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Abstract

Deep learning models have achieved great success in predicting genome-wide
regulatory effects from DNA sequence, but recent work has reported that SNP
annotations derived from these predictions contribute limited unique information for
human complex disease. Here, we explore three integrative approaches to improve
the disease informativeness of allelic-effect annotations (predicted difference between
reference and variant alleles) constructed using two previously trained deep learning
models, DeepSEA and Basenji. First, we employ gradient boosting to learn optimal
combinations of deep learning annotations, using (off-chromosome) fine-mapped
SNPs and matched control SNPs for training. Second, we improve the specificity
of these annotations by restricting them to SNPs implicated by (proximal and
distal) SNP-to-gene (S2G) linking strategies, e.g. prioritizing SNPs involved in gene
regulation. Third, we predict gene expression (and derive allelic-effect annotations)
from deep learning annotations at SNPs implicated by S2G linking strategies —
generalizing the previously proposed ExPecto approach, which incorporates deep
learning annotations based on distance to TSS. We evaluated these approaches using
stratified LD score regression, using functional data in blood and focusing on 11
autoimmune diseases and blood-related traits (average N=306K). We determined
that the three approaches produced SNP annotations that were uniquely informative
for these diseases/traits, despite the fact that linear combinations of the underlying
DeepSEA and Basenji blood annotations were not uniquely informative for these
diseases/traits. Our results highlight the benefits of integrating SNP annotations
produced by deep learning models with other types of data, including data linking
SNPs to genes.
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Introduction

Deep learning models have shown considerable promise in predicting regulatory marks
from DNA sequence1–8, motivated by the well-documented role of non-coding variation
in complex disease9–15. However, we recently showed that existing deep learning models
provide limited unique information about complex disease when conditioned on a broad
set of coding, conserved, regulatory and LD-related annotations16. Thus, further ideas are
required in order for deep learning models to achieve their full potential in contributing
to our understanding of complex disease.

Here, we explore three approaches for integrating different types of functional data to
improve the disease informativeness of allelic-effect SNP annotations (predicted difference
between reference and variant alleles) constructed using two previously trained deep
learning models, DeepSEA4 and Basenji5. First, we employ gradient boosting17 to learn
optimal combinations of deep learning annotations, integrating deep learning annotations
with (off-chromosome) fine-mapped SNPs from previous studies18–20. Second, we improve
the specificity of deep learning annotations by restricting them to SNPs linked to genes;
we consider a broad set of proximal and distal SNP-to-gene (S2G) linking strategies, e.g.
prioritizing SNPs involved in gene regulation21–30. Third, we predict gene expression
(and derive allelic-effect annotations) from deep learning annotations at SNPs implicated
by S2G linking strategies, generalizing the previously proposed ExPecto approach4, which
incorporates deep learning annotations based on distance to TSS. We consider either
SNPs linked to all genes, or SNPs linked to genes in biologically important gene sets22,31.
We assessed the informativeness of the resulting annotations for disease heritability
by applying stratified LD score regression (S-LDSC)13 to 11 autoimmune diseases and
blood-related traits (average N=306K), conditional on a broad set of coding, conserved,
regulatory and LD-related annotations from the baseline-LD model32,33. We focused
our analyses on functional data in blood, and on blood-related diseases/traits.

Results

Overview of Methods

We define an annotation as an assignment of a numeric value to each SNP with minor
allele count ≥5 in a 1000 Genomes Project European reference panel34, as in our previous
work13; we primarily focus on annotations with values between 0 and 1. Our annotations
are derived from allelic-effect deep learning annotations (predicted difference between
reference and variant alleles of sequence-based deep learning predictions of functional
annotations) from two recently developed deep learning models, DeepSEA4 and Basenji5.
DeepSEA employs a multi-class classification model to predict chromatin features by
analyzing sequence data in a 1kb of human reference sequence around a SNP. Basenji
employs a Poisson likelihood model to analyze 130kb of human reference sequence
around each SNP using dilated convolutional layers. Our previous work16 focused
on unsigned (absolute) allelic-effect annotations for DNase and three histone marks,
H3K27ac, H3K4me1 and H3K4me3 (associated with active enhancers and promoters).
Here, we integrate signed allelic-effect annotations with other types of data - fine-mapped
SNPs, SNPs linked to genes, and gene expression - to generate more disease-informative
unsigned annotations. We have publicly released all new annotations analyzed in this
study, along with open-source software for constructing the new annotations (see URLs).
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First, we employ gradient boosting17 to integrate deep learning annotations with
(off-chromosome) fine-mapped SNPs for blood-related traits from previous studies18–20

to generate boosted annotations representing an optimal combination of deep-learning
annotations across features. Second, we improve the specificity of these annotations by
restricting them to SNPs linked to genes using 10 (proximal and distal) SNP-to-gene
(S2G) strategies21–30 (Table 1). Third, we predict gene expression (and derive allelic-
effect annotations) from deep learning annotations at SNPs implicated by S2G linking
strategies, generalizing the previously proposed ExPecto approach4, which incorporates
deep learning annotations based on distance to TSS.

We assessed the informativeness of the resulting annotations for disease heritability
by applying stratified LD score regression (S-LDSC)13 to 11 independent blood-related
diseases and traits (5 autoimmune diseases and 6 blood cell traits; average N=306K,
Table S1) and meta-analyzing S-LDSC results across traits; we restricted our analyses
to blood-related traits due to our focus on functional data in blood. We conservatively
conditioned all analyses on a “baseline-LD-deep model” defined by 86 coding, conserved,
regulatory and LD-related annotations from the baseline-LD model (v2.1)32,33 and 14
additional jointly significant annotations from ref.16: 1 non-tissue-specific allelic-effect
Basenji annotation, 3 Roadmap annotations, 5 ChromHMM annotations, and 5 other
annotations (100 annotations total) (Table S2 and Table S3).

We used two metrics to evaluate informativeness for disease heritability: enrichment
and standardized effect size (τ?). Enrichment is defined as the proportion of heritability
explained by SNPs in an annotation divided by the proportion of SNPs in the anno-
tation13, and generalizes to annotations with values between 0 and 125. Standardized
effect size (τ?) is defined as the proportionate change in per-SNP heritability associated
with a 1 standard deviation increase in the value of the annotation, conditional on other
annotations included in the model32; unlike enrichment, τ? quantifies effects that are
unique to the focal annotation. In our “marginal” analyses, we estimated τ? for each focal
annotation conditional on the baseline-LD-deep annotations. In our “joint” analyses,
we merged baseline-LD-deep annotations with focal annotations that were marginally
significant after Bonferroni correction and performed forward stepwise elimination to
iteratively remove focal annotations that had conditionally non-significant τ? values
after Bonferroni correction, as in ref.32.

DeepBoost deep learning annotations restricted to SNPs impli-
cated by functionally informed S2G linking strategies are uniquely
informative for autoimmune disease heritability

We developed a gradient boosting approach, DeepBoost, to learn optimal combinations of
deep learning annotations (sequence-based deep learning predictions of functional anno-
tations), using off-chromosome fine-mapped SNPs for blood-related diseases/traits18–20

and matched control SNPs for training (Figure S1 and Methods). The input deep
learning annotations consisted of either 2,002 DeepSEA allelic-effect annotations4 or
4,229 Basenji allelic-effect annotations5 (see Methods), each representing a particular
chromatin mark in a particular tissue/cell type; these annotations spanned 127 tissues
and cell types from Roadmap35, but the 27 blood cell types provided the bulk of the
information (see below). The fine-mapped SNPs consisted of 8,741 fine-mapped au-
toimmune disease SNPs18 with causal probability > 0.0275 (in secondary analyses, we
also considered other sets of fine-mapped SNPs19,20). DeepBoost uses decision trees
to distinguish fine-mapped SNPs from matched control SNPs (with similar MAF and
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LD structure and local GC content) using an optimal combination of deep learning
annotations; the DeepBoost model is trained using the XGBoost gradient boosting
software17 (see URLs). DeepBoost attained an AUROC of up to 0.67 in distinguishing
fine-mapped SNPs from control SNPs, an encouraging result given the fundamental
difficulty of this task (Table S4). The boosted allelic-effect annotations derived from
DeepBoost (DeepSEA∆-boosted and Basenji∆-boosted; we use ∆ to denote allelic-effect
annotations) were only moderately correlated with allelic-effect annotations derived
from a simple maximum of published deep learning annotations across 4 chromatin
marks (DNase, H3K27ac, H3K4me1 and H3K4me3) and 27 blood cell types, as in ref.16

(DeepSEA∆-published and Basenji∆-published) (average r = 0.35) (Figure S2). We
broadly investigated which features of the DeepSEA and Basenji models contributed the
most to the DeepSEA∆-boosted and Basenji∆-boosted annotations by applying Shapley
Additive Explanation (SHAP)36, a widely used tool for interpreting machine-learning
models. For DeepSEA∆-boosted, the top features included TF features in K562 and
GM12878, two immune-related cell lines; for Basenji∆-boosted, top features included
activating histone marks (H3K27ac and H3K4me3) in blood cell types (Figure S3, Figure
S4). In secondary analyses, we determined that (i) using logistic classification instead of
XGBoost (using the same features as the DeepBoost model) attained only slightly lower
AUROC (Table S5); and (ii) using only features from 27 blood cell types (524 DeepSEA
features or 479 Basenji features) attained only slightly lower AUROC (Table S6).

In our marginal analysis of disease heritability (across 11 autoimmune diseases and
blood-related traits) using S-LDSC conditional on the baseline-LD-deep model, all 4
annotations (DeepSEA∆-published, Basenji∆-published, DeepSEA∆-boosted, Basenji∆-
boosted) were significantly enriched for heritability, with larger enrichments for the
boosted annotations (Figure 1A, left panel and Table S7); values of standardized
enrichment (defined as enrichment scaled by the standard deviation of the annotation)
are reported in Figure S5 and Table S8. However, none of these annotations attained
Bonferroni-significant τ? values (correcting for 90 annotations tested; see Methods)
(although the Basenji∆-boosted annotation was FDR-significant) (Figure 1B, left panel
and Table S7). We constructed analogs of the DeepSEA∆-boosted and Basenji∆-
boosted annotations using three other sets of fine-mapped SNPs: 4,312 fine-mapped
inflammatory bowel disease SNPs19, 1,429 functionally fine-mapped SNPs for 14 blood-
related UK Biobank traits20,37, or the union of all 14,482 fine-mapped SNPs. The
resulting annotations produced less disease signal than those constructed using the 8,741
fine-mapped autoimmune disease SNPs18 (Table S7).

We sought to improve the specificity of these annotations by restricting them to SNPs
implicated by SNP-to-gene (S2G) linking strategies, e.g. prioritizing SNPs that may play
a role in gene regulation; we define an S2G strategy as an assignment of 0, 1 or more
linked genes to each SNP. We considered 10 S2G strategies capturing both proximal and
distal gene regulation in blood, as in our previous work22 (see Methods and Table 1), and
constructed 10 corresponding binary S2G annotations defined by SNPs linked to the set
of all genes; the S2G annotations were only mildly positively correlated with each other
(average r = 0.09; Figure S6). We defined restricted allelic-effect annotations as a simple
product of allelic-effect annotations and S2G annotations. Due to correlations between
allelic-effect annotations and S2G annotations (average r = 0.16; Figure S7), the size of a
restricted allelic-effect annotation was generally larger than the product of the respective
sizes of the underlying allelic-effect and S2G annotations. We evaluated 40 restricted
allelic-effect annotations (4 allelic-effect annotations (2 published + 2 boosted) x 10
S2G annotations). We analyzed the restricted allelic-effect annotations conditional on a
“baseline-LD-deep-S2G model” defined by 100 baseline-LD-deep annotations and 7 new
S2G annotations from Table 1 that were not already included in the baseline-LD model
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(107 annotations total) (Table S2 and Table S9), to ensure that heritability enrichments
that are entirely due to S2G annotations would not produce conditional signals.

In our marginal analysis of disease heritability using S-LDSC conditional on the
baseline-LD-deep-S2G model, all 40 annotations were significantly enriched for heri-
tability, with larger enrichments for smaller annotations (Figure 1A, right panel and
Table S10); values of standardized enrichment were more similar across annotations
(Table S11). Although published and boosted allelic-effect annotations were of similar
size, the enrichments for boosted-restricted annotations across S2G strategies were on
average 1.3x (DeepSEA) and 1.5x (Basenji) higher than the enrichments for published-
restricted annotations. 3 of the boosted-restricted annotations (DeepSEA∆-boosted ×
eQTL, Basenji∆-boosted × ABC and Basenji∆-boosted × TSS) attained Bonferroni-
significant τ? values (Figure 1B, right panel and Table S10). (In comparison, when
we conditioned only on the baseline-LD-deep model, 15 of the 40 annotations attained
Bonferroni-significant τ? values (Table S12).

We jointly analyzed the 3 marginally significant annotations from Figure 1B, right
panel by performing forward stepwise elimination to iteratively remove annotations that
had conditionally non-significant τ∗ values after Bonferroni correction. All 3 annotations
were jointly significant in the resulting joint model, with joint effect sizes very similar
to the conditional effect sizes from Figure 1B, right panel (Figure S8 and Table S13).
All three annotations had joint τ? > 0.5; annotations with τ∗ > 0.5 are unusual, and
considered to be important38.

We investigated whether the boosted-restricted annotations would detect gene set-
specific signals by further restricting them to SNPs linked to two biologically important
gene sets: genes intolerant to loss-of-function (LoF) mutations31 (pLI) and genes with
high PPI network connectivity to Enhancer-driven genes in blood22 (PPI-enhancer). We
defined gene set-specific boosted-restricted annotations by replacing the S2G annotations
(containing SNPs linked to all genes) with annotations containing SNPs linked to genes
in the input gene set (Methods); we primarily focused on boosted-restricted annotations
(instead of published-restricted annotations) because these were the restricted annotations
that produced significant conditional signals in Figure 1B, right panel. We evaluated
40 gene set-specific boosted-restricted annotations (2 gene sets (pLI, PPI-enhancer)
x 2 boosted allelic-effect annotations (Basenji∆-boosted, DeepSEA∆-boosted) x 10
S2G strategies). We analyzed the gene set-specific boosted-restricted annotations
conditional on a “baseline-LD-deep-S2G-geneset” model defined by 107 baseline-LD-
deep-S2G annotations and 8 jointly significant gene set-specific S2G annotations (Table
S14 and Table S2), to ensure that heritability enrichments that are entirely due to the
gene set-specific S2G annotations would not produce conditional signals.

In our marginal analysis of disease heritability using S-LDSC conditional on the
baseline-LD-deep-S2G-geneset model, all 40 annotations were significantly enriched for
heritability, with larger enrichment for smaller annotations (Figure 2A and Table S15);
values of standardized enrichment were more similar across annotations (Figure S9
and Table S16). 7 of the 40 annotations (3 Basenji∆-boosted (PPI-enhancer) and 4
DeepSEA∆-boosted (PPI-enhancer)) attained conditionally Bonferroni-significant τ?

values (Figure 2B and Table S15). We jointly analyzed these 7 annotations by performing
forward stepwise elimination. The resulting joint model contained 2 jointly significant
annotations, Basenji∆-boosted (PPI-enhancer) × ABC and Basenji∆-boosted (PPI-
enhancer) × Roadmap (Figure 2C and Table S17); both annotations had joint tau? > 0.5.
Both annotations remained jointly significant, with very similar τ∗ values, when further
conditioned on the 3 jointly significant boosted-restricted annotations from Figure 1B,
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right panel (including the underlying Basenji∆-boosted × ABC annotation) and the
underlying Basenji∆-boosted × Roadmap annotation (Table S17).

We performed 2 secondary analyses. First, we repeated the analysis of restricted
annotations using local GC-content (proportion of G and C nucleotides in a 1000bp
window around each SNP) in addition to the S2G strategies, conditioning on the baseline-
LD-deep-S2G model and the unweighted local GC-content annotation. The τ∗ values
for all 3 jointly significant restricted annotations from Figure 1B, right panel were
nearly unchanged and remained Bonferroni-significant (Table S18); this implies that the
unique disease signal in our restricted annotations cannot be explained by local GC-
content. Second, we repeated the analysis of gene set-specific restricted annotations using
published-restricted annotations instead of boosted-restricted annotations. Marginal
results were only slightly worse than Figure 2B (6 annotations with Bonferroni-significant
τ∗ values; Table S19), but none of the gene set-specific published-restricted annotations
annotations were significant conditional on the 2 jointly significant gene set-specific
boosted-restricted from Figure 2C (Table S20).

We conclude that boosted deep learning allelic-effect annotations restricted to SNPs
implicated by functionally informed S2G linking strategies are uniquely informative for
autoimmune diseases and blood-related traits.

Sequence-based deep learning predictions of gene expression in-
formed by S2G linking strategies are uniquely informative for
autoimmune disease heritability

We developed a new approach, Imperio, to predict gene expression from DNA sequence
by using S2G strategies to prioritize deep learning annotations (sequence-based deep
learning predictions of functional annotations) as features (Figure S10 and Methods).
Imperio generalizes the ExPecto approach4, which prioritizes deep learning annotations as
features based on distance to TSS. Specifically, Imperio uses regularized linear regression
to fit optimal combinations of features predicting gene expression across 22,020 genes
based on 2,002 DeepSEA or 4,229 Basenji deep learning annotations restricted to
relatively common SNPs (MAF > 1%) linked to the target gene by 5 S2G strategies
that are suitably large in size and generalizable to tissues beyond blood (5kb, 100kb,
TSS, ABC and Roadmap Enhancer; Table 1) (2,002 × 5 or 4,229 × 5 features); the
feature weights are independent of the target gene but dependent on the deep learning
annotation and the S2G strategy (see Methods). In contrast, ExPecto fits optimal
combinations of features based on 2,002 DeepSEA annotations restricted to 10 different
functions of distance to TSS (using exponential decay), for a total of 2,002 × 10 features.
We focused on predicting gene expression in blood, due to the larger amount of data
currently available for ABC and Roadmap Enhancer in blood cell types (however, our
approach is generalizable to other tissues). We evaluated the accuracy of Imperio in
predicting gene expression across genes on chromosome 8, which was withheld from
Imperio training data (analogous to ref.4). We determined that Imperio attained similar
predictive accuracy as ExPecto (Spearman correlation ρ = 0.76 (Basenji) and ρ = 0.72
(DeepSEA) with log RPKM expression, vs. ρ = 0.79 for ExPecto; Figure S11). The
expression predictions were highly correlated between the Imperio and ExPecto models
(average ρ = 0.82) (Figure S12), but the resulting allelic-effect annotations were less
correlated, such that Imperio may contribute unique information (see below). The top
significant features driving the Imperio model fit included Transcription Factor (TF)
features for DeepSEA and CAGE features for Basenji (Table S21). When we compared
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the 5 Imperio models utilizing a single S2G strategy, TSS outperformed the other S2G
strategies, but the resulting model fit (Spearman correlation ρ = 0.69 (Basenji) and
ρ = 0.71 (DeepSEA) with log RPKM expression) was substantially worse than the model
fit of the Imperio model utilizing all 5 S2G strategies (Table S22).

We used the Imperio allelic effects (signed predicted difference in expression between
reference and variant alleles) to predict GTEx blood gene expression across individuals
for each gene (see Methods). For each gene, we compared the Imperio prediction r2

to the total cis-SNP heritability of that gene, which represents an upper bound on the
prediction r2 that can be attained using DNA sequence. Averaging across all 22,020
genes, Imperio predictions captured 81% of the total cis-SNP heritability on average (vs.
75% for ExPecto; this analysis was not considered in ref.4) (Table S23). The Imperio
prediction r2 closely tracked cis-SNP heritability (ρ = 0.83 for DeepSEA, ρ = 0.84 for
Basenji across genes, vs. ρ = 0.81 for ExPecto) (Figure S13).

We used the gene expression predictions from Imperio (DeepSEA and Basenji models)
and ExPecto4 (DeepSEA model) to construct expression allelic-effect annotations (abso-
lute value of the predicted difference in expression between reference and variant alleles)
by summing allelic effects across genes linked by S2G strategies to the annotated SNP
(see Methods). The Imperio training data excluded chromosome 8 (analogous to ref.4; see
above), but did not exclude the target chromosomes on which allelic-effect annotations
were constructed. However, this does not constitute overfitting, because the Imperio
model was trained using reference sequence only. The Imperio-DeepSEA and Imperio-
Basenji annotations were moderately correlated with each other (r = 0.54) and with
ExPecto-DeepSEA (average r = 0.48) (Figure S14), such that each may contribute unique
information. Furthermore, Imperio-DeepSEA and Imperio-Basenji annotations showed
only mild correlation (average r=0.11) with boosted-restricted allelic effect annotations
from previous section (Table S24). We analyzed the Imperio-DeepSEA, Imperio-Basenji
and ExPecto-DeepSEA allelic-effect annotations conditional on the baseline-LD-deep-
S2G-geneset model (see above; Table S2 and Table S14), for consistency with analyses
of gene set-specific allelic-effect annotations (see below).

In our marginal analysis of disease heritability using S-LDSC conditional on the
baseline-LD-deep-S2G-geneset model, all 3 annotations were significantly enriched for
disease heritability, with larger enrichments for smaller annotations annotations (Figure
3A and Table S25); values of standardized enrichment were more similar across annota-
tions (Table S26). One annotation, Imperio-Basenji, attained a Bonferroni-significant
τ? value (Figure 3B and Table S25); the τ? value was very close to 0.5. This implies
that Imperio provides unique information about autoimmune diseases and blood-related
traits.

We investigated whether the Imperio approach would detect gene-set specific signals
by restricting Imperio to two biologically important gene sets: pLI31 and PPI-enhancer22

(see above). We defined gene set-specific allelic-effect annotations by restricting both
the fitting of feature weights and the gene expression predictions to genes in the input
gene set. Pairwise correlations between the 4 gene set-specific allelic-effect annotations
([Imperio-DeepSEA or Imperio-Basenji] x [pLI or PPI-enhancer]) (and the 3 non-gene
set-specific allelic-effect annotations) are reported in Figure S14. We analyzed the gene
set-specific allelic-effect annotations conditional on the baseline-LD-deep-S2G-geneset
model (see above; Table S2 and Table S14).

In our marginal analysis of disease heritability using S-LDSC conditional on the
baseline-LD-deep-S2G-geneset model, all 4 annotations were significantly enriched for dis-
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ease heritability, with larger enrichments for smaller annotations annotations (Figure 3C
and Table S27); values of standardized enrichment were more similar across annotations
(Table S28). Two annotations, Imperio-DeepSEA (PPI-enhancer) and Imperio-Basenji
(PPI-enhancer), attained Bonferroni-significant τ? values (Figure 3D and Table S27). In
a joint analysis of both annotations, only Imperio-DeepSEA (PPI-enhancer) remained sig-
nificant (Figure 3D and Table S29); the τ? value was larger than 0.5. Imperio-DeepSEA
(PPI-enhancer) remained significant (with τ? > 0.5) when further conditioned on the
Imperio-Basenji annotation from Figure 3B (Table S30).

We performed 5 secondary analyses. First, we fit an Imperio+ExPecto model using
both Imperio (DeepSEA or Basenji) and ExPecto features. The Imperio+ExPecto
allelic-effect annotations did not produce a significant disease signal conditional on the
baseline-LD-deep-S2G-geneset model plus the Imperio-Basenji annotation from Figure
3B (Table S31). Second, we investigated a partially restricted gene set-specific Imperio
approach by restricting either (a) the fitting of feature weights or (b) the gene expression
predictions (but not both) to genes in the input gene set. None of the partially restricted
gene set-specific annotations produced a significant disease signal conditional on the
baseline-LD-deep-S2G-geneset model plus the two significant annotations from Figure
3B,D (Table S32 and Table S33). Third, we assessed whether the disease informativeness
of Imperio could be explained by annotations defined by the number of genes linked
to each SNP by each S2G strategy (see Methods). However, none of these annotations
produced a significant disease signal conditional on the baseline-LD-deep-S2G-geneset
model, either for all genes (Table S34) or when restricted to PPI-enhancer genes (Table
S35). Fourth, we modified Imperio by constructing allelic-effect annotations using the
maximum across genes proximal to the annotated SNPs, instead of the sum (see Methods).
None of the modified annotations produced a significant disease signal conditional on the
baseline-LD-deep-S2G-geneset model plus the two significant annotations from Figure
3B,D (Table S36). Fifth, we compared the Imperio annotations to MaxCPP-blood
(Maximum across genes of fine-mapped eQTL Causal Posterior Probability) annotation25

constructed using GTEx whole blood gene expression data39. The MaxCPP-blood
annotation was only weakly correlated with Imperio annotations (average r = 0.09) and
did not produce a significant disease signal conditioned on the baseline-LD-deep-S2G-
geneset model (Table S37), consistent with the fact that a related MaxCPP annotation
based on a meta-analysis across tissues25 is already included in the baseline-LD model.

We conclude that allelic-effect annotations based on predictions of gene expression
from DNA sequence using S2G linking strategies to prioritize deep learning annotations
as features are uniquely informative for autoimmune diseases and blood-related traits.

Combined joint model

We constructed a combined joint model containing annotations from the above analyses
that were jointly significant, contributing unique information conditional on all other
annotations. In detail, we merged the baseline-LD-deep-S2G-geneset model with 3
DeepBoost boosted-restricted allelic-effect annotations from Figure 1, 2 gene-set specific
DeepBoost annotations from Figure 2, 1 Imperio gene expression prediction allelic-effect
annotation from Figure 3B, and 1 gene-set specific Imperio annotation from Figure
3D, and performed forward stepwise elimination to iteratively remove annotations that
had conditionally non-significant τ? values after Bonferroni correction. The resulting
combined joint model contained 3 new annotations, including 1 DeepBoost annotation
(Basenji∆-boosted × TSS) and the 2 Imperio annotations (Imperio-Basenji and Imperio-
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DeepSEA (PPI-enhancer)) (Figure 4 and Table S38). 2 of these annotations attained
τ∗ > 0.5: Basenji∆-boosted × TSS (1.1± 0.29) and Imperio-DeepSEA (PPI-enhancer)
(0.67± 0.15); as noted above, annotations with τ∗ > 0.5 are unusual, and considered to
be important38. The combined τ∗22,40 of the 3 annotations was high (1.7± 0.3).

We evaluated the combined joint model of Figure 4 (and other models) by computing
loglSS

41 (an approximate likelihood metric) relative to a model with no functional
annotations (∆loglSS), averaged across a subset of 6 blood-related traits (1 autoimmune
disease and 5 blood cell traits) from the UK Biobank37 (Table S1). The combined joint
model attained a +20.3% larger ∆loglSS than the baseline-LD model (Table S39); +2.5%
of the improvement derived from the 3 new annotations from Figure 4. The combined
joint model also attained a +14.2% larger ∆loglSS than the baseline-LD model (+2.2%
of the improvement derived from the 3 new annotations from Figure 4) in a separate
analysis of 24 non-blood-related traits from the UK Biobank (see Table S40 for list of
traits) that had lower absolute loglSS values (Table S39), implying that the value of
the annotations introduced in this paper is not restricted to autoimmune diseases and
blood-related traits.

We conclude that two types of allelic-effect annotations informed by S2G strate-
gies—DeepBoost boosted-restricted annotations and Imperio gene expression prediction
annotations—are jointly informative for autoimmune diseases and blood-related traits.

Discussion

We have evaluated the contribution to autoimmune disease of SNP annotations con-
structed by integrating deep learning models with different types of functional data,
including fine-mapped SNPs, SNP-to-gene linking strategies, gene expression data, and
biologically important gene sets, using our DeepBoost and Imperio frameworks. We
determined that boosted deep allelic-effect annotations restricted to SNPs implicated by
functionally informed S2G linking strategies are uniquely informative for disease. We also
determined that allelic-effect annotations based on prediction of gene expression from
DNA sequence that were informed by S2G linking strategies are uniquely informative for
disease, outperforming allelic-effect annotations from ExPecto4. We further determined
that both DeepBoost and Imperio allelic-effect annotationswere jointly informative for
disease, resulting in an improved heritability model.

Our work has several downstream implications. First, the DeepBoost and Imperio
frameworks can be applied to deep learning models beyond DeepSEA and Basenji, and
we anticipate that future deep learning models will benefit from these frameworks. .
Second, the accuracy of the Imperio framework in capturing cis-SNP heritability in blood
suggests that it may be valuable to integrate Imperio gene expression predictions in
other settings, such as transcriptome-wide association studies (TWAS)?,42,43 or mediated
expression score regression (MESC)44. Third, our findings have immediate potential
for improving functionally informed fine-mapping20,45–47 (including experimental follow-
up48), polygenic localization20, and polygenic risk prediction49,50.

Our work has several limitations, representing important directions for future re-
search. First, we focused our analyses on functional data in blood, and on blood-related
diseases/traits; this choice was motivated by (i) the better representation of some S2G
strategies, such as ABC and Roadmap Enhancer, in blood cell types than in other
tissues, and (ii) the particularly large functional enrichments observed in autoimmune
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diseases and blood-related traits13,22,25,32. However, it will be of interest to apply the
DeepBoost and Imperio frameworks to other tissues and corresponding diseases/traits,
once richer functional data becomes available. Second, we investigated the 10 S2G
strategies separately, instead of constructing a single optimal combined strategy. A
comprehensive evaluation of S2G strategies, and a method to combine them, will be
provided elsewhere (S. Gazal, unpublished data). Third, our S-LDSC analyses are
inherently focused on common variants, but deep learning models have also shown
promise in prioritizing rare pathogenic variants4,8,51. The value of deep learning models
for prioritizing rare pathogenic variants has been questioned in a recent analysis focusing
on Human Gene Mutation Database (HGMD) variants52, meriting further investigation.
Fourth, we focused here on deep learning models trained using human data, but models
trained using data from other species may also be informative for human disease24,53.
Fifth, the forward stepwise elimination procedure that we use to identify jointly sig-
nificant annotations32 is a heuristic procedure whose choice of prioritized annotations
may be close to arbitrary in the case of highly correlated annotations. Nonetheless, our
framework does impose rigorous criteria for conditional informativeness. Despite all
these limitations, our findings improve the informativeness of deep learning models for
autoimmune diseases and blood-related traits, and enhance our understanding of the
sequence-mediated regulatory processes impacting these diseases/traits.
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Methods

Genomic annotations and the baseline-LD model

We define a functional annotation as an assignment of a numeric value to each SNP with
minor allele count ≥ 5 in a predefined reference panel (e.g., 1000 Genomes Project34;
see URLs). Annotations can be either binary or continuous-valued (Methods). Our
focus is on continuous-valued annotations (with values between 0 and 1) that are
obtained by integrating deep learning models with functional data, including fine-mapped
SNPs, SNP-to-gene linking strategies, gene expression data, and biologically important
gene sets. Annotations that correspond to known or predicted function are referred
to as functional annotations. The baseline-LD model (v.2.1) contains 86 functional
annotations (see URLs). These annotations include binary coding, conserved, and
regulatory annotations (e.g., promoter, enhancer, histone marks, TFBS) and continuous-
valued linkage disequilibrium (LD)-related annotations.

DeepSEA and Basenji functional annotations

Tissue-specific deep learning annotations were derived using two pre-trained Convolu-
tional Neural Net (CNN) models: Basenji5 and DeepSEA2,4 (architecture from ref.4)
(see URLs). Basenji is a Poisson likelihood model trained on original count data from
4, 229 cell-type specific histone mark, chromatin accessibility and FANTOM5 CAGE54,55

annotations. DeepSEA is a classification based model trained on binary peak call data
from 2, 002 cell-type specific TFBS, histone mark and chromatin accessibility annotations
from the ENCODE56 and Roadmap Epigenomics35 projects. Additionally, Basenji uses
dilated convolutional layers that allow scanning much larger contiguous sequence around
a variant (≈ 130kb) compared to DeepSEA (1kb). For each SNP with minor allele count
≥ 5 in 1000 Genomes, we applied the pre-trained DeepSEA and Basenji models to the
surrounding DNA sequence to compute both the prediction (at reference allele) and
the predicted difference in probability between the reference and the alternate alleles.
We call these the variant-level annotations and allelic-effect annotations respectively;
this naming convention has been used previously16. The allelic-effect annotations are
more interesting from a biological perspective as they are specific to a sequence-based
predictive model like these deep learning models. The Basenji allelic-effect annotations
were quantile-matched to corresponding DeepSEA allelic-effect annotations to ensure a
fair comparison of the two approaches.

Our previous work focused on DeepSEA and Basenji unsigned allelic-effect anno-
tations, aggregated by maximum across tissue-specific features, for DNase, H3K27ac,
H3K4me1 and H3K4me3. Here we define 2 allelic-effect annotations, DeepSEA∆-
published and Basenji∆-published, as the maximum over these 4 chromatin marks
(DNase, H3K27ac, H3K4me1 and H3K4me3).

Boosted deep learning annotations using DeepBoost

DeepSEA∆-published and Basenji∆-published represent a simple maximum of allelic-
effect annotations across tissues and chromatin features. Here we introduce a gradient
boosting approach to combine allelic-effect annotations across tissues and chromatin
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features. In detail, we train a classification model using decision trees, where each
node in a tree splits SNPs into 2 classes (fine-mapped and control) using deep learning
allelic-effect annotations from DeepSEA and Basenji models. The features in this
classification model comprise of either allelic-effect annotations for 2,002 DeepSEA
features or allelic-effect annotations for 4,229 Basenji features. We choose the control
SNPs from non-finemapped SNPs matched for MAF, LD, local GC-content and the
number of repeats distribution. MAF is based on the same reference panel (European
samples from 100 Genomes Phase 334), and LD is estimated by applying S-LDSC on
all SNPs annotation (‘base’). The number of control SNPs were chosen equal to the
number of fine-mapped SNPs. We used fine-mapped SNPs data related to blood traits
from three sources18–20.

We used the Extreme gradient boosting method implemented in the XGBoost soft-
ware17,57 with following model parameters: the number of estimators (200, 250, 300),
depth of the tree (25, 30, 35), learning rate (0.05), gamma (minimum loss reduction
required before additional partitioning on a leaf node; 10), minimum child weight (6, 8
,10), and subsample (0.6, 0.8, 1); we optimized parameters by tuning hyper-parameters
(a randomized search) with five-fold cross-validation. Two important parameters to
avoid over-fitting are gamma and learning rate; we chose these values consistent with
previous studies58.

The gradient boosting predictor is based on T additive estimators (T=200, 250, 300)
and it minimizes the loss objective function Lt at iteration t.

L(t) =
N∑
i=1

l(yi, ŷ
(t)
i ) + γ(ft) ŷ

(t)
i = ŷ

(t−1)
i + ft(xi) (1)

ft is an independent tree structure and γ(ft) is the complexity parameter. The final
prediction from the gradient boosting model therefore is

ŷi =
T∑
t=1

ft(xi) (2)

In order to avoid a winner’s curse problem and overfitting problem, we break down the
training and testing into two separate groups. Our annotations are generated by out-of-
sample predictions by performing the training on odd (resp. even) chromosomes and then
predicting on even (resp. odd) chromosomes.The output of the classifier is probabilistic in
nature because of the logistic loss and so the annotations are automatically probabilistic.
Eventually, we generate 2 annotations, DeepSEA∆-boosted and Basenji∆-boosted for
each of 4 sets of fine-mapped SNPs, comprising of 8,741 fine-mapped autoimmune disease
SNPs18, 4,312 fine-mapped inflammatory bowel disease SNPs19, 1,429 functionally fine-
mapped SNPs for 14 blood-related UK Biobank traits20,37, or the union of these 14,482
fine-mapped SNPs.

Boosted-restricted deep learning annotations using S2G strate-
gies

We define a SNP-to-gene (S2G) linking strategy as an assignment of 0, 1 or more
linked genes to each SNP with minor allele count ≥ 5 in a 1000 Genomes Project
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European reference panel34. We intersect the 4 allelic-effect annotations from the
previous subsections (DeepSEA∆-published, Basenji∆-published, DeepSEA∆-boosted,
Basenji∆-boosted) with 10 S2G strategies used in ref.22to generate 40 restricted allelic-
effect annotations

We explored 10 SNP-to-gene linking strategies in blood (Table 1). We use either
gene proximity based linking strategies (SNPs in gene body ± 5kb, gene body ±
100kb, predicted TSS (by Segway28,29) around a protein-coding gene, gene coding
SNPs, gene promoter SNPs as defined by UCSC59,60) or SNPs that lie in regions that
are distally connected to a gene in blood cell-types. The distal connection strategies
studied here include - regions estimated to be distally connected to the gene by Activity-
by-Contact (ABC) score23; regions predicted to be Enhancer-Gene links based on
Roadmap Epigenomics data (Roadmap)26,30,35; regions in ATAC-seq peaks that are
highly correlated to expression of a gene in mouse immune cell-types (ATAC)24; regions
distally connected through promoter-capture HiC links (PC-HiC)27.

The boosted-restricted allelic-effect annotations were further restricted to SNPs linked
to genes in two biologically important gene sets - pLI31 and PPI-enhancer22.

• PPI-enhancer: A binary gene score denoting genes in top 10% in terms of
closeness centrality measure to the disease informative enhancer-regulated gene
scores as defined in ref.22. To get the closeness centrality metric, we first perform
a Random Walk with Restart (RWR) algorithm61 on the STRING protein-protein
interaction (PPI network62,63(see URLs) with seed nodes defined by genes in
top 10% of the 4 enhancer-regulated gene scores defined in ref.22 with jointly
significant disease informativeness (ABC-G21,23, ATAC-distal24, EDS-binary64 and
SEG-GTEx65). The closeness centrality score was defined as the average network
connectivity of the protein products from each gene based on the RWR method.

• pLI : A probabilistic gene score with each gene graded by the probability of
intolerance to loss of function mutations31.

We generate an additional 40 annotations by combining the 2 gene scores (pLI,
PPI-enhancer) with 20 restricted boosted allelic-effect annotations for DeepSEA and
Basenji models and 10 S2G strategies.

Imperio deep learning annotations using gene expression predic-
tions informed by S2G strategies

We propose a new framework, Imperio, that for predicting gene expression from DNA
sequence by using S2G strategies to prioritize deep learning annotations (sequence-
based deep learning predictions of functional annotations) as features. This approach is
analogous to the recent ExPecto framework4, but focuses on sequences around common
variants linked to genes—either proximally or distally via enhancers, as in the Roadmap
and ABC distal S2G strategies. We selected these two distal S2G strategies because
they outperformed other distal strategies in blood in our previous work22. We integrate
both DeepSEA and Basenji models with S2G strategies to predict gene expression.
We consider a reduced set of 5 classes of S2G strategies: 5kb, 100kb, TSS, ABC and
Roadmap Enhancer. We fit a elastic net regularized linear regression model to log
RPKM expression data for gene g, Yg.
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Yg =
∑
f

∑
d

βfd
∑
s∈Cdg

psf + εg; εg ∼ N(0, σ2) (3)

where f represents the chromatin mark features for the deep learning model (2,002 for
the DeepSEA model and 4,229 for the Basenji model), s represents SNPs that are at least
1Kb apart ensuring relatively weaker correlation in their variant-effect or allelic-effect
annotations, d represents a SNP-to-gene linking strategy, and Cdg represents the set of all

SNPs linked to gene g by the S2G strategy d. The 5 types of Cdg are:

• C5kb
g : SNPs in a window of 5kb around gene g

• C100kb
g : SNPs in a window of 100kb around gene g

• CTSS±5kb
g : SNPs in a window of of ±5kb around the TSS of gene g.

• CABCg : SNPs in regions linked to gene g by aggregation of Hi-C and enhancer
marks data in 56 blood cell-types with a Acitivity-by-Contact (ABC) score of
> 0.03.

• CRoadmapg : SNPs in Roadmap Enhancers linked to gene g in 27 blood cell-types.

βfd represents the model coefficient capturing the effect of each chromatin feature
f and each S2G strategy d on the gene expression. psf represents the variant-level
prediction for chromatin feature f around SNP i. εg represents white noise in the
regression model. The model in Equation 3 is fitted by using Extreme gradient boosting
(XGBoost) method. Following the training procedure in ExPecto, all genes except the
ones in chromosome chr8 were used for training. The predictive performance of this
approch is assessed on the holdout chromosome chr8.

We define the signed Imperio effect of each SNP as the sequence mediated effect on
expression of a variant s and S2G strategy d.

Jsd :=
∑
f

β̂fd

(
paltsf − p

ref
sf

)
(4)

Jsd is the per-allele estimated change in expression caused by SNP s for any gene it
is linked to through S2G strategy d. Jsd is treated as the atom for any Imperio based
annotations we investigate.

The total absolute change in expression of gene g caused by SNP s and strategy d is
given as follows.

|∆Y (s,d)
g | := |Jsd|1s∈Cdg (5)

The total sequence mediated absolute predicted change by SNP s and S2G strategy
d across all genes g is given by

∆sd :=
∑
g

|Jsd|1s∈Cdg = |Jsd|Nsd (6)
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where Nsd is the number of genes linked to SNP s by S2G strategy d.

∆s :=
∑
d

∑
g

|Jsd|Nsd =
∑
d

∑
g

∣∣∣∣∣∣
∑
f

β̂fd

(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (7)

We adjust for the minor allele frequency (MAF) ps for each SNP s to adjust for
per-allele effect sizes, as per ref66.

∆s := ps(1− ps)
∑
d

∑
g

∣∣∣∣∣∣
∑
f

β̂fd

(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (8)

These ∆s scores were normalized to convert them to a probabilistic scale.

For a supplementary analysis, we also consider annotations that do not include the
information of the number of genes linked to a SNP (ξs).

ξs := ps(1− ps)
∑
d

∑
g

∣∣∣∣∣∣
∑
f

β̂fd

(
paltsf − p

ref
sf

)∣∣∣∣∣∣ (9)

We analyze 3 annotations, 2 Imperio annotations, Imperio-DeepSEA and Imperio-
Basenji, and ExPecto-DeepSEA.

Predicting gene expression across individuals using Imperio

We use the Imperio effect of each SNP s in S2G strategy d,Jsd from Equation 4 (for
either DeepSEA or the Basenji model) to define a gene specific Imperio score for each
individual n and S2G strategy d as follows.

I(g,1)
nd =

∑
s∈Cdg

GnsJsd (10)

I(g,2)
nd = Gns?Js?d s? = s ∈ Cdg

argmax

Js?d (11)

where Gns represents the number of risk alleles for individual n and the commonly
varying SNP s.

Next we perform a regression on the normalized gene expression log RPKM data for

individual n and gene g, Yng with predictors giveny by I(g,1)
nd and I(g,2)

nd .

Yng =
∑
d

γ
(1)
gd I

(g,1)
nd +

∑
d

γ
(2)
gd I

(g,2)
nd +

∑
k

βkBnk + εng εng ∼ N(0, η2) (12)
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B denotes the covariates that are adjusted for in the model. We consider a total of 68
covariates including 5 principal components across samples, platform, gender and PCR

amplification. In cases where there is only one SNP s in Cdg , I(g,1)
nd = I(g,2)

nd and only one
of these predictors is used. This model provides an insight on relative contribution of
different S2G strategies in explaining the inter-individual gene expression variation.

We compute R2
g, the proportion of variance explained by the predictor variables I(g,1)

nd

and I(g,2)
nd for all S2G strategies d and for gene g.

Gene set-specific Imperio deep learning annotations

The Imperio model coefficients βfd in the previous section are fitted across all genes.
However, different genes may have distinct sequence-mediated regulatory characteristics.
Additionally, not all genes in blood are equally important. Therefore, we propose a
gene-set specific Imperio model, where we perform the training of the model in Equation
3 over all genes g in a particular gene set G. We consider two gene sets, pLI31 and
PPI-enhancer22 (see above).

The sequence-mediated expression effect of a variant s corresponding to gene set G is
given by

∆s(G) := ps(1− ps)
∑
d

∑
g∈G

∣∣∣∣∣∣
∑
f

β̂fd(G)
(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (13)

where β̂fd(G) are the estimated model coefficients of βfd in Equation 3 fitted for
genes in gene set G.

We analyze 4 annotations, combining Imperio models for DeepSEA and Basenji
models with the PPI-enhancer and pLI gene sets.

We further define intermediate Imperio annotations by restricting either (a) the
fitting of feature weights or (b) the gene expression predictions (but not both) to genes
in the input gene set.

We define Imperio-sub-1 annotations generated by using all genes for fitting the
model and gene sets for computing the expression allelic effects.

∆(2)
s (I) := ps(1− ps)

∑
d

∑
g∈G

∣∣∣∣∣∣
∑
f

β̂fd

(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (14)

We define Imperio-sub-2 annotations generated by using genes in a geneset for fitting
the model and all genes for computing the expression allelic effects

∆(2)
s (I) := ps(1− ps)

∑
d

∑
g

∣∣∣∣∣∣
∑
f

β̂fd(G)
(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (15)
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Activity-by-Contact S2G strategy

The Activity-by-Contact (ABC)21,23 (https://github.com/broadinstitute/ABC-Enhancer-
Gene-Prediction) S2G strategy is determined by a predictive model for enhancer-gene
connections in each cell type, based on measurements of chromatin accessibility (ATAC-
seq or DNase-seq) and histone modifications (H3K27ac ChIP-seq), as previously de-
scribed21,23. Since this S2G strategy is currently unpublished, we provide a brief summary
of this approach. In a given cell type, the ABC model reports an “ABC score” for each
element-gene pair, where the element is within 5 Mb of the TSS of the gene.

For each cell type, we:

• Called peaks on the chromatin accessibility data using MACS2 with a lenient
p-value cutoff of 0.1.

• Counted chromatin accessibility reads in each peak and retained the top 150,000
peaks with the most read counts. We then resized each of these peaks to be 500bp
centered on the peak summit. To this list we added 500bp regions centered on all
gene TSS’s and removed any peaks overlapping blacklisted regions67,68 (https://
sites.google.com/site/anshulkundaje/projects/blacklists). Any result-
ing overlapping peaks were merged. We call the resulting peak set candidate
elements.

• Calculated element Activity as the geometric mean of quantile normalized chro-
matin accessibility and H3K27ac ChIP-seq counts in each candidate element region.

• Calculated element-promoter Contact using the average Hi-C signal across 10
human Hi-C datasets as described below.

• Computed the ABC Score for each element-gene pair as the product of Activity
and Contact, normalized by the product of Activity and Contact for all other
elements within 5 Mb of that gene.

To generate a genome-wide averaged Hi-C dataset, we downloaded KR normalized Hi-
C matrices for 10 human cell types (GM12878, NHEK, HMEC, RPE1, THP1, IMR90, HU-
VEC, HCT116, K562, KBM7). This Hi-C matrix (5 Kb) resolution is available here: ftp:
//ftp.broadinstitute.org/outgoing/lincRNA/average_hic/average_hic.v2.191020.

tar.gz23,69. For each cell type we performed the following steps.

• Transformed the Hi-C matrix for each chromosome to be doubly stochastic.

• We then replaced the entries on the diagonal of the Hi-C matrix with the maximum
of its four neighboring bins.

• We then replaced all entries of the Hi-C matrix with a value of NaN or corresponding
to Knight–Ruiz matrix balancing (KR) normalization factors ¡ 0.25 with the
expected contact under the power-law distribution in the cell type.

• We then scaled the Hi-C signal for each cell type using the power-law distribution
in that cell type as previously described.

• We then computed the “average” Hi-C matrix as the arithmetic mean of the 10
cell-type specific Hi-C matrices.
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In each cell type, we assign enhancers only to genes whose promoters are “ac-
tive” (i.e., where the gene is expressed and that promoter drives its expression). We
defined active promoters as those in the top 60% of Activity (geometric mean of chro-
matin accessibility and H3K27ac ChIP-seq counts). We used the following set of TSSs
(one per gene symbol) for ABC predictions: https://github.com/broadinstitute/

ABC-Enhancer-Gene-Prediction/blob/v0.2.1/reference/RefSeqCurated.170308.bed.

CollapsedGeneBounds.bed. We note that this approach does not account for cases
where genes have multiple TSSs either in the same cell type or in different cell types.

For intersecting ABC predictions with variants, we took the predictions from the
ABC Model and applied the following additional processing steps: (i) We considered all
distal element-gene connections with an ABC score ≥ 0.015, and all distal or proximal
promoter-gene connections with an ABC score ≥ 0.1. (ii) We shrunk the ∼500-bp regions
by 150-bp on either side, resulting in a ∼200-bp region centered on the summit of the
accessibility peak. This is because, while the larger region is important for counting reads
in H3K27ac ChIP-seq, which occur on flanking nucleosomes, most of the DNA sequences
important for enhancer function are likely located in the central nucleosome-free region.
(iii) We included enhancer-gene connections spanning up to 2 Mb.

Number of new annotations analyzed

Fpr the Bonferroni correction, we corrected for 90 annotations tested in all of our
analyses, based on 90 new annotations analyzed in our primary analyses (4 + 40 + 40 +
2 + 4 = 90):

• 4 genome-wide deep learning allelic-effect annotations: 2 published (DeepSEA∆-
published and Basenji∆-published) and 2 boosted (DeepSEA∆-boosted and Basenji∆-
boosted) annotations constructed using fine-mapped SNPs from ref.18 (vs. matched
control SNPs). [Figure 1]

• 40 restricted deep learning allelic-effect annotations integrating DeepSEA∆-published,
Basenji∆-published, DeepSEA∆-boosted and Basenji∆-boosted annotations with
10 S2G strategies from Table 1. [Figure 1]

• 40 gene set-specific restricted deep learning allelic-effect annotations, integrating ,
DeepSEA∆-boosted and Basenji∆-boosted annotations, 10 S2G strategies from
Table 1, and SNPs linked to genes specific to 2 gene scores(pLI and PPI-enhancer).
[Figure 2]

• 2 Imperio annotations (Imperio-DeepSEA, Imperio-Basenji) (we also analyzed
1 ExPecto-DeepSEA annotation from ref.4, but this is not a new annotation).
[Figure 3]

• 4 gene-set specific Imperio annotations combining Imperio-DeepSEA and Imperio-
Basenji models with genes from 2 gene sets (pLI and PPI-enhancer). [Figure
3]

Stratified LD score regression

Stratified LD score regression (S-LDSC) is a method that assesses the contribution of a
genomic annotation to disease and complex trait heritability13,32. S-LDSC assumes that
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the per-SNP heritability or variance of effect size (of standardized genotype on trait) of
each SNP is equal to the linear contribution of each annotation

var (βj) :=
∑
c

acjτc, (16)

where acj is the value of annotation c for SNP j, where acj may be binary (0/1),
continuous or probabilistic, and τc is the contribution of annotation c to per-SNP heri-
tability conditioned on other annotations. S-LDSC estimates the τc for each annotation
using the following equation

E
[
χ2
j

]
= N

∑
c

l(j, c)τc + 1, (17)

where l(j, c) =
∑
k ackr

2
jk is the stratified LD score of SNP j with respect to annotation

c and rjk is the genotypic correlation between SNPs j and k computed using data from
1000 Genomes Project34 (see URLs); N is the GWAS sample size.

We assess the informativeness of an annotation c using two metrics. The first metric
is enrichment (E), defined as follows (for binary and probabilistic annotations only):

E =

h2
g(c)

h2
g∑

j acj

M

, (18)

where h2
g(c) is the heritability explained by the SNPs in annotation c, weighted by

the annotation values.

The second metric is standardized effect size (τ?) defined as follows (for binary,
probabilistic, and continuous-valued annotations):

τ?c =
τcsdc
h2
g

M

, (19)

where sdc is the standard error of annotation c, h2
g the total SNP heritability and M

is the total number of SNPs on which this heritability is computed (equal to 5, 961, 159 in
our analyses). τ?c represents the proportionate change in per-SNP heritability associated
to a 1 standard deviation increase in the value of the annotation.

Combined τ ?

We use the combined tau? metric of ref.22, quantifying the conditional informativeness
of a heritability model (combined τ∗, generalizing the combined τ? metric of ref.40 to
more than two annotations. In detail, given a joint model defined by M annotations
(conditional on a published set of annotations such as the baseline-LD model), we define
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τ?comb =

√√√√ M∑
m=1

τ?2m +
∑
m6=l

rmlτ?mτ
?
l (20)

Here rml is the pairwise correlation of the annotations m and l, and rmlτ
?
mτ

?
l is

expected to be positive since two positively correlated annotations typically have the
same direction of effect (resp. two negatively correlated annotations typically have
opposite directions of effect). We calculate standard errors for τ?comb using a genomic
block-jackknife with 200 blocks.

Evaluating heritability model fit using SumHer loglSS

Given a heritability model (e.g. the baseline-LD model or the combined joint model
of Figure 4), we define the ∆loglSS of that heritability model as the loglSS of that
heritability model minus the loglSS of a model with no functional annotations (baseline-
LD-nofunct; 17 LD and MAF annotations from the baseline-LD model32), where loglSS

41

is an approximate likelihood metric that has been shown to be consistent with the
exact likelihood from restricted maximum likelihood (REML). We compute p-values for
∆loglSS using the asymptotic distribution of the Likelihood Ratio Test (LRT) statistic:
−2 loglSS follows a χ2 distribution with degrees of freedom equal to the number of
annotations in the focal model, so that −2∆loglSS follows a χ2 distribution with degrees
of freedom equal to the difference in number of annotations between the focal model
and the baseline-LD-nofunct model. We used UK10K as the LD reference panel and
analyzed 4,631,901 HRC (haplotype reference panel70) well-imputed SNPs with MAF ≥
0.01 and INFO ≥ 0.99 in the reference panel; We removed SNPs in the MHC region,
SNPs explaining > 1% of phenotypic variance and SNPs in LD with these SNPs.

Data Availability

All DeepBooost and Imperio annotations are available at https://alkesgroup.broadinstitute.
org/LDSCORE/DeepLearning/Dey_DeepBoost_Imperio/. The deep learning allelic ef-
fect SNP level annotations for DeepSEA and Basenji models are available at https:

//alkesgroup.broadinstitute.org/LDSCORE/DeepLearning/. This work used sum-
mary statistics from the UK Biobank study (http://www.ukbiobank.ac.uk/). The
summary statistics for UK Biobank is available online (https://data.broadinstitute.
org/alkesgroup/UKBB/). The 1000 Genomes Project Phase 3 data are available at ftp:
//ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502. The baseline-LD anno-
tations are available at https://data.broadinstitute.org/alkesgroup/LDSCORE/.

Code Availability

The codes for generating DeepBoost and Imperio annotations are available in the
Github repository https://github.com/kkdey/Imperio.This work primarily uses the
S-LDSC software (https://github.com/bulik/ldsc). We used publicly available soft-
ware for DeepSEA (https://github.com/FunctionLab/ExPecto) and Basenji (https:
//github.com/calico/basenji) to generate annotations for these respective models.
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Tables

Table 1. List of 10 S2G strategies: For each S2G strategy, we provide a brief
description, indicate whether the S2G strategy prioritizes distal or proximal SNPs
relative to the gene, and report its size (% of SNPs linked to genes). S2G strategies are
listed in order of increasing size. Further details are provided in the Methods section.

S2G
strategy

Description Distal/
Proximal

Size
(%)

ABC Inter-genic SNPs with distal enhancer-gene connections,
assessed by Activity-By-Contact21,23 across blood cell types.

Distal 1.4

TSS SNPs in predicted Transcription start sites28,29 overlapping
Ensembl gene±5kb window.

Proximal 1.6

Coding SNPs in coding regions Proximal 1.6
ATAC SNPs in ATAC-seq peaks >50% correlated to mouse expres-

sion across blood cell-types24 (mapped to human).
Distal 1.6

eQTL SNPs with fine-mapped causal posterior probability25 (CPP)
>0.001 in GTEx whole blood.

Distal
+Proximal

2.4

Roadmap SNPs in predicted enhancer-gene links, assessed using
Roadmap Epigenomics data26,30.

Distal 3.2

Promoter SNPs in promoter regions. Proximal 4.3
PC-HiC Distal SNPs with Promoter Capture HiC (PC-HiC)27 con-

nections to promoter regions in blood cell-types.
Distal 27

5kb SNPs in ±5kb window around gene body. Proximal 53
100kb SNPs in ±100kb window around gene body. Distal 81
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Figures

(A)

(B)
**

**

**

Figure 1. Disease informativeness of published and boosted allelic-effect deep
learning annotations restricted to SNPs implicated by functionally informed S2G
strategies: (A, Left panel) Heritability enrichment of published and boosted annotations,
conditional on the baseline-LD-deep model. Dashed horizontal line denotes no enrichment. (B,
Left panel) Standardized effect size (τ?) of published and boosted annotations, conditional on
the baseline-LD-deep model. (A, Right panel) Heritability enrichment of published-restricted
and boosted-restricted annotations, conditional on the baseline-LD-deep-S2G model. Dashed
horizontal line denotes no enrichment, solid horizontal lines denote enrichments of underlying
S2G annotations. (B, Right panel) Standardized effect size (τ?) of published-restricted and
boosted-restricted annotations, conditional on the baseline-LD-deep-S2G model. Solid horizontal
lines denote τ? values of underlying S2G annotations conditional on the baseline-LD-deep model.
Results are meta-analyzed across 11 blood-related traits. ** denotes P < 0.05/90. Error bars
denote 95% confidence intervals. Numerical results, including results for all 10 S2G strategies
analyzed, are reported in Table S7 and Table S10.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.288563doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288563
http://creativecommons.org/licenses/by-nc-nd/4.0/


(A)

(C)

(B)

0

0.5

1.0

Enrichment

⌧?
<latexit sha1_base64="m8x51bsrVS56tsNiPBpvxdRn3aw=">AAAB83icbVDLTgJBEJzFF+IL9ehlIph4Irtc9Ej04hETeSTsSnqHWZgw+8hMjwkh/IYXDxrj1Z/x5t84wB4UrKSTSlV3urvCTAqNrvvtFDY2t7Z3irulvf2Dw6Py8Ulbp0Yx3mKpTFU3BM2lSHgLBUrezRSHOJS8E45v537niSst0uQBJxkPYhgmIhIM0Ep+1Ucwj75GUNV+ueLW3AXoOvFyUiE5mv3ylz9ImYl5gkyC1j3PzTCYgkLBJJ+VfKN5BmwMQ96zNIGY62C6uHlGL6wyoFGqbCVIF+rviSnEWk/i0HbGgCO96s3F/7yeweg6mIokM8gTtlwUGUkxpfMA6EAozlBOLAGmhL2VshEoYGhjKtkQvNWX10m7XvPcmndfrzRu8jiK5Iyck0vikSvSIHekSVqEkYw8k1fy5hjnxXl3PpatBSefOSV/4Hz+AILCkVI=</latexit><latexit sha1_base64="m8x51bsrVS56tsNiPBpvxdRn3aw=">AAAB83icbVDLTgJBEJzFF+IL9ehlIph4Irtc9Ej04hETeSTsSnqHWZgw+8hMjwkh/IYXDxrj1Z/x5t84wB4UrKSTSlV3urvCTAqNrvvtFDY2t7Z3irulvf2Dw6Py8Ulbp0Yx3mKpTFU3BM2lSHgLBUrezRSHOJS8E45v537niSst0uQBJxkPYhgmIhIM0Ep+1Ucwj75GUNV+ueLW3AXoOvFyUiE5mv3ylz9ImYl5gkyC1j3PzTCYgkLBJJ+VfKN5BmwMQ96zNIGY62C6uHlGL6wyoFGqbCVIF+rviSnEWk/i0HbGgCO96s3F/7yeweg6mIokM8gTtlwUGUkxpfMA6EAozlBOLAGmhL2VshEoYGhjKtkQvNWX10m7XvPcmndfrzRu8jiK5Iyck0vikSvSIHekSVqEkYw8k1fy5hjnxXl3PpatBSefOSV/4Hz+AILCkVI=</latexit><latexit sha1_base64="m8x51bsrVS56tsNiPBpvxdRn3aw=">AAAB83icbVDLTgJBEJzFF+IL9ehlIph4Irtc9Ej04hETeSTsSnqHWZgw+8hMjwkh/IYXDxrj1Z/x5t84wB4UrKSTSlV3urvCTAqNrvvtFDY2t7Z3irulvf2Dw6Py8Ulbp0Yx3mKpTFU3BM2lSHgLBUrezRSHOJS8E45v537niSst0uQBJxkPYhgmIhIM0Ep+1Ucwj75GUNV+ueLW3AXoOvFyUiE5mv3ylz9ImYl5gkyC1j3PzTCYgkLBJJ+VfKN5BmwMQ96zNIGY62C6uHlGL6wyoFGqbCVIF+rviSnEWk/i0HbGgCO96s3F/7yeweg6mIokM8gTtlwUGUkxpfMA6EAozlBOLAGmhL2VshEoYGhjKtkQvNWX10m7XvPcmndfrzRu8jiK5Iyck0vikSvSIHekSVqEkYw8k1fy5hjnxXl3PpatBSefOSV/4Hz+AILCkVI=</latexit><latexit sha1_base64="m8x51bsrVS56tsNiPBpvxdRn3aw=">AAAB83icbVDLTgJBEJzFF+IL9ehlIph4Irtc9Ej04hETeSTsSnqHWZgw+8hMjwkh/IYXDxrj1Z/x5t84wB4UrKSTSlV3urvCTAqNrvvtFDY2t7Z3irulvf2Dw6Py8Ulbp0Yx3mKpTFU3BM2lSHgLBUrezRSHOJS8E45v537niSst0uQBJxkPYhgmIhIM0Ep+1Ucwj75GUNV+ueLW3AXoOvFyUiE5mv3ylz9ImYl5gkyC1j3PzTCYgkLBJJ+VfKN5BmwMQ96zNIGY62C6uHlGL6wyoFGqbCVIF+rviSnEWk/i0HbGgCO96s3F/7yeweg6mIokM8gTtlwUGUkxpfMA6EAozlBOLAGmhL2VshEoYGhjKtkQvNWX10m7XvPcmndfrzRu8jiK5Iyck0vikSvSIHekSVqEkYw8k1fy5hjnxXl3PpatBSefOSV/4Hz+AILCkVI=</latexit>

0

5

>10

** **

Figure 2. Disease informativeness of gene set-specific boosted-restricted annota-
tions: (A) Heritability enrichment of gene set-specific boosted-restricted annotations, condi-
tional on the baseline-LD-deep-S2G-geneset model. (B) Standardized effect size (τ?) of gene
set-specific boosted-restricted annotations, conditional on the baseline-LD-deep-S2G-geneset
model. (C) Standardized effect size (τ?) of the two jointly significant annotations, conditional
on the baseline-LD-deep-S2G-geneset model plus both annotations. Results are meta-analyzed
across 11 blood-related traits. τ? values less than 0 are displayed as 0 for visualization purposes.
** denotes P < 0.05/90. Error bars denote 95% confidence intervals. In panel B, the black box
in each row denotes the S2G strategy with highest τ?. Numerical results, including results for
all 10 S2G strategies analyzed, are reported in Table S15 and Table S17.
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(A) (B)

(C) (D)

**
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Figure 3. Disease informativeness of allelic-effect annotations based on predictions
of gene expression from DNA sequence using S2G linking strategies to prioritize
deep learning annotations as features: (A) Heritability enrichment of Imperio allelic-effect
annotations, conditional on the baseline-LD-deep-S2G-geneset model. Dashed horizontal line
denotes no enrichment. (B) Standardized effect size (τ?) of Imperio allelic-effect annotations,
conditional on the baseline-LD-deep-S2G-geneset model. (C) Heritability enrichment of gene
set-specific Imperio allelic-effect annotations, conditional on the baseline-LD-deep-S2G-geneset
model. Dashed horizontal line denotes no enrichment. (D) Standardized effect size (τ?) of gene
set-specific Imperio allelic-effect annotations, conditional on the baseline-LD-deep-S2G-geneset
model. Results are meta-analyzed across 11 blood-related traits. ** denotes P < 0.05/90. Error
bars denote 95% confidence intervals. Numerical results, including results for both pLI and
PPI-enhancer gene sets, are reported in Table S25, Table S27 and Table S29.
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(A)

(B)

Figure 4. Combined joint model: (A) Heritability enrichment of 3 jointly significant
annotations, conditional on the baseline-LD-deep-S2G-geneset model. (B) Standardized effect
size (τ?) conditional on the baseline-LD-deep-S2G-geneset model plus the 3 jointly significant
annotations. Results are meta-analyzed across 11 blood-related traits. Error bars denote 95%
confidence intervals. Numerical results are reported in Table S38.
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Supplementary Tables

Table S1. List of all blood-related traits: List of 11 blood-related traits (6 autoim-
mune diseases and 5 blood cell traits) analyzed in this paper.

Trait Source N
Auto Immune Traits (Sure) UKBiobank37 459324
Crohn’s Disease Jostins et al., 2012 Nature71 20883
Rheumatoid Arthritis Okada et al., 2014 Nature72 37681
Ulcerative Colitis Jostins et al., 2012 Nature71 27432
Lupus Bentham et al., 201573 14267
Celiac Dubois et al., 201074 15283
Platelet Count UKBiobank37 444382
Red Blood Cell Count UKBiobank37 445174
Red Blood Cell Distribution Width UKBiobank37 442700
Eosinophil Count UKBiobank37 439938
White Blood Cell Count UKBiobank37 444502
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Table S2. List of baseline models used in this paper: We report the 6 baseline
models or joint models discussed in this paper, along with number of annotations and a
brief description.

Models No. of anno-
tations

Description

baseline-LD 86 Publicly available baseline-LD model32,33

baseline-LD-deep 100 baseline-LD plus 14 genome-wide deep-
learning, Roadmap, ChromHMM and compet-
ing annotations from ref16.

baseline-LD-deep-
S2G

107 baseline-LD-deep + 7 new S2G annotations
from Table 122.

baseline-LD-deep-
PPI-enhancer

114 baseline-LD-deep-S2G + 7 jointly significant
Enhancer and PPI-enhancer S2G strategies
from joint model in ref22.

baseline-LD-deep-
S2G-geneset

115 baseline-LD-deep-PPI-enhancer + 1 significant
pLI S2G annotation (pLI+Roadmap)

Final joint model 118 baseline-LD-deep-S2G-geneset + 3 jointly sig-
nificant annotations from our analysis in Figure
4.
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Table S3. Additional annotations of baseline-LD-deep model:List of 14 jointly
significant annotations from ref.16 added to the baseline-LD model to create the baseline-
LD-deep model. They include 1 non-tissue-specific Basenji allelic-effect annotation, 3
Roadmap annotations, 5 ChromHMM annotations and 5 other annotations.

Annotations

Basenji∆-H3K4me3-Max (0.7%)
Roadmap-H3K4me1-Avg (4.4%)
Roadmap-H3K4me1-bloodMax (11.2%)
Roadmap-H3K4me3-bloodAvg (1.8%)
ChromHMM-ActiveEnhancer-1-Avg (0.3%)
ChromHMM-ActiveEnhancer-2-bloodMax (3.5%)
ChromHMM-PromoterDownstream-1-bloodMax (1.1%)
ChromHMM-TranscriptionalRegulator-blood-Avg (0.4%)
ChromHMM-RepressedPolycomb-bloodAvg (1.4%)
pLI-Coding (0.4%)
pLI-TSS (0.3%)
LocalGCcontent (41.0%)
LocalGCcontent-TSS (1.0%)
LocalGCcontent-Coding (0.8%)
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Table S4. AUROC attained by DeepBoost. We report the AUROC for a gradient
boosting model distinguishing fine-mapped SNPs from matched control SNPs using
allelic-effect deep-learning annotations from the DeepSEA and Basenji models as features.
We consider four sets of fine-mapped SNPs - 8,741 fine-mapped autoimmune disease
SNPs18 (Farh), 4,312 fine-mapped inflammatory bowel disease SNPs19 (Huang), 1,429
functionally fine-mapped SNPs for 14 blood-related UK Biobank traits20,37 (Weissbrod),
or union of all 14,482 fine-mapped SNPs (Union).

Model Fine-mapped SNPs AUROC

DeepSEA
Farh 0.62

Huang 0.57
Weissbrod 0.72

Union 0.64

Basenji
Farh 0.67

Huang 0.68
Weissbrod 0.73

Union 0.69
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Table S5. AUROC attained by logistic classification instead of XGBoost. We
report the AUROC for a logistic regression model distinguishing fine-mapped SNPs from
matched control SNPs using allelic-effect deep-learning annotations from the DeepSEA
and Basenji models as features. We consider four sets of fine-mapped SNPs - 8,741
fine-mapped autoimmune disease SNPs18 (Farh), 4,312 fine-mapped inflammatory bowel
disease SNPs19 (Huang), 1,429 functionally fine-mapped SNPs for 14 blood-related UK
Biobank traits20,37 (Weissbrod), or union of all 14,482 fine-mapped SNPs (Union).

Model Fine-mapped SNPs AUROC

DeepSEA
Farh 0.60

Huang 0.56
Weissbrod 0.69

Union 0.62

Basenji
Farh 0.65

Huang 0.67
Weissbrod 0.69

Union 0.67
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Table S6. AUROC attained by DeepBoost using 27 blood cell types only. We
report the AUROC for a gradient boosting model distinguishing fine-mapped SNPs from
matched control SNPs using using blood-specific allelic-effect deep-learning annotations
from the DeepSEA and Basenji models as features. We consider four sets of fine-mapped
SNPs - 8,741 fine-mapped autoimmune disease SNPs18 (Farh), 4,312 fine-mapped
inflammatory bowel disease SNPs19 (Huang), 1,429 functionally fine-mapped SNPs for
14 blood-related UK Biobank traits20,37 (Weissbrod), or union of all 14,482 fine-mapped
SNPs (Union).

Model Fine-mapped SNPs AUROC

DeepSEA
Farh 0.60

Huang 0.56
Weissbrod 0.67

Union 0.62

Basenji
Farh 0.64

Huang 0.65
Weissbrod 0.70

Union 0.67
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Table S7. S-LDSC results for published and boosted deep learning allelic-
effect annotations: Standardized Effect sizes (τ?) and Enrichment (E) of 2 published
allelic-effect deep-learning annotations for 2 deep learning models, DeepSEA and Basenji
(DeepSEA∆-published, Basenji∆-published) and 8 boosted allelic-effect deep-learning
annotations for the same 2 deep learning models and 4 sets of finemapped SNPs for blood-
related traits - 8,741 fine-mapped autoimmune disease SNPs18 (DeepSEA∆-boosted,
Basenji∆-boosted), 4,312 fine-mapped inflammatory bowel disease SNPs19 (DeepSEA∆-
boosted-Huang, Basenji∆-boosted-Huang), 1,429 functionally fine-mapped SNPs for 14
blood-related UK Biobank traits20 (DeepSEA∆-boosted-Weissbrod, Basenji∆-boosted-
Weissbroad), or union of these fine-mapped SNPs (DeepSEA∆-boosted-Union, Basenji∆-
boosted-Union). Results are conditioned on 100 baseline-LD-deep annotations. Reports
are meta-analyzed across 11 blood and autoimmune traits.

τ? se(τ?) p(τ?) E se(E) p(E)
DeepSEA∆-published -0.27 0.12 0.02 1.3 0.046 9.5e-05
Basenji∆-published -0.046 0.083 0.58 1.5 0.028 2.2e-08
DeepSEA∆-boosted -0.065 0.085 0.44 2 0.19 0.00052
DeepSEA∆-boosted-Huang 0.14 0.071 0.049 3 0.18 2.1e-09
DeepSEA∆-boosted-Weissbrod -0.16 0.1 0.12 2.6 0.2 5e-05
DeepSEA∆-boosted-Union -0.13 0.088 0.06 2.6 0.2 0.0001
Basenji∆-boosted 0.21 0.07 0.0032 3.4 0.2 3.8e-09
Basenji∆-boosted-Huang 0.14 0.071 0.049 3 0.18 2.1e-09
Basenji∆-boosted-Weissbrod -0.094 0.092 0.3 2.6 0.19 6e-05
Basenji∆-boosted-Union 0.13 0.066 0.02 3.3 0.19 6.7e-07
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Table S8. Standardized enrichment of SNP annotations for published
and boosted deep learning allelic-effect annotations: Standardized enrichment
of 2 published allelic-effect deep-learning annotations for 2 deep learning models,
DeepSEA and Basenji (DeepSEA∆-published, Basenji∆-published) and 8 boosted
allelic-effect deep-learning annotations for the same 2 deep learning models and 4
sets of finemapped SNPs for blood-related traits - 8,741 fine-mapped autoimmune dis-
ease SNPs18 (DeepSEA∆-boosted, Basenji∆-boosted), 4,312 fine-mapped inflammatory
bowel disease SNPs19 (DeepSEA∆-boosted-Huang, Basenji∆-boosted-Huang), 1,429
functionally fine-mapped SNPs for 14 blood-related UK Biobank traits20 (DeepSEA∆-
boosted-Weissbrod, Basenji∆-boosted-Weissbroad), or union of these fine-mapped SNPs
(DeepSEA∆-boosted-Union, Basenji∆-boosted-Union). Results are conditioned on 100
baseline-LD-deep annotations. Reports are meta-analyzed across 11 blood and autoim-
mune traits.

StdE se(StdE) p(StdE)
DeepSEA∆-published 0.1 0.0036 9.5e-05
Basenji∆-published 0.098 0.0019 2.2e-08
DeepSEA∆-boosted 0.71 0.066 0.00052
DeepSEA∆-boosted-Huang 0.66 0.067 0.0033
DeepSEA∆-boosted-Weissbrod 0.93 0.071 5e-05
DeepSEA∆-boosted-Union 0.87 0.072 0.00013
Basenji∆-boosted 1.2 0.07 3.8e-09
Basenji∆-boosted-Huang 1.1 0.063 2.1e-09
Basenji∆-boosted-Weissbrod 1.2 0.054 6.1e-08
Basenji∆-boosted-Union 1.3 0.063 1.4e-09
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Table S9. Additional annotations of baseline-LD-deep-S2G model:List of 7
annotations corresponding to 7 S2G strategies linked to all genes from ref.16 added to
the baseline-LD model to create the baseline-LD-deep-S2G model.

Annotations

ABC (1.4%)
ATAC (1.6%)
eQTL (2.4%)
Roadmap (3.2%)
PC-HiC (27%)
5kb (53%)
100kb (81%)
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Table S10. S-LDSC results for published-restricted and boosted-restricted
deep learning allelic-effect annotations restricted using S2G strategies, con-
ditional on the baseline-LD-deep-S2G model annotations: Standardized Effect
sizes (τ?) and Enrichment (E) of SNP annotations corresponding to each of DeepSEA∆-
published, Basenji∆-published, DeepSEA∆-boosted and Basenji∆-boosted annotations
restricted using 10 S2G strategies conditional on 107 baseline-LD-deep-S2G annota-
tions (100 baseline-LD-deep and 7 additional annotations from Table S9). Reports are
meta-analyzed across 11 blood-related traits.

DeepSEA∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.29%) 1.1 0.42 0.0092 10 1.2 3.6e-06
TSS (0.40%) -0.24 0.38 0.52 11 1 6.3e-06
Coding (0.27%) 0.35 0.28 0.21 8.7 1 7.5e-05
ATAC (0.26%) 0.75 0.22 0.00089 9.1 1.1 6e-07
eQTL (0.37%) 0.22 0.27 0.43 5.2 0.72 0.00028
Roadmap (0.56%) 0.34 0.37 0.36 8.3 1.2 3.4e-07
Promoter (0.79%) -0.06 0.23 0.8 5.3 0.55 8.1e-05
PC-HiC (3.94%) -0.28 0.18 0.12 2.7 0.18 6.1e-08
5kb (7.15%) -0.3 0.12 0.014 1.8 0.067 1.8e-06
100kb (11.0%) -0.27 0.1 0.0064 1.5 0.051 1.4e-05

Basenji∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.32%) 1.0 0.34 0.002 9.2 0.94 7e-06
TSS (0.44%) 0.036 0.46 0.94 12 1.4 1.2e-05
Coding (0.33%) 0.81 0.33 0.014 9.2 1.1 8.6e-05
ATAC (0.31%) 0.58 0.29 0.045 8.4 1.2 1.5e-06
eQTL (0.44%) 0.27 0.24 0.26 5.2 0.5 1.5e-05
Roadmap (0.67%) 0.85 0.56 0.13 8.4 1.1 1.6e-08
Promoter (0.92%) 0.2 0.34 0.55 5.5 0.55 2.3e-05
PC-HiC (4.80%) 0.091 0.25 0.72 2.8 0.15 2.8e-10
5kb (8.58%) -0.25 0.13 0.05 1.9 0.047 2.4e-08
100kb (13.1%) -0.091 0.1 0.37 1.6 0.032 1.6e-08

DeepSEA∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.50%) 0.29 0.18 0.1 10 1.8 0.0007
TSS (0.75%) 0.45 0.22 0.037 14 1.6 6.3e-05
Coding (0.47%) 0.44 0.18 0.013 12 1.9 0.00032
ATAC (0.46%) 0.18 0.14 0.2 8.6 1.6 0.00087
eQTL (0.59%) 0.59 0.14 1.5e-05 11 1.4 0.00022
Roadmap (1.0%) 0.2 0.18 0.28 8.3 1.4 0.00038
Promoter (1.33%) 0.29 0.2 0.16 6.3 1.1 0.001
PC-HiC (5.89%) -0.1 0.13 0.42 3.1 0.49 0.00038
5kb (9.89%) -0.12 0.088 0.16 2.3 0.22 0.00052
100kb (13.7%) -0.079 0.087 0.37 2.1 0.2 0.00062

Basenji∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.63%) 1.1 0.28 0.00016 15 2.3 8.8e-06
TSS (0.88%) 1.3 0.34 0.00011 17 1.9 1.8e-06
Coding (0.59%) 0.55 0.21 0.01 11 1.6 0.00015
ATAC (0.60%) 0.35 0.19 0.059 11 2.1 2.4e-05
eQTL (0.79%) 0.21 0.1 0.036 7.3 0.86 0.00015
Roadmap (1.54%) 0.76 0.26 0.0036 11 1.6 1.1e-07
Promoter (1.63%) 0.19 0.14 0.18 6.6 0.86 4.4e-05
PC-HiC (7.67%) 0.22 0.12 0.082 4.4 0.42 2.4e-09
5kb (11.2%) 0.01 0.07 0.88 3.1 0.15 6.8e-08
100kb (14.5%) 0.15 0.071 0.034 3.3 0.19 1.4e-08
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Table S11. Standardized enrichment of published-restricted and boosted-
restricted deep learning allelic-effect annotations restricted using S2G strate-
gies, conditional on the baseline-LD-deep-S2G model annotations: Standard-
ized enrichment of restricted SNP annotations corresponding to each of DeepSEA∆-
published, Basenji∆-published, DeepSEA∆-boosted and Basenji∆-boosted annotations
restricted using 10 S2G strategies conditional on 107 baseline-LD-deep-S2G annota-
tions (100 baseline-LD-deep and 7 additional annotations from Table S9). Reports are
meta-analyzed across 11 blood-related traits.

DeepSEA∆-published
StdE se(StdE) p(StdE)

ABC (0.29%) 0.28 0.034 3.6e-06
TSS (0.40%) 0.38 0.036 6.3e-06
Coding (0.27%) 0.21 0.025 7.5e-05
ATAC (0.26%) 0.22 0.027 6e-07
eQTL (0.37%) 0.14 0.02 0.00028
Roadmap (0.56%) 0.29 0.042 3.4e-07
Promoter (0.79%) 0.23 0.024 8.1e-05
PC-HiC (3.94%) 0.21 0.014 6.1e-08
5kb (7.15%) 0.16 0.0061 1.8e-06
100kb (11.0%) 0.13 0.0044 1.4e-05

Basenji∆-published
StdE se(StdE) p(StdE)

ABC (0.32%) 0.27 0.028 7e-06
TSS (0.44%) 0.44 0.051 1.2e-05
Coding (0.33%) 0.26 0.03 8.6e-05
ATAC (0.31%) 0.23 0.033 1.5e-06
eQTL (0.44%) 0.16 0.016 1.5e-05
Roadmap (0.67%) 0.34 0.044 1.6e-08
Promoter (0.92%) 0.26 0.026 2.3e-05
PC-HiC (4.80%) 0.25 0.013 2.8e-10
5kb (8.58%) 0.18 0.0045 2.4e-08
100kb (13.1%) 0.14 0.0027 1.6e-08

DeepSEA∆-boosted
StdE se(StdE) p(StdE)

ABC (0.29%) 0.74 0.13 0.0007
TSS (0.40%) 1.2 0.14 6.3e-05
Coding (0.27%) 0.8 0.13 0.00032
ATAC (0.26%) 0.58 0.11 0.00087
eQTL (0.37%) 0.86 0.11 0.00022
Roadmap (0.56%) 0.83 0.14 0.00038
Promoter (0.79%) 0.72 0.12 0.001
PC-HiC (3.94%) 0.74 0.11 0.00038
5kb (7.15%) 0.68 0.066 0.00052
100kb (11.0%) 0.71 0.067 0.00062

Basenji∆-boosted
StdE se(StdE) p(StdE)

ABC (0.63%) 1.2 0.18 8.8e-06
TSS (0.88%) 1.5 0.18 1.8e-06
Coding (0.59%) 0.84 0.12 0.00015
ATAC (0.60%) 0.86 0.16 2.4e-05
eQTL (0.79%) 0.65 0.076 0.00015
Roadmap (1.54%) 1.4 0.19 1.1e-07
Promoter (1.63%) 0.84 0.11 4.4e-05
PC-HiC (7.67%) 1.2 0.11 2.4e-09
5kb (11.2%) 0.99 0.048 6.8e-088
100kb (14.5%) 1.2 0.067 1.4e-08
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Table S12. S-LDSC results for published-restricted and boosted-restricted
deep learning allelic-effect annotations restricted using S2G strategies, con-
ditional on the baseline-LD-deep model annotations : Standardized Effect sizes
(τ?) and Enrichment (E) of 40 restricted SNP annotations corresponding to DeepSEA∆-
published, Basenji∆-published, DeepSEA∆-boosted and Basenji∆-boosted, annotations
restricted using 10 S2G strategies. Results are conditional on 100 baseline-LD-deep
annotations. Reports are meta-analyzed across 11 blood-related traits.

AllSNPs
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (1.3%) 0.2 0.096 0.034 7.4 0.83 5.5e-06
TSS (1.6%) 0.49 0.19 0.012 12 0.81 4.3e-07
Coding (1.6%) 0.39 0.13 0.0026 6.9 0.63 1.3e-05
ATAC (1.6%) 0.4 0.11 0.00018 6.6 0.79 5.3e-08
eQTL (2.4%) 0.15 0.06 0.012 4.1 0.35 4.5e-06
Roadmap (3.1%) 0.42 0.12 0.00038 7 0.67 6e-10
Promoter (4.2%) -0.093 0.097 0.33 4.3 0.34 3.1e-05
PC-HiC (27.3%) 0.02 0.035 0.57 2.1 0.062 1.2e-10
5kb (52%) 0.007 0.02 0.73 1.4 0.028 5.5e-08
100kb (81%) 0.0091 0.0091 0.32 1.2 0.0067 7.4e-10

DeepSEA∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.29%) 0.32 0.1 0.0013 9.3 1.1 3.6e-06
TSS (0.40%) 0.35 0.2 0.086 13 0.95 4.5e-07
Coding (0.27%) 0.63 0.15 3.9e-05 9.8 0.99 2.3e-05
ATAC (0.26%) 0.58 0.14 3.7e-05 9.5 1.2 2.3e-08
eQTL (0.37%) 0.17 0.074 0.02 5.6 0.46 2.8e-06
Roadmap (0.56%) 0.55 0.15 0.00021 8.7 0.96 1.3e-09
Promoter (0.79%) -0.019 0.11 0.86 6.5 0.49 2e-06
PC-HiC (3.94%) 0.02 0.049 0.68 2.8 0.1 1.7e-10
5kb (7.15%) -0.016 0.033 0.63 2 0.038 1.1e-08
100kb (11.0%) -0.016 0.023 0.48 1.6 0.024 1.9e-09

Basenji∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.32%) 0.31 0.1 0.0023 9.1 0.96 3.3e-06
TSS (0.44%) 0.5 0.22 0.022 13 1 6.6e-07
Coding (0.33%) 0.78 0.17 3.5e-06 10 1 1.8e-05
ATAC (0.31%) 0.52 0.13 0.0001 8.8 1.1 2.5e-08
eQTL (0.44%) 0.17 0.071 0.017 5.4 0.41 1.1e-06
Roadmap (0.67%) 0.53 0.14 0.00026 8.3 0.86 3.7e-10
Promoter (0.92%) 0.019 0.11 0.86 6.4 0.47 1.4e-06
PC-HiC (4.80%) 0.034 0.052 0.51 2.8 0.093 6.5e-11
5kb (8.58%) -0.007 0.031 0.82 2 0.033 5.2e-09
100kb (13.1%) -0.001 0.021 0.96 1.6 0.022 8.1e-10

DeepSEA∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.50%) 0.36 0.12 0.003 11 1.6 0.00016
TSS (0.75%) 0.58 0.18 0.001 16 1.5 6e-06
Coding (0.47%) 0.69 0.17 3.1e-05 13 1.9 0.00013
ATAC (0.46%) 0.65 0.18 0.00025 14 2.5 3.1e-06
eQTL (0.59%) 0.39 0.1 0.00014 9.7 1.2 7e-05
Roadmap (1.0%) 0.66 0.18 0.00019 12 1.8 1e-06
Promoter (1.33%) 0.13 0.12 0.27 8.5 1.1 1.4e-05
PC-HiC (5.89%) 0.053 0.11 0.62 3.6 0.41 1.2e-06
5kb (9.89%) -0.056 0.077 0.46 2.5 0.2 2.9e-05
100kb (13.7%) -0.045 0.072 0.53 2.2 0.16 0.00011

Basenji∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.63%) 0.5 0.12 5.5e-05 13 1.8 6.8e-06
TSS (0.88%) 1.2 0.27 9.1e-06 18 1.8 2.8e-07
Coding (0.59%) 0.82 0.21 5.9e-05 12 1.6 2.9e-05
ATAC (0.60%) 0.66 0.18 0.00017 13 2.2 2.7e-07
eQTL (0.79%) 0.26 0.087 0.0027 7.9 0.87 2.3e-05
Roadmap (1.54%) 0.71 0.18 4.6e-05 11 1.4 3.5e-09
Promoter (1.63%) 0.23 0.12 0.047 8.1 0.83 1.7e-06
PC-HiC (7.67%) 0.2 0.11 0.07 4.4 0.39 5.4e-10
5kb (11.2%) 0.07 0.068 0.3 3.3 0.15 2.1e-08
100kb (14.5%) 0.17 0.069 0.013 3.4 0.2 6.4e-09
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Table S13. S-LDSC results for joint model of published-restricted and
boosted-restricted deep learning allelic-effect annotations restricted using
S2G strategies, conditional on the baseline-LD-deep-S2G model annotations.
Standardized Effect sizes (τ?) and Enrichment (E) of the significant SNP annotations in
a joint model comprising of the marginally significant published-restricted and boosted-
restricted SNP annotations corresponding to published and boosted deep learning
allelic-effect annotations combined with S2G strategies. Results are conditional on
107 baseline-LD-deep-S2G model annotations (100 baseline-LD-deep and 7 additional
annotations from Table S9). Results are meta-analyzed across 11 blood-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-boosted × eQTL
(0.6%)

0.54 0.13 3.3e-05 11 1.4 0.00044

Basenji∆-boosted × ABC
(0.6%)

0.83 0.23 2e-04 14 2.1 1.4e-05

Basenji∆-boosted × TSS
(0.9%)

1.1 0.29 1e-04 16 1.8 2.7e-06
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Table S14. Additional annotations of baseline-LD-deep-S2G-geneset
model:List of 8 jointly significant gene set-specific S2G annotations from ref.22 added
to the baseline-LD-deep-S2G model to create the baseline-LD-deep-S2G-geneset model.
They include 7 annotations from the Enhancer-driven+PPI-enhancer joint model in
ref22 and 1 jointly significant pLI S2G annotation.

Annotations

ATAC-distal × Promoter (1.8%)
EDS-binary × 100kb (14.6%)
SEG-GTEx × Coding (0.17%)
PPI-enhancer × ABC (0.58%)
PPI-enhancer × TSS (0.33%)
PPI-enhancer × Coding (0.24%)
PPI-enhancer × ATAC (0.41%)
pLI × Roadmap (0.56%)
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Table S15. S-LDSC results for gene set-specific boosted-restricted annota-
tions, conditional on baseline-LD-deep-S2G-geneset model annotations: Stan-
dardized Effect sizes (τ?) and Enrichment (E) of 40 restricted SNP annotations corre-
sponding to 2 deep-learning prioritizations (DeepSEA∆-boosted and Basenji∆-boosted),
2 gene scores (PPI-enhancer and pLI) and 10 S2G strategies, conditional on 115 baseline-
LD-deep-S2G-geneset annotations. Reports are meta-analyzed across 11 blood-related
traits.

DeepSEA∆-boosted (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.23%) 0.8 0.18 6.1e-06 21 2.6 1.2e-07
TSS (0.16%) 0.59 0.25 0.016 28 5.1 9.5e-05
Coding (0.08%) 0.66 0.19 0.00061 36 5.7 7.9e-05
ATAC (0.12%) 0.38 0.15 0.013 28 6.1 0.00019
eQTL (0.09%) 0.32 0.13 0.014 17 4.1 0.001
Roadmap (0.31%) 0.75 0.21 0.00026 23 3.9 2.1e-06
Promoter (0.22%) 0.61 0.17 0.00032 23 3.4 1.3e-05
PC-HiC (1.98%) 0.17 0.076 0.03 5.4 0.63 6e-070
5kb (1.47%) 0.053 0.057 0.35 5.7 0.41 3.6e-07
100kb (3.54%) 0.25 0.056 1.1e-05 5.2 0.26 3.2e-08

Basenji∆-boosted (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.32%) 0.85 0.18 1.6e-06 19 2.2 2.5e-07
TSS (0.21%) 0.73 0.34 0.034 25 4.3 9.6e-06
Coding (0.11%) 0.75 0.25 0.0025 36 6.1 8.9e-06
ATAC (0.18%) 0.19 0.16 0.24 21 4.8 0.00017
eQTL (0.13%) 0.17 0.1 0.093 12 2.8 0.00019
Roadmap (0.56%) 0.74 0.19 0.00011 18 2.6 1.3e-08
Promoter (0.31%) 0.5 0.19 0.0072 19 3.1 3.4e-06
PC-HiC (2.79%) 0.2 0.077 0.0099 5.6 0.55 3.9e-09
5kb (2.04%) 0.06 0.055 0.27 6.1 0.35 1.4e-08
100kb (4.70%) 0.28 0.054 1.5e-07 5.6 0.3 8.1e-10

DeepSEA∆-boosted (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.32%) 0.14 0.15 0.35 11 2 0.00077
TSS (0.41%) 0.088 0.17 0.6 13 1.7 0.00016
Coding (0.24%) 0.26 0.15 0.074 14 2.4 0.00032
ATAC (0.16%) 0.041 0.12 0.73 9.2 2.6 0.022
eQTL (0.18%) 0.14 0.098 0.14 8.4 2.1 0.005
Roadmap (0.39%) -0.19 0.21 0.37 7.4 2.2 0.066
Promoter (0.68%) 0.091 0.12 0.46 7.2 1.2 0.00055
PC-HiC (3.55%) 0.0045 0.085 0.96 3.6 0.42 1.3e-05
5kb (4.91%) -0.015 0.049 0.77 3 0.18 9.3e-06
100kb (11.1%) -0.079 0.063 0.2 2.3 0.16 2.6e-05

Basenji∆-boosted (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.42%) 0.26 0.15 0.075 12 1.7 3.6e-05
TSS (0.49%) 0.19 0.15 0.21 14 1.6 1.8e-05
Coding (0.31%) 0.28 0.14 0.042 14 2 3.7e-05
ATAC (0.20%) 0.11 0.13 0.4 12 3 0.0015
eQTL (0.23%) 0.053 0.099 0.59 7 1.8 0.0031
Roadmap (0.59%) 0.96 0.31 0.0017 16 2.4 5.2e-07
Promoter (0.83%) 0.15 0.14 0.27 8.1 1.2 3.1e-05
PC-HiC (4.78%) 0.061 0.068 0.37 4.1 0.32 1.6e-08
5kb (5.70%) -0.019 0.049 0.69 3.5 0.16 5.6e-08
100kb (12.5%) 0.015 0.064 0.81 3.1 0.17 1.1e-08
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Table S16. Standardized enrichment of gene set-specific boosted-restricted
annotations, conditional on baseline-LD-deep-S2G-geneset model annota-
tions: Standardized enrichment of 40 restricted SNP annotations corresponding to
2 deep-learning prioritizations (DeepSEA∆-boosted and Basenji∆-boosted), 2 gene
scores (PPI-enhancer and pLI) and 10 S2G strategies, conditional on 115 baseline-
LD-deep-S2G-geneset annotations. Reports are meta-analyzed across 11 blood-related
traits.

DeepSEA∆-boosted (PPI-enhancer)
StdE se(StdE) p(StdE)

ABC (0.23%) 1.2 0.15 1.6e-05
TSS (0.16%) 1.1 0.2 9.5e-05
Coding (0.08%) 1 0.16 7.9e-05
ATAC (0.12%) 0.97 0.21 0.00019
eQTL (0.09%) 0.52 0.12 0.001
Roadmap (0.31%) 1.3 0.22 2.1e-06
Promoter (0.22%) 1.1 0.16 1.3e-05
PC-HiC (1.98%) 0.75 0.088 6e-07
5kb (1.47%) 0.69 0.05 3.6e-07
100kb (3.54%) 0.96 0.049 3.2e-08

Basenji∆-boosted (PPI-enhancer)
StdE se(StdE) p(StdE)

ABC (0.32%) 1.3 0.2 1.6e-06
TSS (0.21%) 1.1 0.2 9.6e-06
Coding (0.11%) 1.2 0.2 8.9e-06
ATAC (0.18%) 0.91 0.21 0.00017
eQTL (0.13%) 0.46 0.1 0.00019
Roadmap (0.56%) 1.3 0.2 1.3e-08
Promoter (0.31%) 1.1 0.17 3.4e-06
PC-HiC (2.79%) 0.93 0.09 3.9e-09
5kb (2.04%) 0.86 0.05 1.4e-08
100kb (4.70%) 1.2 0.063 8.1e-10

DeepSEA∆-boosted (pLI)
StdE se(StdE) p(StdE)

ABC (0.32%) 0.61 0.11 0.00077
TSS (0.41%) 0.8 0.1 0.00016
Coding (0.24%) 0.66 0.11 0.00032
ATAC (0.16%) 0.33 0.092 0.022
eQTL (0.18%) 0.33 0.082 0.005
Roadmap (0.39%) 0.42 0.13 0.066
Promoter (0.68%) 0.56 0.089 0.00055
PC-HiC (3.55%) 0.63 0.073 1.3e-055
5kb (4.91%) 0.6 0.037 9.3e-06
100kb (11.1%) 0.7 0.049 2.6e-05

Basenji∆-boosted (pLI)
StdE se(StdE) p(StdE)

ABC (0.42%) 0.76 0.1 3.6e-05
TSS (0.49%) 0.95 0.1 1.8e-05
Coding (0.31%) 0.73 0.11 3.7e-05
ATAC (0.20%) 0.49 0.12 0.0015
eQTL (0.23%) 0.3 0.08 0.0031
Roadmap (0.59%) 1.1 0.17 5.2e-07
Promoter (0.83%) 0.68 0.1 3.1e-05
PC-HiC (4.78%) 0.83 0.066 1.6e-08
5kb (5.70%) 0.76 0.035 5.6e-08
100kb (12.5%) 1 0.055 1.1e-08
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Table S17. S-LDSC results for joint model of gene set-specific boosted-
restricted annotations, conditional on baseline-LD-deep-S2G-geneset model
annotations: Standardized Effect sizes (τ?) and Enrichment (E) of the Bonferroni
significant boosted-restricted S2G annotations linked to PPI-enhancer genes that were
marginally significant in Figure 2. The results were conditioned either on 115 baseline-
LD-deep-S2G-geneset annotations, or baseline-LD-deep-S2G-geneset plus 3 annotations
from Figure 1, or baseline-LD-deep-S2G-geneset plus 3 annotations from Figure 1 plus
Basenji∆-boosted×Roadmap. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
baseline-LD-deep-S2G-geneset model

Basenji∆-boosted
(PPI-enhancer) × ABC (0.32%)

0.72 0.17 3.2e-05 17 1.8 9.5e-07

Basenji∆-boosted
(PPI-enhancer) × Roadmap (0.56%)

0.68 0.18 9.7e-05 17 2.6 1.9e-08

baseline-LD-deep-S2G-geneset + 3 annotations from Figure 1
Basenji∆-boosted

(PPI-enhancer) × ABC (0.32%)
0.69 0.18 0.0001 17 1.8 9.7e-07

Basenji∆-boosted
(PPI-enhancer) × Roadmap (0.56%)

0.66 0.18 0.0002 18 2.7 1.4e-08

baseline-LD-deep-S2G-geneset + 3 annotations from Figure 1 + Basenji∆-boosted×Roadmap
Basenji∆-boosted

(PPI-enhancer) × ABC (0.32%)
0.63 0.18 0.0003 16 1.5 8.2e-06

Basenji∆-boosted (PPI-enhancer)
× Roadmap (0.56%)

0.64 0.18 0.0003 18 2.8 3.3e-08
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Table S18. S-LDSC results for published-restricted and boosted-restricted
deep learning allelic-effect annotations restricted using S2G strategies, con-
ditional on the baseline-LD-deep-S2G model annotations plus the local GC-
content annotation and annotations restricted using the local GC-content
annotation: Standardized Effect sizes (τ?) and Enrichment (E) of restricted SNP anno-
tations corresponding to each of DeepSEA∆-published, Basenji∆-published, DeepSEA∆-
boosted and Basenji∆-boosted annotations restricted using the local GC-content and 10
S2G strategies conditional on 100 baseline-LD-deep annotations and unrestricted S2G
annotations and S2G annotations restricted using local GC-content annotation. Reports
are meta-analyzed across 11 blood-related traits.

DeepSEA∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.29%) 0.66 0.36 0.069 9.8 1.3 4.4e-06
TSS (0.40%) -0.36 0.37 0.33 12 0.99 1.8e-06
Coding (0.27%) 0.51 0.28 0.076 9 0.98 4.5e-05
ATAC (0.26%) 0.57 0.24 0.019 9.8 1.3 2.5e-07
eQTL (0.37%) 0.0015 0.29 1 5.1 0.72 0.00046
Roadmap (0.56%) 0.22 0.38 0.56 9.1 1.3 6.1e-08
Promoter (0.79%) 0.13 0.25 0.6 5.7 0.53 1.8e-05
PC-HiC (3.94%) -0.67 0.2 0.00097 2.5 0.19 2.2e-07
5kb (7.15%) -0.36 0.13 0.0056 1.8 0.071 1.9e-06
100kb (11.0%) -0.37 0.13 0.004 1.5 0.053 1.8e-05

Basenji∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.32%) 0.93 0.34 0.0068 9.4 1 6e-06
TSS (0.44%) 0.23 0.45 0.6 13 1.1 2.7e-06
Coding (0.33%) 1.1 0.32 0.0004 9.5 1 3.6e-05
ATAC (0.31%) 0.65 0.37 0.081 8.9 1.2 4.8e-07
eQTL (0.44%) 0.16 0.24 0.5 5.4 0.49 9.5e-06
Roadmap (0.67%) 0.91 0.58 0.11 9.4 1.2 2.9e-09
Promoter (0.92%) 0.52 0.31 0.097 5.9 0.52 3.4e-06
PC-HiC (4.80%) -0.05 0.26 0.85 2.8 0.16 1.8e-10
5kb (8.58%) -0.23 0.13 0.077 1.9 0.047 2.1e-08
100kb (13.1%) -0.14 0.1 0.18 1.6 0.032 1.2e-08

DeepSEA∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.50%) 0.22 0.18 0.21 10 1.8 0.00082
TSS (0.75%) 0.5 0.22 0.023 15 1.7 2.4e-05
Coding (0.47%) 0.6 0.2 0.0023 13 1.9 9.2e-05
ATAC (0.46%) 0.11 0.14 0.42 9.4 1.9 0.00078
eQTL (0.59%) 0.57 0.14 8.3e-05 11 1.4 0.00025
Roadmap (1.0%) 0.21 0.18 0.25 9.3 1.4 0.0001
Promoter (1.33%) 0.35 0.21 0.092 7.6 1.2 0.00019
PC-HiC (5.89%) -0.25 0.13 0.047 2.9 0.5 0.0021
5kb (9.89%) -0.11 0.09 0.2 2.4 0.23 0.00028
100kb (13.7%) -0.1 0.089 0.25 2.1 0.2 0.00047

Basenji∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.63%) 1.1 0.29 0.00018 15 2.3 6.1e-06
TSS (0.88%) 1.4 0.36 6.5e-05 18 1.9 3.7e-07
Coding (0.59%) 0.76 0.23 0.0011 12 1.7 3.7e-05
ATAC (0.60%) 0.38 0.22 0.08 12 2.2 1.1e-05
eQTL (0.79%) 0.17 0.1 0.11 7.4 0.87 0.00011
Roadmap (1.54%) 0.76 0.27 0.0051 12 1.7 3e-08
Promoter (1.63%) 0.31 0.14 0.025 7.6 0.83 4.6e-06
PC-HiC (7.67%) 0.18 0.14 0.19 4.4 0.45 2.4e-09
5kb (11.2%) 0.031 0.068 0.64 3.2 0.15 2.9e-08
100kb (14.5%) 0.13 0.07 0.064 3.3 0.2 6.6e-09
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Table S19. S-LDSC results for gene set-specific published-restricted annota-
tions, conditional on baseline-LD-deep-S2G-geneset model annotations: Stan-
dardized Effect sizes (τ?) and Enrichment (E) of 40 published-restricted SNP annotations
corresponding to 2 deep-learning models (DeepSEA∆-published and Basenji∆-published),
2 gene scores (PPI-enhancer and pLI) and 10 S2G strategies, conditional on 115 baseline-
LD-deep-S2G-geneset annotations. Reports are meta-analyzed across 11 blood-related
traits.

DeepSEA∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.13%) 0.69 0.18 0.00013 24 3.1 1.6e-05
TSS (0.08%) 0.54 0.22 0.015 22 2.6 2.5e-06
Coding (0.04%) 0.74 0.21 0.00055 27 3.1 4.1e-06
ATAC (0.07%) 0.66 0.22 0.002 23 3.9 2.4e-07
eQTL (0.06%) 0.16 0.082 0.049 9.6 1.5 3e-06
Roadmap (0.18%) 0.61 0.16 0.00015 15 1.9 1.2e-09
Promoter (0.12%) 0.34 0.13 0.006 15 1.5 1.9e-06
PC-HiC (1.28%) 0.13 0.044 0.0041 4 0.25 1.6e-10
5kb (0.93%) 0.018 0.03 0.56 4.5 0.17 5.4e-10
100kb (2.43%) 0.14 0.03 3.4e-06 3.6 0.13 5.3e-11

Basenji∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.14%) 0.78 0.21 0.0001 23 3.5 1.6e-06
TSS (0.09%) 0.65 0.26 0.014 23 2.6 2.6e-06
Coding (0.05%) 0.73 0.22 0.001 26 3 2.6e-06
ATAC (0.08%) 0.51 0.21 0.017 19 3.3 5e-07
eQTL (0.07%) 0.17 0.08 0.038 9.3 1.4 8.7e-07
Roadmap (0.23%) 0.55 0.16 0.00061 13 1.7 1.1e-09
Promoter (0.15%) 0.37 0.14 0.0062 15 1.4 6.1e-07
PC-HiC (1.59%) 0.12 0.046 0.0083 3.9 0.23 5.7e-11
5kb (1.16%) 0.028 0.03 0.35 4.5 0.18 2.9e-10
100kb (2.99%) 0.14 0.029 8.8e-07 3.5 0.13 3.2e-11

DeepSEA∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.17%) 0.064 0.2 0.74 9.6 1.3 8.8e-06
TSS (0.22%) -0.11 0.15 0.48 12 1.1 9e-06
Coding (0.13%) 0.11 0.13 0.4 11 1.2 1.1e-05
ATAC (0.09%) 0.17 0.094 0.07 10 1.8 4.8e-05
eQTL (0.11%) 0.063 0.075 0.4 5.8 0.93 0.00013
Roadmap (0.21%) -0.24 0.34 0.47 8 1 2.1e-05
Promoter (0.38%) -0.0007 0.11 0.99 6.5 0.63 1.3e-05
PC-HiC (2.29%) -0.0093 0.052 0.86 3 0.12 7.1e-10
5kb (3.25%) -0.012 0.022 0.59 2.4 0.052 5.7e-09
100kb (8.12%) -0.048 0.025 0.054 1.9 0.038 3.3e-10

Basenji∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.19%) -0.058 0.16 0.72 9.6 1.1 9.6e-06
TSS (0.24%) -0.13 0.14 0.35 12 1.1 1.4e-05
Coding (0.16%) 0.1 0.14 0.44 11 1.2 7.8e-06
ATAC (0.10%) 0.14 0.091 0.13 9.6 1.6 2.7e-05
eQTL (0.13%) 0.054 0.067 0.41 5.7 0.79 5.1e-05
Roadmap (0.25%) 0.16 0.5 0.75 10 1.4 3e-07
Promoter (0.44%) -0.0033 0.11 0.98 6.5 0.59 7e-06
PC-HiC (2.79%) -0.02 0.049 0.68 3 0.11 1.7e-10
5kb (3.89%) -0.016 0.021 0.46 2.4 0.047 1.9e-09
100kb (9.76%) -0.045 0.023 0.053 1.9 0.035 8.2e-11
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Table S20. S-LDSC results for gene set-specific published-restricted annota-
tions, conditional on baseline-LD-deep-S2G-geneset model annotations plus
the 2 jointly significant gene set-specific boosted-restricted annotations from
Figure 2 Panel C: Standardized Effect sizes (τ?) and Enrichment (E) of 40 restricted
SNP annotations corresponding to 2 deep-learning models (DeepSEA∆-published and
Basenji∆-published), 2 gene scores (PPI-enhancer and pLI) and 10 S2G strategies,
conditional on 115 baseline-LD-deep-S2G-geneset annotations and 2 jointly significant
annotations from Figure 2 Panel C. Reports are meta-analyzed across 11 blood-related
traits.

DeepSEA∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.13%) 0.46 0.22 0.035 18 2.1 3.7e-07
TSS (0.08%) 0.55 0.18 0.002 19 3.3 2.6e-06
Coding (0.04%) 0.5 0.21 0.016 23 2.8 3.8e-05
ATAC (0.07%) 0.66 0.22 0.002 23 3.9 2.4e-07
eQTL (0.06%) 0.092 0.078 0.24 8.8 1.5 1.2e-05
Roadmap (0.18%) -0.086 0.21 0.69 13 1.6 1.4e-08
Promoter (0.12%) 0.13 0.14 0.36 14 1.4 2.5e-05
PC-HiC (1.28%) 0.082 0.038 0.029 3.9 0.23 2.4e-10
5kb (0.93%) -0.033 0.036 0.36 4.5 0.17 5.4e-10
100kb (2.43%) 0.078 0.04 0.053 3.6 0.13 5.9e-11

Basenji∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.14%) 0.52 0.29 0.073 17 1.8 1.4e-06
TSS (0.09%) 0.099 0.21 0.64 19 2 7.1e-05
Coding (0.05%) 0.43 0.21 0.037 22 2.6 2.7e-05
ATAC (0.08%) 0.19 0.18 0.28 16 2.8 5.2e-06
eQTL (0.07%) 0.095 0.075 0.21 8.6 1.3 3.3e-06
Roadmap (0.23%) -0.27 0.2 0.18 12 1.6 3.5e-09
Promoter (0.15%) 0.13 0.14 0.38 13 1.4 8.6e-06
PC-HiC (1.59%) 0.073 0.038 0.054 3.8 0.21 7.7e-11
5kb (1.16%) -0.028 0.037 0.45 4.5 0.19 2.4e-10
100kb (2.99%) 0.083 0.038 0.031 3.6 0.13 3e-11

DeepSEA∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.17%) -0.013 0.2 0.95 9.1 1.2 1.4e-05
TSS (0.22%) -0.041 0.14 0.77 12 1.1 8.7e-06
Coding (0.13%) 0.12 0.13 0.36 11 1.2 9.5e-06
ATAC (0.09%) 0.18 0.094 0.054 10 1.8 4.6e-05
eQTL (0.11%) 0.074 0.073 0.31 5.9 0.92 0.00011
Roadmap (0.21%) -0.3 0.34 0.37 7.7 1 3.8e-05
Promoter (0.38%) 0.017 0.099 0.86 6.5 0.63 1.2e-05
PC-HiC (2.29%) -0.01 0.052 0.85 3 0.12 7.4e-10
5kb (3.25%) -0.006 0.022 0.78 2.4 0.053 5.8e-09
100kb (8.12%) -0.047 0.025 0.058 1.9 0.037 3.7e-10

Basenji∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.19%) -0.14 0.17 0.42 9.2 1.1 1.7e-05
TSS (0.24%) -0.081 0.14 0.56 12 1.1 1.6e-05
Coding (0.16%) 0.11 0.13 0.43 11 1.2 6.9e-06
ATAC (0.10%) 0.15 0.091 0.11 9.5 1.6 2.8e-05
eQTL (0.13%) 0.063 0.065 0.33 5.8 0.78 4.3e-05
Roadmap (0.25%) -0.42 0.35 0.22 9 1.2 8.9e-07
Promoter (0.44%) 0.013 0.11 0.9 6.5 0.59 6.9e-06
PC-HiC (2.79%) -0.023 0.049 0.63 2.9 0.11 1.7e-10
5kb (3.89%) -0.011 0.021 0.6 2.4 0.05 2e-09
100kb (9.76%) -0.045 0.023 0.049 1.9 0.034 8.6e-11
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Table S21. Top significant features of Imperio-DeepSEA and Imperio-
Basenji models: We report the top 10 chromatin marks (if significant) based on
their magnitude of effect size. We consider 4 different models - the Imperio model
fitted and evaluated on all genes for DeepSEA (Imperio-DeepSEA) and Basenji (Imperio-
Basenji) and the Imperio model fitted and evaluated on PPI-enhancer genes for DeepSEA
(Imperio-DeepSEA (PPI-enhancer)) and Basenji (Imperio-Basenji (PPI-enhancer)).

Imperio model Top features
Imperio-DeepSEA TF::BRF1::HeLa-S3 (TSS), TF::Znf143::HeLa-

S3 (Roadmap), TF::ZNF274::HeLa-S3 (TSS),
TF::USF2::HepG2 (Roadmap), TF::USF2::HepG2 (TSS),
TF::Znf143::GM12878 (Roadmap), TF::Pol2::GM12878
(Roadmap), TF::BRF1::HeLa-S3 (Roadmap),
TF::Mxi1::K562 (Roadmap), TF::BHLHE40::K562
(Roadmap)

Imperio-Basenji CAGE:spleen, adult, pool1 (Roadmap), CAGE:spinal
cord, adult, donor10252 (TSS), DNASE:SW480 (TSS),
HISTONE:H3K9ac neural progenitor cell derived from
H9 (TSS), CAGE:Smooth muscle cells - airway, con-
trol, donor1 (Roadmap), CAGE:epithelioid sarcoma cell
line:HS-ES-1 (Roadmap), DNASE:LNCaP clone FGC
treated with 17B-hydroxy-17-methylestra-4,9,11-trien-3-one
(Roadmap), HISTONE:H3K9ac keratinocyte female (TSS),
HISTONE:H3K27me3 fibroblast of arm male adult (53
years) (TSS), HISTONE:H3K27me3 PC9 (TSS)

Imperio-DeepSEA
(PPI-enhancer)

TF::Znf143::GM12878 (TSS), TF::ZNF274::K562 (TSS),
TF::BRF1::HeLa-S3 (TSS), TF::Rad21::A549 (TSS),
TF::USF2::HepG2 (TSS), TF::Znf143::HeLa-S3 (TSS),
TF::BHLHE40::K562 (TSS), TF::YY1::NT2-D1 (TSS),
forskolin::ERRA::HepG2 (Roadmap), TF::BRCA1::HeLa-S3
(TSS)

Imperio-Basenji
(PPI-enhancer)

HISTONE:H3K4me3 kidney epithelial cell (TSS),
CAGE:spleen, adult, pool1 (Roadmap), CAGE:Macrophage
monocyte derived, donor3 (Roadmap), HISTONE:H3K4me2
OCI-LY3 (TSS), CAGE:CD14+ Monocytes, donor2
(Roadmap), CAGE:peripheral neuroectodermal tumor cell
line:KU-SN (Roadmap), CAGE:caudate nucleus, adult,
donor10252 (Roadmap), CAGE:CD34 cells differentiated
to erythrocyte lineage (Roadmap), CAGE:carcinoid cell
line:NCI-H1770 (Roadmap), CAGE:immature langerhans
cells, donor1 (TSS)
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Table S22. Comparison of 5 Imperio models utilizing a single S2G strategy
with respect to using all 5 S2G strategies: We perform the Imperio prediction
model for DeepSEA and Basenji features corresponding to only one of the 5 S2G
strategies, and compare the resulting model fit with that of the full Imperio model
corresponding to all 5 S2G strategies. We use two measures of model fit - the r2 metric
and the correlation of predicted expression (corr.pred) with original expression on the
genes of a holdout chromosome (chr8).

S2G Imperio-DeepSEA Imperio-Basenji
r2 corr.pred r2 corr.pred

ABC 0.36 0.60 0.39 0.66
Roadmap 0.33 0.63 0.37 0.68
TSS 0.59 0.69 061 0.71
5kb 0.40 0.66 0.52 0.73
100kb 0.29 0.52 0.35 0.61
All 0.66 0.72 0.69 0.76
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Table S23. Proportion of cis-heritability captured by Imperio and ExPecto
predictions of gene expression across individuals: Results are averaged across all
22,020 genes for the 2 Imperio models (Imperio-DeepSEA and Imperio-Basenji) and the
ExPecto-DeepSEA model.

Model Correlation
Imperio-DeepSEA 0.82
Imperio-Basenji 0.79
ExPecto-DeepSEA 0.75
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Table S24. Correlation of boosted-restricted deep learning allelic-effect an-
notations restricted using S2G strategies with Imperio annotations: We report
the correlation of boosted-restricted deep learning allelic-effect annotations restricted
using S2G strategies with Imperio annotations for DeepSEA and Basenji deep learning
models.

restricted S2G Imperio-
DeepSEA

Imperio-
Basenji

Basenji∆-boosted × ABC 0.12 0.10
Basenji∆-boosted × TSS 0.15 0.16
Basenji∆-boosted × Coding 0.03 0.04
Basenji∆-boosted × ATAC 0.05 0.07
Basenji∆-boosted × eQTL 0.07 0.08
Basenji∆-boosted × Roadmap 0.11 0.13
Basenji∆-boosted × Promoter 0.12 0.15
Basenji∆-boosted × PC-HiC 0.11 0.12
Basenji∆-boosted × 5kb 0.12 0.14
Basenji∆-boosted × 100kb 0.11 0.13
DeepSEA∆-boosted × ABC 0.13 0.10
DeepSEA∆-boosted × TSS 0.17 0.17
DeepSEA∆-boosted × Coding 0.03 0.05
DeepSEA∆-boosted × ATAC 0.05 0.06
DeepSEA∆-boosted × eQTL 0.07 0.07
DeepSEA∆-boosted × Roadmap 0.13 0.13
DeepSEA∆-boosted × Promoter 0.12 0.15
DeepSEA∆-boosted × PC-HiC 0.12 0.11
DeepSEA∆-boosted × 5kb 0.12 0.12
DeepSEA∆-boosted × 100kb 0.11 0.10
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Table S25. S-LDSC results for Imperio and ExPecto annotations, conditional
on the baseline-LD-deep-S2G-geneset model annotations: Standardized Effect
sizes (τ?) and Enrichment (E) of Imperio annotations for DeepSEA (Imperio-DeepSEA)
and Basenji (Imperio-Basenji) along with a similarly defined ExPecto (ExPecto-DeepSEA)
annotation. Results were conditional on 115 baseline-LD-deep-S2G-geneset annotations.
Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA (0.11%) 0.29 0.086 0.00075 6.5 0.47 4.9e-06
Imperio-Basenji (0.10%) 0.48 0.096 4.9e-07 8.2 0.61 6.1e-07
ExPecto-DeepSEA (0.07%) 0.13 0.063 0.045 5.5 0.53 2.1e-05
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Table S26. Standardized enrichment results for Imperio and ExPecto an-
notations conditional on the baseline-LD-deep model annotations: Standard-
ized Enrichment of Imperio annotations for DeepSEA (Imperio-DeepSEA) and Basenji
(Imperio-Basenji) along with a similarly defined ExPecto (ExPecto-DeepSEA) anno-
tations. Results were conditional on 115 baseline-LD-deep-S2G-geneset annotations.
Reports are meta-analyzed across 11 blood-related traits.

StdE se(StdE) p(StdE)
Imperio-DeepSEA (0.11%) 0.045 0.0033 6.7e-06
Imperio-Basenji (0.10%) 0.057 0.0043 7.3e-07
ExPecto-DeepSEA (0.07%) 0.03 0.003 5.5e-05
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Table S27. S-LDSC results for gene-set specific Imperio annotations, condi-
tional on the baseline-LD-deep-S2G-geneset model annotations: Standardized
Effect sizes (τ?) and Enrichment (E) of gene set-specific Imperio annotations corre-
sponding to 2 deep learning models (DeepSEA and Basenji) and 2 gene sets (pLI and
PP-enhancer). Results were conditional on 115 baseline-LD-deep-S2G-geneset annota-
tions. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.78 0.16 1.5e-06 20 2.3 3.5e-08

Imperio-DeepSEA
(pLI) (0.04%)

0.21 0.098 0.035 8.7 1.1 1.5e-05

Imperio-Basenji
(PPI-enhancer) (0.04%)

0.53 0.14 0.0003 18 2.4 4.7e-07

Imperio-Basenji
(pLI) (0.05%)

0.24 0.093 0.011 9 1.1 6.9e-07
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Table S28. Standardized enrichment results for gene-set specific Imperio
annotations conditional on the baseline-LD-deep-S2G-geneset model: Stan-
dardized Enrichment of gene set-specific Imperio annotations corresponding to 2 deep
learning models (DeepSEA and Basenji) and 2 gene sets (pLI and PP-enhancer) and.
Results were conditional on 115 baseline-LD-deep-S2G-geneset annotations. Reports are
meta-analyzed across 11 blood-related traits.

StdE se(StdE) p(StdE)
Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.11 0.013 3.5e-08

Imperio-DeepSEA
(pLI) (0.04%)

0.044 0.0055 1.5e-05

Imperio-Basenji
(PPI-enhancer) (0.04%)

0.081 0.011 4.7e-07

Imperio-Basenji
(pLI) (0.05%)

0.051 0.0061 6.9e-07
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Table S29. S-LDSC results for joint model of gene set-specific Imperio anno-
tations conditional on the baseline-LD-deep-S2G-geneset model annotations:
Joint Standardized Effect sizes (τ?) and Enrichment (E) of the 2 marginally significant
gene-set specific Imperio annotations, Imperio-DeepSEA (PPI-enhancer) and Imperio-
Basenji (PPI-enhancer). Results were conditional on 115 baseline-LD-deep-S2G-geneset
annotations. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.57 0.14 3.9e-05 19 2.1 5.1e-08

Imperio-Basenji
(PPI-enhancer) (0.04%)

0.16 0.14 0.26 16 2.2 3.5e-06
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Table S30. S-LDSC results for gene-set specific Imperio annotations, condi-
tional on baseline-LD-deep-S2G-geneset model annotations plus 1 Imperio-
Basenji annotation from Figure 3B: Standardized Effect sizes (τ?) and Enrichment
(E) of gene-set specific Imperio annotations corresponding to 2 deep learning models
(DeepSEA and Basenji) and 2 gene-sets (pLI and PP-enhancer). Results were condi-
tional on 115 baseline-LD-deep-S2G-geneset model annotations and 1 Imperio-Basenji
annotation from Figure 3B. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.65 0.14 7.9e-06 19 2.3 4.2e-08

Imperio-DeepSEA
(pLI) (0.04%)

0.02 0.11 0.89 7.8 1.2 1e-04

Imperio-Basenji
(PPI-enhancer) (0.04%)

0.42 0.14 0.002 18 2 5.5e-07

Imperio-Basenji
(pLI) (0.05%)

0.04 0.10 0.66 8.9 1.16 2.4e-06
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Table S31. S-LDSC results for Imperio+ExPecto annotations, conditional
on the baseline-LD-deep-S2G-geneset model annotations: Standardized Effect
sizes (τ?) and Enrichment (E) of the ∆s SNP level annotations computed using a
combination both ExPecto4 and Imperio features for DeepSEA and Basenji models.
Results were conditional either on 115 baseline-LD-deep-S2G-geneset annotations or
baseline-LD-deep-S2G-geneset plus 1 Imperio-Basenji annotation from Figure 3B. Reports
are meta-analyzed across 11 blood-related traits.

conditional on the baseline-LD-deep-S2G-geneset model
τ? se(τ?) p(τ?) E se(E) p(E)

ExPecto-Imperio-DeepSEA
(0.08%)

0.26 0.087 0.0023 6.1 0.42 2.5e-06

ExPecto-Imperio-Basenji
(0.08%)

0.41 0.093 9.7e-06 7.1 0.5 3.6e-07

conditional on the baseline-LD+geneset+Imperio-Basenji-BLD model
τ? se(τ?) p(τ?) E se(E) p(E)

ExPecto-Imperio-DeepSEA
(0.08%)

-0.042 0.12 0.73 5.9 0.42 3.6e-06

ExPecto-Imperio-Basenji
(0.08%)

-0.17 0.13 0.2 7.1 0.49 3.6e-07
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Table S32. S-LDSC results for partially restricted gene set-specific Imperio
annotations defined by restricting only the fitting of feature weights, condi-
tional on the baseline-LD-deep-S2G-geneset model annotations: Standardized
Effect sizes (τ?) and Enrichment (E) of the intermediate Imperio (Imperio-int1) annota-
tions computed by using all genes for fitting the model and gene sets for computing the
expression allelic effects for 2 deep learning models (DeepSEA and Basenji) and 2 gene
sets (pLI and PPI-enhancer). Results were conditional either on 115 baseline-LD-deep-
S2G-geneset annotations or baseline-LD-deep-S2G-geneset plus 2 significant Imperio
annotations from Figure 3. Reports are meta-analyzed across 11 blood-related traits.

conditional on the baseline-LD-deep-S2G-geneset model
τ? se(τ?) p(τ?) E se(E) p(E)

Imperio-int1-DeepSEA (PPI-
enhancer) (0.04%)

0.62 0.13 3.9e-06 16 1.7 2.5e-08

Imperio-int1-Basenji (PPI-
enhancer) (0.04%)

0.53 0.18 0.0025 19 2.8 1.4e-06

Imperio-int1-DeepSEA (pLI)
(0.04%)

0.091 0.092 0.32 6.6 0.74 6.7e-06

Imperio-int1-Basenji (pLI)
(0.04%)

0.065 0.1 0.53 7.3 1.1 3.6e-05

conditional on baseline-LD-deep-S2G-geneset plus 2 significant Imperio annotations from Figure 3
τ? se(τ?) p(τ?) E se(E) p(E)

Imperio-int1-DeepSEA (PPI-
enhancer) (0.04%)

0.21 0.23 0.36 16 1.7 3.3e-08

Imperio-int1-Basenji (PPI-
enhancer) (0.04%)

0.077 0.14 0.63 17 2.6 1.2e-05

Imperio-int1-DeepSEA (pLI)
(0.04%)

0.028 0.088 0.75 7.9 0.79 8.7e-07

Imperio-int1-Basenji (pLI)
(0.04%)

-0.034 0.51 0.91 8.5 1.2 6.3e-06
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Table S33. S-LDSC results for partially restricted gene set-specific Impe-
rio annotations defined by restricting only the gene expression predictions,
conditional on the baseline-LD-deep-S2G-geneset model annotations: Stan-
dardized Effect sizes (τ?) and Enrichment (E) of the intermediate Imperio (Imperio-int-2)
annotations computed by using genes in a geneset for fitting the model and all genes
for computing the expression allelic effects for 2 deep learning models (DeepSEA and
Basenji) and 2 gene sets (pLI and PPI-enhancer). Results were conditional either on
115 baseline-LD-deep-S2G-geneset annotations or baseline-LD-deep-S2G-geneset plus
2 significant Imperio annotations from Figure 3. Reports are meta-analyzed across 11
blood-related traits.

conditional on the baseline-LD-deep-S2G-geneset model
τ? se(τ?) p(τ?) E se(E) p(E)

Imperio-int2-DeepSEA (PPI-
enhancer) (0.08%)

0.46 0.14 0.00099 8.6 0.85 3.7e-06

Imperio-int2-Basenji (PPI-
enhancer) (0.10%)

0.59 0.1 3.3e-09 9.4 0.66 2.2e-07

Imperio-int2-DeepSEA (pLI)
(0.09%)

0.51 0.11 2.9e-06 8.8 0.75 5.7e-07

Imperio-int2-Basenji (pLI)
(0.10%)

0.48 0.11 4.3e-06 8.6 0.61 4.3e-07

conditional on baseline-LD-deep-S2G-geneset plus 2 significant Imperio annotations from Figure 3
τ? se(τ?) p(τ?) E se(E) p(E)

Imperio-int2-DeepSEA (PPI-
enhancer) (0.08%)

-0.12 0.20 0.54 8.2 0.62 8.5e-07

Imperio-int2-Basenji (PPI-
enhancer) (0.10%)

0.44 0.26 0.09 9.6 0.67 1.5e-07

Imperio-int2-DeepSEA (pLI)
(0.09%)

0.023 0.24 0.89 8.5 0.62 5.7e-07

Imperio-int2-Basenji (pLI)
(0.10%)

0.021 0.18 0.91 8.4 0.78 9.9e-07
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Table S34. S-LDSC results for annotations defined by the total number of
genes linked to each SNP by each S2G strategy, conditional on the baseline-
LD-deep-S2G-geneset model annotations: Standardized Effect sizes (τ?) and En-
richment (E) of the number of genes (Nsd) linked to each SNP s by the S2G strategy
d. The number of genes was thresholded at 5 and annotations were standardized to
probabilistic scale. Results were conditional either on 115 baseline-LD-deep-S2G-geneset
annotations. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
ABC (1.93%) 0.23 0.19 0.24 9.2 0.81 8.9e-10
Roadmap (0.87%) -0.16 0.27 0.54 5.6 0.49 1.2e-07
TSS (2.31%) -0.067 0.043 0.11 2.8 0.18 3.5e-05
5kb (13%) -0.025 0.033 0.46 1.5 0.034 4.1e-08
100kb (38%) 0.0047 0.023 0.84 1.6 0.027 3.4e-10

60

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.08.288563doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288563
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S35. S-LDSC results for annotations defined by the number of PPI-
enhancer genes linked to each SNP by each S2G strategy, conditional on the
baseline-LD-deep-S2G-geneset model annotations: Standardized Effect sizes (τ?)
and Enrichment (E) of the number of PPI-enhancer genes linked to each SNP s by
the S2G strategy d. The number of genes was thresholded at 5 and annotations were
standardized to probabilistic scale. Results were conditional either on 115 baseline-
LD-deep-S2G-geneset annotations. Reports are meta-analyzed across 11 blood-related
traits.

τ? se(τ?) p(τ?) E se(E) p(E)
ABC (0.44%) 0.40 0.15 0.009 17 1.8 4.8e-09
Roadmap (0.38%) 0.32 0.14 0.019 11 1.5 3.4e-10
TSS (0.39%) 0.03 0.076 0.69 8.9 0.84 1.7e-07
5kb (3.1%) 0.0032 0.023 0.89 3.4 0.13 2.9e-10
100kb (5.3%) 0.082 0.026 0.0013 3 0.12 2.8e-11
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Table S36. S-LDSC results for Imperio annotations defined using the max-
imum across genes proximal to the annotated SNPs (instead of the sum),
conditional on the baseline-LD-deep-S2G-geneset model annotations plus
the two significant annotations from Figure 3B,D: Standardized Effect sizes (τ?)
and Enrichment (E) of the SNP level annotations computed using the maximum across
genes proximal to the annotated SNPs (instead of the sum), conditional on the baseline-
LD-deep-S2G-geneset model annotations plus the two significant annotations from Figure
3B,D. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA (0.58%) -0.21 0.07 0.0035 1.4 0.15 0.058
Imperio-Basenji (0.44%) 0.13 0.056 0.023 2.6 0.14 2.3e-06
Imperio-DeepSEA
(PPI-enhancer) (0.34%)

-0.11 0.055 0.045 1.6 0.17 0.0095

Imperio-Basenji
(PPI-enhancer) (0.34%)

0.17 0.082 0.036 2.9 0.16 5.5e-07
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Table S37. S-LDSC results for Whole blood MaxCPP annotations condi-
tional on different baseline models: Standardized Effect sizes (τ?) and Enrichment
(E) of Whole blood MaxCPP (MaxCPP) annotations. Results were conditional on either
115 baseline-LD-deep-geneset, or 107 baseline-LD-deep-S2G, or 100 baseline-LD-deep
annotations. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
conditional on the baseline-LD-deep-S2G-geneset model

MaxCPP (0.07%) 0.27 0.12 0.027 10 2.1 0.0015
conditional on the baseline-LD-deep-S2G model

MaxCPP (0.07%) 0.29 0.12 0.018 10.5 2.1 0.0001
conditional on the baseline-LD-deep model

MaxCPP (0.07%) 0.36 0.15 0.014 12 2.5 0.0009
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Table S38. S-LDSC results for combined joint model: Standardized Effect sizes
(τ?) and Enrichment (E) in a joint model comprising of significant SNP annotations
from Figure 1, Figure 2 and Figure 3. Only results for the 3 jointly Bonferroni significant
annotations are reported. The results were conditioned on 115 baseline-LD-deep-S2G-
geneset annotations. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)

Basenji∆-boosted × TSS
(0.9%)

1.1 0.29 0.0001 16 1.8 8.3e-07

Imperio-Basenji
(0.10%)

0.33 0.09 0.0001 8.2 0.61 6.4e-07

Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.67 0.15 5e-06 20 2.3 3.9e-08
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Table S39. ∆loglSS results for the the combined joint model and other heri-
tability models. We report ∆loglSS derived from the loglSS metric, proposed in ref.41,
for the different heritability models studied in this paper: baseline-LD, baseline-LD-deep,
baseline-LD-deep-S2G, baseline-LD-S2G-geneset and combined joint model in Figure
4 (Table S2). We compute ∆loglSS as the difference in loglSS for each model with
respect to s baselineLD-no-funct model with 17 annotations that include no functional
annotations41,75. We also report the percentage increase in ∆loglSS for each model over
the baseline-LD model. We do not report AIC as the number of annotations are not
too different to alter conclusions based on just the loglSS. We report three summary
∆loglSS results - one averaged across 30 UK Biobank traits75 (All), one averaged across
6 blood-related traits from UK Biobank (Blood) and one averaged across the other 24
non blood related traits from UK Biobank (Non-blood) (Table S40).

Model ∆loglSS

(All)
% incr.
over
baseline-
LD
(All)

pval
(All)

∆loglSS

(Blood)
% incr.
over
baseline-
LD
(Blood)

pval
(Blood)

∆loglSS

(Non-
blood)

% incr.
over
baseline-
LD
(Non-
blood)

pval
(Non-
blood)

baseline-LD
(n=86)

1379 0 - 2668 0 - 1121 0 -

baseline-LD-deep
(n=100)

1501 8.8% 5e-44 2997 12% 2e-131 1179 5.1% 4e-18

baseline-LD-deep-S2G
(n=107)

1542 12% 1e-56 3102 16% 3e-170 1218 8.6% 5e-30

baseline-LD-deep-S2G
-geneset (n=115)

1582 14.7% 2e-66 3142 17.8% 8e-181 1259 12% 1e-40

Combined joint model
(Figure 4) n=118)

1603 16.2% 7e-75 3209 20.3% 8e-207 1280 14.2% 8e-49
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Table S40. List of UKBiobank traits used for loglSS calculations. The list
consists of 6 blood-related traits and 24 non blood-related traits.

Trait Category N

disease AID Sure Blood 459324
blood Eosinophil count Blood 439938
Blood Platelet count Blood 444382
Blood Red count Blood 445174
Blood RBC distr. width Blood 442700
blood White count Blood 444502
reproduction Menarche Age Non-blood 242278
reproduction Menopause Age Non-blood 143025
Body balding Non-blood 208336
Body BMIz Non-blood 457824
cov EDU Years Non-blood 454813
disease Dermatology Non-blood 459324
disease Allergy Eczema Non-blood 458699
lung FVCzSmoke Non-blood 371949
lung FEV1FVCzSmoke Non-blood 371949
pigment Hair Non-blood 452720
bmd Heel Tscorez Non-blood 445921
body Heightz Non-blood 458303
disease Hi-chol-self-rep Non-blood 459324
disease Hypothyroidism self rep Non-blood 459324
Other Morning-person Non-blood 41050
Mental Neuroticism Non-blood 372066
disease Respiratory ENT Non-blood 459324
pigment Skin Non-blood 453609
cov Smoking Status Non-blood 457683
pigment Sunburn Non-blood 344229
bp SystolicadjMedz Non-blood 422771
pigment Tanning Non-blood 449984
disease T2D Non-blood 459324
body WHRadjBMIz Non-blood 458417
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Supplementary Figures
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Figure S1. Illustration of the DeepBoost model: (A) An overview of a sequence based
genomic deep learning model like DeepSEA and Basenji, that trains on sequence images for a
region and the chromatin features around that region using a deep Convolutional Neural Net
(CNN) model. (B) Illustration of how the alelic effect annotation for a particular feature f is
computed at a SNP s. The number of features f is 2,002 for the DeepSEA model and 4,229 for
the Basenji model. The length of the vertical arrow at the SNP site denotes the magnitude of
the allelic effect and its direction represents the sign (up and down for positive and negative
allelic effect respectively). (C) Illustration of the DeepBoost classification model where we
classify positive set of fine-mapped SNPs from the negative set of matched controls using the
allelic effect features.
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Figure S2. Correlation between DeepSEA, Basenji and DeepBoost annotations
for different fine-mapped sets of SNPs. Correlation matrix of DeepSEA and Basenji
annotations from Figure S1 and 6 DeepBoost annotations corresponding to 2 deep learning
models (DeepSEA and Basenji) and 3 sets of fine-mapped SNPs in autoimmune diseases18–20.
The correlations range from slightly positive to medium high positive values.
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Figure S3. Feature importance of boosted annotations for DeepBoost using the
DeepSEA model. We applied SHAP36 to assess which deep learning features were most
important for the prediction of boosted annotations using the DeepSEA (Methods). We report
the top 20 features with signed SHAP scored ordered from top to bottom based on importance.
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Figure S4. Feature importance of boosted annotations for DeepBoost using the
Basenji model. We applied SHAP36 to assess which deep learning features were most
important for the prediction of boosted annotations using the Basenji (Methods). We report
the top 20 features with signed SHAP scored ordered from top to bottom based on importance.
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(A)

(B)

Figure S5. Standardized enrichment of SNP annotations for published and boosted
deep learning allelic-effect annotations. Barplot representing standardized enrichment
metric, as proposed in ref.76, for SNP annotations corresponding to (A) 2 published annotations
for 2 deep learning models DeepSEA and Basenji and (B) 8 boosted annotations corresponding
to 4 sets of fine-mapped SNPs and the above 2 deep learning models, conditional on the
baseline-LD-deep model annotations.
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Figure S6. Correlation between S2G annotations. Correlation matrix of S2G annota-
tions derived from all 10 SNP-to-gene (S2G) linking strategies (Table 1), as defined by the sets
of SNPs linked to all genes.
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Figure S7. Correlation between DeepSEA-boosted and Basenji-boosted annota-
tions and S2G annotations. Correlation matrix of DeepSEA-boosted and Basenji-boosted
annotations with the 10 S2G annotations. The correlations range from weakly positive to
moderately positive.
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**
**

**

Figure S8. S-LDSC results for joint model of published-restricted and boosted-
restricted deep learning allelic-effect annotations restricted using S2G strategies,
conditional on the baseline-LD-deep-S2G model annotations. Standardized effect size
(τ?) conditional on baseline-LD-deep-S2G and other significant restricted S2G annotations (right
column, shading) compared to the effect size from Figure 1 Panel B right panel (left column,
white). Results are meta-analyzed across 11 blood-related traits. ** denotes P < 0.05/90.
Error bars denote 95% confidence intervals. Numerical results are reported in Table S13.
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Figure S9. Standardized enrichment of gene set-specific boosted-restricted annota-
tions, conditional on baseline-LD-deep-S2G-geneset model annotations. Standard-
ized enrichment metric, as proposed in ref.76, for 40 SNP annotations corresponding to 2 gene
scores (PPI-enhancer22, pLI31) with 10 S2G annotations prioritized by 2 boosted deep-learning
allelic-effect annotations (DeepSEA-boost and Basenji-boost. ** denotes P < 0.05/90. Error
bars denote 95% confidence intervals. Numerical results are reported in Table S16.
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Figure S10. Illustration of the Imperio model: A schematic representation of the different
S2G straategie used in the Imperio model : (A) 100kb, (B) 5kb, (C) TSS and (D) ABC or
Roadmap. (E) Illustration of how the deep learning variant level or allelic effect annotations
are combined with these S2G strategies to generate the featues which are used as predictors in
a regression model with GTEx Whole blood expression (log CPM) used as response.
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Figure S11. Accuracy of Imperio in predicting gene expression across genes on
chromosome 8. For both Imperio-DeepSEA and Imperio-Basenji, we plot predicted expression
vs. observed log RPKM expression, for 990 genes on chromosome 8.
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Figure S12. Correlation in predicted expression between Imperio and ExPecto
models. Correlation in predicted expression for 990 chr8 genes used as held-out test set for the
ExPecto method4 and the two Imperio models corresponding to DeepSEA and Basenji deep
learning models.
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Figure S13. Comparison of Imperio prediction r2 for predictions of gene expression
across individuals vs. cis-heritability. We plot the prediction r2 for the inter-individual
model comprising of the Imperio predicted expression effects (see Methods) and the per-gene
cis-heritability in Whole blood as estimated from trancriptiome wide association studies43 for
two deep learning models - DeepSEA (Panel A) and Basenji (Panel B).
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Figure S14. Correlation between all-genes ExPecto, all-genes Imperio, and gene
set-specific Imperio annotations. Correlation matrix of Whole blood MaxCPP25, Whole
blood ExPecto25, and 6 Imperio annotations corresponding to 2 deep learning models (DeepSEA
and Basenji) and three sets of genes (all genes, pLI genes and PPI-enhancer genes). The
correlations range from slightly positive to medium high positive values.
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