜋𝑖𝑘𝑐 is the proportion of in-frame reads. To test in-frame enrichment under selection, we pose the 

hypothesis: 𝐻𝑜: 𝜋𝑖𝑘𝑁 = 𝜋𝑖𝑘𝑆 vs. 𝐻𝑎: 𝜋𝑖𝑘𝑁 < 𝜋𝑖𝑘𝑆, testing for an increase in the in-frame read 

proportion under selection. We evaluated this hypothesis using the Z-score statistic 𝜌𝑖𝑘: 

𝜌
𝑖𝑘

=
�̂�𝑖𝑘𝑆 − �̂�𝑖𝑘𝑁

√�̂�𝑖𝑘 (1 − �̂�𝑖𝑘) (
1

𝑓
𝑖𝑘𝑆

+
1

𝑓
𝑖𝑘𝑁

)

∼ N(0,1)   𝑤𝑖𝑡ℎ  �̂�𝑖𝑘 =
𝑓

𝑖𝑘𝑆
 �̂�𝑖𝑘𝑆  +  𝑓

𝑖𝑘𝑁
 �̂�𝑖𝑘𝑁

𝑓
𝑖𝑘𝑆

 + 𝑓
𝑖𝑘𝑁

, 

 

where �̂�𝑖𝑘𝑐 is the observed in-frame read proportion and 𝑓𝑖𝑘𝑐 is the observed number of fusion 

reads for prey k mated with bait i in condition c. 
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Y2H-SCORES 

We implemented and validated a ranking score system, designated Y2H-SCORES, for identifying 

interacting partners from Y2H-NGIS. It is comprised of three elements, each in the range [0,1], 

with values close to 1 indicating high support for a true interaction. Throughout, np is the number 

of prey and nb is the number of baits. 

 

Enrichment score.  

This score quantifies the level of enrichment of a prey under selection relative to non-selection. 

Let 𝑝𝑖𝑘 be the p-value and 𝑓𝑖𝑘 the log2 fold change in the normalized counts of prey 𝑘 interacting 

with bait i in selected over non-selected condition as given by DESeq2. The score consists of a 

system of ranks within ranks of these values to prioritize interactors. We first define the rank for 

𝑝𝑖𝑘: Consider 𝐺𝛼 = {(𝑖, 𝑘): 1 ≤ 𝑖 ≤ 𝑛𝑏 , 1 ≤ 𝑘 ≤ 𝑛𝑝, 𝑝𝑖𝑘 ≤ 𝛼}, the set of putatively interacting 

prey/bait combinations with p-values 𝑝𝑖𝑘 ≤ 𝛼. All p-values larger than 𝛼 are assigned a value of 

zero. The p-value enrichment score is defined only for i, k bait/prey combinations with 𝑝𝑖𝑘 ≤ 𝛼 as 

𝐸(𝑝𝑖𝑘) =
𝑅𝛼(𝛼) − 𝑅𝑝𝑖𝑘(𝑝𝑖𝑘)

𝑅𝛼(𝛼)
, 

where 𝑅𝛼(𝑝) is the rank of p-value 𝑝 among the 𝑝𝑖𝑘 with indices in the set 𝐺𝛼. To further resolve 

prey/bait interactions, we score the effect size by partitioning 𝐺𝛼 into 𝑏 =
𝛼

𝑤
 subsets 

{𝐺𝛼1, 𝐺𝛼2, … , 𝐺𝛼𝑏}, where 𝐺𝛼𝑙 = {(𝑖, 𝑘): 1 ≤ 𝑖 ≤ 𝑛𝑏 , 1 ≤ 𝑘 ≤ 𝑛𝑝, (𝑙 − 1)𝑤 ≤ 𝑝𝑖𝑘 ≤ 𝑙𝑤} for 1 ≤ 𝑙 ≤ 𝑏, 

contains a subset of the 𝑛𝑝 ∗ 𝑛𝑏 prey/bait combinations with similar p-values.  The rank of the log2 

fold changes is calculated within the 𝐺𝛼𝑙 subsets to obtain the fold change enrichment score as   

𝐸(𝑓𝑖𝑘) =
𝑚𝑎𝑥(𝑅𝑙(𝑓)) − 𝑅𝑙(𝑓𝑖𝑘)

𝑚𝑎𝑥(𝑅𝑙(𝑓))
, 
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and 𝑚𝑎𝑥(𝑅𝑙(𝑓)) is the maximum rank of fold-changes with indices in 𝐺𝛼𝑙. Finally, we combined 

these two scores, ranking first by p-value and second by log2 fold-change, to obtain the 

enrichment score for (𝑖, 𝑘) bait/prey combination as 

   𝐸(𝑖𝑘) = 𝐸(𝑝𝑖𝑘) +
𝑚𝑎𝑥(𝐸(𝑝𝐺𝛼𝑙

))−𝑚𝑖𝑛(𝐸(𝑝𝐺𝛼𝑙
))

𝑁(𝐺𝛼𝑙) 
𝐸(𝑓𝑖𝑘), 

where the (𝑖, 𝑘) combination is contained in 𝐺𝛼𝑙, 𝐸(𝑝𝐺𝛼𝑙
) is the set of p-value enrichment scores 

from 𝐺𝛼𝑙 and 𝑁(𝐺𝛼𝑙) is the size of 𝐺𝛼𝑙 . Finally, to rescale 𝐸(𝑖𝑘) between [0,1] we divided the score 

by the maximum value  as: 𝐸𝑖𝑘 =
𝐸(𝑖𝑘)

𝑚𝑎𝑥𝑖,𝑘 (𝐸(𝑖𝑘))
.  

 

Specificity score. 

True interactors should interact with few specific partners. To develop the specificity score we 

penalized preys that were enriched under selection with multiple bait screenings. Define  𝑝𝑖𝑗𝑘 as 

the p-value and 𝑓𝑖𝑗𝑘 as the log2 fold change obtained from DESeq2, of prey 𝑘 mated with bait 

𝑖 over prey 𝑘 mated with bait 𝑗 ≠ 𝑖, both in selected conditions. We define the p-value specificity 

score 𝑆(𝑝𝑖𝑗𝑘), just as 𝐸(𝑝𝑖𝑘) was defined before. Let 𝐺𝑠𝛼 = {(𝑖, 𝑗, 𝑘): 1 ≤ 𝑖 ≤ 𝑛𝑏 ,    𝑗 < 𝑖, 1 ≤ 𝑘 ≤

𝑛𝑝, 𝑝𝑖𝑗𝑘 ≤ 𝛼}. Then: 

𝑆(𝑝𝑖𝑗𝑘) =
𝑅𝑠𝛼(𝛼) − 𝑅𝑠𝛼(𝑝𝑖𝑗𝑘)

𝑅𝑠𝛼(𝛼)
 

where 𝑅𝑠𝛼(𝑝) returns the rank of 𝑝 among the p-values in set 𝐺𝑠𝛼. If 𝑓𝑖𝑗𝑘 < 0  ∨  𝑝𝑖𝑗𝑘 > α   →

𝑆(𝑝𝑖𝑗𝑘)  = 0. We average the p-value specificity scores by  𝑛𝑏 − 1 number of bait comparisons to 

obtain the final specificity score of bait/prey combination (𝑖, 𝑘),  

S(𝑝𝑖𝑘) =
1

𝑛𝑏 − 1
∑ S(𝑝𝑖𝑗𝑘)

j≠i
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We defined 𝑆(𝑓𝑖𝑗𝑘), just as we did before for 𝐸(𝑓𝑖𝑘), partitioning 𝐺𝑠𝛼 into 𝑏 =
𝛼

𝑤
 subsets 

{𝐺𝑠𝛼1, 𝐺𝑠𝛼2, … , 𝐺𝑠𝛼𝑏}, where 𝐺𝑠𝛼𝑙 = {(𝑖, 𝑘): 1 ≤ 𝑖 ≤ 𝑛𝑏 ,   𝑗 < 𝑖,   1 ≤ 𝑘 ≤ 𝑛𝑝, (𝑙 − 1)𝑤 ≤ 𝑝𝑖𝑗𝑘 ≤ 𝑙𝑤} 

and 𝑆(𝑝𝑖𝑗𝑘)  = 0 → 𝑆(𝑓𝑖𝑗𝑘) = 0 . We average over the 𝑛𝑏 − 1 number of scores 𝑆(𝑓𝑖𝑗𝑘) for (𝑖, 𝑘) to 

obtain 𝑆(𝑓𝑖𝑘): 

𝑆(𝑓𝑖𝑗𝑘) =
𝑚𝑎𝑥(𝑅𝑠𝑙(𝑓)) − 𝑅𝑠𝑙(𝑓)

𝑚𝑎𝑥 (𝑅𝑠𝑙(𝑓))
     𝑆(𝑓𝑖𝑘) =

∑ 𝑆𝑓𝑖𝑗𝑘𝑗≠𝑖

𝑛𝑏 − 1
 

where  𝑝𝑖𝑗𝑘 is in 𝐺𝑠𝛼𝑙 and 𝑅𝑠𝑙(𝑓) the rank of the fold change 𝑓 among those indexed in the 𝑙th 

subset 𝐺𝑠𝛼𝑙. The combined specificity score is given by: 

𝑆(𝑖𝑘) = 𝑆(𝑝𝑖𝑘) +
𝑚𝑎𝑥 (𝑆(𝑝𝐺𝑠𝛼𝑙

)) − 𝑚𝑖𝑛 (𝑆(𝑝𝐺𝑠𝛼𝑙
))

(𝑁(𝐺𝑠𝛼𝑙))
𝑆(𝑓𝑖𝑘) 

With a rescaling to [0,1], as: 𝑆𝑖𝑘 =
𝑆(𝑖𝑘)

𝑚𝑎𝑥𝑖,𝑘 (𝑆(𝑖𝑘))
 

 

In-frame score.  

We expect that true interactors will tend to appear in-frame under selective conditions. We convert 

the in-frame test of proportions statistic 𝜌𝑖𝑘 into the in-frame score. Let 𝐺 = {(𝑖, 𝑘): 1 ≤ 𝑖 ≤ 𝑛𝑏 , 1 ≤

𝑘 ≤ 𝑛𝑝} be the complete set of prey/bait combinations. Then, the in-frame score is: 

𝐼𝐹𝑖𝑘 =
𝑅𝐺(𝜌𝑖𝑘)

𝑚𝑎𝑥(𝑅𝐺(𝜌𝑖𝑘))
 

where 𝑅𝐺(𝜌𝑖𝑘) represents the rank of the 𝜌𝑖𝑘 statistic formulated to test the increase of 𝜋𝑖𝑘 for prey 

k interacting with bait i among all prey/bait interactions. For prey with no fusion reads in either 

non-selected or selected conditions, 𝐼𝐹𝑖𝑘 was set to zero. 
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Simulation of the Y2H-NGIS dataset 

To test the performance of Y2H-SCORES under different conditions we developed a framework 

for Y2H-NGIS simulation, using empirical data to motivate the simulation model and parameter 

values. Fig 5 shows the experimental workflow we wish to simulate. We simulated both total and 

fusion read counts under selected and non-selected conditions.  
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Fig 5. Experimental workflow for Y2H-NGIS. After the mating between bait and prey, diploids 

go through a non-selective culture to reach exponential phase. Once there (𝑡 = 0), the culture is 

split into two flasks, one for non-selection and another for selection. The objective of the second 

subculture is to grow yeast exponentially until it reaches saturation, a process that is repeated 

twice under selective conditions. After 𝑇𝑁 generations in the non-selected condition and 𝑇𝑖𝑆𝑟 

generations in the selected condition, culture aliquots are taken to be sequenced.  

 

Model 

We used a Galton-Watson (GW) branching process to model yeast growth in each condition 𝑐 ∈

{𝑆, 𝑁}. In this presentation of the model, we drop the index 𝑐 from the notation for simplicity. The 

𝑟𝑡ℎ replicate culture in the presence of bait 𝑖 starts with 𝑀𝑖𝑟(0) = 𝑀0 = 3.84 × 109 total yeast, and 

is grown for a potentially random number of 𝑇𝑖𝑟 generations until the exponential growth phase 

ends. While the population size 𝑀𝑖𝑟(𝑇𝑖𝑟) at the end of the experiment will be about 7.5 × 1010, 

there is enough variation in this number that we do not consider it necessary to condition on its 

value. 

 

Let 𝑋𝑖𝑘𝑟(𝑡) be the number of yeast containing prey 𝑘 at generation 𝑡. We assume 𝑋𝑖𝑘𝑟(𝑡) follows 

a simple Galton-Watson branching process, 

𝑋𝑖𝑘𝑟(𝑡) = 𝑋𝑖𝑘𝑟(𝑡 − 1) + 𝛿𝑘𝑡𝑟, 

where 𝛿𝑘𝑡𝑟 ∼ Bin(𝑋𝑖𝑘𝑟(𝑡 − 1), 𝑒𝑖𝑘) and 𝑒𝑖𝑘 is the "fitness" of prey 𝑘 in the given condition with bait 

𝑖. We will generally assume each prey is experiencing differential growth rates 𝑒𝑖𝑘 because of 

selection, but the model also applies to non-selection conditions, where we assume all yeast grow 

at the same rate 𝑒𝑖𝑘 = 𝑒𝑁. The initial number of prey 𝑘 is 𝑋𝑖𝑘𝑟(0) = 𝑀𝑖𝑘𝑟, with  

𝑀𝑖𝑘𝑟 ∼ Bin(𝑀0, 𝑞𝑖𝑘), and given the true proportion 𝑞𝑖𝑘 of prey 𝑘 in the prey library. 
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At the end of the experiment (selection or non-selection), at generation 𝑇𝑖𝑟, we do not observe 

𝑋𝑖𝑘𝑟(𝑇𝑖𝑟) directly. Instead, we observe read counts 𝑍𝑖𝑘𝑟(𝑇𝑖𝑟) ∼ NB(𝐿𝑖𝑟𝑋𝑖𝑘𝑟(𝑇𝑖𝑟), 𝜙𝑖𝑘), from a 

Negative Binomial distribution with mean and variance: 

𝔼[𝑍𝑖𝑘𝑟(𝑇𝑖𝑟) ∣ 𝑋𝑖𝑘𝑟(𝑇𝑖𝑟)] = 𝐿𝑖𝑟𝑋𝑖𝑘𝑟(𝑇𝑖𝑟)

Var[𝑍𝑖𝑘𝑟(𝑇𝑖𝑟) ∣ 𝑋𝑖𝑘𝑟(𝑇𝑖𝑟)] = 𝐿𝑖𝑟𝑋𝑖𝑘𝑟(𝑇𝑖𝑟) + 𝜙𝑖𝑘𝐿𝑖𝑟
2 𝑋𝑖𝑘𝑟

2 (𝑇𝑖𝑟),
 

where 𝐿𝑖𝑟 ≈
𝑉𝑖𝑟

𝑀𝑖𝑟(𝑇𝑖𝑟)
 is a scaling factor (also called “size factor'') accounting for sequencing depth 

𝑉𝑖𝑟 and the population size 𝑀𝑖𝑟(𝑇𝑖𝑟) at generation 𝑇𝑖𝑟. Parameter 𝜙𝑖𝑘 ≥ 0 is an overdispersion 

parameter that accounts for extra variation not already explained by the randomness in the initial 

prey count 𝑀𝑖𝑘𝑟 and the branching process. We treat diploid enrichment and the second round of 

selection as deterministic in the model (Fig 5), but either may cause overdispersion relative to our 

stochastic growth model. Possible overdispersion is accommodated in with this NB observation 

model. 

For full details about the modelling and parameter estimation please refer to the S2 text file. 

 

Design of simulation scenarios and performance of scores 

We designed different simulation scenarios to test the performance of the scores under different 

conditions. We took samples with 8000, 20000, and 40000 preys and 2 to 10 bait screenings. We 

used the following parameters to evaluate the performance scores as reported in S3 Table: 1) the 

stickiness of the samples, which we define as the percentage of auto-active/non-specific preys in 

the library; 2) the strength of the true interactors (defined as the minimum percentile of the 

observed fitness parameter 𝑒
^

𝑖𝑘 calculated from real data and used to simulate the true interactor 

group); 3) overdispersion, given by the parameters 𝜑𝑘𝑁, 𝜑𝑖𝑘𝑆, and sampled randomly or from a 

subset with high values (over the 90th percentile observed in real data); 4) the proportion of true 
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interactors in the prey library, given by 𝑞𝑖𝑘; 5) the number of replicates; and 6) the number of baits. 

S4 Fig shows sampling distributions of some of these parameters as estimated from real data. 

Receiver Operating Characteristic (ROC) and Precision Recall (PR) curves were constructed, 

and their respective Area Under the Curve (AUC) values calculated for comparison between 

simulations.  

 

Experimental procedures 

We generated experimental data to estimate parameters for the simulation, and to test the 

efficiency of Y2H-SCORES. Using an established Gateway-compatible CEN/ARS GAL4 system 

(Dreze et al., 2010; Yu et al., 2015), we created a normalized, three-frame cDNA expression 

library of 1.1 x 107 primary clones from pooled RNA isolated from a time-course experiment of 

barley, Hordeum vulgare L. (Hv) infected with the powdery mildew fungus, Blumeria graminis f. 

sp. hordei (Bgh) (Hunt et al., 2019; Surana, 2017). Baits were mated with a prey strain expressing 

the cDNA library and grown on selective media to identify protein-protein interactions. To initiate 

screening, mating of bait and prey cDNA library was performed on solid YPAD media. Diploids 

were enriched in SC-Leu-Trp (SC-LW) liquid media and sub-cultured under two conditions: 1) 

non-selected diploid growth (SC-LW) and 2) selected for reporter activation in SC-Leu-Trp-His 

(SC-LWH). Diploids expressing a positive PPI activate the HIS3 reporter construct and multiply in 

SC-LWH media whereas diploids expressing two non-interacting proteins are unable to grow 

under this selection. After sub-culturing the samples and reaching saturation (OD = 2.5 - 3), cells 

were collected, plasmids were isolated, and prey cDNA was amplified and sequenced using the 

Illumina HiSeq 2500 platform. We performed three independent biological replicates, collecting 

5-10 million reads per sample. 
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Data from the Bgh effector protein AVRA13 (CSEP0372) and luciferase acting as baits were 

analyzed using the NGPINT pipeline. Outputs were taken to compute the Y2H-SCORES. We 

applied different normalization methods, calculated the Y2H-SCORES and their ensemble using 

Borda counts to obtain a ranked list of interactors. We compared the score values of the top 5% 

of the ranked interactors with each normalization method, using a Wilcoxon ranked-sum test (S4 

Table). Quantiles of the specificity score for the top 100 interactions ranked using median-of-ratios 

normalization, and unique or non-unique across other normalizations, were calculated to show 

the lower values of the non-unique list (S5 Table). Using the Y2H-SCORES calculated from library 

size normalization and the Borda ensemble, we predicted a top list of candidate interactors to be 

validated. The validation consisted in identifying candidate true interactors based on the list, 

determining the interacting prey fragments using the IGV alignments obtained from the NGPINT 

pipeline (Banerjee et al., 2020) and the in-frame prey transcripts with the highest in-frame score. 

After the determination of the exact fragment, primers were designed for Gateway cloning, and 

subsequent insertion into the prey vector. After cloning the candidate prey into yeast, we 

concluded the validation with a binary Y2H test in a series of media and controls: 1) Diploid 

selection (SC-LW), interaction selection (SC-LWH) and stringent selection (SC-LWH+3AT) as 

shown in Fig 4. 

 

Determination of interlogs 

Predicted protein-protein interactors of HvTHF1 were inferred using interlogs (Jafari et al., 2015; 

Nakajima et al., 2018). Orthologs of HvThf1 with Arabidopsis thaliana, Zea mays and Oryza sativa 

were obtained using the Plant Compara tables from Ensembl Plants (Howe et al., 2020). 

Experimentally validated interactions for these plants were mined from BioGRID 3.5.171 version 

(Stark, 2005), the Protein-Protein Interaction database for Maize (PPIM) (Zhu et al., 2016) and 

the Predicted Rice Interactome Network (PRIN) database (Gu et al., 2011). Barley interlogs were 
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inferred by assigning the mined interactions from the corresponding ortholog with Oryza sativa, 

which was the only species with experimental interactions reported for the THF1 protein. 

Visualization of the network was done using Cytoscape (Shannon et al., 2003). 

 

Abbreviations 

AUC:  Area Under the Curve 

Bgh:  Blumeria graminis f. sp. hordei 

CV:  Coefficient of Variation 

DE:  Differentially Enriched 

eQTL:  expression Quantitative Trait Loci  

Hv:  Hordeum vulgare 

Mla1:  powdery mildew resistance locus a1 

MlLa:  Laevigatum resistance locus 

NGPINT: Next-generation protein-protein interaction software 

NB:  Negative Binomial 

PCA:  Principal Component Analysis 

PPI:  Protein-Protein Interaction 

PR:  Precision Recall 

ROC:  Receiver Operating Characteristic 

ROS:  Reactive oxygen species 

RUV:  Remove Unwanted Variation 
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TPM:  Transcripts Per Million 

Y2H:  Yeast Two-Hybrid 

Y2H-NGIS: Yeast Two-Hybrid Next-Generation Interaction Screening 

 

Availability of code, data, and materials 

R code and ReadMe file for the Y2H-SCORES software are provided at GitHub 

(https://github.com/Wiselab2/Y2H-SCORES). Additionally, we implemented a python script to link 

the score functions with the NGPINT pipeline (Banerjee et al., 2020), which integrates both 

software packages by allowing Y2H-SCORES to run on the NGPINT outputs. Users can find the 

instructions in the same repository. Y2H-NGIS data supporting the conclusions of this article will 

be available in NCBI’s Gene Expression Omnibus (GEO) upon publication. 

 

Supplemental files 

S1 Fig.  Coefficient of variation (CV) for each prey using different normalization methods. 

S2 Fig.  Top candidate interactors inferred with Y2H-SCORES and different normalization 

methods.  

S3 Fig.  Binary Y2H for the candidate preys HORVU2Hr1G060120 and 

HORVU2Hr1G024160.  

S4 Fig.  Distributions of the parameters used for Y2H-NGIS simulation.  

S1 Table.  Wilcoxon signed-rank test for the Pearson correlation of samples grouped by 

condition, for different normalization methods. 

S2 Table.  Wilcoxon signed-rank test for CV densities of different normalization methods. 

S3 Table.  Y2H-NGIS simulation scenarios and performance of Y2H-SCORES. 

S4 Table.  Wilcoxon ranked-sum test for the top 5% ranked interactions using the Borda 

ensemble of the Y2H-SCORES under different normalization methods.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.08.288365doi: bioRxiv preprint 

https://github.com/Wiselab2/Y2H-SCORES
https://doi.org/10.1101/2020.09.08.288365
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

S5 Table.  Quantiles of the specificity score for the top 100 interactions ranked using median-

of-ratios normalization and unique or non-unique across other normalizations.   

S1 Text.  HvThf1 prey sequences. 

S2 Text.  Y2H-NGIS simulation model. 
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