New Results
Integrative approaches to improve the informativeness of deep learning models for human complex diseases
View ORCID ProfileKushal K. Dey, Samuel S. Kim, Steven Gazal, Joseph Nasser, Jesse M. Engreitz, Alkes L. Price
doi: https://doi.org/10.1101/2020.09.08.288563
Kushal K. Dey
1Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
Samuel S. Kim
1Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
Steven Gazal
1Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
Joseph Nasser
3Broad Institute of MIT and Harvard, Cambridge, MA, USA
Jesse M. Engreitz
3Broad Institute of MIT and Harvard, Cambridge, MA, USA
Alkes L. Price
1Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
3Broad Institute of MIT and Harvard, Cambridge, MA, USA
4Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
Article usage
Posted August 13, 2021.
Integrative approaches to improve the informativeness of deep learning models for human complex diseases
Kushal K. Dey, Samuel S. Kim, Steven Gazal, Joseph Nasser, Jesse M. Engreitz, Alkes L. Price
bioRxiv 2020.09.08.288563; doi: https://doi.org/10.1101/2020.09.08.288563
Subject Area
Subject Areas
- Biochemistry (12779)
- Bioengineering (9663)
- Bioinformatics (31228)
- Biophysics (16084)
- Cancer Biology (13163)
- Cell Biology (18831)
- Clinical Trials (138)
- Developmental Biology (10196)
- Ecology (15177)
- Epidemiology (2067)
- Evolutionary Biology (19383)
- Genetics (12871)
- Genomics (17765)
- Immunology (12892)
- Microbiology (30176)
- Molecular Biology (12595)
- Neuroscience (65840)
- Paleontology (486)
- Pathology (2038)
- Pharmacology and Toxicology (3515)
- Physiology (5442)
- Plant Biology (11277)
- Synthetic Biology (3116)
- Systems Biology (7762)
- Zoology (1756)