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Abstract

Deep learning models have achieved great success in predicting genome-wide
regulatory effects from DNA sequence, but recent work has reported that SNP
annotations derived from these predictions contribute limited unique information
for human complex disease. Here, we explore three integrative approaches to im-
prove the disease informativeness of allelic-effect annotations (predicted difference
between reference and variant alleles) constructed using several previously trained
deep learning models: DeepSEA, Basenji and DeepBind (and a related machine
learning model, deltaSVM). First, we employ gradient boosting to learn optimal
combinations of deep learning annotations, using fine-mapped SNPs and matched
control SNPs (on held-out chromosomes) for training. Second, we improve the
specificity of these annotations by restricting them to SNPs implicated by (proximal
and distal) SNP-to-gene (S2G) linking strategies, e.g. prioritizing SNPs involved
in gene regulation. Third, we predict gene expression (and derive allelic-effect
annotations) from deep learning annotations at SNPs implicated by S2G linking
strategies — generalizing the previously proposed ExPecto approach, which in-
corporates deep learning annotations based on distance to TSS. We evaluated
these approaches using stratified LD score regression, using functional data in
blood and focusing on 11 autoimmune diseases and blood-related traits (average
N=306K). We determined that the three approaches produced SNP annotations
that were uniquely informative for these diseases/traits, despite the fact that linear
combinations of the underlying DeepSEA, Basenji, DeepBind and deltaSVM blood
annotations were not uniquely informative for these diseases/traits. Our results
highlight the benefits of integrating SNP annotations produced by deep learning
models with other types of data, including data linking SNPs to genes.
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Introduction

Deep learning models1–8 (and related machine learning models9–11) have shown con-
siderable promise in predicting regulatory marks from DNA sequence, motivated by
the well-documented role of non-coding variation in complex disease12–18. However, we
recently showed that existing deep learning models provide limited unique information
about complex disease when conditioned on a broad set of coding, conserved, regulatory
and LD-related annotations19. Thus, further ideas are required in order for deep learning
models to achieve their full potential in contributing to our understanding of complex
disease.

Here, we explore three approaches for integrating different types of functional data
to improve the disease informativeness of allelic-effect SNP annotations (predicted
difference between reference and variant alleles) constructed using several previously
trained deep learning models: DeepSEA4, Basenji5 and DeepBind1; for comparison
purposes, we also consider a related machine learning model, deltaSVM9. First, we
employ gradient boosting20 to learn optimal combinations of deep learning annotations,
integrating these annotations with fine-mapped SNPs on held-out chromosomes from
previous studies21–23. Second, we improve the specificity of deep learning/machine
learning annotations by restricting them to SNPs linked to genes; we consider a broad
set of proximal and distal SNP-to-gene (S2G) linking strategies, e.g. prioritizing SNPs
involved in gene regulation19,24–32. Third, we predict gene expression (and derive allelic-
effect annotations) from deep learning annotations at SNPs implicated by S2G linking
strategies, generalizing the previously proposed ExPecto approach4, which incorporates
deep learning annotations based on distance to TSS. We consider either SNPs linked to
all genes, or SNPs linked to genes in biologically important gene sets19,33. We assessed
the informativeness of the resulting annotations for disease heritability by applying
stratified LD score regression (S-LDSC)16 to 11 autoimmune diseases and blood-related
traits (average N=306K), conditional on a broad set of coding, conserved, regulatory
and LD-related annotations from the baseline-LD model34,35.

Results

Overview of Methods

We define an annotation as an assignment of a numeric value to each SNP with minor
allele count ≥5 in a 1000 Genomes Project European reference panel36, as in our
previous work16; we primarily focus on annotations with values between 0 and 1. Our
annotations are derived from allelic-effect deep learning (or machine learning) annotations
(predicted difference between reference and variant alleles of sequence-based predictions
of functional annotations) from several recently developed models: DeepSEA4, Basenji5,
DeepBind1 and deltaSVM9. DeepSEA employs a multi-class classification model to
predict transcription factor and chromatin features by analyzing sequence data in a 1kb
of human reference sequence around a SNP. Basenji employs a Poisson likelihood model
to predict chromatin and CAGE profiles by analyzing 130kb of human reference sequence
around each SNP using dilated convolutional layers. DeepBind fits a deep convolutional
neural net model to sequences of varying length (14-101bp) to predict binding motifs
of transcription factors and RNA-binding proteins. deltaSVM applies a gapped k-mer
support vector machine (gkm-SVM10,11) based classification method to sequences of
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length 10bp to predict profiles for transcription factors and chromatin features.

Our previous work19 focused on unsigned (absolute) allelic-effect annotations for
DNase and three histone marks, H3K27ac, H3K4me1 and H3K4me3 (associated with
active enhancers and promoters). Here, we integrate signed allelic-effect annotations for
all features with other types of data - fine-mapped SNPs, SNPs linked to genes, and
gene expression - to generate more disease-informative unsigned annotations. We have
publicly released all new annotations analyzed in this study, along with open-source
software for constructing the new annotations (see URLs).

First, we employ gradient boosting to integrate deep learning (or machine learning)
annotations with fine-mapped SNPs (on held-out chromosomes) for blood-related traits
from previous studies21–23 to generate boosted annotations representing an optimal
combination of annotations. We use the XGBoost gradient boosting model20, and we
train the gradient boosting model on even (respectively odd) chromosomes in order
to construct annotations on odd (respectively even) chromosomes that are not used
for training (to avoid overfitting); all parameter settings follow our previous work on
AnnotBoost37, which has different goals.As input features, we use all of the deep learning
(or machine learning) annotations from the pre-trained DeepSEA, Basenji, DeepBind
and deltaSVM models, respectively. For comparison purposes, we also consider a simpler
logistic regression model. Second, we improve the specificity of these annotations by
restricting them to SNPs linked to genes using 10 (proximal and distal) SNP-to-gene
(S2G) strategies24–32,38 (Table 1). Third, we predict gene expression (and derive allelic-
effect annotations) from deep learning annotations at SNPs implicated by S2G linking
strategies, generalizing the previously proposed ExPecto approach4, which incorporates
deep learning annotations based on distance to TSS.

We assessed the informativeness of the resulting annotations for disease heritability
by applying stratified LD score regression (S-LDSC)16 to 11 independent blood-related
diseases and traits (5 autoimmune diseases and 6 blood cell traits; average N=306K,
Table S1) and meta-analyzing S-LDSC results across traits; we restricted our analyses
to blood-related traits due to our focus on functional data in blood. We conservatively
conditioned all analyses on a “baseline-LD-deep model” defined by 86 coding, conserved,
regulatory and LD-related annotations from the baseline-LD model (v2.1)34,35 and 14
additional jointly significant annotations from ref.19: 1 non-tissue-specific allelic-effect
Basenji annotation, 3 Roadmap annotations, 5 ChromHMM annotations, and 5 other
annotations (100 annotations total) (Table S2 and Table S3).

We used two metrics to evaluate the informativeness of individual annotations for
disease heritability: enrichment and standardized effect size (τ?). Enrichment is defined
as the proportion of heritability explained by SNPs in an annotation divided by the
proportion of SNPs in the annotation16, and generalizes to annotations with values
between 0 and 127. Standardized effect size (τ?) is defined as the proportionate change in
per-SNP heritability associated with a 1 standard deviation increase in the value of the
annotation, conditional on other annotations included in the model34. Unlike enrichment,
τ? quantifies effects that are unique to the focal annotation, thus, we use τ? as our
primary metric. In our “marginal” analyses, we estimated τ? for each focal annotation
conditional on the baseline-LD-deep annotations. In our “joint” analyses, we merged
baseline-LD-deep annotations with focal annotations that were marginally significant
after Bonferroni correction and performed forward stepwise elimination to iteratively
remove focal annotations that had conditionally non-significant τ? values after Bonferroni
correction, as in ref.34. Finally, in addition to the S-LDSC metrics enrichment and τ?

(which evaluate individual annotations), we independently evaluated the combined joint
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model arising from our analyses using loglSS
39, an approximate likelihood metric that

evaluates a heritability model defined by a set of functional annotations, without running
S-LDSC.

DeepBoost annotations restricted to SNPs implicated by func-
tionally informed S2G linking strategies are uniquely informative
for autoimmune disease heritability

We developed a gradient boosting approach, DeepBoost, to learn optimal combinations
of deep learning annotations (sequence-based predictions of functional annotations),
using fine-mapped SNPs on held-out chromosomes for blood-related diseases/traits21–23

and matched control SNPs for training (Figure S1 and Methods). The input deep
learning/machine learning annotations consisted of either 2,002 DeepSEA allelic-effect
annotations4, or 4,229 Basenji allelic-effect annotations5, or 927 DeepBind allelic-effect
annotations1 (based on TF and RBP motifs), or 1,329 deltaSVM allelic-effect anno-
tations9 (trained on DHS and TF, which were reported to be the most informative
features in recent work40). The DeepSEA, Basenji and deltaSVM models were based on
tissue/cell-type-specific features spanning 127 tissues and cell types from Roadmap41;
the DeepBind model was trained on non-tissue-specific features. We defined published
allelic-effect annotations for each of these models as the maximum of the absolute allelic
effects across relevant blood cell type features (or across all features for DeepBind, which
is non-tissue-specific) (Methods).

The fine-mapped SNPs consisted of 8,741 fine-mapped autoimmune disease SNPs21

with causal probability > 0.0275, the threshold used by ref.21 (in secondary analyses,
we also considered other sets of fine-mapped SNPs22,23). DeepBoost uses decision trees
to distinguish fine-mapped SNPs from matched control SNPs (with similar MAF and
LD structure and local GC content) using an optimal combination of deep learning
annotations; the DeepBoost model is trained using the XGBoost gradient boosting
software20 (see URLs). DeepBoost attained an AUROC of up to 0.67 in distinguishing
fine-mapped SNPs from control SNPs (highest = 0.67 for Basenji, second highest =
0.62 for DeepSEA), an encouraging result given the fundamental difficulty of this task
(Table S4). The boosted allelic-effect annotations derived from DeepBoost (DeepSEA∆-
boosted, Basenji∆-boosted, DeepBind∆-boosted, deltaSVM∆-published; we use ∆ to
denote allelic-effect annotations) were only mildly correlated with published allelic-effect
annotations as defined above (average r=0.16; Methods) (Figure S2). We also observed
mild correlations between boosted annotations produced by the 4 models (average r=0.12;
maximum of 0.32 between DeepSEA∆-boosted and Basenji∆-boosted) (Figure S2). We
determined that using logistic regression instead of XGBoost attained only slightly lower
AUROC for each of the 4 models (average AUROC=0.612 for gradient boosting vs. 0.595
for logistic regression, difference=0.017; similar difference in secondary analyses of other
fine-mapped SNP sets) (Table S4, Table S5). Given that a random classifier obtains
an AUROC of 0.5, this can be viewed as a +17.9% improvement for gradient boosting
(0.112/0.095 = 1.179); we believe this improvement is sufficient to justify the choice of
gradient boosting in preference to logistic regression in our primary analyses; we also
consider annotations constructed using logistic regression in our secondary analyses.

We broadly investigated which features of the DeepSEA, Basenji, DeepBind and
deltaSVM models contributed the most to corresponding boosted annotations by applying
Shapley Additive Explanation (SHAP)42, a widely used tool for pinpointing biological
features underlying machine learning models37,43,44. For each model analyzed, we
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aggregated SHAP values across SNPs and primarily focused on the top 20 features,
following ref.37 (see Data Availability for visualization of top 100 features); we caution
that aggregating values across SNPs does not account for the wide variation in SHAP
values in our analyses, and that the large number of features makes it difficult to
delineate which features the observed improvements derive from. For DeepSEA∆-
boosted, top features included TF features in GM12878 and K562, two immune-related
cell lines (Figure S3); for Basenji∆-boosted, top features included activating histone
marks (H3K27ac and H3K4me3) in immune cell types (Figure S4); for DeepBind∆-
boosted, top features included the TF features TBP, HOXA13 and SP1 (Figure S5); for
deltaSVM∆-boosted, top features largely consisted of TF features in the immune cell
type K562 (Figure S6). We also investigated which features of the DeepSEA, Basenji,
DeepBind and deltaSVM models contributed the most to corresponding annotations
constructed using logistic regression (instead of gradient boosting). We observed partial
overlap with the top features from gradient boosting, including immune cell type features
for DeepSEA and Basenji and the HOXA13 TF feature for DeepBind (Table S6);
HOXA13 regulates genes associated with immune response, gap junction/cell adhesion,
and pregnancy45. Finally, we investigated the impact of using only features from 27
blood cell types as input to our gradient boosting method (524 DeepSEA features or
479 Basenji features or 91 deltaSVM features; not applicable to DeepBind, which is
non-tissue-specific). We determined that this attained only slightly lower AUROC than
using all features (Table S7).

We assessed the informativeness for disease heritability of allelic-effect annotations
constructed using DeepSEA, Basenji, DeepBind and deltaSVM. In our marginal anal-
ysis of disease heritability (across 11 autoimmune diseases and blood-related traits)
using S-LDSC conditional on the baseline-LD-deep model, 2 of 4 published annotations
(DeepSEA∆-published, Basenji∆-published)and 1 of 4 boosted annotations (Basenji∆-
boosted) were significantly enriched for heritability (after Bonferroni correction for 174
annotations tested; see Methods), with larger enrichments for the boosted annotations
(Figure 1A, left panel, Figure 1C, left panel and Table S8); values of standardized
enrichment (defined as enrichment scaled by the standard deviation of the annota-
tion) are reported in Figure S7 and Table S9. However, none of these annotations
attained Bonferroni-significant τ? values (although the Basenji∆-boosted annotation
was FDR-significant) (Figure 1B, left panel, Figure 1D, left panel and Table S8). We
constructed analogs of the DeepSEA∆-boosted, Basenji∆-boosted, DeepBind∆-boosted
and deltaSVM∆-boosted annotations using three other sets of fine-mapped SNPs: 4,312
fine-mapped inflammatory bowel disease SNPs22, 1,429 functionally fine-mapped SNPs
for 14 blood-related UK Biobank traits23,46, or the union of all 14,482 fine-mapped SNPs.
The resulting annotations produced less disease signal than those constructed using the
8,741 fine-mapped autoimmune disease SNPs21 (Table S8).

We sought to improve the specificity of these annotations by restricting them to SNPs
implicated by SNP-to-gene (S2G) linking strategies, e.g. prioritizing SNPs that may play
a role in gene regulation; we define an S2G strategy as an assignment of 0, 1 or more
linked genes to each SNP. We considered 10 S2G strategies capturing both proximal and
distal gene regulation in blood, as in our previous work38 (see Methods and Table 1),
and constructed 10 corresponding binary S2G annotations defined by SNPs linked to the
set of all genes; the S2G annotations were only mildly positively correlated with each
other (average r = 0.09; Figure S8). We defined restricted allelic-effect annotations as a
simple product of allelic-effect annotations and S2G annotations. Due to correlations
between allelic-effect annotations and S2G annotations (average r = 0.16; Figure S9), the
size of a restricted allelic-effect annotation (defined as average annotation value; equal
to proportion of SNPs for binary annotations) was generally larger than the product
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of the respective sizes of the underlying allelic-effect and S2G annotations (as would
be expected if the two constituent annotations were independent); for example, the
Basenji∆-boosted allelic effect annotation has size 15% and the ABC S2G annotation has
size 1.4%, but the Basenji∆-boosted × ABC boosted-restricted allelic effect annotation
has size 0.63%, which is lager than 15% × 1.4% = 0.21%. We evaluated 80 restricted
allelic-effect annotations (8 allelic-effect annotations (4 published + 4 boosted) x 10
S2G annotations). We analyzed the restricted allelic-effect annotations conditional on a
“baseline-LD-deep-S2G model” defined by 100 baseline-LD-deep annotations and 7 new
S2G annotations from Table 1 that were not already included in the baseline-LD model
(107 annotations total) (Table S2 and Table S10), to ensure that heritability enrichments
that are entirely due to S2G annotations would not produce conditional signals.

In our marginal analysis of disease heritability using S-LDSC conditional on the
baseline-LD-deep-S2G model, 48 of 80 annotations were significantly enriched for her-
itability (after Bonferroni correction for 174 annotations tested; see Methods), with
larger enrichments for smaller annotations (Figure 1A right panel, Figure 1C right panel
and Table S11); values of standardized enrichment were more similar across annotations
(Table S12). Although published and boosted allelic-effect annotations were of similar
size, the enrichments for boosted-restricted annotations across S2G strategies were higher
on average (1.3x for DeepSEA, 1.5x for Basenji, 1.1x for DeepBind, 1.4x for deltaSVM)
than the enrichments for published-restricted annotations. 3 of the boosted-restricted
annotations (DeepSEA∆-boosted × eQTL), Basenji∆-boosted × ABC and Basenji∆-
boosted × TSS; no DeepBind or deltaSVM annotations) attained Bonferroni-significant
τ? values (Figure 1B right panel, Figure 1D right panel and Table S11). (In comparison,
when we conditioned only on the baseline-LD-deep model, 20 of the 80 annotations
attained Bonferroni-significant τ? values (Table S13).

We jointly analyzed the 3 marginally significant annotations from the marginal
analyses from Figure 1B, right panel by performing forward stepwise elimination to
iteratively remove annotations that had conditionally non-significant τ∗ values after
Bonferroni correction. All 3 annotations were jointly significant in the resulting joint
model, with joint effect sizes very similar to the conditional effect sizes from Figure
1B, right panel (Figure S10 and Table S14). All three annotations had joint τ? > 0.5;
annotations with τ∗ > 0.5 are unusual, and considered to be important47.

We investigated whether the boosted-restricted annotations would detect gene set-
specific signals by further restricting them to SNPs linked to two biologically important
gene sets: genes intolerant to loss-of-function (LoF) mutations33 (pLI) and genes with
high PPI network connectivity to Enhancer-driven genes in blood38 (PPI-enhancer). We
defined gene set-specific boosted-restricted annotations by replacing the S2G annotations
(containing SNPs linked to all genes) with annotations containing SNPs linked to genes
in the input gene set (Methods); we primarily focused on boosted-restricted annotations
(instead of published-restricted annotations) because these were the restricted annotations
that produced significant conditional signals in Figure 1B, right panel. We evaluated
80 gene set-specific boosted-restricted annotations (2 gene sets (pLI, PPI-enhancer) x 4
boosted allelic-effect annotations (Basenji∆-boosted, DeepSEA∆-boosted, DeepBind∆-
boosted, deltaSVM∆-boosted) x 10 S2G strategies). We analyzed the gene set-specific
boosted-restricted annotations conditional on a “baseline-LD-deep-S2G-geneset” model
defined by 107 baseline-LD-deep-S2G annotations and 8 jointly significant gene set-
specific S2G annotations (Table S15 and Table S2), to ensure that heritability enrichments
that are entirely due to the gene set-specific S2G annotations would not produce
conditional signals.
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In our marginal analysis of disease heritability using S-LDSC conditional on the
baseline-LD-deep-S2G-geneset model, 41 of the 80 gene set-specific boosted-restricted
annotations were significantly enriched for heritability (after Bonferroni correction for
174 annotations tested; see Methods), with larger enrichment for smaller annotations
(Figure 2A and Table S16); values of standardized enrichment were more similar across
annotations (Figure S11 and Table S17). 13 of the 80 annotations (3 DeepSEA∆-
boosted (PPI-enhancer), 3 Basenji∆-boosted (PPI-enhancer), 2 DeepBind∆-boosted
(PPI-enhancer), 3 deltaSVM∆-boosted (PPI-enhancer), 1 DeepBind∆-boosted (pLI)
and 1 deltaSVM∆-boosted (pLI)) attained conditionally Bonferroni-significant τ? values
(Figure 2B and Table S16). We jointly analyzed these 13 annotations by performing
forward stepwise elimination. The resulting joint model contained 2 jointly significant
annotations, Basenji∆-boosted (PPI-enhancer) × ABC and Basenji∆-boosted (PPI-
enhancer) × Roadmap (Figure 2C and Table S18); both annotations had joint τ? > 0.5.
Both annotations remained jointly significant, with very similar τ∗ values, when further
conditioned on the 3 jointly significant boosted-restricted annotations from Figure 1B,
right panel (including the underlying Basenji∆-boosted × ABC annotation and the
underlying Basenji∆-boosted × Roadmap annotation) (Table S18).

We performed 3 secondary analyses. First, we repeated the analysis of restricted
annotations using local GC-content (proportion of G and C nucleotides in a 1000bp
window around each SNP) in addition to the S2G strategies, conditioning on the baseline-
LD-deep-S2G model and the unweighted local GC-content annotation. The τ∗ values for
all 3 jointly significant restricted annotations from Figure 1B, right panel were nearly
unchanged and remained Bonferroni-significant (Table S19); this implies that the unique
disease signal in our restricted annotations cannot be explained by local GC-content.
Second, we assessed the informativeness for disease heritability of allelic-effect annotations
constructed using logistic regression (instead of gradient boosting). We determined
that these annotations were less informative for disease heritability; in particular, only
1 of 3 annotations from Figure 1B, right panel (and no other annotations) attained
conditionally Bonferroni-significant τ∗ values (Table S20 and Table S21). Third, we
repeated the analysis of gene set-specific restricted annotations using published-restricted
annotations instead of boosted-restricted annotations. Marginal results were comparable
to Figure 2B (14 annotations with Bonferroni-significant τ∗ values; Table S22), but none
of the gene set-specific published-restricted annotations annotations were significant
conditional on the 2 jointly significant gene set-specific boosted-restricted from Figure
2C (Table S23).

We conclude that boosted deep learning allelic-effect annotations restricted to SNPs
implicated by functionally informed S2G linking strategies are uniquely informative
for autoimmune diseases and blood-related traits. All annotations that were uniquely
informative for disease in our joint analyses were based on the DeepSEA and Basenji
models, and we thus restrict our remaining analyses to these two deep learning models.

Sequence-based deep learning predictions of gene expression in-
formed by S2G linking strategies are uniquely informative for
autoimmune disease heritability

We developed a new approach, Imperio, to predict gene expression from DNA sequence by
using S2G strategies to prioritize deep learning annotations (sequence-based deep learning
predictions of functional annotations) as features (Figure S12 and Methods). Imperio
generalizes the ExPecto approach4, which prioritizes deep learning annotations as features
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based on distance to TSS. Specifically, Imperio uses regularized linear regression to fit
optimal combinations of features predicting gene expression across 22,020 genes based
on 2,002 DeepSEA or 4,229 Basenji deep learning annotations restricted to relatively
common SNPs (MAF > 1%) linked to the target gene by 5 S2G strategies that are
suitably large in size and generalizable to tissues beyond blood (5kb, 100kb, TSS, ABC
and Roadmap Enhancer; Table 1) (2,002 × 5 or 4,229 × 5 features); the feature weights
are independent of the target gene but dependent on the deep learning annotation
and the S2G strategy (see Methods). In contrast, ExPecto fits optimal combinations
of features based on 2,002 DeepSEA annotations restricted to 10 different functions
of distance to TSS (using exponential decay), for a total of 2,002 × 10 features. We
restricted our Imperio analyses to the DeepSEA and Basenji models, as all annotations
that were uniquely informative for disease in our above joint analyses were based on
these models. We focused on predicting gene expression in blood, due to the larger
amount of data currently available for ABC and Roadmap Enhancer in blood cell types
(however, our approach is generalizable to other tissues). We evaluated the accuracy of
Imperio in predicting gene expression across genes on chromosome 8, which was withheld
from Imperio training data (analogous to ref.4). We determined that Imperio attained
similar predictive accuracy as ExPecto (Spearman correlation ρ = 0.76 (Basenji) and
ρ = 0.72 (DeepSEA) with log RPKM expression, vs. ρ = 0.79 for ExPecto; Figure S13).
The expression predictions were highly correlated between the Imperio and ExPecto
models (average ρ = 0.82) (Figure S14), but the resulting allelic-effect annotations were
less correlated, such that Imperio may contribute unique information (see below). The
top significant features driving the Imperio model fit included Transcription Factor (TF)
features for DeepSEA and CAGE features for Basenji (Table S24). When we compared
the 5 Imperio models utilizing a single S2G strategy, TSS outperformed the other S2G
strategies, but the resulting model fit (Spearman correlation ρ = 0.69 (Basenji) and
ρ = 0.71 (DeepSEA) with log RPKM expression) was substantially worse than the model
fit of the Imperio model utilizing all 5 S2G strategies (Table S25).

We used the Imperio allelic effects (signed predicted difference in expression between
reference and variant alleles) to predict GTEx blood gene expression across individuals
for each gene (see Methods). For each gene, we compared the Imperio prediction r2 to the
total cis-SNP heritability of that gene, which represents an upper bound on the prediction
r2 that can be attained using DNA sequence (because Imperio uses a (constrained) linear
model to compute predictions; see Methods). Averaging across all 22,020 genes, Imperio
predictions captured up to 82% of the total cis-SNP heritability on average (82% for
Imperio-Basenji and 79% for Imperio-DeepSEA, vs. 75% for ExPecto; this analysis was
not considered in ref.4) (Table S26). The Imperio prediction r2 closely tracked cis-SNP
heritability (ρ = 0.83 for Imperio-DeepSEA, ρ = 0.84 for Imperio-Basenji across genes,
vs. ρ = 0.81 for ExPecto) (Figure S15). Because disease heritability pertains to variation
across individuals, the higher accuracy of Imperio in predicting gene expression variation
across individuals may be expected to lead to annotations that are more informative for
disease heritability.

We used the gene expression predictions from Imperio (DeepSEA and Basenji models)
and ExPecto4 (DeepSEA model) to construct expression allelic-effect annotations (abso-
lute value of the predicted difference in expression between reference and variant alleles)
by summing allelic effects across genes linked by S2G strategies to the annotated SNP
(see Methods). The Imperio training data excluded chromosome 8 (analogous to ref.4; see
above), but did not exclude the target chromosomes on which allelic-effect annotations
were constructed. However, this does not constitute overfitting, because the Imperio
model was trained using reference sequence only. The Imperio-DeepSEA and Imperio-
Basenji annotations were moderately correlated with each other (r = 0.54) and with
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ExPecto-DeepSEA (average r = 0.48) (Figure S16), such that each may contribute unique
information. Furthermore, Imperio-DeepSEA and Imperio-Basenji annotations showed
only mild correlation (average r=0.11) with boosted-restricted allelic effect annotations
from previous section (Table S27). We analyzed the Imperio-DeepSEA, Imperio-Basenji
and ExPecto-DeepSEA allelic-effect annotations conditional on the baseline-LD-deep-
S2G-geneset model (see above; Table S2 and Table S15), for consistency with analyses
of gene set-specific allelic-effect annotations (see below).

In our marginal analysis of disease heritability using S-LDSC conditional on the
baseline-LD-deep-S2G-geneset model, all 3 annotations were significantly enriched for
disease heritability (after Bonferroni correction for 174 annotations tested; see Methods),
with larger enrichments for smaller annotations annotations (Figure 3A and Table S28);
values of standardized enrichment were more similar across annotations (Table S29).
One annotation, Imperio-Basenji, attained a Bonferroni-significant τ? value (Figure 3B
and Table S28); the τ? value was very close to 0.5. This implies that Imperio-Basenji
provides unique information about autoimmune diseases and blood-related traits. We
note that the improvement of Imperio-Basenji vs. Expecto-DeepSEA derives both from
the use of S2G strategies in Imperio (Imperio-DeepSEA vs. Expecto-DeepSEA) and the
use of the Basenji model (Imperio-Basenji vs. Imperio-DeepSEA); however, statistical
uncertainty precludes a precise quantification of the relative importance of these two
factors.

We investigated whether the Imperio approach would detect gene-set specific signals
by restricting Imperio to two biologically important gene sets: pLI33 and PPI-enhancer38

(see above). We defined gene set-specific allelic-effect annotations by restricting both
the fitting of feature weights and the gene expression predictions to genes in the input
gene set. Pairwise correlations between the 4 gene set-specific allelic-effect annotations
([Imperio-DeepSEA or Imperio-Basenji] x [pLI or PPI-enhancer]) (and the 3 non-gene
set-specific allelic-effect annotations) are reported in Figure S16. We analyzed the gene
set-specific allelic-effect annotations conditional on the baseline-LD-deep-S2G-geneset
model (see above; Table S2 and Table S15).

In our marginal analysis of disease heritability using S-LDSC conditional on the
baseline-LD-deep-S2G-geneset model, all 4 annotations were significantly enriched for
disease heritability (after Bonferroni correction for 174 annotations tested; see Methods),
with larger enrichments for smaller annotations annotations (Figure 3C and Table S30);
values of standardized enrichment were more similar across annotations (Table S31). Two
annotations, Imperio-DeepSEA (PPI-enhancer) and Imperio-Basenji (PPI-enhancer),
attained Bonferroni-significant τ? values (Figure 3D and Table S30). In a joint analysis
of both annotations, only Imperio-DeepSEA (PPI-enhancer) remained significant (Figure
3D and Table S32); the τ? value was larger than 0.5. Imperio-DeepSEA (PPI-enhancer)
remained significant (with τ? > 0.5) when further conditioned on the Imperio-Basenji
annotation from Figure 3B (Table S33).

We performed 5 secondary analyses. First, we fit an Imperio+ExPecto model using
both Imperio (DeepSEA or Basenji) and ExPecto features. The Imperio+ExPecto
allelic-effect annotations did not produce a significant disease signal conditional on the
baseline-LD-deep-S2G-geneset model plus the Imperio-Basenji annotation from Figure
3B (Table S34). Second, we investigated a partially restricted gene set-specific Imperio
approach by restricting either (a) the fitting of feature weights or (b) the gene expression
predictions (but not both) to genes in the input gene set. None of the partially restricted
gene set-specific annotations produced a significant disease signal conditional on the
baseline-LD-deep-S2G-geneset model plus the two significant annotations from Figure
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3B,D (Table S35 and Table S36). Third, we assessed whether the disease informativeness
of Imperio could be explained by annotations defined by the number of genes linked
to each SNP by each S2G strategy (see Methods). However, none of these annotations
produced a significant disease signal conditional on the baseline-LD-deep-S2G-geneset
model, either for all genes (Table S37) or when restricted to PPI-enhancer genes (Table
S38). Fourth, we modified Imperio by constructing allelic-effect annotations using the
maximum across genes proximal to the annotated SNPs, instead of the sum (see Methods).
None of the modified annotations produced a significant disease signal conditional on the
baseline-LD-deep-S2G-geneset model plus the two significant annotations from Figure
3B,D (Table S39). Fifth, we compared the Imperio annotations to MaxCPP-blood
(Maximum across genes of fine-mapped eQTL Causal Posterior Probability) annotation27

constructed using GTEx whole blood gene expression data48. The MaxCPP-blood
annotation was only weakly correlated with Imperio annotations (average r = 0.09) and
did not produce a significant disease signal conditioned on the baseline-LD-deep-S2G-
geneset model (Table S40), consistent with the fact that a related MaxCPP annotation
based on a meta-analysis across tissues27 is already included in the baseline-LD model.

We conclude that allelic-effect annotations based on predictions of gene expression
from DNA sequence using S2G linking strategies to prioritize deep learning annotations
as features are uniquely informative for autoimmune diseases and blood-related traits.

Combined joint model

We constructed a combined joint model containing annotations from the above analyses
that were jointly significant, contributing unique information conditional on all other
annotations. In detail, we merged the baseline-LD-deep-S2G-geneset model with 3
DeepBoost boosted-restricted allelic-effect annotations from Figure 1, 2 gene-set specific
DeepBoost annotations from Figure 2, 1 Imperio gene expression prediction allelic-effect
annotation from Figure 3B, and 1 gene-set specific Imperio annotation from Figure
3D, and performed forward stepwise elimination to iteratively remove annotations that
had conditionally non-significant τ? values after Bonferroni correction. The resulting
combined joint model contained 3 new annotations, including 1 DeepBoost annotation
(Basenji∆-boosted × TSS) and the 2 Imperio annotations (Imperio-Basenji and Imperio-
DeepSEA (PPI-enhancer)) (Figure 4 and Table S41). 2 of these annotations attained
τ∗ > 0.5: Basenji∆-boosted × TSS (1.1± 0.29) and Imperio-DeepSEA (PPI-enhancer)
(0.67± 0.15); as noted above, annotations with τ∗ > 0.5 are unusual, and considered to
be important47. The combined τ∗19,49 of the 3 annotations was high (1.7± 0.3).

We independently evaluated the combined joint model of Figure 4 (and other models)
by computing loglSS

39, (an approximate likelihood metric that evaluates a heritability
model defined by a set of functional annotations) relative to a model with no functional
annotations (∆loglSS), averaged across a subset of 6 blood-related traits (1 autoimmune
disease and 5 blood cell traits) from the UK Biobank46 (Table S1). The combined joint
model attained a +20.3% larger ∆loglSS than the baseline-LD model (Table S42); +2.5%
of the improvement derived from the 3 new annotations from Figure 4. The combined
joint model also attained a +14.2% larger ∆loglSS than the baseline-LD model (+2.2%
of the improvement derived from the 3 new annotations from Figure 4) in a separate
analysis of 24 non-blood-related traits from the UK Biobank (see Table S43 for list of
traits) that had lower absolute loglSS values (Table S42), implying that the value of
the annotations introduced in this paper is not restricted to autoimmune diseases and
blood-related traits.
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We conclude that two types of allelic-effect annotations informed by S2G strate-
gies—DeepBoost boosted-restricted annotations and Imperio gene expression prediction
annotations—are jointly informative for autoimmune diseases and blood-related traits.

Discussion

We have evaluated the contribution to autoimmune disease of SNP annotations con-
structed by integrating 4 sequence-based models - 3 deep learning approaches (DeepSEA,
Basenji and DeepBind) and 1 machine learning approach (deltaSVM), with different
types of functional data, including fine-mapped SNPs, SNP-to-gene linking strategies,
gene expression data, and biologically important gene sets, using our DeepBoost and
Imperio frameworks. We determined that boosted deep allelic-effect annotations re-
stricted to SNPs implicated by functionally informed S2G linking strategies are uniquely
informative for disease. We also determined that allelic-effect annotations based on
prediction of gene expression from DNA sequence that were informed by S2G linking
strategies are uniquely informative for disease, outperforming allelic-effect annotations
from ExPecto4. We further determined that both DeepBoost and Imperio allelic-effect
annotations were jointly informative for disease, resulting in an improved heritability
model. All annotations that were uniquely informative for disease in our joint analy-
ses using DeepBoost were based on the DeepSEA and Basenji models (and we thus
restricted our Imperio analyses to these models). However, the DeepBind and deltaSVM
models have performed well under other metrics: deltaSVM performed as well or better
than DeepSEA in analyses of MPRA data40, and DeepSEA, DeepBind and deltaSVM
performed similarly well in analyses of allele-specific transcription factor binding50.

Our work has several downstream implications. First, the DeepBoost and Imperio
frameworks can be applied to other models beyond DeepSEA, Basenji, DeepBind
and deltaSVM, and we anticipate that future deep learning models will benefit from
these frameworks. Second, the accuracy of the Imperio framework in capturing cis-
SNP heritability in blood suggests that it may be valuable to integrate Imperio gene
expression predictions in other settings, such as transcriptome-wide association studies
(TWAS)51–53 or mediated expression score regression (MESC)54. Third, our findings have
immediate potential for improving functionally informed fine-mapping23,55–57 (including
experimental follow-up58), polygenic localization23, and polygenic risk prediction59,60.

Our work has several limitations, representing important directions for future re-
search. First, we focused our analyses on functional data in blood, and on blood-related
diseases/traits; this choice was motivated by (i) the better representation of some S2G
strategies, such as ABC and Roadmap Enhancer, in blood cell types than in other
tissues, and (ii) the particularly large functional enrichments observed in autoimmune
diseases and blood-related traits16,19,27,34. However, it will be of interest to apply the
DeepBoost and Imperio frameworks to other tissues and corresponding diseases/traits,
once richer functional data becomes available. Second, we investigated the 10 S2G
strategies separately, instead of constructing a single optimal combined strategy. A
comprehensive evaluation of S2G strategies, and a method to combine them, will be
provided elsewhere61. Third, our S-LDSC analyses are inherently focused on common
variants, but deep learning models have also shown promise in prioritizing rare pathogenic
variants4,8,62. The value of deep learning models for prioritizing rare pathogenic variants
has been questioned in a recent analysis focusing on Human Gene Mutation Database
(HGMD) variants63, meriting further investigation. Fourth, we focused here on deep
learning models trained using human data, but models trained using data from other
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species may also be informative for human disease26,64. Fifth, the forward stepwise elim-
ination procedure that we use to identify jointly significant annotations34 is a heuristic
procedure whose choice of prioritized annotations may be close to arbitrary in the case of
highly correlated annotations. Nonetheless, our framework does impose rigorous criteria
for conditional informativeness. Sixth, the large number of features (up to 4,229 features;
Basenji model) makes it difficult to delineate which features the observed improvements
derive from; this limitation is not unique to our work, as previous studies using deep
learning models included a similarly large number of features1,2,4,5.

Despite all these limitations, our findings improve the informativeness of deep learning
models for autoimmune diseases and blood-related traits, and enhance our understanding
of the sequence-mediated regulatory processes impacting these diseases/traits.
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Methods

Genomic annotations and the baseline-LD model

We define a functional annotation as an assignment of a numeric value to each SNP with
minor allele count ≥ 5 in a predefined reference panel (e.g., 1000 Genomes Project36;
see URLs). Annotations can be either binary or continuous-valued (Methods). Our
focus is on continuous-valued annotations (with values between 0 and 1) that are
obtained by integrating deep learning models with functional data, including fine-mapped
SNPs, SNP-to-gene linking strategies, gene expression data, and biologically important
gene sets. Annotations that correspond to known or predicted function are referred
to as functional annotations. The baseline-LD model (v.2.1) contains 86 functional
annotations (see URLs). These annotations include binary coding, conserved, and
regulatory annotations (e.g., promoter, enhancer, histone marks, TFBS) and continuous-
valued linkage disequilibrium (LD)-related annotations.

DeepSEA, Basenji, DeepBind and deltaSVM functional annota-
tions

Deep learning/machine learning annotations were derived using three pre-trained Con-
volutional Neural Net (CNN) models: Basenji5, DeepSEA2,4 (architecture from ref.4)
and DeepBind1; and a Support Vector Machine (SVM) based machine learning model:
deltaSVM9 (see URLs). Basenji is a Poisson likelihood model trained on original count
data from 4, 229 cell-type specific histone mark, chromatin accessibility and FANTOM5
CAGE65,66 annotations. Basenji uses dilated convolutional layers that allow scanning
much larger contiguous sequence around a variant (≈ 130kb). DeepSEA is a classi-
fication based model trained on binary peak call data from 2, 002 cell-type specific
TFBS, histone mark and chromatin accessibility annotations from the ENCODE67

and Roadmap Epigenomics41 projects with a sequence length of 1kb. DeepBind is a
convolutional neural net model trained on 927 non-tissue-specific features based on 538
distinct transcription factors and 194 distinct RNA binding proteins. We restricted
the deltaSVM model to 1,329 pre-trained sequence-based gapped k-mer support vector
machine (gkm-SVM10,11) features comprising of 699 ENCODE3 TFs, 317 DHS promoters
and 313 DHS enhancers from Roadmap9 (see URLs), as these features were previously
shown to be most informative in ref.40. For each SNP with minor allele count ≥ 5 in 1000
Genomes, we applied the pre-trained DeepSEA and Basenji models to the surrounding
DNA sequence to compute both the prediction (at reference allele) and the predicted
difference in probability between the reference and the alternate alleles. We call these
the variant-level annotations and allelic-effect annotations respectively; this naming
convention has been used previously19. The allelic-effect annotations are more inter-
esting from a biological perspective as they are specific to a sequence-based predictive
model like these deep learning models. We define a “‘published” allelic-effect annotation
for each model by aggregating allelic effects across features. We defined DeepSEA∆-
published and Basenji∆-published annotations as the maximum absolute allelic effect
across DNase, H3K27ac, H3K4me1 and H3K4me3 epigenomic marks in 27 blood cell
types from Roadmap Epigenomics data19,41. Similarly, we defined deltaSVM∆-published
as the maximum absolute effect across all features in the 27 blood cell types. Since
DeepBind is non-tissue-specific, we defined DeepBoost∆-published as the maximum
absolute effect across all features considered..

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.09.08.288563doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288563
http://creativecommons.org/licenses/by-nc-nd/4.0/


Boosted deep learning annotations using DeepBoost

DeepSEA∆-published and Basenji∆-published represent a simple maximum of allelic-
effect annotations across tissues and chromatin features. Here we introduce a gradient
boosting approach to combine allelic-effect annotations across tissues and chromatin
features. In detail, we train a classification model using decision trees, where each
node in a tree splits SNPs into 2 classes (fine-mapped and control) using deep learning
allelic-effect annotations from DeepSEA and Basenji models. The features in this
classification model comprise of either allelic-effect annotations for 2,002 DeepSEA
features or allelic-effect annotations for 4,229 Basenji features. We choose the control
SNPs from non-finemapped SNPs matched for MAF, LD, local GC-content and the
number of repeats distribution. MAF is based on the same reference panel (European
samples from 100 Genomes Phase 336), and LD is estimated by applying S-LDSC on
all SNPs annotation (‘base’). The number of control SNPs were chosen equal to the
number of fine-mapped SNPs. We used fine-mapped SNPs data related to blood traits
from three sources21–23.

We used the Extreme gradient boosting (XGBoost) method implemented in the
XGBoost software20,68 with following model parameters: the number of estimators (200,
250, 300), depth of the tree (25, 30, 35), learning rate (0.05), gamma (minimum loss
reduction required before additional partitioning on a leaf node; 10), minimum child
weight (6, 8 ,10), and subsample (0.6, 0.8, 1); we optimized parameters by tuning
hyper-parameters (a randomized search) with five-fold cross-validation. Two important
parameters to avoid over-fitting are gamma and learning rate; we chose these values
consistent with previous studies69, as in our previous work on AnnotBoost framework37.

The gradient boosting predictor is based on T additive estimators (T=200, 250, 300)
and it minimizes the loss objective function Lt at iteration t.

L(t) =
N∑
i=1

l(yi, ŷ
(t)
i ) + γ(ft) ŷ

(t)
i = ŷ

(t−1)
i + ft(xi) (1)

ft is an independent tree structure and γ(ft) is the complexity parameter. The final
prediction from the gradient boosting model therefore is

ŷi =
T∑
t=1

ft(xi) (2)

In order to avoid winner’s curse and overfitting, we use fine-mapped SNPs on
odd (respectively even) chromosomes as training data to make predictions for even
(respectively odd) chromosomes, as in our previous work on AnnotBoost37; thus, boosted
annotations on a given chromosome are not informed by fine-mapped SNPs on that
chromosome. We report the average AUROC of odd and even chromosome classifiers.
The boosted annotations produced as output of the classifier are probabilistic in nature
because of the logistic loss. We generate 4 boosted annotations, DeepSEA∆-boosted,
Basenji∆-boosted, DeepBind∆-boosted and deltaSVM∆-boosted, for each of 4 sets of
fine-mapped SNPs, comprising of 8,741 fine-mapped autoimmune disease SNPs21, 4,312
fine-mapped inflammatory bowel disease SNPs22, 1,429 functionally fine-mapped SNPs
for 14 blood-related UK Biobank traits23,46, or the union of these 14,482 fine-mapped
SNPs.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.09.08.288563doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288563
http://creativecommons.org/licenses/by-nc-nd/4.0/


Boosted-restricted deep learning annotations using S2G strate-
gies

We define a SNP-to-gene (S2G) linking strategy as an assignment of 0, 1 or more
linked genes to each SNP with minor allele count ≥ 5 in a 1000 Genomes Project
European reference panel36. We intersect the 8 allelic-effect annotations from the
previous subsections (DeepSEA∆-published, Basenji∆-published, DeepBind∆-published,
deltaSVM∆-published, DeepSEA∆-boosted, Basenji∆-boosted, DeepBind∆-boosted
and deltaSVM∆-boosted) with 10 S2G strategies used in ref.38 to generate 80 restricted
allelic-effect annotations.

We explored 10 SNP-to-gene linking strategies in blood (Table 1). The proximal
strategies included gene body ± 5kb; gene body ± 100kb; predicted TSS (by Segway30,31);
coding SNPs; and promoter SNPs (as defined by UCSC70,71). The distal strategies
included regions predicted to be distally linked to the gene by Activity-by-Contact
(ABC) score24,25 > 0.015 as suggested in ref.24 (see below); regions predicted to be
enhancer-gene links based on Roadmap Epigenomics data (Roadmap)28,32,41; regions
in ATAC-seq peaks that are highly correlated (> 50% as recommended in ref.26) to
expression of a gene in mouse immune cell-types (ATAC)26; regions distally connected
through promoter-capture Hi-C links (PC-HiC)29; and SNPs with fine-mapped causal
posterior probability (CPP)27 > 0.001 (we chose this threshold to ensure that the SNP
annotations generated after combining the gene scores with the eQTL S2G strategy
were of reasonable size (0.2% of SNPs or larger) for all gene scores analyzed) in GTEx
whole blood. (This is the threshold used throughout the analyses in our parallel study
providing a comprehensive evaluation of S2G strategies61, which was initiated prior to
the current study and has different goals.)

The boosted-restricted allelic-effect annotations were further restricted to SNPs linked
to genes in two biologically important gene sets - pLI33 and PPI-enhancer38.

• PPI-enhancer: A binary gene score denoting genes in top 10% in terms of
closeness centrality measure to the disease informative enhancer-regulated gene
scores as defined in ref.38. To get the closeness centrality metric, we first perform
a Random Walk with Restart (RWR) algorithm72 on the STRING protein-protein
interaction (PPI network73,74(see URLs) with seed nodes defined by genes in
top 10% of the 4 enhancer-regulated gene scores defined in ref.38 with jointly
significant disease informativeness (ABC-G24,25, ATAC-distal26, EDS-binary75 and
SEG-GTEx76). The closeness centrality score was defined as the average network
connectivity of the protein products from each gene based on the RWR method.

• pLI : A probabilistic gene score with each gene graded by the probability of
intolerance to loss of function mutations33.

We generate an additional 80 annotations by combining the 2 gene scores (pLI,
PPI-enhancer) with 40 restricted boosted allelic-effect annotations for DeepSEA, Basenji,
DeepBind and deltaSVM models and 10 S2G strategies.
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Imperio deep learning annotations using gene expression predic-
tions informed by S2G strategies

We propose a new framework, Imperio, that for predicting gene expression from DNA
sequence by using S2G strategies to prioritize deep learning annotations (sequence-
based deep learning predictions of functional annotations) as features. This approach is
analogous to the recent ExPecto framework4, but focuses on sequences around common
variants linked to genes—either proximally or distally via enhancers, as in the Roadmap
and ABC distal S2G strategies. We selected these two distal S2G strategies because
they outperformed other distal strategies in blood in our previous work38. We integrate
both DeepSEA and Basenji models with S2G strategies to predict gene expression.
We consider a reduced set of 5 classes of S2G strategies: 5kb, 100kb, TSS, ABC and
Roadmap Enhancer. We fit a elastic net regularized linear regression model to log
RPKM expression data for gene g, Yg.

Yg =
∑
f

∑
d

βfd
∑
s∈Cdg

psf + εg; εg ∼ N(0, σ2) (3)

where f represents the chromatin mark features for the deep learning model (2,002 for
the DeepSEA model and 4,229 for the Basenji model), s represents SNPs that are at least
1Kb apart ensuring relatively weaker correlation in their variant-effect or allelic-effect
annotations, d represents a SNP-to-gene linking strategy, and Cdg represents the set of all

SNPs linked to gene g by the S2G strategy d. The 5 types of Cdg are:

• C5kb
g : SNPs in a window of 5kb around gene g

• C100kb
g : SNPs in a window of 100kb around gene g

• CTSS±5kb
g : SNPs in a window of of ±5kb around the TSS of gene g.

• CABCg : SNPs in regions linked to gene g by aggregation of Hi-C and enhancer
marks data in 56 blood cell-types with a Acitivity-by-Contact (ABC) score of
> 0.03.

• CRoadmapg : SNPs in Roadmap Enhancers linked to gene g in 27 blood cell-types.

βfd represents the model coefficient capturing the effect of each chromatin feature
f and each S2G strategy d on the gene expression. psf represents the variant-level
prediction for chromatin feature f around SNP i. εg represents white noise in the
regression model. The model in Equation 3 is fitted by using Extreme gradient boosting
(XGBoost) method. Following the training procedure in ExPecto, all genes except the
ones in chromosome chr8 were used for training. The predictive performance of this
approch is assessed on the holdout chromosome chr8.

We define the signed Imperio effect of each SNP as the sequence mediated effect on
expression of a variant s and S2G strategy d.

Jsd :=
∑
f

β̂fd

(
paltsf − p

ref
sf

)
(4)
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Jsd is the per-allele estimated change in expression caused by SNP s for any gene it
is linked to through S2G strategy d. Jsd is treated as the atom for any Imperio based
annotations we investigate.

The total absolute change in expression of gene g caused by SNP s and strategy d is
given as follows.

|∆Y (s,d)
g | := |Jsd|1s∈Cdg (5)

The total sequence mediated absolute predicted change by SNP s and S2G strategy
d across all genes g is given by

∆sd :=
∑
g

|Jsd|1s∈Cdg = |Jsd|Nsd (6)

where Nsd is the number of genes linked to SNP s by S2G strategy d.

∆s :=
∑
d

∑
g

|Jsd|Nsd =
∑
d

∑
g

∣∣∣∣∣∣
∑
f

β̂fd

(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (7)

We adjust for the minor allele frequency (MAF) ps for each SNP s to adjust for
per-allele effect sizes, as per ref77.

∆s := ps(1− ps)
∑
d

∑
g

∣∣∣∣∣∣
∑
f

β̂fd

(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (8)

These ∆s scores were normalized to convert them to a probabilistic scale.

For a supplementary analysis, we also consider annotations that do not include the
information of the number of genes linked to a SNP (ξs).

ξs := ps(1− ps)
∑
d

∑
g

∣∣∣∣∣∣
∑
f

β̂fd

(
paltsf − p

ref
sf

)∣∣∣∣∣∣ (9)

We analyze 3 annotations, 2 Imperio annotations, Imperio-DeepSEA and Imperio-
Basenji, and ExPecto-DeepSEA.

Predicting gene expression across individuals using Imperio

We use the Imperio effect of each SNP s in S2G strategy d,Jsd from Equation 4 (for
either DeepSEA or the Basenji model) to define a gene specific Imperio score for each
individual n and S2G strategy d as follows.
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I(g,1)
nd =

∑
s∈Cdg

GnsJsd (10)

I(g,2)
nd = Gns?Js?d s? = s ∈ Cdg

argmax

Js?d (11)

where Gns represents the number of risk alleles for individual n and the commonly
varying SNP s.

Next we perform a regression on the normalized gene expression log RPKM data for

individual n and gene g, Yng with predictors given by I(g,1)
nd and I(g,2)

nd .

Yng =
∑
d

γ
(1)
gd I

(g,1)
nd +

∑
d

γ
(2)
gd I

(g,2)
nd +

∑
k

βkBnk + εng εng ∼ N(0, η2) (12)

B denotes the covariates that are adjusted for in the model. We consider a total of 68
covariates including 5 principal components across samples, platform, gender and PCR

amplification. In cases where there is only one SNP s in Cdg , I(g,1)
nd = I(g,2)

nd and only one
of these predictors is used. This model provides an insight on relative contribution of
different S2G strategies in explaining the inter-individual gene expression variation. The
inter-individual Imperio model in Equation 12 is a linear model in risk alleles (Gns),
similar to a gene expression cis-heritability model but with constrained parameters; thus,
the cis-heritability represents an upper bound on the prediction r2 from the Imperio
inter-individual prediction model.

We compute R2
g, the proportion of variance explained by the predictor variables I(g,1)

nd

and I(g,2)
nd for all S2G strategies d and for gene g.

Gene set-specific Imperio deep learning annotations

The Imperio model coefficients βfd in the previous section are fitted across all genes.
However, different genes may have distinct sequence-mediated regulatory characteristics.
Additionally, not all genes in blood are equally important. Therefore, we propose a
gene-set specific Imperio model, where we perform the training of the model in Equation
3 over all genes g in a particular gene set G. We consider two gene sets, pLI33 and
PPI-enhancer38 (see above).

The sequence-mediated expression effect of a variant s corresponding to gene set G is
given by

∆s(G) := ps(1− ps)
∑
d

∑
g∈G

∣∣∣∣∣∣
∑
f

β̂fd(G)
(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (13)

where β̂fd(G) are the estimated model coefficients of βfd in Equation 3 fitted for
genes in gene set G.
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We analyze 4 annotations, combining Imperio models for DeepSEA and Basenji
models with the PPI-enhancer and pLI gene sets.

We further define intermediate Imperio annotations by restricting either (a) the
fitting of feature weights or (b) the gene expression predictions (but not both) to genes
in the input gene set.

We define Imperio-sub-1 annotations generated by using all genes for fitting the
model and gene sets for computing the expression allelic effects.

∆(2)
s (I) := ps(1− ps)

∑
d

∑
g∈G

∣∣∣∣∣∣
∑
f

β̂fd

(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (14)

We define Imperio-sub-2 annotations generated by using genes in a geneset for fitting
the model and all genes for computing the expression allelic effects

∆(2)
s (I) := ps(1− ps)

∑
d

∑
g

∣∣∣∣∣∣
∑
f

β̂fd(G)
(
paltsf − p

ref
sf

)∣∣∣∣∣∣ 1s∈Cdg (15)

Activity-by-Contact S2G strategy

The Activity-by-Contact (ABC)24,25 (https://github.com/broadinstitute/ABC-Enhancer-
Gene-Prediction) S2G strategy is determined by a predictive model for enhancer-gene
connections in each cell type, based on measurements of chromatin accessibility (ATAC-
seq or DNase-seq) and histone modifications (H3K27ac ChIP-seq), as previously de-
scribed24,25. We provide a brief summary of this approach, following ref.24,61 (which
contains further details). In a given cell type, the ABC model reports an “ABC score”
for each element-gene pair, where the element is within 5 Mb of the TSS of the gene.

For each cell type, we:

• Called peaks on the chromatin accessibility data using MACS2 with a lenient
p-value cutoff of 0.1.

• Counted chromatin accessibility reads in each peak and retained the top 150,000
peaks with the most read counts. We then resized each of these peaks to be 500bp
centered on the peak summit. To this list we added 500bp regions centered on all
gene TSS’s and removed any peaks overlapping blacklisted regions78,79 (https://
sites.google.com/site/anshulkundaje/projects/blacklists). Any result-
ing overlapping peaks were merged. We call the resulting peak set candidate
elements.

• Calculated element Activity as the geometric mean of quantile normalized chro-
matin accessibility and H3K27ac ChIP-seq counts in each candidate element region.

• Calculated element-promoter Contact using the average Hi-C signal across 10
human Hi-C datasets as described below.
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• Computed the ABC Score for each element-gene pair as the product of Activity
and Contact, normalized by the product of Activity and Contact for all other
elements within 5 Mb of that gene.

To generate a genome-wide averaged Hi-C dataset, we downloaded KR normalized Hi-
C matrices for 10 human cell types (GM12878, NHEK, HMEC, RPE1, THP1, IMR90, HU-
VEC, HCT116, K562, KBM7). This Hi-C matrix (5 Kb) resolution is available here: ftp:
//ftp.broadinstitute.org/outgoing/lincRNA/average_hic/average_hic.v2.191020.

tar.gz25,80. For each cell type we performed the following steps.

• Transformed the Hi-C matrix for each chromosome to be doubly stochastic.

• We then replaced the entries on the diagonal of the Hi-C matrix with the maximum
of its four neighboring bins.

• We then replaced all entries of the Hi-C matrix with a value of NaN or corresponding
to Knight–Ruiz matrix balancing (KR) normalization factors ¡ 0.25 with the
expected contact under the power-law distribution in the cell type.

• We then scaled the Hi-C signal for each cell type using the power-law distribution
in that cell type as previously described.

• We then computed the “average” Hi-C matrix as the arithmetic mean of the 10
cell-type specific Hi-C matrices.

In each cell type, we assign enhancers only to genes whose promoters are “ac-
tive” (i.e., where the gene is expressed and that promoter drives its expression). We
defined active promoters as those in the top 60% of Activity (geometric mean of chro-
matin accessibility and H3K27ac ChIP-seq counts). We used the following set of TSSs
(one per gene symbol) for ABC predictions: https://github.com/broadinstitute/

ABC-Enhancer-Gene-Prediction/blob/v0.2.1/reference/RefSeqCurated.170308.bed.

CollapsedGeneBounds.bed. We note that this approach does not account for cases
where genes have multiple TSSs either in the same cell type or in different cell types.

For intersecting ABC predictions with variants, we took the predictions from the
ABC Model and applied the following additional processing steps: (i) We considered all
distal element-gene connections with an ABC score ≥ 0.015, and all distal or proximal
promoter-gene connections with an ABC score ≥ 0.1. (ii) We shrunk the ∼500-bp regions
by 150-bp on either side, resulting in a ∼200-bp region centered on the summit of the
accessibility peak. This is because, while the larger region is important for counting reads
in H3K27ac ChIP-seq, which occur on flanking nucleosomes, most of the DNA sequences
important for enhancer function are likely located in the central nucleosome-free region.
(iii) We included enhancer-gene connections spanning up to 2 Mb.

Number of new annotations analyzed

For the Bonferroni correction, we corrected for 174 new annotations analyzed in our
primary analyses (8 + 80 + 80 + 2 + 4 = 174). This choice is appropriate given the
large number of potential secondary analyses, and is consistent with previous work19:
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• 8 genome-wide allelic-effect annotations: 4 published (DeepSEA∆-published,
Basenji∆-published, DeepBind∆-published and deltaSVM∆-published) and 4
boosted (DeepSEA∆-boosted, Basenji∆-boosted, DeepBind∆-boosted and deltaSVM∆-
boosted) annotations constructed using fine-mapped SNPs from ref.21 (vs. matched
control SNPs). [Figure 1]

• 80 restricted deep learning allelic-effect annotations corresponding to 4 published an-
notations (DeepSEA∆-published, Basenji∆-published, DeepBind∆-published and
deltaSVM∆-published) and 4 boosted annotations (DeepSEA∆-boosted, Basenji∆-
boosted, DeepBind∆-boosted and deltaSVM∆-boosted), restricted using 10 S2G
strategies from Table 1. [Figure 1]

• 80 gene set-specific restricted deep learning allelic-effect annotations, integrating
DeepSEA∆-boosted, Basenji∆-boosted, DeepBind∆-boosted and deltaSVM∆-
boosted annotations, restricted using 10 S2G strategies from Table 1 with SNPs
linked to genes specific to 2 gene scores (pLI and PPI-enhancer). [Figure 2]

• 2 Imperio annotations (Imperio-DeepSEA, Imperio-Basenji) (we also analyzed
1 ExPecto-DeepSEA annotation from ref.4, but this is not a new annotation).
[Figure 3]

• 4 gene-set specific Imperio annotations combining Imperio-DeepSEA and Imperio-
Basenji models with genes from 2 gene sets (pLI and PPI-enhancer). [Figure
3]

Stratified LD score regression

Stratified LD score regression (S-LDSC) is a method that assesses the contribution of a
genomic annotation to disease and complex trait heritability16,34. S-LDSC assumes that
the per-SNP heritability or variance of effect size (of standardized genotype on trait) of
each SNP is equal to the linear contribution of each annotation

var (βj) :=
∑
c

acjτc, (16)

where acj is the value of annotation c for SNP j, where acj may be binary (0/1),
continuous or probabilistic, and τc is the contribution of annotation c to per-SNP heri-
tability conditioned on other annotations. S-LDSC estimates the τc for each annotation
using the following equation

E
[
χ2
j

]
= N

∑
c

l(j, c)τc + 1, (17)

where l(j, c) =
∑
k ackr

2
jk is the stratified LD score of SNP j with respect to annotation

c and rjk is the genotypic correlation between SNPs j and k computed using data from
1000 Genomes Project36 (see URLs); N is the GWAS sample size.

We assess the informativeness of an annotation c using two metrics. The first metric
is enrichment (E), defined as follows (for binary and probabilistic annotations only):
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E =

h2
g(c)

h2
g∑

j acj

M

, (18)

where h2
g(c) is the heritability explained by the SNPs in annotation c, weighted by

the annotation values.

The second metric is standardized effect size (τ?) defined as follows (for binary,
probabilistic, and continuous-valued annotations):

τ?c =
τcsdc
h2
g

M

, (19)

where sdc is the standard error of annotation c, h2
g the total SNP heritability and M

is the total number of SNPs on which this heritability is computed (equal to 5, 961, 159 in
our analyses). τ?c represents the proportionate change in per-SNP heritability associated
to a 1 standard deviation increase in the value of the annotation.

Combined τ ?

We use the combined tau? metric of ref.19, quantifying the conditional informativeness
of a heritability model (combined τ∗, generalizing the combined τ? metric of ref.49 to
more than two annotations. In detail, given a joint model defined by M annotations
(conditional on a published set of annotations such as the baseline-LD model), we define

τ?comb =

√√√√ M∑
m=1

τ?2m +
∑
m6=l

rmlτ?mτ
?
l (20)

Here rml is the pairwise correlation of the annotations m and l, and rmlτ
?
mτ

?
l is

expected to be positive since two positively correlated annotations typically have the
same direction of effect (resp. two negatively correlated annotations typically have
opposite directions of effect). We calculate standard errors for τ?comb using a genomic
block-jackknife with 200 blocks.

Evaluating heritability model fit using SumHer loglSS

Given a heritability model (e.g. the baseline-LD model or the combined joint model
of Figure 4), we define the ∆loglSS of that heritability model as the loglSS of that
heritability model minus the loglSS of a model with no functional annotations (baseline-
LD-nofunct; 17 LD and MAF annotations from the baseline-LD model34), where loglSS

39

is an approximate likelihood metric that has been shown to be consistent with the
exact likelihood from restricted maximum likelihood (REML). We compute p-values for
∆loglSS using the asymptotic distribution of the Likelihood Ratio Test (LRT) statistic:
−2 loglSS follows a χ2 distribution with degrees of freedom equal to the number of
annotations in the focal model, so that −2∆loglSS follows a χ2 distribution with degrees
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of freedom equal to the difference in number of annotations between the focal model
and the baseline-LD-nofunct model. We used UK10K as the LD reference panel and
analyzed 4,631,901 HRC (haplotype reference panel81) well-imputed SNPs with MAF ≥
0.01 and INFO ≥ 0.99 in the reference panel; We removed SNPs in the MHC region,
SNPs explaining > 1% of phenotypic variance and SNPs in LD with these SNPs.

Data Availability

All DeepBooost and Imperio annotations are available at https://alkesgroup.broadinstitute.
org/LDSCORE/DeepLearning/Dey_DeepBoost_Imperio/. The deep learning allelic ef-
fect SNP level annotations for DeepSEA, Basenji, DeepBind and deltaSVM models
are available at https://alkesgroup.broadinstitute.org/LDSCORE/DeepLearning/.
This work used summary statistics from the UK Biobank study (http://www.ukbiobank.
ac.uk/). The summary statistics for UK Biobank is available online (https://data.
broadinstitute.org/alkesgroup/UKBB/). The 1000 Genomes Project Phase 3 data are
available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502. The
baseline-LD annotations are available at https://data.broadinstitute.org/alkesgroup/
LDSCORE/. The SHAP visualization of top 100 features for each model are at https://
alkesgroup.broadinstitute.org/LDSCORE/DeepLearning/Dey_DeepBoost_Imperio/

ExtDataFigures.

Code Availability

The codes for generating DeepBoost and Imperio annotations are available in the Github
repository https://github.com/kkdey/Imperio.This work primarily uses the S-LDSC
software (https://github.com/bulik/ldsc). We used publicly available software for
DeepSEA (https://github.com/FunctionLab/ExPecto), Basenji (https://github.
com/calico/basenji), DeepBind (http://tools.genes.toronto.edu/deepbind/) and
deltaSVM (https://www.beerlab.org/deltasvm/) to generate annotations for these
respective models.
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Tables

Table 1. List of 10 S2G strategies: For each S2G strategy, we provide a brief
description, indicate whether the S2G strategy prioritizes distal or proximal SNPs
relative to the gene, and report its size (% of SNPs linked to genes). S2G strategies are
listed in order of increasing size. Further details are provided in the Methods section.

S2G
strategy

Description Distal/
Proximal

Size
(%)

ABC Inter-genic SNPs with distal enhancer-gene connections,
assessed by Activity-By-Contact24,25 across blood cell types.

Distal 1.4

TSS SNPs in predicted Transcription start sites30,31 overlapping
Ensembl gene±5kb window.

Proximal 1.6

Coding SNPs in coding regions Proximal 1.6
ATAC SNPs in ATAC-seq peaks >50% correlated to mouse expres-

sion across blood cell-types26 (mapped to human).
Distal 1.6

eQTL SNPs with fine-mapped causal posterior probability27 (CPP)
>0.001 in GTEx whole blood.

Distal
+Proximal

2.4

Roadmap SNPs in predicted enhancer-gene links, assessed using
Roadmap Epigenomics data28,32.

Distal 3.2

Promoter SNPs in promoter regions. Proximal 4.3
PC-HiC Distal SNPs with Promoter Capture HiC (PC-HiC)29 con-

nections to promoter regions in blood cell-types.
Distal 27

5kb SNPs in ±5kb window around gene body. Proximal 53
100kb SNPs in ±100kb window around gene body. Distal 81
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Figure 1. Disease informativeness of published and boosted allelic-effect deep
learning annotations restricted to SNPs implicated by functionally informed S2G
strategies: (A, Left panel) Heritability enrichment of published and boosted annotations based
on the DeepSEA and Basenji models, conditional on the baseline-LD-deep model. Dashed
horizontal line denotes no enrichment. (B, Left panel) Standardized effect size (τ?) of published
and boosted DeepSEA and Basenji annotations, conditional on the baseline-LD-deep model. (A,
Right panel) Heritability enrichment of published-restricted and boosted-restricted DeepSEA
and Basenji annotations, conditional on the baseline-LD-deep-S2G model. Dashed horizontal line
denotes no enrichment, solid horizontal lines denote enrichments of underlying S2G annotations.
(B, Right panel) Standardized effect size (τ?) of published-restricted and boosted-restricted
DeepSEA and Basenji annotations, conditional on the baseline-LD-deep-S2G model. (C, Left
panel) Heritability enrichment of published and boosted annotations based on the DeepBind
and deltaSVM models, conditional on the baseline-LD-deep model. Dashed horizontal line
denotes no enrichment. (D, Left panel) Standardized effect size (τ?) of published and boosted
DeepBind and deltaSVM annotations, conditional on the baseline-LD-deep model. (C, Right
panel) Heritability enrichment of published-restricted and boosted-restricted DeepBind and
deltaSVM annotations, conditional on the baseline-LD-deep-S2G model. Dashed horizontal line
denotes no enrichment, solid horizontal lines denote enrichments of underlying S2G annotations.
(D, Right panel) Standardized effect size (τ?) of published-restricted and boosted-restricted
DeepBind and deltaSVM annotations, conditional on the baseline-LD-deep-S2G model. Results
are meta-analyzed across 11 blood-related traits. The percentage under each bar denotes the
size of the annotation (defined as average annotation value; equal to proportion of SNPs for
binary annotations). ** denotes P < 0.05/174. Error bars denote 95% confidence intervals.
Numerical results, including results for all 10 S2G strategies analyzed, are reported in Table S8
and Table S11.
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Figure 2. Disease informativeness of gene set-specific boosted-restricted annota-
tions: (A) Heritability enrichment of gene set-specific boosted-restricted annotations based on
the DeepSEA, Basenji, DeepBind and deltaSVM models, conditional on the baseline-LD-deep-
S2G-geneset model. (B) Standardized effect size (τ?) of gene set-specific boosted-restricted
DeepSEA, Basenji, DeepBind and deltaSVM annotations, conditional on the baseline-LD-deep-
S2G-geneset model. (C) Standardized effect size (τ?) of the two jointly significant annotations,
conditional on the baseline-LD-deep-S2G-geneset model plus both annotations. Results are
meta-analyzed across 11 blood-related traits. τ? values less than 0 are displayed as 0 for visual-
ization purposes. In panel C, the percentage under each bar denotes the size of the annotation
(defined as average annotation value; equal to proportion of SNPs for binary annotations). **
denotes P < 0.05/174. Error bars denote 95% confidence intervals. In panel B, the black box
in each row denotes the S2G strategy with highest τ?. Numerical results, including results for
all 10 S2G strategies analyzed, are reported in Table S16 and Table S18.
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(A) (B)

(C) (D)

**

**

Figure 3. Disease informativeness of allelic-effect annotations based on predictions
of gene expression from DNA sequence using S2G linking strategies to prioritize
deep learning annotations as features: (A) Heritability enrichment of Imperio allelic-effect
annotations, conditional on the baseline-LD-deep-S2G-geneset model. Dashed horizontal line
denotes no enrichment. (B) Standardized effect size (τ?) of Imperio allelic-effect annotations,
conditional on the baseline-LD-deep-S2G-geneset model. (C) Heritability enrichment of gene
set-specific Imperio allelic-effect annotations, conditional on the baseline-LD-deep-S2G-geneset
model. Dashed horizontal line denotes no enrichment. (D) Standardized effect size (τ?) of gene
set-specific Imperio allelic-effect annotations, conditional on the baseline-LD-deep-S2G-geneset
model. Results are meta-analyzed across 11 blood-related traits. The percentage under each
bar denotes the size of the annotation (defined as average annotation value; equal to proportion
of SNPs for binary annotations). ** denotes P < 0.05/174. Error bars denote 95% confidence
intervals. Numerical results, including results for both pLI and PPI-enhancer gene sets, are
reported in Table S28, Table S30 and Table S32.
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(A)

(B)

Figure 4. Combined joint model: (A) Heritability enrichment of 3 jointly significant
annotations, conditional on the baseline-LD-deep-S2G-geneset model. (B) Standardized effect
size (τ?) conditional on the baseline-LD-deep-S2G-geneset model plus the 3 jointly significant
annotations. Results are meta-analyzed across 11 blood-related traits. The percentage under
each bar denotes the size of the annotation (defined as average annotation value; equal to
proportion of SNPs for binary annotations). Error bars denote 95% confidence intervals.
Numerical results are reported in Table S41.
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Supplementary Tables

Table S1. List of all blood-related traits: List of 11 blood-related traits (6 autoim-
mune diseases and 5 blood cell traits) analyzed in this paper.

Trait Source N
Auto Immune Traits (Sure) UKBiobank46 459324
Crohn’s Disease Jostins et al., 2012 Nature82 20883
Rheumatoid Arthritis Okada et al., 2014 Nature83 37681
Ulcerative Colitis Jostins et al., 2012 Nature82 27432
Lupus Bentham et al., 201584 14267
Celiac Dubois et al., 201085 15283
Platelet Count UKBiobank46 444382
Red Blood Cell Count UKBiobank46 445174
Red Blood Cell Distribution Width UKBiobank46 442700
Eosinophil Count UKBiobank46 439938
White Blood Cell Count UKBiobank46 444502
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Table S2. List of baseline models used in this paper: We report the 6 baseline
models or joint models discussed in this paper, along with number of annotations and a
brief description.

Models No. of anno-
tations

Description

baseline-LD 86 Publicly available baseline-LD model34,35

baseline-LD-deep 100 baseline-LD plus 14 genome-wide deep-
learning, Roadmap, ChromHMM and compet-
ing annotations from ref19.

baseline-LD-deep-
S2G

107 baseline-LD-deep + 7 new S2G annotations
from Table 138.

baseline-LD-deep-
PPI-enhancer

114 baseline-LD-deep-S2G + 7 jointly significant
Enhancer and PPI-enhancer S2G strategies
from joint model in ref38.

baseline-LD-deep-
S2G-geneset

115 baseline-LD-deep-PPI-enhancer + 1 significant
pLI S2G annotation (pLI+Roadmap)

Final joint model 118 baseline-LD-deep-S2G-geneset + 3 jointly sig-
nificant annotations from our analysis in Figure
4.
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Table S3. Additional annotations of baseline-LD-deep model:List of 14 jointly
significant annotations from ref.19 added to the baseline-LD model to create the baseline-
LD-deep model. They include 1 non-tissue-specific Basenji allelic-effect annotation, 3
Roadmap annotations, 5 ChromHMM annotations and 5 other annotations.

Annotations

Basenji∆-H3K4me3-Max (0.7%)
Roadmap-H3K4me1-Avg (4.4%)
Roadmap-H3K4me1-bloodMax (11.2%)
Roadmap-H3K4me3-bloodAvg (1.8%)
ChromHMM-ActiveEnhancer-1-Avg (0.3%)
ChromHMM-ActiveEnhancer-2-bloodMax (3.5%)
ChromHMM-PromoterDownstream-1-bloodMax (1.1%)
ChromHMM-TranscriptionalRegulator-blood-Avg (0.4%)
ChromHMM-RepressedPolycomb-bloodAvg (1.4%)
pLI-Coding (0.4%)
pLI-TSS (0.3%)
LocalGCcontent (41.0%)
LocalGCcontent-TSS (1.0%)
LocalGCcontent-Coding (0.8%)
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Table S4. AUROC attained by DeepBoost. We report the AUROC for a gra-
dient boosting model distinguishing fine-mapped SNPs from matched control SNPs
using allelic-effect annotations from the DeepSEA, Basenji, DeepBind and deltaSVM
models as features. We consider four sets of fine-mapped SNPs - 8,741 fine-mapped
autoimmune disease SNPs21 (Farh), 4,312 fine-mapped inflammatory bowel disease
SNPs22 (Huang), 1,429 functionally fine-mapped SNPs for 14 blood-related UK Biobank
traits23,46 (Weissbrod), or union of all 14,482 fine-mapped SNPs (Union).

Model Fine-mapped SNPs AUROC

DeepSEA
Farh 0.62

Huang 0.57
Weissbrod 0.72

Union 0.64

Basenji
Farh 0.67

Huang 0.68
Weissbrod 0.73

Union 0.69

DeepBind
Farh 0.58

Huang 0.54
Weissbrod 0.61

Union 0.58

deltaSVM
Farh 0.58

Huang 0.56
Weissbrod 0.55

Union 0.56
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Table S5. AUROC attained by logistic classification instead of XGBoost. We
report the AUROC for a logistic regression model distinguishing fine-mapped SNPs
from matched control SNPs using allelic-effect annotations from the DeepSEA, Basenji,
DeepBind and deltaSVM models as features. We consider four sets of fine-mapped SNPs
- 8,741 fine-mapped autoimmune disease SNPs21 (Farh), 4,312 fine-mapped inflammatory
bowel disease SNPs22 (Huang), 1,429 functionally fine-mapped SNPs for 14 blood-related
UK Biobank traits23,46 (Weissbrod), or union of all 14,482 fine-mapped SNPs (Union).

Model Fine-mapped SNPs AUROC

DeepSEA
Farh 0.60

Huang 0.56
Weissbrod 0.69

Union 0.62

Basenji
Farh 0.65

Huang 0.67
Weissbrod 0.69

Union 0.67

DeepBind
Farh 0.57

Huang 0.54
Weissbrod 0.60

Union 0.58

deltaSVM
Farh 0.56

Huang 0.55
Weissbrod 0.56

Union 0.56
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Table S6. Top features underlying the logistic regression model. We report
the top 5 features for the logistic regression model (instead of the gradient boosting
model) fitted on 8,741 fine-mapped autoimmune disease SNPs21 (Farh) corresponding
to allelic-effect annotations from four different models: DeepSEA, Basenji, DeepBind
and deltaSVM.

Model Top features
DeepSEA Jurkat-DNase; Fetal Muscle Trunk H3K4me1; iPS-18

H3K4me1; CD19 Primary cells DNase; CD34 Cul-
tured cells H3K4me1

Basenji GSM701490-DNASE:large intestine; HIS-
TONE:H3K4me3 CD4 primary cells; HIS-
TONE:H3K4me1 HepG2; HISTONE:H4K20me1
CD14-positive monocyte female

DeepBind HOXA13 TF; Irx3 TF mouse; TEAD1 TF; NHLH1
TF; Hoxa11 TF mouse

deltaSVM DHS RM 287 300 proms; TF E3 704 ZGPAT HepG2
; DHS RM 203 300 proms; TF E3 563 E2F1 K562;
TF E3 488 NFE2L2 HepG2
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Table S7. AUROC attained by DeepBoost using 27 blood cell types only. We
report the AUROC for a gradient boosting model distinguishing fine-mapped SNPs
from matched control SNPs using using blood-specific allelic-effect from the DeepSEA,
Basenji and deltaSVM models as features. (DeepBind model was not considered, as
its features are non-tissue-specific.) We consider four sets of fine-mapped SNPs - 8,741
fine-mapped autoimmune disease SNPs21 (Farh), 4,312 fine-mapped inflammatory bowel
disease SNPs22 (Huang), 1,429 functionally fine-mapped SNPs for 14 blood-related UK
Biobank traits23,46 (Weissbrod), or union of all 14,482 fine-mapped SNPs (Union).

Model Fine-mapped SNPs AUROC

DeepSEA
Farh 0.60

Huang 0.56
Weissbrod 0.67

Union 0.62

Basenji
Farh 0.64

Huang 0.65
Weissbrod 0.70

Union 0.67

deltaSVM
Farh 0.54

Huang 0.53
Weissbrod 0.55

Union 0.54
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Table S8. S-LDSC results for published and boosted allelic-effect annotations:
Standardized Effect sizes (τ?) and Enrichment (E) of 4 published allelic-effect annotations
for 4 sequence-based models, DeepSEA, Basenji, DeepBind and deltaSVM (DeepSEA∆-
published, Basenji∆-published, DeepBind∆-published, deltaSVM∆-published) and 16
boosted allelic-effect annotations for the same 4 deep learning models and 4 sets of
finemapped SNPs for blood-related traits - 8,741 fine-mapped autoimmune disease
SNPs21 (DeepSEA∆-boosted, Basenji∆-boosted, DeepBind∆-boosted, deltaSVM∆-
boosted), 4,312 fine-mapped inflammatory bowel disease SNPs22 (DeepSEA∆-boosted-
Huang, Basenji∆-boosted-Huang, DeepBind∆-boosted-Huang, deltaSVM∆-boosted-
Huang), 1,429 functionally fine-mapped SNPs for 14 blood-related UK Biobank
traits23 (DeepSEA∆-boosted-Weissbrod, Basenji∆-boosted-Weissbrod, DeepBind∆-
boosted-Weissbrod, deltaSVM∆-boosted-Weissbrod), or union of these fine-mapped
SNPs (DeepSEA∆-boosted-Union, Basenji∆-boosted-Union, DeepBind∆-boosted-Union,
deltaSVM∆-boosted-Union). Results are conditioned on 100 baseline-LD-deep annota-
tions. Reports are meta-analyzed across 11 blood and autoimmune traits.

τ? se(τ?) p(τ?) E se(E) p(E)
DeepSEA∆-published -0.27 0.12 0.02 1.3 0.046 9.5e-05
Basenji∆-published -0.046 0.083 0.58 1.5 0.028 2.2e-08
DeepBind∆-published -0.29 0.17 0.066 1.1 0.24 0.69
deltaSVM∆-published 0.034 0.043 0.42 1 0.012 0.086
DeepSEA∆-boosted -0.065 0.085 0.44 2 0.19 0.00052
DeepSEA∆-boosted-Huang 0.14 0.071 0.049 3 0.18 2.1e-09
DeepSEA∆-boosted-Weissbrod -0.16 0.1 0.12 2.6 0.2 5e-05
DeepSEA∆-boosted-Union -0.13 0.088 0.06 2.6 0.2 0.0001
Basenji∆-boosted 0.21 0.07 0.0032 3.4 0.2 3.8e-09
Basenji∆-boosted-Huang 0.14 0.071 0.049 3 0.18 2.1e-09
Basenji∆-boosted-Weissbrod -0.094 0.092 0.3 2.6 0.19 6e-05
Basenji∆-boosted-Union 0.13 0.066 0.02 3.3 0.19 6.7e-07
DeepBind∆-boosted -0.044 0.099 0.66 1.1 0.12 0.10
DeepBind∆-boosted-Huang 0.18 0.12 0.11 1.5 0.18 0.03
DeepBind∆-boosted-Weissbrod 0.11 0.11 0.33 1.8 0.26 0.012
DeepBind∆-boosted-Union 0.12 0.22 0.32 1.6 0.16 0.02
deltaSVM∆-boosted 0.011 0.085 0.9 1.2 0.2 0.28
deltaSVM∆-boosted-Huang 0.026 0.095 0.79 1.1 0.23 0.23
deltaSVM∆-boosted-Weissbrod 0.12 0.1 0.25 1.7 0.24 0.12
deltaSVM∆-boosted-Union 0.10 0.14 0.23 1.3 0.20 0.10

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.09.08.288563doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288563
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S9. Standardized enrichment of SNP annotations for published
and boosted allelic-effect annotations: Standardized enrichment of 4 published
allelic-effect annotations for 4 sequence-based models, DeepSEA, Basenji, DeepBind
and deltaSVM (DeepSEA∆-published, Basenji∆-published, DeepBind∆-published,
deltaSVM∆-published) and 16 boosted allelic-effect deep-learning annotations for the
same 4 deep learning models and 4 sets of finemapped SNPs for blood-related traits -
8,741 fine-mapped autoimmune disease SNPs21 (DeepSEA∆-boosted, Basenji∆-boosted,
DeepBind∆-boosted, deltaSVM∆-boosted), 4,312 fine-mapped inflammatory bowel
disease SNPs22 (DeepSEA∆-boosted-Huang, Basenji∆-boosted-Huang, DeepBind∆-
boosted-Huang, deltaSVM∆-boosted-Huang), 1,429 functionally fine-mapped SNPs
for 14 blood-related UK Biobank traits23 (DeepSEA∆-boosted-Weissbrod, Basenji∆-
boosted-Weissbrod, DeepBind∆-boosted-Weissbrod, deltaSVM∆-boosted-Weissbrod), or
union of these fine-mapped SNPs (DeepSEA∆-boosted-Union, Basenji∆-boosted-Union,
DeepBind∆-boosted-Union, deltaSVM∆-boosted-Union). Results are conditioned on
100 baseline-LD-deep annotations. Reports are meta-analyzed across 11 blood and
autoimmune traits.

StdE se(StdE) p(StdE)
DeepSEA∆-published 0.1 0.0036 9.5e-05
Basenji∆-published 0.098 0.0019 2.2e-08
DeepBind∆-published 0.056 0.056 0.03
deltaSVM∆-published 0.078

0.044
0.002

DeepSEA∆-boosted 0.71 0.066 0.00052
DeepSEA∆-boosted-Huang 0.66 0.067 0.0033
DeepSEA∆-boosted-Weissbrod 0.93 0.071 5e-05
DeepSEA∆-boosted-Union 0.87 0.072 0.00013
Basenji∆-boosted 1.2 0.07 3.8e-09
Basenji∆-boosted-Huang 1.1 0.063 2.1e-09
Basenji∆-boosted-Weissbrod 1.2 0.054 6.1e-08
Basenji∆-boosted-Union 1.3 0.063 1.4e-09
DeepBind∆-boosted 0.4 0.082 0.5
DeepBind∆-boosted-Huang 0.53 0.092 0.16
DeepBind∆-boosted-Weissbrod 0.65 0.093 0.012
DeepBind∆-boosted-Union 0.56 0.084 0.14
deltaSVM∆-boosted 0.43 0.072 0.28
deltaSVM∆-boosted-Huang 0.39 0.081 0.49
deltaSVM∆-boosted-Weissbrod 0.59 0.086 0.43
deltaSVM∆-boosted-Union 0.38 0.084 0.24
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Table S10. Additional annotations of baseline-LD-deep-S2G model:List of 7
annotations corresponding to 7 S2G strategies linked to all genes from ref.38 added to
the baseline-LD model to create the baseline-LD-deep-S2G model.

Annotations

ABC (1.4%)
ATAC (1.6%)
eQTL (2.4%)
Roadmap (3.2%)
PC-HiC (27%)
5kb (53%)
100kb (81%)

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.09.08.288563doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288563
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S11. S-LDSC results for published-restricted and boosted-restricted
allelic-effect annotations restricted using S2G strategies, conditional on the
baseline-LD-deep-S2G model annotations: Standardized Effect sizes (τ?) and
Enrichment (E) of SNP annotations corresponding to each of DeepSEA∆-published,
Basenji∆-published, DeepBind∆-published, deltaSVM∆-published, DeepSEA∆-boosted,
Basenji∆-boosted, DeepBind∆-boosted and deltaSVM∆-boosted annotations restricted
using 10 S2G strategies conditional on 107 baseline-LD-deep-S2G annotations (100
baseline-LD-deep and 7 additional annotations from Table S10). Reports are meta-
analyzed across 11 blood-related traits.

DeepSEA∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.29%) 1.1 0.42 0.0092 10 1.2 3.6e-06
TSS (0.40%) -0.24 0.38 0.52 11 1 6.3e-06
Coding (0.27%) 0.35 0.28 0.21 8.7 1 7.5e-05
ATAC (0.26%) 0.75 0.22 0.00089 9.1 1.1 6e-07
eQTL (0.37%) 0.22 0.27 0.43 5.2 0.72 0.00028
Roadmap (0.56%) 0.34 0.37 0.36 8.3 1.2 3.4e-07
Promoter (0.79%) -0.06 0.23 0.8 5.3 0.55 8.1e-05
PC-HiC (3.94%) -0.28 0.18 0.12 2.7 0.18 6.1e-08
5kb (7.15%) -0.3 0.12 0.014 1.8 0.067 1.8e-06
100kb (11.0%) -0.27 0.1 0.0064 1.5 0.051 1.4e-05

Basenji∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.32%) 1.0 0.34 0.002 9.2 0.94 7e-06
TSS (0.44%) 0.036 0.46 0.94 12 1.4 1.2e-05
Coding (0.33%) 0.81 0.33 0.014 9.2 1.1 8.6e-05
ATAC (0.31%) 0.58 0.29 0.045 8.4 1.2 1.5e-06
eQTL (0.44%) 0.27 0.24 0.26 5.2 0.5 1.5e-05
Roadmap (0.67%) 0.85 0.56 0.13 8.4 1.1 1.6e-08
Promoter (0.92%) 0.2 0.34 0.55 5.5 0.55 2.3e-05
PC-HiC (4.80%) 0.091 0.25 0.72 2.8 0.15 2.8e-10
5kb (8.58%) -0.25 0.13 0.05 1.9 0.047 2.4e-08
100kb (13.1%) -0.091 0.1 0.37 1.6 0.032 1.6e-08

DeepBind∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.30%) -0.4 0.69 0.56 6.7 0.79 0.00012
TSS (0.34%) -0.41 0.19 0.034 10 0.91 1.4e-05
Coding (0.34%) -0.95 0.96 0.32 6.2 0.7 0.00045
ATAC (0.35%) 0.5 0.63 0.42 5.4 0.6 5e-06
eQTL (0.28%) -0.21 0.65 0.75 3.8 0.42 0.00073
Roadmap (0.73%) -1.4 0.77 0.072 6.3 0.66 2.4e-08
Promoter (0.74%) -1.1 1 0.27 3.7 0.47 0.00081
PC-HiC (3.24%) 0.021 0.52 0.97 2 0.066 8.4e-08
5kb (9.66%) 0.15 0.33 0.66 1.4 0.034 8.8e-05
100kb (14.2%) -0.065 0.19 0.74 1.2 0.022 0.00097

deltaSVM∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.30%) -0.62 0.44 0.16 6.3 0.82 0.00024
TSS (0.30%) 0.35 0.5 0.48 11 0.96 1.3e-05
Coding (0.27%) 0.013 0.37 0.97 6.3 0.73 0.00042
ATAC (0.30%) -1.3 0.64 0.042 4.4 0.57 0.00023
eQTL (0.24%) 0.54 0.42 0.2 4.6 0.44 0.00026
Roadmap (0.69%) 0.16 0.42 0.69 6.8 0.8 5e-08
Promoter (0.73%) 0.22 0.45 0.63 4 0.6 0.00086
PC-HiC (3.06%) 0.054 0.31 0.86 2 0.098 3.9e-06
5kb (8.4%) 0.16 0.22 0.46 1.4 0.065 0.00065
100kb (12.5%) 0.06 0.2 0.76 1.2 0.046 0.021

DeepSEA∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.50%) 0.29 0.18 0.1 10 1.8 0.0007
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TSS (0.75%) 0.45 0.22 0.037 14 1.6 6.3e-05
Coding (0.47%) 0.44 0.18 0.013 12 1.9 0.00032
ATAC (0.46%) 0.18 0.14 0.2 8.6 1.6 0.00087
eQTL (0.59%) 0.59 0.14 1.5e-05 11 1.4 0.00022
Roadmap (1.0%) 0.2 0.18 0.28 8.3 1.4 0.00038
Promoter (1.33%) 0.29 0.2 0.16 6.3 1.1 0.001
PC-HiC (5.89%) -0.1 0.13 0.42 3.1 0.49 0.00038
5kb (9.89%) -0.12 0.088 0.16 2.3 0.22 0.00052
100kb (13.7%) -0.079 0.087 0.37 2.1 0.2 0.00062

Basenji∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.63%) 1.1 0.28 0.00016 15 2.3 8.8e-06
TSS (0.88%) 1.3 0.34 0.00011 17 1.9 1.8e-06
Coding (0.59%) 0.55 0.21 0.01 11 1.6 0.00015
ATAC (0.60%) 0.35 0.19 0.059 11 2.1 2.4e-05
eQTL (0.79%) 0.21 0.1 0.036 7.3 0.86 0.00015
Roadmap (1.54%) 0.76 0.26 0.0036 11 1.6 1.1e-07
Promoter (1.63%) 0.19 0.14 0.18 6.6 0.86 4.4e-05
PC-HiC (7.67%) 0.22 0.12 0.082 4.4 0.42 2.4e-09
5kb (11.2%) 0.01 0.07 0.88 3.1 0.15 6.8e-08
100kb (14.5%) 0.15 0.071 0.034 3.3 0.19 1.4e-08

DeepBind∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.27%) 0.1 0.21 0.63 9.1 3.5 0.088
TSS (0.37%) -0.071 0.17 0.68 12 2.8 0.0042
Coding (0.34%) -0.21 0.14 0.13 4.5 1.8 0.98
ATAC (0.31%) 0.42 0.14 0.0027 12 2.1 8.9e-05
eQTL (0.43%) -0.11 0.16 0.49 3.3 2.1 0.74
Roadmap (0.57%) -0.05 0.23 0.83 6 2.3 0.053
Promoter (0.84%) -0.12 0.23 0.61 4 2 0.37
PC-HiC (4.46%) 0.024 0.15 0.87 2.5 0.6 0.029
5kb (8.24%) -0.16 0.1 0.12 1.2 0.32 0.52
100kb (12.9%) -0.068 0.1 0.51 1.2 0.25 0.49

deltaSVM∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.25%) 0.51 0.17 0.0027 15 2.1 0.0001
TSS (0.33%) 0.27 0.25 0.28 16 3.8 0.0002
Coding (0.31%) 0.34 0.23 0.15 11 2.5 7.8e-05
ATAC (0.28%) 0.13 0.14 0.36 6.6 2.3 0.25
eQTL (0.41%) 0.22 0.17 0.21 6.5 2.3 0.082
Roadmap (0.53%) 0.11 0.18 0.56 6.3 2.1 0.039
Promoter (0.77%) -0.014 0.16 0.93 4.5 1.5 0.06
PC-HiC (4.3%) 0.097 0.15 0.52 2.7 0.59 0.024
5kb (8.2%) -0.041 0.14 0.77 1.5 0.43 0.12
100kb (12.8%) -0.034 0.11 0.77 1.3 0.27 0.12
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Table S12. Standardized enrichment of published-restricted and boosted-
restricted allelic-effect annotations restricted using S2G strategies, condi-
tional on the baseline-LD-deep-S2G model annotations: Standardized enrich-
ment of restricted SNP annotations corresponding to each of DeepSEA∆-published,
Basenji∆-published, DeepBind∆-published, deltaSVM∆-published, DeepSEA∆-boosted,
Basenji∆-boosted, DeepBind∆-boosted and deltaSVM∆-boosted annotations restricted
using 10 S2G strategies conditional on 107 baseline-LD-deep-S2G annotations (100
baseline-LD-deep and 7 additional annotations from Table S10). Reports are meta-
analyzed across 11 blood-related traits.

DeepSEA∆-published
StdE se(StdE) p(StdE)

ABC (0.29%) 0.28 0.034 3.6e-06
TSS (0.40%) 0.38 0.036 6.3e-06
Coding (0.27%) 0.21 0.025 7.5e-05
ATAC (0.26%) 0.22 0.027 6e-07
eQTL (0.37%) 0.14 0.02 0.00028
Roadmap (0.56%) 0.29 0.042 3.4e-07
Promoter (0.79%) 0.23 0.024 8.1e-05
PC-HiC (3.94%) 0.21 0.014 6.1e-08
5kb (7.15%) 0.16 0.0061 1.8e-06
100kb (11.0%) 0.13 0.0044 1.4e-05

Basenji∆-published
StdE se(StdE) p(StdE)

ABC (0.32%) 0.27 0.028 7e-06
TSS (0.44%) 0.44 0.051 1.2e-05
Coding (0.33%) 0.26 0.03 8.6e-05
ATAC (0.31%) 0.23 0.033 1.5e-06
eQTL (0.44%) 0.16 0.016 1.5e-05
Roadmap (0.67%) 0.34 0.044 1.6e-08
Promoter (0.92%) 0.26 0.026 2.3e-05
PC-HiC (4.80%) 0.25 0.013 2.8e-10
5kb (8.58%) 0.18 0.0045 2.4e-08
100kb (13.1%) 0.14 0.0027 1.6e-08

DeepBind∆-published
StdE se(StdE) p(StdE)

ABC (0.30%) 0.47 0.055 0.00012
TSS (0.34%) 0.78 0.069 1.4e-05
Coding (0.34%) 0.47 0.053 0.00045
ATAC (0.35%) 0.41 0.046 5e-06
eQTL (0.28%) 0.36 0.04 0.00073
Roadmap (0.73%) 0.67 0.07 2.4e-08
Promoter (0.74%) 0.45 0.058 0.00081
PC-HiC (3.24%) 0.56 0.018 8.4e-08
5kb (9.66%) 0.44 0.011 8.8e-05
100kb (14.2%) 0.28 0.0053 0.00097

deltaSVM∆-published
StdE se(StdE) p(StdE)

ABC (0.30%) 0.29 0.037 0.00024
TSS (0.30%) 0.56 0.048 1.3e-05
Coding (0.27%) 0.3 0.035 0.00042
ATAC (0.30%) 0.22 0.029 0.00023
eQTL (0.24%) 0.29 0.028 0.00026
Roadmap (0.69%) 0.48 0.056 5e-08
Promoter (0.73%) 0.33 0.049 0.00086
PC-HiC (3.06%) 0.37 0.018 3.9e-06
5kb (8.4%) 0.3 0.014 0.00065
100kb (12.5%) 0.22 0.0084 0.021

DeepSEA∆-boosted
StdE se(StdE) p(StdE)

ABC (0.29%) 0.74 0.13 0.0007
TSS (0.40%) 1.2 0.14 6.3e-05
Coding (0.27%) 0.8 0.13 0.00032
ATAC (0.26%) 0.58 0.11 0.00087
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eQTL (0.37%) 0.86 0.11 0.00022
Roadmap (0.56%) 0.83 0.14 0.00038
Promoter (0.79%) 0.72 0.12 0.001
PC-HiC (3.94%) 0.74 0.11 0.00038
5kb (7.15%) 0.68 0.066 0.00052
100kb (11.0%) 0.71 0.067 0.00062

Basenji∆-boosted
StdE se(StdE) p(StdE)

ABC (0.63%) 1.2 0.18 8.8e-06
TSS (0.88%) 1.5 0.18 1.8e-06
Coding (0.59%) 0.84 0.12 0.00015
ATAC (0.60%) 0.86 0.16 2.4e-05
eQTL (0.79%) 0.65 0.076 0.00015
Roadmap (1.54%) 1.4 0.19 1.1e-07
Promoter (1.63%) 0.84 0.11 4.4e-05
PC-HiC (7.67%) 1.2 0.11 2.4e-09
5kb (11.2%) 0.99 0.048 6.8e-088
100kb (14.5%) 1.2 0.067 1.4e-08

DeepBind∆-boosted
StdE se(StdE) p(StdE)

ABC (0.27%) 0.48 0.18 0.088
TSS (0.37%) 0.71 0.17 0.0042
Coding (0.34%) 0.26 0.11 0.98
ATAC (0.31%) 0.66 0.12 0.00071
eQTL (0.43%) 0.22 0.14 0.74
Roadmap (0.57%) 0.45 0.17 0.053
Promoter (0.84%) 0.37 0.18 0.37
PC-HiC (4.46%) 0.52 0.12 0.029
5kb (8.24%) 0.33 0.088 0.52
100kb (12.9%) 0.41 0.085 0.99

deltaSVM∆-boosted
StdE se(StdE) p(StdE)

ABC (0.25%) 0.75 0.14 0.0011
TSS (0.33%) 0.92 0.24 0.0019
Coding (0.31%) 0.63 0.18 0.0052
ATAC (0.28%) 0.4 0.12 0.25
eQTL (0.41%) 0.48 0.15 0.082
Roadmap (0.53%) 0.53 0.15 0.039
Promoter (0.77%) 0.4 0.13 0.06
PC-HiC (4.3%) 0.56 0.12 0.024
5kb (8.2%) 0.42 0.12 0.12
100kb (12.8%) 0.42 0.092 0.12
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Table S13. S-LDSC results for published-restricted and boosted-restricted
allelic-effect annotations restricted using S2G strategies, conditional on the
baseline-LD-deep model annotations : Standardized Effect sizes (τ?) and Enrich-
ment (E) of 80 restricted SNP annotations corresponding to DeepSEA∆-published,
Basenji∆-published, DeepBind∆-published, deltaSVM∆-published, DeepSEA∆-boosted,
Basenji∆-boosted, DeepBind∆-boosted and deltaSVM∆-boosted annotations restricted
using 10 S2G strategies. Results are conditional on 100 baseline-LD-deep annotations.
Reports are meta-analyzed across 11 blood-related traits.

AllSNPs
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (1.3%) 0.2 0.096 0.034 7.4 0.83 5.5e-06
TSS (1.6%) 0.49 0.19 0.012 12 0.81 4.3e-07
Coding (1.6%) 0.39 0.13 0.0026 6.9 0.63 1.3e-05
ATAC (1.6%) 0.4 0.11 0.00018 6.6 0.79 5.3e-08
eQTL (2.4%) 0.15 0.06 0.012 4.1 0.35 4.5e-06
Roadmap (3.1%) 0.42 0.12 0.00038 7 0.67 6e-10
Promoter (4.2%) -0.093 0.097 0.33 4.3 0.34 3.1e-05
PC-HiC (27.3%) 0.02 0.035 0.57 2.1 0.062 1.2e-10
5kb (52%) 0.007 0.02 0.73 1.4 0.028 5.5e-08
100kb (81%) 0.0091 0.0091 0.32 1.2 0.0067 7.4e-10

DeepSEA∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.29%) 0.32 0.1 0.0013 9.3 1.1 3.6e-06
TSS (0.40%) 0.35 0.2 0.086 13 0.95 4.5e-07
Coding (0.27%) 0.63 0.15 3.9e-05 9.8 0.99 2.3e-05
ATAC (0.26%) 0.58 0.14 3.7e-05 9.5 1.2 2.3e-08
eQTL (0.37%) 0.17 0.074 0.02 5.6 0.46 2.8e-06
Roadmap (0.56%) 0.55 0.15 0.00021 8.7 0.96 1.3e-09
Promoter (0.79%) -0.019 0.11 0.86 6.5 0.49 2e-06
PC-HiC (3.94%) 0.02 0.049 0.68 2.8 0.1 1.7e-10
5kb (7.15%) -0.016 0.033 0.63 2 0.038 1.1e-08
100kb (11.0%) -0.016 0.023 0.48 1.6 0.024 1.9e-09

Basenji∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.32%) 0.31 0.1 0.0023 9.1 0.96 3.3e-06
TSS (0.44%) 0.5 0.22 0.022 13 1 6.6e-07
Coding (0.33%) 0.78 0.17 3.5e-06 10 1 1.8e-05
ATAC (0.31%) 0.52 0.13 0.0001 8.8 1.1 2.5e-08
eQTL (0.44%) 0.17 0.071 0.017 5.4 0.41 1.1e-06
Roadmap (0.67%) 0.53 0.14 0.00026 8.3 0.86 3.7e-10
Promoter (0.92%) 0.019 0.11 0.86 6.4 0.47 1.4e-06
PC-HiC (4.80%) 0.034 0.052 0.51 2.8 0.093 6.5e-11
5kb (8.58%) -0.007 0.031 0.82 2 0.033 5.2e-09
100kb (13.1%) -0.001 0.021 0.96 1.6 0.022 8.1e-10

DeepBind∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.30%) 0.21 0.097 0.027 7.4 0.82 1.2e-05
TSS (0.34%) 0.49 0.23 0.031 12 0.82 5.9e-07
Coding (0.34%) 0.26 0.46 0.57 7 0.66 4e-05
ATAC (0.35%) 0.4 0.11 0.00019 6.7 0.81 7.4e-08
eQTL (0.28%) 0.15 0.061 0.013 4.2 0.36 6.7e-06
Roadmap (0.73%) 0.42 0.12 0.00045 7.1 0.69 9.1e-10
Promoter (0.74%) 0.53 0.15 0.00034 4.4 0.34 2.8e-05
PC-HiC (3.24%) 0.019 0.036 0.61 2.1 0.065 1.5e-10
5kb (9.66%) 0.0044 0.021 0.83 1.4 0.029 1.4e-07
100kb (14.2%) 0.0027 0.011 0.81 1.2 0.0069 7e-09

deltaSVM∆-published
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.30%) 0.21 0.092 0.023 7.5 0.85 1.7e-05
TSS (0.30%) 0.58 0.19 0.0022 12 0.87 5.4e-07
Coding (0.27%) 0.31 0.26 0.25 7.4 0.7 4.9e-05
ATAC (0.30%) 0.4 0.11 0.00022 6.8 0.84 1.3e-07
eQTL (0.24%) 0.17 0.064 0.0089 4.3 0.4 1.3e-05
Roadmap (0.69%) 0.46 0.13 0.0003 7.4 0.75 1.4e-09
Promoter (0.73%) 0.59 0.16 0.00017 4.7 0.36 1.6e-05
PC-HiC (3.06%) 0.021 0.039 0.6 2.1 0.072 2.1e-10
5kb (8.4%) 0.0077 0.024 0.74 1.4 0.036 4.3e-07
100kb (12.5%) 0.0058 0.014 0.68 1.2 0.012 1.3e-07

DeepSEA∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)
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ABC (0.50%) 0.36 0.12 0.003 11 1.6 0.00016
TSS (0.75%) 0.58 0.18 0.001 16 1.5 6e-06
Coding (0.47%) 0.69 0.17 3.1e-05 13 1.9 0.00013
ATAC (0.46%) 0.65 0.18 0.00025 14 2.5 3.1e-06
eQTL (0.59%) 0.39 0.1 0.00014 9.7 1.2 7e-05
Roadmap (1.0%) 0.66 0.18 0.00019 12 1.8 1e-06
Promoter (1.33%) 0.13 0.12 0.27 8.5 1.1 1.4e-05
PC-HiC (5.89%) 0.053 0.11 0.62 3.6 0.41 1.2e-06
5kb (9.89%) -0.056 0.077 0.46 2.5 0.2 2.9e-05
100kb (13.7%) -0.045 0.072 0.53 2.2 0.16 0.00011

Basenji∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.63%) 0.5 0.12 5.5e-05 13 1.8 6.8e-06
TSS (0.88%) 1.2 0.27 9.1e-06 18 1.8 2.8e-07
Coding (0.59%) 0.82 0.21 5.9e-05 12 1.6 2.9e-05
ATAC (0.60%) 0.66 0.18 0.00017 13 2.2 2.7e-07
eQTL (0.79%) 0.26 0.087 0.0027 7.9 0.87 2.3e-05
Roadmap (1.54%) 0.71 0.18 4.6e-05 11 1.4 3.5e-09
Promoter (1.63%) 0.23 0.12 0.047 8.1 0.83 1.7e-06
PC-HiC (7.67%) 0.2 0.11 0.07 4.4 0.39 5.4e-10
5kb (11.2%) 0.07 0.068 0.3 3.3 0.15 2.1e-08
100kb (14.5%) 0.17 0.069 0.013 3.4 0.2 6.4e-09

DeepBind∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.27%) 0.28 0.16 0.072 11 3 0.0057
TSS (0.37%) 0.17 0.19 0.36 15 2.7 0.00041
Coding (0.34%) -0.18 0.13 0.18 5.7 1.8 0.088
ATAC (0.31%) 0.77 0.18 2.5e-05 17 3.1 5e-06
eQTL (0.43%) 0.27 0.12 0.024 7.9 1.8 0.0043
Roadmap (0.57%) 0.48 0.14 0.00078 12 2.1 6.1e-05
Promoter (0.84%) 0.27 0.21 0.18 7.5 1.9 0.0062
PC-HiC (4.46%) 0.043 0.081 0.59 2.7 0.38 0.00065
5kb (8.24%) -0.017 0.07 0.81 1.7 0.22 0.019
100kb (12.9%) -0.0068 0.056 0.9 1.4 0.14 0.049

deltaSVM∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.25%) 0.46 0.13 0.00033 15 2.5 0.00057
TSS (0.33%) 0.41 0.24 0.083 19 4 0.00018
Coding (0.31%) 0.39 0.24 0.099 13 3.5 0.0015
ATAC (0.28%) 0.62 0.16 0.00017 15 3 6.3e-05
eQTL (0.41%) 0.34 0.14 0.013 8.9 2.1 0.0033
Roadmap (0.53%) 0.58 0.18 0.0013 13 2.4 0.00012
Promoter (0.77%) 0.33 0.16 0.04 8 1.6 0.00063
PC-HiC (4.3%) 0.034 0.071 0.63 2.5 0.32 0.0037
5kb (8.2%) 0.008 0.071 0.91 1.7 0.23 0.013
100kb (12.8%) 0.0077 0.064 0.9 1.4 0.16 0.025
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Table S14. S-LDSC results for joint model of published-restricted and boosted-
restricted deep learning allelic-effect annotations restricted using S2G strate-
gies, conditional on the baseline-LD-deep-S2G model annotations. Standard-
ized Effect sizes (τ?) and Enrichment (E) of the significant SNP annotations in a joint
model comprising of the marginally significant published-restricted and boosted-restricted
SNP annotations corresponding to published and boosted deep learning allelic-effect
annotations combined with S2G strategies. Results are conditional on 107 baseline-LD-
deep-S2G model annotations (100 baseline-LD-deep and 7 additional annotations from
Table S10). Results are meta-analyzed across 11 blood-related traits.

Annotation τ? se(τ?) p(τ?) E se (E) p(E)
DeepSEA∆-boosted × eQTL
(0.6%)

0.54 0.13 3.3e-05 11 1.4 0.00044

Basenji∆-boosted × ABC
(0.6%)

0.83 0.23 2e-04 14 2.1 1.4e-05

Basenji∆-boosted × TSS
(0.9%)

1.1 0.29 1e-04 16 1.8 2.7e-06
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Table S15. Additional annotations of baseline-LD-deep-S2G-geneset
model:List of 8 jointly significant gene set-specific S2G annotations from ref.38 added
to the baseline-LD-deep-S2G model to create the baseline-LD-deep-S2G-geneset model.
They include 7 annotations from the Enhancer-driven+PPI-enhancer joint model in
ref38 and 1 jointly significant pLI S2G annotation.

Annotations

ATAC-distal × Promoter (1.8%)
EDS-binary × 100kb (14.6%)
SEG-GTEx × Coding (0.17%)
PPI-enhancer × ABC (0.58%)
PPI-enhancer × TSS (0.33%)
PPI-enhancer × Coding (0.24%)
PPI-enhancer × ATAC (0.41%)
pLI × Roadmap (0.56%)
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Table S16. S-LDSC results for gene set-specific boosted-restricted anno-
tations, conditional on baseline-LD-deep-S2G-geneset model annotations:
Standardized Effect sizes (τ?) and Enrichment (E) of 80 restricted SNP annotations
corresponding to 4 allelic-effect annotations (DeepSEA∆-boosted, Basenji∆-boosted,
DeepBind∆-boosted and deltaSVM∆-boosted), 2 gene scores (PPI-enhancer and pLI)
and 10 S2G strategies, conditional on 115 baseline-LD-deep-S2G-geneset annotations.
Reports are meta-analyzed across 11 blood-related traits.

DeepSEA∆-boosted (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.23%) 0.8 0.18 6.1e-06 21 2.6 1.2e-07
TSS (0.16%) 0.59 0.25 0.016 28 5.1 9.5e-05
Coding (0.08%) 0.66 0.19 0.00061 36 5.7 7.9e-05
ATAC (0.12%) 0.38 0.15 0.013 28 6.1 0.00019
eQTL (0.09%) 0.32 0.13 0.014 17 4.1 0.001
Roadmap (0.31%) 0.75 0.20 0.00026 23 3.9 2.1e-06
Promoter (0.22%) 0.61 0.17 0.00032 23 3.4 1.3e-05
PC-HiC (1.98%) 0.17 0.076 0.03 5.4 0.63 6e-07
5kb (1.47%) 0.053 0.057 0.35 5.7 0.41 3.6e-07
100kb (3.54%) 0.25 0.056 1.1e-05 5.2 0.26 3.2e-08

Basenji∆-boosted (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.32%) 0.85 0.18 1.6e-06 19 2.2 2.5e-07
TSS (0.21%) 0.73 0.34 0.034 25 4.3 9.6e-06
Coding (0.11%) 0.75 0.25 0.0025 36 6.1 8.9e-06
ATAC (0.18%) 0.19 0.16 0.24 21 4.8 0.00017
eQTL (0.13%) 0.17 0.1 0.093 12 2.8 0.00019
Roadmap (0.56%) 0.74 0.19 0.00011 18 2.6 1.3e-08
Promoter (0.31%) 0.5 0.19 0.0072 19 3.1 3.4e-06
PC-HiC (2.79%) 0.2 0.077 0.0099 5.6 0.55 3.9e-09
5kb (2.04%) 0.06 0.055 0.27 6.1 0.35 1.4e-08
100kb (4.70%) 0.28 0.054 1.5e-07 5.6 0.3 8.1e-10

DeepBind∆-boosted (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.12%) 0.42 0.17 0.015 23 4.3 0.00036
TSS (0.08%) 0.26 0.26 0.31 28 8.2 0.005
Coding (0.05%) 0.013 0.15 0.93 18 5.3 0.024
ATAC (0.08%) 0.39 0.18 0.029 22 5.6 0.007
eQTL (0.07%) 0.26 0.14 0.064 15 5.2 0.023
Roadmap (0.18%) 0.70 0.18 0.0001 24 4.4 5.5e-05
Promoter (0.13%) 0.10 0.15 0.5 15 3.9 0.01
PC-HiC (1.43%) 0.24 0.094 0.0095 5.3 0.82 3.3e-05
5kb (1.05%) 0.021 0.058 0.71 4.3 0.52 0.0002
100kb (2.86%) 0.28 0.062 4.9e-06 4.5 0.33 2.6e-06

deltaSVM∆-boosted (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.11%) 0.85 0.17 2e-07 34 4.3 5.1e-05
TSS (0.07%) 0.88 0.32 0.0059 36 7.2 0.00037
Coding (0.05%) 0.29 0.18 0.11 29 6.7 0.0075
ATAC (0.08%) 0.53 0.18 0.0042 27 6.2 0.0056
eQTL (0.08%) 0.3 0.16 0.067 17 6.1 0.042
Roadmap (0.17%) 0.82 0.25 0.0003 29 5.5 5.1e-05
Promoter (0.12%) 0.19 0.17 0.26 16 4.4 0.012
PC-HiC (1.37%) 0.27 0.076 0.00048 5.2 0.63 5.4e-05
5kb (1.03%) -0.0014 0.067 0.98 4 0.55 0.0012
100kb (2.88%) 0.28 0.064 1.5e-05 4.4 0.35 1.6e-05

DeepSEA∆-boosted (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.32%) 0.14 0.15 0.35 11 2 0.00077
TSS (0.41%) 0.088 0.17 0.6 13 1.7 0.00016
Coding (0.24%) 0.26 0.15 0.074 14 2.4 0.00032
ATAC (0.16%) 0.041 0.12 0.73 9.2 2.6 0.022
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eQTL (0.18%) 0.14 0.098 0.14 8.4 2.1 0.005
Roadmap (0.39%) -0.19 0.21 0.37 7.4 2.2 0.066
Promoter (0.68%) 0.091 0.12 0.46 7.2 1.2 0.00055
PC-HiC (3.55%) 0.0045 0.085 0.96 3.6 0.42 1.3e-05
5kb (4.91%) -0.015 0.049 0.77 3 0.18 9.3e-06
100kb (11.1%) -0.079 0.063 0.2 2.3 0.16 2.6e-05

Basenji∆-boosted (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.42%) 0.26 0.15 0.075 12 1.7 3.6e-05
TSS (0.49%) 0.19 0.15 0.21 14 1.6 1.8e-05
Coding (0.31%) 0.28 0.14 0.042 14 2 3.7e-05
ATAC (0.20%) 0.11 0.13 0.4 12 3 0.0015
eQTL (0.23%) 0.053 0.099 0.59 7 1.8 0.0031
Roadmap (0.59%) 0.96 0.31 0.0017 16 2.4 5.2e-07
Promoter (0.83%) 0.15 0.14 0.27 8.1 1.2 3.1e-05
PC-HiC (4.78%) 0.061 0.068 0.37 4.1 0.32 1.6e-08
5kb (5.70%) -0.019 0.049 0.69 3.5 0.16 5.6e-08
100kb (12.5%) 0.015 0.064 0.81 3.1 0.17 1.1e-08

DeepBind∆-boosted (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.16%) 0.14 0.16 0.39 13 3.7 0.011
TSS (0.20%) -0.061 0.16 0.7 13 2.9 0.0066
Coding (0.17%) -0.16 0.14 0.26 7.1 2.8 0.57
ATAC (0.10%) 0.35 0.12 0.0028 16 3.4 0.0056
eQTL (0.12%) 0.25 0.12 0.033 10 3.1 0.015
Roadmap (0.21%) 0.94 0.19 7.5e-07 23 3.1 2.5e-05
Promoter (0.40%) 0.12 0.16 0.43 8.4 2.2 0.013
PC-HiC (2.54%) 0.038 0.094 0.69 2.9 0.51 0.0042
5kb (3.68%) 0.029 0.047 0.54 2.3 0.21 0.00097
100kb (9.58%) -0.09 0.058 0.12 1.4 0.17 0.068

deltaSVM∆-boosted (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.15%) 0.44 0.17 0.0086 18 3.6 0.0015
TSS (0.18%) 0.13 0.16 0.41 16 3.2 0.0013
Coding (0.15%) 0.29 0.13 0.029 16 2.8 0.001
ATAC (0.10%) 0.28 0.12 0.021 14 3.6 0.014
eQTL (0.12%) 0.24 0.13 0.067 10 3.4 0.026
Roadmap (0.20%) 0.92 0.18 3.2e-07 23 3.1 4.2e-05
Promoter (0.37%) -0.091 0.12 0.43 4.6 1.7 0.17
PC-HiC (2.48%) -0.0024 0.093 0.98 2.6 0.52 0.03
5kb (3.63%) 0.00069 0.046 0.99 2.1 0.21 0.008
100kb (9.4%) -0.056 0.056 0.31 1.5 0.16 0.055
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Table S17. Standardized enrichment of gene set-specific boosted-restricted an-
notations, conditional on baseline-LD-deep-S2G-geneset model annotations:
Standardized enrichment of 80 restricted SNP annotations corresponding to 4 allelic-
effect annotations (DeepSEA∆-boosted, Basenji∆-boosted, DeepBind∆-boosted and
deltaSVM∆-boosted), 2 gene scores (PPI-enhancer and pLI) and 10 S2G strategies, con-
ditional on 115 baseline-LD-deep-S2G-geneset annotations. Reports are meta-analyzed
across 11 blood-related traits.

DeepSEA∆-boosted (PPI-enhancer)
StdE se(StdE) p(StdE)

ABC (0.23%) 1.2 0.15 1.6e-05
TSS (0.16%) 1.1 0.2 9.5e-05
Coding (0.08%) 1 0.16 7.9e-05
ATAC (0.12%) 0.97 0.21 0.00019
eQTL (0.09%) 0.52 0.12 0.001
Roadmap (0.31%) 1.3 0.22 2.1e-06
Promoter (0.22%) 1.1 0.16 1.3e-05
PC-HiC (1.98%) 0.75 0.088 6e-07
5kb (1.47%) 0.69 0.05 3.6e-07
100kb (3.54%) 0.96 0.049 3.2e-08

Basenji∆-boosted (PPI-enhancer)
StdE se(StdE) p(StdE)

ABC (0.32%) 1.3 0.2 1.6e-06
TSS (0.21%) 1.1 0.2 9.6e-06
Coding (0.11%) 1.2 0.2 8.9e-06
ATAC (0.18%) 0.91 0.21 0.00017
eQTL (0.13%) 0.46 0.1 0.00019
Roadmap (0.56%) 1.3 0.2 1.3e-08
Promoter (0.31%) 1.1 0.17 3.4e-06
PC-HiC (2.79%) 0.93 0.09 3.9e-09
5kb (2.04%) 0.86 0.05 1.4e-08
100kb (4.70%) 1.2 0.063 8.1e-10

DeepBind∆-boosted (PPI-enhancer)
StdE se(StdE) p(StdE)

ABC (0.12%) 0.78 0.15 0.00036
TSS (0.08%) 0.76 0.23 0.005
Coding (0.05%) 0.43 0.12 0.024
ATAC (0.08%) 0.63 0.16 0.007
eQTL (0.07%) 0.4 0.13 0.023
Roadmap (0.18%) 1 0.19 5.5e-05
Promoter (0.13%) 0.53 0.14 0.01
PC-HiC (1.43%) 0.63 0.097 3.3e-05
5kb (1.05%) 0.44 0.053 0.0002
100kb (2.86%) 0.75 0.055 2.6e-06

deltaSVM∆-boosted (PPI-enhancer)
StdE se(StdE) p(StdE)

ABC (0.11%) 1.1 0.14 5.1e-05
TSS (0.07%) 1.2 0.27 0.00037
Coding (0.05%) 0.64 0.15 0.0075
ATAC (0.08%) 0.71 0.17 0.0056
eQTL (0.08%) 0.42 0.16 0.042
Roadmap (0.17%) 1.2 0.23 5.1e-05
Promoter (0.12%) 0.54 0.15 0.012
PC-HiC (1.37%) 0.6 0.073 5.4e-05
5kb (1.03%) 0.4 0.055 0.0012
100kb (2.88%) 0.72 0.058 1.6e-05

DeepSEA∆-boosted (pLI)
StdE se(StdE) p(StdE)

ABC (0.32%) 0.61 0.11 0.00077
TSS (0.41%) 0.8 0.1 0.00016
Coding (0.24%) 0.66 0.11 0.00032
ATAC (0.16%) 0.33 0.092 0.022
eQTL (0.18%) 0.33 0.082 0.005
Roadmap (0.39%) 0.42 0.13 0.066
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Promoter (0.68%) 0.56 0.089 0.00055
PC-HiC (3.55%) 0.63 0.073 1.3e-055
5kb (4.91%) 0.6 0.037 9.3e-06
100kb (11.1%) 0.7 0.049 2.6e-05

Basenji∆-boosted (pLI)
StdE se(StdE) p(StdE)

ABC (0.42%) 0.76 0.1 3.6e-05
TSS (0.49%) 0.95 0.1 1.8e-05
Coding (0.31%) 0.73 0.11 3.7e-05
ATAC (0.20%) 0.49 0.12 0.0015
eQTL (0.23%) 0.3 0.08 0.0031
Roadmap (0.59%) 1.1 0.17 5.2e-07
Promoter (0.83%) 0.68 0.1 3.1e-05
PC-HiC (4.78%) 0.83 0.066 1.6e-08
5kb (5.70%) 0.76 0.035 5.6e-08
100kb (12.5%) 1 0.055 1.1e-08

DeepBind∆-boosted (pLI)
StdE se(StdE) p(StdE)

ABC (0.16%) 0.49 0.14 0.011
TSS (0.20%) 0.54 0.12 0.0066
Coding (0.17%) 0.27 0.11 0.57
ATAC (0.10%) 0.45 0.096 0.0056
eQTL (0.12%) 0.33 0.098 0.015
Roadmap (0.21%) 0.95 0.13 2.5e-05
Promoter (0.40%) 0.5 0.13 0.013
PC-HiC (2.54%) 0.44 0.076 0.0042
5kb (3.68%) 0.41 0.038 0.00097
100kb (9.58%) 0.42 0.048 0.068

deltaSVM∆-boosted (pLI)
StdE se(StdE) p(StdE)

ABC (0.15%) 0.66 0.14 0.0015
TSS (0.18%) 0.64 0.13 0.0013
Coding (0.15%) 0.58 0.1 0.001
ATAC (0.10%) 0.39 0.097 0.014
v eQTL (0.12%) 0.32 0.11 0.026
Roadmap (0.20%) 0.93 0.13 4.2e-05
Promoter (0.37%) 0.38 0.098 0.023
PC-HiC (2.48%) 0.46 0.076 0.0043
5kb (3.63%) 0.4 0.037 0.0021
100kb (9.4%) 0.4 0.047 0.081
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Table S18. S-LDSC results for joint model of gene set-specific boosted-
restricted annotations, conditional on baseline-LD-deep-S2G-geneset model
annotations: Standardized Effect sizes (τ?) and Enrichment (E) of the Bonferroni
significant boosted-restricted S2G annotations linked to PPI-enhancer genes that were
marginally significant in Figure 2. The results were conditioned either on 115 baseline-
LD-deep-S2G-geneset annotations, or baseline-LD-deep-S2G-geneset plus 3 annotations
from Figure 1, or baseline-LD-deep-S2G-geneset plus 3 annotations from Figure 1 plus
Basenji∆-boosted×Roadmap. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
baseline-LD-deep-S2G-geneset model

Basenji∆-boosted
(PPI-enhancer) × ABC (0.32%)

0.72 0.17 3.2e-05 17 1.8 9.5e-07

Basenji∆-boosted
(PPI-enhancer) × Roadmap (0.56%)

0.68 0.18 9.7e-05 17 2.6 1.9e-08

baseline-LD-deep-S2G-geneset + 3 annotations from Figure 1
Basenji∆-boosted

(PPI-enhancer) × ABC (0.32%)
0.69 0.18 0.0001 17 1.8 9.7e-07

Basenji∆-boosted
(PPI-enhancer) × Roadmap (0.56%)

0.66 0.18 0.0002 18 2.7 1.4e-08

baseline-LD-deep-S2G-geneset + 3 annotations from Figure 1 + Basenji∆-boosted×Roadmap
Basenji∆-boosted

(PPI-enhancer) × ABC (0.32%)
0.63 0.18 0.0003 16 1.5 8.2e-06

Basenji∆-boosted (PPI-enhancer)
× Roadmap (0.56%)

0.64 0.18 0.0003 18 2.8 3.3e-08
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Table S19. S-LDSC results for boosted-restricted deep learning allelic-effect
annotations restricted using S2G strategies, conditional on the baseline-LD-
deep-S2G model annotations plus the local GC-content annotation and anno-
tations restricted using the local GC-content annotation: Standardized Effect
sizes (τ?) and Enrichment (E) of restricted SNP annotations corresponding to each of
DeepSEA∆-boosted, Basenji∆-boosted, Deepbind∆-boosted and deltaSVM∆-boosted
annotations restricted using the local GC-content and 10 S2G strategies conditional on
100 baseline-LD-deep annotations and unrestricted S2G annotations and S2G annota-
tions restricted using local GC-content annotation. Reports are meta-analyzed across 11
blood-related traits.

DeepSEA∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.50%) 0.22 0.18 0.21 10 1.8 0.00082
TSS (0.75%) 0.5 0.22 0.023 15 1.7 2.4e-05
Coding (0.47%) 0.6 0.2 0.0023 13 1.9 9.2e-05
ATAC (0.46%) 0.11 0.14 0.42 9.4 1.9 0.00078
eQTL (0.59%) 0.57 0.14 8.3e-05 11 1.4 0.00025
Roadmap (1.0%) 0.21 0.18 0.25 9.3 1.4 0.0001
Promoter (1.33%) 0.35 0.21 0.092 7.6 1.2 0.00019
PC-HiC (5.89%) -0.25 0.13 0.047 2.9 0.5 0.0021
5kb (9.89%) -0.11 0.09 0.2 2.4 0.23 0.00028
100kb (13.7%) -0.1 0.089 0.25 2.1 0.2 0.00047

Basenji∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.63%) 1.1 0.29 0.00018 15 2.3 6.1e-06
TSS (0.88%) 1.4 0.36 6.5e-05 18 1.9 3.7e-07
Coding (0.59%) 0.76 0.23 0.0011 12 1.7 3.7e-05
ATAC (0.60%) 0.38 0.22 0.08 12 2.2 1.1e-05
eQTL (0.79%) 0.17 0.1 0.11 7.4 0.87 0.00011
Roadmap (1.54%) 0.76 0.27 0.0051 12 1.7 3e-08
Promoter (1.63%) 0.31 0.14 0.025 7.6 0.83 4.6e-06
PC-HiC (7.67%) 0.18 0.14 0.19 4.4 0.45 2.4e-09
5kb (11.2%) 0.031 0.068 0.64 3.2 0.15 2.9e-08
100kb (14.5%) 0.13 0.07 0.064 3.3 0.2 6.6e-09

DeepBind∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.27%) 0.025 0.21 0.91 8.7 3.6 0.13
TSS (0.37%) -0.11 0.16 0.49 12 2.5 0.002
Coding (0.34%) -0.22 0.14 0.11 5.2 1.8 0.22
ATAC (0.31%) 0.27 0.14 0.059 11 2.1 0.0016
eQTL (0.43%) -0.37 0.17 0.029 0.73 2.1 0.78
Roadmap (0.57%) -0.028 0.2 0.89 6.4 2.1 0.032
Promoter (0.84%) -0.19 0.21 0.38 4.1 1.9 0.28
PC-HiC (4.46%) -0.06 0.14 0.66 2.2 0.55 0.11
5kb (8.24%) -0.14 0.1 0.17 1.3 0.32 0.63
100kb (12.9%) -0.06 0.1 0.56 1.3 0.26 0.56

deltaSVM∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.25%) 0.44 0.17 0.009 14 2.8 0.0014
TSS (0.33%) 0.29 0.26 0.26 18 4.3 0.0008
Coding (0.31%) 0.37 0.24 0.12 13 3.5 0.002
ATAC (0.28%) 0.039 0.13 0.77 7.2 2.2 0.6
eQTL (0.41%) 0.11 0.18 0.53 6.5 2.4 0.43
Roadmap (0.53%) 0.11 0.18 0.56 7.7 2.1 0.03
Promoter (0.77%) -0.0084 0.16 0.96 5.2 1.5 0.027
PC-HiC (4.3%) 0.013 0.17 0.94 2.5 0.64 0.041
5kb (8.2%) 0.014 0.14 0.92 1.7 0.43 0.072
100kb (12.8%) 0.034 0.1 0.74 1.5 0.24 0.073
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Table S20. S-LDSC results for annotations generated using the logistic regres-
sion model: Standardized Effect sizes (τ?) and Enrichment (E) of SNP annotations
generated by training fine-mapped SNPs on features from DeepSEA, Basenji, DeepBind
and deltaSVM approaches using the logistic regression model (instead of the gradient
boosting model). Results are conditional on 100 baseline-LD-deep annotations. Reports
are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
DeepSEA∆-logistic 0.036 0.078 0.64 1.8 0.18 0.0003
Basenji∆-logistic 0.17 0.06 0.005 2.8 0.19 6.3e-07
DeepBind∆-logistic -0.014 0.075 0.85 1.1 0.10 0.08
deltaSVM∆-logistic -0.045 0.066 0.49 1.1 0.14 0.16
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Table S21. S-LDSC results for boosted-restricted deep learning allelic-effect
annotations generated using the logistic regression model: Standardized Effect
sizes (τ?) and Enrichment (E) of restricted SNP annotations (across 10 S2G strategies)
corresponding to annotations generated by training fine-mapped SNPs on features from
DeepSEA, Basenji, DeepBind and deltaSVM approaches using the logistic regression
model (instead of the gradient boosting model). Results are conditional on 107 baseline-
LD-deep-S2G annotations (100 baseline-LD-deep and 7 additional annotations from
Table S10). Results are meta-analyzed across 11 blood-related traits.

DeepSEA∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.44%) 0.20 0.14 0.15 8 2.3 0.004
TSS (0.68%) 0.28 0.19 0.14 11 2.1 0.0001
Coding (0.39%) 0.30 0.17 0.077 11 1.9 0.0005
ATAC (0.50%) 0.08 0.05 0.11 8.2 1.4 0.0001
eQTL (0.47%) 0.49 0.13 0.0001 11 1.4 0.0001
Roadmap (0.84%) 0.44 0.28 0.12 8.6 1.2 9.8e-05
Promoter (1.04%) 0.13 0.24 0.58 5.4 1.0 0.076
PC-HiC (5.06%) -0.005 0.10 0.88 2.8 0.44 0.0003
5kb (8.18%) 0.05 0.078 0.52 1.9 0.20 0.002
100kb (11.4%) 0.03 0.044 0.47 1.4 0.2 0.004

Basenji∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.48%) 0.95 0.27 0.0004 14 2.4 2.2e-05
TSS (0.76%) 1.2 0.35 0.0006 16 1.7 8.9e-06
Coding (0.27%) 0.29 0.16 0.078 11 1.7 2.8e-05
ATAC (0.20%) -0.013 0.11 0.91 10 1.8 2.8e-05
eQTL (0.38%) -0.13 0.095 0.15 7.0 0.87 0.0008
Roadmap (0.48%) 0.24 0.12 0.054 10 1.8 5.2e-06
Promoter (0.66%) -0.061 0.12 0.61 5.9 0.78 2.8e-05
PC-HiC (2.58%) -0.025 0.087 0.77 3.1 0.56 1.8e-06
5kb (6.48%) 0.0031 0.061 0.96 2.1 0.17 3.1e-07
100kb (9.73%) -0.01 0.054 0.85 2.2 0.19 2.8e-05

DeepBind∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.19%) -0.16 0.15 0.28 3.3 3.1 0.34
TSS (0.22%) -0.13 0.18 0.47 8.2 3.5 0.56
Coding (0.21%) 0.37 0.13 0.0043 13 2.5 0.003
ATAC (0.23%) 0.07 0.14 0.63 6.4 2.4 0.087
eQTL (0.35%) 0.28 0.19 0.14 7.8 2.7 0.10
Roadmap (0.44%) 0.061 0.21 0.77 6.9 2.2 0.052
Promoter (0.61%) 0.049 0.13 0.7 4.3 1.4 0.13
PC-HiC (4.01%) 0.26 0.12 0.027 3.1 0.51 0.004
5kb (7.90%) 0.13 0.095 0.17 1.8 0.3 0.069
100kb (12.5%) 0.24 0.087 0.0063 1.7 0.22 0.027

deltaSVM∆-boosted
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.20%) -0.25 0.15 0.1 2.5 2.8 0.82
TSS (0.25%) 0.18 0.17 0.29 15 3 0.0066
Coding (0.22%) 0.029 0.19 0.88 7.6 3.8 0.15
ATAC (0.25%) 0.017 0.14 0.9 5.7 2.4 0.25
eQTL (0.37%) 0.19 0.24 0.42 5.5 2.8 0.25
Roadmap (0.48%) 0.16 0.18 0.35 7.8 2.2 0.042
Promoter (0.67%) -0.1 0.14 0.47 3.3 1.5 0.041
PC-HiC (4.29%) -0.18 0.14 0.18 1.2 0.58 0.36
5kb (8.10%) 0.084 0.13 0.51 1.7 0.4 0.77
100kb (12.8%) 0.08 0.11 0.49 1.4 0.29 0.99
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Table S22. S-LDSC results for gene set-specific published-restricted annota-
tions, conditional on baseline-LD-deep-S2G-geneset model annotations: Stan-
dardized Effect sizes (τ?) and Enrichment (E) of 80 published-restricted SNP annotations
corresponding to the 4 models (DeepSEA∆-published, Basenji∆-published, DeepBind∆-
published, deltaSVM∆-published) for which we observed significant enrichment signal
for the published allelic-effect annotations, 2 gene scores (PPI-enhancer and pLI) and 10
S2G strategies, conditional on 115 baseline-LD-deep-S2G-geneset annotations. Reports
are meta-analyzed across 11 blood-related traits.

DeepSEA∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.13%) 0.69 0.18 0.00013 24 3.1 1.6e-05
TSS (0.08%) 0.54 0.22 0.015 22 2.6 2.5e-06
Coding (0.04%) 0.74 0.21 0.00055 27 3.1 4.1e-06
ATAC (0.07%) 0.66 0.22 0.002 23 3.9 2.4e-07
eQTL (0.06%) 0.16 0.082 0.049 9.6 1.5 3e-06
Roadmap (0.18%) 0.61 0.16 0.00015 15 1.9 1.2e-09
Promoter (0.12%) 0.34 0.13 0.006 15 1.5 1.9e-06
PC-HiC (1.28%) 0.13 0.044 0.0041 4 0.25 1.6e-10
5kb (0.93%) 0.018 0.03 0.56 4.5 0.17 5.4e-10
100kb (2.43%) 0.14 0.03 3.4e-06 3.6 0.13 5.3e-11

Basenji∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.14%) 0.78 0.21 0.0001 23 3.5 1.6e-06
TSS (0.09%) 0.65 0.26 0.014 23 2.6 2.6e-06
Coding (0.05%) 0.73 0.22 0.001 26 3 2.6e-06
ATAC (0.08%) 0.51 0.21 0.017 19 3.3 5e-07
eQTL (0.07%) 0.17 0.08 0.038 9.3 1.4 8.7e-07
Roadmap (0.23%) 0.55 0.16 0.00061 13 1.7 1.1e-09
Promoter (0.15%) 0.37 0.14 0.0062 15 1.4 6.1e-07
PC-HiC (1.59%) 0.12 0.046 0.0083 3.9 0.23 5.7e-11
5kb (1.16%) 0.028 0.03 0.35 4.5 0.18 2.9e-10
100kb (2.99%) 0.14 0.029 8.8e-07 3.5 0.13 3.2e-11

DeepBind∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.34%) 0.88 0.18 1.4e-06 17 2 2.7e-07
TSS (0.19%) 0.53 0.23 0.021 21 2 9.3e-07
Coding (0.14%) 0.71 0.19 0.00019 20 1.9 2.6e-06
ATAC (0.24%) 0.66 0.17 7.9e-05 16 2.7 2.2e-07
eQTL (0.22%) 0.15 0.069 0.029 7.6 1.1 2.1e-06
Roadmap (0.62%) 0.56 0.14 5.1e-05 12 1.4 1e-09
Promoter (0.38%) 0.15 0.096 0.11 11 0.98 1.8e-06
PC-HiC (5.2%) 0.11 0.034 0.00067 3.1 0.16 2.3e-10
5kb (3.8%) 0.019 0.023 0.4 3.4 0.12 3.4e-10
100kb (10.2%) 0.11 0.024 2.9e-06 2.7 0.089 8.8e-11

deltaSVM∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.21%) 0.69 0.18 0.00011 18 2.2 2.7e-07
TSS (0.12%) 0.42 0.21 0.043 21 2.2 1.6e-06
Coding (0.09%) 0.6 0.19 0.0017 21 2.1 5.6e-06
ATAC (0.15%) 0.52 0.17 0.0021 16 2.7 5.2e-07
eQTL (0.14%) 0.15 0.069 0.027 7.7 1.2 5.2e-06
Roadmap (0.39%) 0.59 0.15 5.6e-05 12 1.5 1.9e-09
Promoter (0.24%) 0.15 0.096 0.12 11 1 2.1e-06
PC-HiC (3.27%) 0.12 0.033 0.00038 3.1 0.16 5.1e-10
5kb (2.41%) 0.017 0.025 0.5 3.4 0.12 5.4e-10
100kb (6.56%) 0.12 0.025 2.5e-06 2.7 0.091 1.4e-10

DeepSEA∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.17%) 0.064 0.2 0.74 9.6 1.3 8.8e-06
TSS (0.22%) -0.11 0.15 0.48 12 1.1 9e-06
Coding (0.13%) 0.11 0.13 0.4 11 1.2 1.1e-05
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ATAC (0.09%) 0.17 0.094 0.07 10 1.8 4.8e-05
eQTL (0.11%) 0.063 0.075 0.4 5.8 0.93 0.00013
Roadmap (0.21%) -0.24 0.34 0.47 8 1 2.1e-05
Promoter (0.38%) -0.0007 0.11 0.99 6.5 0.63 1.3e-05
PC-HiC (2.29%) -0.0093 0.052 0.86 3 0.12 7.1e-10
5kb (3.25%) -0.012 0.022 0.59 2.4 0.052 5.7e-09
100kb (8.12%) -0.048 0.025 0.054 1.9 0.038 3.3e-10

Basenji∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.19%) -0.058 0.16 0.72 9.6 1.1 9.6e-06
TSS (0.24%) -0.13 0.14 0.35 12 1.1 1.4e-05
Coding (0.16%) 0.1 0.14 0.44 11 1.2 7.8e-06
ATAC (0.10%) 0.14 0.091 0.13 9.6 1.6 2.7e-05
eQTL (0.13%) 0.054 0.067 0.41 5.7 0.79 5.1e-05
Roadmap (0.25%) 0.16 0.5 0.75 10 1.4 3e-07
Promoter (0.44%) -0.0033 0.11 0.98 6.5 0.59 7e-06
PC-HiC (2.79%) -0.02 0.049 0.68 3 0.11 1.7e-10
5kb (3.89%) -0.016 0.021 0.46 2.4 0.047 1.9e-09
100kb (9.76%) -0.045 0.023 0.053 1.9 0.035 8.2e-11

DeepBind∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.48%) 0.44 0.17 0.009 9.1 0.93 3.2e-06
TSS (0.51%) 0.29 0.26 0.26 13 0.97 3.6e-06
Coding (0.45%) 0.37 0.24 0.12 9.6 0.93 3.7e-06
ATAC (0.31%) 0.039 0.13 0.77 8.4 1.4 7e-06
eQTL (0.42%) 0.11 0.18 0.53 4.9 0.72 8.8e-05
Roadmap (0.70%) 0.11 0.18 0.56 9 0.86 5.9e-08
Promoter (1.19%) -0.0084 0.16 0.96 5.4 0.52 2.2e-05
PC-HiC (9.2%) 0.013 0.17 0.94 2.3 0.08 2.1e-10
5kb (13.9%) 0.014 0.14 0.92 1.8 0.046 1.7e-08
100kb (28%) 0.034 0.1 0.74 1.4 0.022 3.4e-10

deltaSVM∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.31%) 0.18 0.16 0.25 9.2 0.99 3.3e-06
TSS (0.33%) 0.11 0.13 0.38 13 1 3.9e-06
Coding (0.28%) 0.032 0.12 0.79 9.7 0.98 5.6e-06
ATAC (0.19%) 0.2 0.089 0.023 8.4 1.4 1.8e-05
eQTL (0.27%) 0.11 0.065 0.093 4.9 0.78 0.00018
Roadmap (0.45%) 0.7 0.1 1.8e-11 9.4 0.93 8.3e-08
Promoter (0.76%) 0.068 0.076 0.37 5.4 0.58 3.2e-05
PC-HiC (5.87%) 0.032 0.045 0.48 2.3 0.088 5.3e-10
5kb (8.78%) 0.025 0.017 0.13 1.8 0.052 3.4e-08
100kb (22%) -0.025 0.018 0.17 1.4 0.028 5.5e-10
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Table S23. S-LDSC results for gene set-specific published-restricted annota-
tions, conditional on baseline-LD-deep-S2G-geneset model annotations plus
the 2 jointly significant gene set-specific boosted-restricted annotations from
Figure 2 Panel C: Standardized Effect sizes (τ?) and Enrichment (E) of 80 restricted
SNP annotations corresponding to 4 published allelic effect annotations (DeepSEA∆-
published, Basenji∆-published, DeepBind∆-published and deltaSVM∆-published) for
which we observed significant enrichment signal for the published allelic-effect annota-
tions, 2 gene scores (PPI-enhancer and pLI) and 10 S2G strategies, conditional on 115
baseline-LD-deep-S2G-geneset annotations and 2 jointly significant annotations from
Figure 2 Panel C. Reports are meta-analyzed across 11 blood-related traits.

DeepSEA∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.13%) 0.46 0.22 0.035 18 2.1 3.7e-07
TSS (0.08%) 0.55 0.18 0.002 19 3.3 2.6e-06
Coding (0.04%) 0.5 0.21 0.016 23 2.8 3.8e-05
ATAC (0.07%) 0.66 0.22 0.002 23 3.9 2.4e-07
eQTL (0.06%) 0.092 0.078 0.24 8.8 1.5 1.2e-05
Roadmap (0.18%) -0.086 0.21 0.69 13 1.6 1.4e-08
Promoter (0.12%) 0.13 0.14 0.36 14 1.4 2.5e-05
PC-HiC (1.28%) 0.082 0.038 0.029 3.9 0.23 2.4e-10
5kb (0.93%) -0.033 0.036 0.36 4.5 0.17 5.4e-10
100kb (2.43%) 0.078 0.04 0.053 3.6 0.13 5.9e-11

Basenji∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.14%) 0.52 0.29 0.073 17 1.8 1.4e-06
TSS (0.09%) 0.099 0.21 0.64 19 2 7.1e-05
Coding (0.05%) 0.43 0.21 0.037 22 2.6 2.7e-05
ATAC (0.08%) 0.19 0.18 0.28 16 2.8 5.2e-06
eQTL (0.07%) 0.095 0.075 0.21 8.6 1.3 3.3e-06
Roadmap (0.23%) -0.27 0.2 0.18 12 1.6 3.5e-09
Promoter (0.15%) 0.13 0.14 0.38 13 1.4 8.6e-06
PC-HiC (1.59%) 0.073 0.038 0.054 3.8 0.21 7.7e-11
5kb (1.16%) -0.028 0.037 0.45 4.5 0.19 2.4e-10
100kb (2.99%) 0.083 0.038 0.031 3.6 0.13 3e-11

DeepBind∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.34%) 0.54 0.22 0.015 15 1.7 1e-06
TSS (0.19%) -0.1 0.19 0.58 17 1.6 3.7e-05
Coding (0.14%) 0.42 0.18 0.02 19 1.9 1.4e-05
ATAC (0.24%) 0.44 0.17 0.0085 14 2.4 8.6e-07
eQTL (0.22%) 0.1 0.066 0.12 7.2 1.1 4.3e-06
Roadmap (0.62%) -0.11 0.14 0.43 11 1.4 1.2e-09
Promoter (0.38%) -0.018 0.12 0.88 9.6 0.96 2.2e-05
PC-HiC (5.2%) 0.087 0.031 0.0049 3 0.15 2.9e-10
5kb (3.8%) -0.016 0.027 0.56 3.5 0.14 2.4e-10
100kb (10.2%) 0.071 0.031 0.021 2.7 0.091 8.2e-11

deltaSVM∆-published (PPI-enhancer)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.21%) 0.34 0.21 0.11 15 1.8 1.2e-06
TSS (0.12%) -0.19 0.19 0.3 17 1.7 9.1e-05
Coding (0.09%) 0.3 0.18 0.094 19 2 3.5e-05
ATAC (0.15%) 0.27 0.17 0.1 13 2.3 2.9e-06
eQTL (0.14%) 0.1 0.066 0.11 7.3 1.1 1.2e-05
Roadmap (0.39%) -0.16 0.14 0.26 11 1.4 5.7e-09
Promoter (0.24%) -0.022 0.12 0.85 9.4 1 3e-05
PC-HiC (3.27%) 0.09 0.032 0.0055 3 0.15 6.8e-10
5kb (2.41%) -0.023 0.03 0.43 3.4 0.13 4.5e-10
100kb (6.56%) 0.078 0.033 0.017 2.7 0.09 1.4e-10

DeepSEA∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)
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ABC (0.17%) -0.013 0.2 0.95 9.1 1.2 1.4e-05
TSS (0.22%) -0.041 0.14 0.77 12 1.1 8.7e-06
Coding (0.13%) 0.12 0.13 0.36 11 1.2 9.5e-06
ATAC (0.09%) 0.18 0.094 0.054 10 1.8 4.6e-05
eQTL (0.11%) 0.074 0.073 0.31 5.9 0.92 0.00011
Roadmap (0.21%) -0.3 0.34 0.37 7.7 1 3.8e-05
Promoter (0.38%) 0.017 0.099 0.86 6.5 0.63 1.2e-05
PC-HiC (2.29%) -0.01 0.052 0.85 3 0.12 7.4e-10
5kb (3.25%) -0.006 0.022 0.78 2.4 0.053 5.8e-09
100kb (8.12%) -0.047 0.025 0.058 1.9 0.037 3.7e-10

Basenji∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.19%) -0.14 0.17 0.42 9.2 1.1 1.7e-05
TSS (0.24%) -0.081 0.14 0.56 12 1.1 1.6e-05
Coding (0.16%) 0.11 0.13 0.43 11 1.2 6.9e-06
ATAC (0.10%) 0.15 0.091 0.11 9.5 1.6 2.8e-05
eQTL (0.13%) 0.063 0.065 0.33 5.8 0.78 4.3e-05
Roadmap (0.25%) -0.42 0.35 0.22 9 1.2 8.9e-07
Promoter (0.44%) 0.013 0.11 0.9 6.5 0.59 6.9e-06
PC-HiC (2.79%) -0.023 0.049 0.63 2.9 0.11 1.7e-10
5kb (3.89%) -0.011 0.021 0.6 2.4 0.05 2e-09
100kb (9.76%) -0.045 0.023 0.049 1.9 0.034 8.6e-11

DeepBind∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.48%) -0.11 0.15 0.5 8.1 0.89 1.7e-05
TSS (0.51%) -0.21 0.14 0.14 11 0.97 2.3e-05
Coding (0.45%) -0.083 0.12 0.48 8.8 0.92 8.1e-06
ATAC (0.31%) 0.088 0.072 0.22 7.3 1.3 3e-05
eQTL (0.42%) 0.048 0.057 0.4 4.7 0.72 0.00014
Roadmap (0.70%) -2 0.8 0.014 7.7 0.78 3.4e-07
Promoter (1.19%) -0.058 0.075 0.44 4.9 0.58 7.8e-05
PC-HiC (9.2%) -0.021 0.042 0.61 2.3 0.079 2.4e-10
5kb (13.9%) -0.0035 0.016 0.82 1.8 0.045 1.3e-08
100kb (28%) -0.025 0.016 0.12 1.4 0.022 3.3e-10

deltaSVM∆-published (pLI)
τ? se(τ?) p(τ?) E se(E) p(E)

ABC (0.31%) -0.14 0.15 0.35 7.9 0.94 2.3e-05
TSS (0.33%) -0.14 0.14 0.33 11 1 2.9e-05
Coding (0.28%) -0.095 0.12 0.42 8.8 0.96 1.3e-05
ATAC (0.19%) 0.073 0.076 0.34 7.1 1.2 8.2e-05
eQTL (0.27%) 0.05 0.059 0.4 4.6 0.78 0.00031
Roadmap (0.45%) -0.63 0.48 0.19 7.6 0.86 5.2e-06
Promoter (0.76%) -0.047 0.077 0.54 4.9 0.63 0.00013
PC-HiC (5.87%) -0.015 0.044 0.73 2.3 0.087 6.4e-10
5kb (8.78%) -0.0012 0.017 0.94 1.8 0.051 2.6e-08
100kb (22%) -0.025 0.018 0.17 1.4 0.028 5.1e-10
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Table S24. Top significant features of Imperio-DeepSEA and Imperio-Basenji
models: We report the top 10 chromatin marks (if significant) based on their magnitude
of effect size. We consider 4 different models - the Imperio model fitted and evaluated on
all genes for DeepSEA (Imperio-DeepSEA) and Basenji (Imperio-Basenji) and the Imperio
model fitted and evaluated on PPI-enhancer genes for DeepSEA (Imperio-DeepSEA
(PPI-enhancer)) and Basenji (Imperio-Basenji (PPI-enhancer)).

Imperio model Top features
Imperio-DeepSEA TF::BRF1::HeLa-S3 (TSS), TF::Znf143::HeLa-

S3 (Roadmap), TF::ZNF274::HeLa-S3 (TSS),
TF::USF2::HepG2 (Roadmap), TF::USF2::HepG2 (TSS),
TF::Znf143::GM12878 (Roadmap), TF::Pol2::GM12878
(Roadmap), TF::BRF1::HeLa-S3 (Roadmap),
TF::Mxi1::K562 (Roadmap), TF::BHLHE40::K562
(Roadmap)

Imperio-Basenji CAGE:spleen, adult, pool1 (Roadmap), CAGE:spinal
cord, adult, donor10252 (TSS), DNASE:SW480 (TSS),
HISTONE:H3K9ac neural progenitor cell derived from
H9 (TSS), CAGE:Smooth muscle cells - airway, con-
trol, donor1 (Roadmap), CAGE:epithelioid sarcoma cell
line:HS-ES-1 (Roadmap), DNASE:LNCaP clone FGC
treated with 17B-hydroxy-17-methylestra-4,9,11-trien-3-one
(Roadmap), HISTONE:H3K9ac keratinocyte female (TSS),
HISTONE:H3K27me3 fibroblast of arm male adult (53
years) (TSS), HISTONE:H3K27me3 PC9 (TSS)

Imperio-DeepSEA
(PPI-enhancer)

TF::Znf143::GM12878 (TSS), TF::ZNF274::K562 (TSS),
TF::BRF1::HeLa-S3 (TSS), TF::Rad21::A549 (TSS),
TF::USF2::HepG2 (TSS), TF::Znf143::HeLa-S3 (TSS),
TF::BHLHE40::K562 (TSS), TF::YY1::NT2-D1 (TSS),
forskolin::ERRA::HepG2 (Roadmap), TF::BRCA1::HeLa-S3
(TSS)

Imperio-Basenji
(PPI-enhancer)

HISTONE:H3K4me3 kidney epithelial cell (TSS),
CAGE:spleen, adult, pool1 (Roadmap), CAGE:Macrophage
monocyte derived, donor3 (Roadmap), HISTONE:H3K4me2
OCI-LY3 (TSS), CAGE:CD14+ Monocytes, donor2
(Roadmap), CAGE:peripheral neuroectodermal tumor cell
line:KU-SN (Roadmap), CAGE:caudate nucleus, adult,
donor10252 (Roadmap), CAGE:CD34 cells differentiated
to erythrocyte lineage (Roadmap), CAGE:carcinoid cell
line:NCI-H1770 (Roadmap), CAGE:immature langerhans
cells, donor1 (TSS)
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Table S25. Comparison of 5 Imperio models utilizing a single S2G strategy
with respect to using all 5 S2G strategies: We perform the Imperio prediction
model for DeepSEA and Basenji features corresponding to only one of the 5 S2G
strategies, and compare the resulting model fit with that of the full Imperio model
corresponding to all 5 S2G strategies. We use two measures of model fit - the r2 metric
and the correlation of predicted expression (corr.pred) with original expression on the
genes of a holdout chromosome (chr8).

S2G Imperio-DeepSEA Imperio-Basenji
r2 corr.pred r2 corr.pred

ABC 0.36 0.60 0.39 0.66
Roadmap 0.33 0.63 0.37 0.68
TSS 0.59 0.69 061 0.71
5kb 0.40 0.66 0.52 0.73
100kb 0.29 0.52 0.35 0.61
All 0.66 0.72 0.69 0.76
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Table S26. Proportion of cis-heritability captured by Imperio and ExPecto
predictions of gene expression across individuals: Results are averaged across all
22,020 genes for the 2 Imperio models (Imperio-DeepSEA and Imperio-Basenji) and the
ExPecto-DeepSEA model.

Model Correlation
Imperio-DeepSEA 0.82
Imperio-Basenji 0.79
ExPecto-DeepSEA 0.75
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Table S27. Correlation of boosted-restricted deep learning allelic-effect anno-
tations restricted using S2G strategies with Imperio annotations: We report
the correlation of boosted-restricted deep learning allelic-effect annotations restricted
using S2G strategies with Imperio annotations for DeepSEA and Basenji deep learning
models.

restricted S2G Imperio-
DeepSEA

Imperio-
Basenji

Basenji∆-boosted × ABC 0.12 0.10
Basenji∆-boosted × TSS 0.15 0.16
Basenji∆-boosted × Coding 0.03 0.04
Basenji∆-boosted × ATAC 0.05 0.07
Basenji∆-boosted × eQTL 0.07 0.08
Basenji∆-boosted × Roadmap 0.11 0.13
Basenji∆-boosted × Promoter 0.12 0.15
Basenji∆-boosted × PC-HiC 0.11 0.12
Basenji∆-boosted × 5kb 0.12 0.14
Basenji∆-boosted × 100kb 0.11 0.13
DeepSEA∆-boosted × ABC 0.13 0.10
DeepSEA∆-boosted × TSS 0.17 0.17
DeepSEA∆-boosted × Coding 0.03 0.05
DeepSEA∆-boosted × ATAC 0.05 0.06
DeepSEA∆-boosted × eQTL 0.07 0.07
DeepSEA∆-boosted × Roadmap 0.13 0.13
DeepSEA∆-boosted × Promoter 0.12 0.15
DeepSEA∆-boosted × PC-HiC 0.12 0.11
DeepSEA∆-boosted × 5kb 0.12 0.12
DeepSEA∆-boosted × 100kb 0.11 0.10
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Table S28. S-LDSC results for Imperio and ExPecto annotations, conditional
on the baseline-LD-deep-S2G-geneset model annotations: Standardized Effect
sizes (τ?) and Enrichment (E) of Imperio annotations for DeepSEA (Imperio-DeepSEA)
and Basenji (Imperio-Basenji) along with a similarly defined ExPecto (ExPecto-DeepSEA)
annotation. Results were conditional on 115 baseline-LD-deep-S2G-geneset annotations.
Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA (0.11%) 0.29 0.086 0.00075 6.5 0.47 4.9e-06
Imperio-Basenji (0.10%) 0.48 0.096 4.9e-07 8.2 0.61 6.1e-07
ExPecto-DeepSEA (0.07%) 0.13 0.063 0.045 5.5 0.53 2.1e-05
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Table S29. Standardized enrichment results for Imperio and ExPecto anno-
tations conditional on the baseline-LD-deep model annotations: Standard-
ized Enrichment of Imperio annotations for DeepSEA (Imperio-DeepSEA) and Basenji
(Imperio-Basenji) along with a similarly defined ExPecto (ExPecto-DeepSEA) anno-
tations. Results were conditional on 115 baseline-LD-deep-S2G-geneset annotations.
Reports are meta-analyzed across 11 blood-related traits.

StdE se(StdE) p(StdE)
Imperio-DeepSEA (0.11%) 0.045 0.0033 6.7e-06
Imperio-Basenji (0.10%) 0.057 0.0043 7.3e-07
ExPecto-DeepSEA (0.07%) 0.03 0.003 5.5e-05
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Table S30. S-LDSC results for gene-set specific Imperio annotations, condi-
tional on the baseline-LD-deep-S2G-geneset model annotations: Standardized
Effect sizes (τ?) and Enrichment (E) of gene set-specific Imperio annotations corre-
sponding to 2 deep learning models (DeepSEA and Basenji) and 2 gene sets (pLI and
PP-enhancer). Results were conditional on 115 baseline-LD-deep-S2G-geneset annota-
tions. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.78 0.16 1.5e-06 20 2.3 3.5e-08

Imperio-DeepSEA
(pLI) (0.04%)

0.21 0.098 0.035 8.7 1.1 1.5e-05

Imperio-Basenji
(PPI-enhancer) (0.04%)

0.53 0.14 0.0003 18 2.4 4.7e-07

Imperio-Basenji
(pLI) (0.05%)

0.24 0.093 0.011 9 1.1 6.9e-07
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Table S31. Standardized enrichment results for gene-set specific Imperio anno-
tations conditional on the baseline-LD-deep-S2G-geneset model: Standardized
Enrichment of gene set-specific Imperio annotations corresponding to 2 deep learning
models (DeepSEA and Basenji) and 2 gene sets (pLI and PP-enhancer) and. Re-
sults were conditional on 115 baseline-LD-deep-S2G-geneset annotations. Reports are
meta-analyzed across 11 blood-related traits.

StdE se(StdE) p(StdE)
Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.11 0.013 3.5e-08

Imperio-DeepSEA
(pLI) (0.04%)

0.044 0.0055 1.5e-05

Imperio-Basenji
(PPI-enhancer) (0.04%)

0.081 0.011 4.7e-07

Imperio-Basenji
(pLI) (0.05%)

0.051 0.0061 6.9e-07
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Table S32. S-LDSC results for joint model of gene set-specific Imperio anno-
tations conditional on the baseline-LD-deep-S2G-geneset model annotations:
Joint Standardized Effect sizes (τ?) and Enrichment (E) of the 2 marginally significant
gene-set specific Imperio annotations, Imperio-DeepSEA (PPI-enhancer) and Imperio-
Basenji (PPI-enhancer). Results were conditional on 115 baseline-LD-deep-S2G-geneset
annotations. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.57 0.14 3.9e-05 19 2.1 5.1e-08

Imperio-Basenji
(PPI-enhancer) (0.04%)

0.16 0.14 0.26 16 2.2 3.5e-06
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Table S33. S-LDSC results for gene-set specific Imperio annotations, condi-
tional on baseline-LD-deep-S2G-geneset model annotations plus 1 Imperio-
Basenji annotation from Figure 3B: Standardized Effect sizes (τ?) and Enrichment
(E) of gene-set specific Imperio annotations corresponding to 2 deep learning models
(DeepSEA and Basenji) and 2 gene-sets (pLI and PP-enhancer). Results were condi-
tional on 115 baseline-LD-deep-S2G-geneset model annotations and 1 Imperio-Basenji
annotation from Figure 3B. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.65 0.14 7.9e-06 19 2.3 4.2e-08

Imperio-DeepSEA
(pLI) (0.04%)

0.02 0.11 0.89 7.8 1.2 1e-04

Imperio-Basenji
(PPI-enhancer) (0.04%)

0.42 0.14 0.002 18 2 5.5e-07

Imperio-Basenji
(pLI) (0.05%)

0.04 0.10 0.66 8.9 1.16 2.4e-06
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Table S34. S-LDSC results for Imperio+ExPecto annotations, conditional
on the baseline-LD-deep-S2G-geneset model annotations: Standardized Effect
sizes (τ?) and Enrichment (E) of the ∆s SNP level annotations computed using a
combination both ExPecto4 and Imperio features for DeepSEA and Basenji models.
Results were conditional either on 115 baseline-LD-deep-S2G-geneset annotations or
baseline-LD-deep-S2G-geneset plus 1 Imperio-Basenji annotation from Figure 3B. Reports
are meta-analyzed across 11 blood-related traits.

conditional on the baseline-LD-deep-S2G-geneset model
τ? se(τ?) p(τ?) E se(E) p(E)

ExPecto-Imperio-DeepSEA
(0.08%)

0.26 0.087 0.0023 6.1 0.42 2.5e-06

ExPecto-Imperio-Basenji
(0.08%)

0.41 0.093 9.7e-06 7.1 0.5 3.6e-07

conditional on the baseline-LD+geneset+Imperio-Basenji-BLD model
τ? se(τ?) p(τ?) E se(E) p(E)

ExPecto-Imperio-DeepSEA
(0.08%)

-0.042 0.12 0.73 5.9 0.42 3.6e-06

ExPecto-Imperio-Basenji
(0.08%)

-0.17 0.13 0.2 7.1 0.49 3.6e-07
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Table S35. S-LDSC results for partially restricted gene set-specific Imperio
annotations defined by restricting only the fitting of feature weights, condi-
tional on the baseline-LD-deep-S2G-geneset model annotations: Standardized
Effect sizes (τ?) and Enrichment (E) of the intermediate Imperio (Imperio-int1) annota-
tions computed by using all genes for fitting the model and gene sets for computing the
expression allelic effects for 2 deep learning models (DeepSEA and Basenji) and 2 gene
sets (pLI and PPI-enhancer). Results were conditional either on 115 baseline-LD-deep-
S2G-geneset annotations or baseline-LD-deep-S2G-geneset plus 2 significant Imperio
annotations from Figure 3. Reports are meta-analyzed across 11 blood-related traits.

conditional on the baseline-LD-deep-S2G-geneset model
τ? se(τ?) p(τ?) E se(E) p(E)

Imperio-int1-DeepSEA (PPI-
enhancer) (0.04%)

0.62 0.13 3.9e-06 16 1.7 2.5e-08

Imperio-int1-Basenji (PPI-
enhancer) (0.04%)

0.53 0.18 0.0025 19 2.8 1.4e-06

Imperio-int1-DeepSEA (pLI)
(0.04%)

0.091 0.092 0.32 6.6 0.74 6.7e-06

Imperio-int1-Basenji (pLI)
(0.04%)

0.065 0.1 0.53 7.3 1.1 3.6e-05

conditional on baseline-LD-deep-S2G-geneset plus 2 significant Imperio annotations from Figure 3
τ? se(τ?) p(τ?) E se(E) p(E)

Imperio-int1-DeepSEA (PPI-
enhancer) (0.04%)

0.21 0.23 0.36 16 1.7 3.3e-08

Imperio-int1-Basenji (PPI-
enhancer) (0.04%)

0.077 0.14 0.63 17 2.6 1.2e-05

Imperio-int1-DeepSEA (pLI)
(0.04%)

0.028 0.088 0.75 7.9 0.79 8.7e-07

Imperio-int1-Basenji (pLI)
(0.04%)

-0.034 0.51 0.91 8.5 1.2 6.3e-06
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Table S36. S-LDSC results for partially restricted gene set-specific Impe-
rio annotations defined by restricting only the gene expression predictions,
conditional on the baseline-LD-deep-S2G-geneset model annotations: Stan-
dardized Effect sizes (τ?) and Enrichment (E) of the intermediate Imperio (Imperio-int-2)
annotations computed by using genes in a geneset for fitting the model and all genes
for computing the expression allelic effects for 2 deep learning models (DeepSEA and
Basenji) and 2 gene sets (pLI and PPI-enhancer). Results were conditional either on
115 baseline-LD-deep-S2G-geneset annotations or baseline-LD-deep-S2G-geneset plus
2 significant Imperio annotations from Figure 3. Reports are meta-analyzed across 11
blood-related traits.

conditional on the baseline-LD-deep-S2G-geneset model
τ? se(τ?) p(τ?) E se(E) p(E)

Imperio-int2-DeepSEA (PPI-
enhancer) (0.08%)

0.46 0.14 0.00099 8.6 0.85 3.7e-06

Imperio-int2-Basenji (PPI-
enhancer) (0.10%)

0.59 0.1 3.3e-09 9.4 0.66 2.2e-07

Imperio-int2-DeepSEA (pLI)
(0.09%)

0.51 0.11 2.9e-06 8.8 0.75 5.7e-07

Imperio-int2-Basenji (pLI)
(0.10%)

0.48 0.11 4.3e-06 8.6 0.61 4.3e-07

conditional on baseline-LD-deep-S2G-geneset plus 2 significant Imperio annotations from Figure 3
τ? se(τ?) p(τ?) E se(E) p(E)

Imperio-int2-DeepSEA (PPI-
enhancer) (0.08%)

-0.12 0.20 0.54 8.2 0.62 8.5e-07

Imperio-int2-Basenji (PPI-
enhancer) (0.10%)

0.44 0.26 0.09 9.6 0.67 1.5e-07

Imperio-int2-DeepSEA (pLI)
(0.09%)

0.023 0.24 0.89 8.5 0.62 5.7e-07

Imperio-int2-Basenji (pLI)
(0.10%)

0.021 0.18 0.91 8.4 0.78 9.9e-07
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Table S37. S-LDSC results for annotations defined by the total number of
genes linked to each SNP by each S2G strategy, conditional on the baseline-
LD-deep-S2G-geneset model annotations: Standardized Effect sizes (τ?) and En-
richment (E) of the number of genes (Nsd) linked to each SNP s by the S2G strategy
d. The number of genes was thresholded at 5 and annotations were standardized to
probabilistic scale. Results were conditional either on 115 baseline-LD-deep-S2G-geneset
annotations. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
ABC (1.93%) 0.23 0.19 0.24 9.2 0.81 8.9e-10
Roadmap (0.87%) -0.16 0.27 0.54 5.6 0.49 1.2e-07
TSS (2.31%) -0.067 0.043 0.11 2.8 0.18 3.5e-05
5kb (13%) -0.025 0.033 0.46 1.5 0.034 4.1e-08
100kb (38%) 0.0047 0.023 0.84 1.6 0.027 3.4e-10
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Table S38. S-LDSC results for annotations defined by the number of PPI-
enhancer genes linked to each SNP by each S2G strategy, conditional on the
baseline-LD-deep-S2G-geneset model annotations: Standardized Effect sizes (τ?)
and Enrichment (E) of the number of PPI-enhancer genes linked to each SNP s by
the S2G strategy d. The number of genes was thresholded at 5 and annotations were
standardized to probabilistic scale. Results were conditional either on 115 baseline-
LD-deep-S2G-geneset annotations. Reports are meta-analyzed across 11 blood-related
traits.

τ? se(τ?) p(τ?) E se(E) p(E)
ABC (0.44%) 0.40 0.15 0.009 17 1.8 4.8e-09
Roadmap (0.38%) 0.32 0.14 0.019 11 1.5 3.4e-10
TSS (0.39%) 0.03 0.076 0.69 8.9 0.84 1.7e-07
5kb (3.1%) 0.0032 0.023 0.89 3.4 0.13 2.9e-10
100kb (5.3%) 0.082 0.026 0.0013 3 0.12 2.8e-11
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Table S39. S-LDSC results for Imperio annotations defined using the max-
imum across genes proximal to the annotated SNPs (instead of the sum),
conditional on the baseline-LD-deep-S2G-geneset model annotations plus
the two significant annotations from Figure 3B,D: Standardized Effect sizes (τ?)
and Enrichment (E) of the SNP level annotations computed using the maximum across
genes proximal to the annotated SNPs (instead of the sum), conditional on the baseline-
LD-deep-S2G-geneset model annotations plus the two significant annotations from Figure
3B,D. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
Imperio-DeepSEA (0.58%) -0.21 0.07 0.0035 1.4 0.15 0.058
Imperio-Basenji (0.44%) 0.13 0.056 0.023 2.6 0.14 2.3e-06
Imperio-DeepSEA
(PPI-enhancer) (0.34%)

-0.11 0.055 0.045 1.6 0.17 0.0095

Imperio-Basenji
(PPI-enhancer) (0.34%)

0.17 0.082 0.036 2.9 0.16 5.5e-07
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Table S40. S-LDSC results for Whole blood MaxCPP annotations conditional
on different baseline models: Standardized Effect sizes (τ?) and Enrichment (E)
of Whole blood MaxCPP (MaxCPP) annotations. Results were conditional on either
115 baseline-LD-deep-geneset, or 107 baseline-LD-deep-S2G, or 100 baseline-LD-deep
annotations. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)
conditional on the baseline-LD-deep-S2G-geneset model

MaxCPP (0.07%) 0.27 0.12 0.027 10 2.1 0.0015
conditional on the baseline-LD-deep-S2G model

MaxCPP (0.07%) 0.29 0.12 0.018 10.5 2.1 0.0001
conditional on the baseline-LD-deep model

MaxCPP (0.07%) 0.36 0.15 0.014 12 2.5 0.0009
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Table S41. S-LDSC results for combined joint model: Standardized Effect sizes
(τ?) and Enrichment (E) in a joint model comprising of significant SNP annotations
from Figure 1, Figure 2 and Figure 3. Only results for the 3 jointly Bonferroni significant
annotations are reported. The results were conditioned on 115 baseline-LD-deep-S2G-
geneset annotations. Reports are meta-analyzed across 11 blood-related traits.

τ? se(τ?) p(τ?) E se(E) p(E)

Basenji∆-boosted × TSS
(0.9%)

1.1 0.29 0.0001 16 1.8 8.3e-07

Imperio-Basenji
(0.10%)

0.33 0.09 0.0001 8.2 0.61 6.4e-07

Imperio-DeepSEA
(PPI-enhancer) (0.04%)

0.67 0.15 5e-06 20 2.3 3.9e-08
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Table S42. ∆loglSS results for the the combined joint model and other heri-
tability models. We report ∆loglSS derived from the loglSS metric, proposed in ref.39,
for the different heritability models studied in this paper: baseline-LD, baseline-LD-deep,
baseline-LD-deep-S2G, baseline-LD-S2G-geneset and combined joint model in Figure
4 (Table S2). We compute ∆loglSS as the difference in loglSS for each model with
respect to s baselineLD-no-funct model with 17 annotations that include no functional
annotations37,39. We also report the percentage increase in ∆loglSS for each model over
the baseline-LD model. We do not report AIC as the number of annotations are not
too different to alter conclusions based on just the loglSS. We report three summary
∆loglSS results - one averaged across 30 UK Biobank traits37 (All), one averaged across
6 blood-related traits from UK Biobank (Blood) and one averaged across the other 24
non blood related traits from UK Biobank (Non-blood) (Table S43).

Model ∆loglSS

(All)
% incr.
over
baseline-
LD
(All)

pval
(All)

∆loglSS

(Blood)
% incr.
over
baseline-
LD
(Blood)

pval
(Blood)

∆loglSS

(Non-
blood)

% incr.
over
baseline-
LD
(Non-
blood)

pval
(Non-
blood)

baseline-LD
(n=86)

1379 0 - 2668 0 - 1121 0 -

baseline-LD-deep
(n=100)

1501 8.8% 5e-44 2997 12% 2e-131 1179 5.1% 4e-18

baseline-LD-deep-S2G
(n=107)

1542 12% 1e-56 3102 16% 3e-170 1218 8.6% 5e-30

baseline-LD-deep-S2G
-geneset (n=115)

1582 14.7% 2e-66 3142 17.8% 8e-181 1259 12% 1e-40

Combined joint model
(Figure 4) n=118)

1603 16.2% 7e-75 3209 20.3% 8e-207 1280 14.2% 8e-49
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Table S43. List of UKBiobank traits used for loglSS calculations. The list
consists of 6 blood-related traits and 24 non blood-related traits.

Trait Category N

disease AID Sure Blood 459324
blood Eosinophil count Blood 439938
Blood Platelet count Blood 444382
Blood Red count Blood 445174
Blood RBC distr. width Blood 442700
blood White count Blood 444502
reproduction Menarche Age Non-blood 242278
reproduction Menopause Age Non-blood 143025
Body balding Non-blood 208336
Body BMIz Non-blood 457824
cov EDU Years Non-blood 454813
disease Dermatology Non-blood 459324
disease Allergy Eczema Non-blood 458699
lung FVCzSmoke Non-blood 371949
lung FEV1FVCzSmoke Non-blood 371949
pigment Hair Non-blood 452720
bmd Heel Tscorez Non-blood 445921
body Heightz Non-blood 458303
disease Hi-chol-self-rep Non-blood 459324
disease Hypothyroidism self rep Non-blood 459324
Other Morning-person Non-blood 41050
Mental Neuroticism Non-blood 372066
disease Respiratory ENT Non-blood 459324
pigment Skin Non-blood 453609
cov Smoking Status Non-blood 457683
pigment Sunburn Non-blood 344229
bp SystolicadjMedz Non-blood 422771
pigment Tanning Non-blood 449984
disease T2D Non-blood 459324
body WHRadjBMIz Non-blood 458417
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Supplementary Figures
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Figure S1. Illustration of the DeepBoost model: (A) An overview of a sequence based
genomic deep learning model like DeepSEA and Basenji, that trains on sequence images for a
region and the chromatin features around that region using a deep Convolutional Neural Net
(CNN) model. (B) Illustration of how the alelic effect annotation for a particular feature f is
computed at a SNP s. The number of features f is 2,002 for the DeepSEA model, 4,229 for
the Basenji model, 927 for Deepbind and 1329 for the deltaSVM model used. The length of
the vertical arrow at the SNP site denotes the magnitude of the allelic effect and its direction
represents the sign (up and down for positive and negative allelic effect respectively). (C)
Illustration of the DeepBoost classification model where we classify positive set of fine-mapped
SNPs from the negative set of matched controls using the allelic effect features.
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Figure S2. Correlations between published and boosted allelic-effect annotations.
Correlation matrix of boosted and published allelic-effect annotations for DeepSEA, Basenji,
DeepBind and deltaSVM models. We observed mildly positive correlations between published
and boosted annotations for the same model (average r=0.16), and we observed weakly positive
correlations across all annotations (r=0.10).
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Figure S3. Feature importance of boosted annotations for DeepBoost using the
DeepSEA model. We applied SHAP42 to assess which deep learning features were most
important for the prediction of boosted annotations using the DeepSEA (Methods). We report
the top 20 features with signed SHAP scored ordered from top to bottom based on importance
as in ref37.
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Figure S4. Feature importance of boosted annotations for DeepBoost using the
Basenji model. We applied SHAP42 to assess which deep learning features were most
important for the prediction of boosted annotations using the Basenji (Methods). We report
the top 20 features with signed SHAP scored ordered from top to bottom based on importance
as in ref37.
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Figure S5. Feature importance of boosted annotations for DeepBoost using the
DeepBind model. We applied SHAP42 to assess which deep learning features were most
important for the prediction of boosted annotations using the DeepBind method (Methods).
We report the top 20 features with signed SHAP scored ordered from top to bottom based on
importance as in ref37.
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Figure S6. Feature importance of boosted annotations for DeepBoost using the
deltaSVM model. We applied SHAP42 to assess which deep learning features were most
important for the prediction of boosted annotations using the deltaSVM method (Methods).
We report the top 20 features with signed SHAP scored ordered from top to bottom based
on importance as in ref37. TF E3 559: eGFP-ZNF507 ChIP-seq on human K562 genetically
modified using stable transfection; TF E3 290: lung embryo (67 days), TF E3 540: ARID1B
ChIP-seq on human K562, TF E3 110: NT2/D1, TF E3 765: EGR1 ChIP-seq on human
K562, TF E3 372: HAIB ChIP TAF1 in MCF-7, TF E3 781: LEF1 ChIP-seq on human
K562, TF E3 954: MNT ChIP-seq on human MCF-7, TF E3 802: CBFA2T3 ChIP-seq on
human K562, TF E3 704: L3MBTL2 ChIP-seq on human K562, TF E3 15: NFE2L2 ChIP-
seq on human A549, TF E3 181: eGFP-ZNF394 ChIP-seq on human HEK293 genetically
modified using site-specific recombination originated from HEK293eGFP-ZNF394 ChIP-seq on
human HEK293 genetically modified using site-specific recombination originated from HEK293,
TF E3 389: HNRNPLL ChIP-seq on human HepG2, TF E3 829: eGFP-HINFP ChIP-seq
on human K562 genetically modified using stable transfection, TF E3 330: CEBPB ChIP-seq
protocol v042211.1 on human K562, TF E3 226: eGFP-ZSCAN4 ChIP-seq on human HEK293
genetically modified using site-specific recombination originated from HEK293, TF E3 752:
HNRNPL ChIP-seq on human K562, TF E3 872: CUX1 ChIP-seq on human MCF-7.
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(A)

(B)

Figure S7. Standardized enrichment of SNP annotations for published and boosted
deep learning allelic-effect annotations. Barplot representing standardized enrichment
metric, as proposed in ref.86, for (A) 4 published DeepSEA, Basenji, DeepBind and deltaSVM
allelic-effect annotations and (B) 16 boosted annotations for DeepSEA, Basenji, DeepBind and
deltaSVM models, using 3 sets of fine-mapped SNPs and their union. All results are conditional
on the baseline-LD-deep model annotations.
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Figure S8. Correlation between S2G annotations. Correlation matrix of S2G annota-
tions derived from all 10 SNP-to-gene (S2G) linking strategies (Table 1), as defined by the sets
of SNPs linked to all genes.
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Figure S9. Correlation between boosted allelic-effect annotations and S2G an-
notations. Correlation matrix of 4 boosted allelic effect annotations, DeepSEA∆-boosted,
Basenji∆-boosted, DeepBind∆-boosted and deltaSVM∆-boosted, and 10 S2G annotations. The
correlations range from weakly positive to moderately positive.
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**
**

**

Figure S10. S-LDSC results for joint model of published-restricted and boosted-
restricted deep learning allelic-effect annotations restricted using S2G strategies,
conditional on the baseline-LD-deep-S2G model annotations. Standardized effect size
(τ?) conditional on baseline-LD-deep-S2G and other significant restricted S2G annotations (right
column, shading) compared to the effect size from Figure 1 Panel B right panel (left column,
white). Results are meta-analyzed across 11 blood-related traits. ** denotes P < 0.05/174.
Error bars denote 95% confidence intervals. Numerical results are reported in Table S14.
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Figure S11. Standardized enrichment of gene set-specific boosted-restricted anno-
tations, conditional on baseline-LD-deep-S2G-geneset model annotations. Standard-
ized enrichment metric, as proposed in ref.86, for 80 SNP annotations corresponding to 2 gene
scores (PPI-enhancer38, pLI33) with 10 S2G annotations prioritized by 4 boosted allelic-effect
annotations (DeepSEA∆-boosted, Basenji∆-boosted, DeepBind∆-boosted and deltaSVM∆-
boosted). Results only shown for those allelic-effect models and S2G strategies that show
Bonferroni significance. ** denotes P < 0.05/174. Error bars denote 95% confidence intervals.
Numerical results are reported in Table S17.
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Figure S12. Illustration of the Imperio model: A schematic representation of the different
S2G straategie used in the Imperio model : (A) 100kb, (B) 5kb, (C) TSS and (D) ABC or
Roadmap. (E) Illustration of how the deep learning variant level or allelic effect annotations
are combined with these S2G strategies to generate the featues which are used as predictors in
a regression model with GTEx Whole blood expression (log CPM) used as response.
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Figure S13. Accuracy of Imperio in predicting gene expression across genes on
chromosome 8. For both Imperio-DeepSEA and Imperio-Basenji, we plot predicted expression
vs. observed log RPKM expression, for 990 genes on chromosome 8.
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Figure S14. Correlation in predicted expression between Imperio and ExPecto
models. Correlation in predicted expression for 990 chr8 genes used as held-out test set for the
ExPecto method4 and the two Imperio models corresponding to DeepSEA and Basenji deep
learning models.
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Imperio R2 vs cis h2 (Blood)

Imperio R2 (Basenji)
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Figure S15. Comparison of Imperio prediction r2 for predictions of gene expression
across individuals vs. cis-heritability. We plot the prediction r2 for the inter-individual
model comprising of the Imperio predicted expression effects (see Methods) and the per-gene
cis-heritability in Whole blood as estimated from trancriptiome wide association studies52 for
two deep learning models - DeepSEA (Panel A) and Basenji (Panel B).

95

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2020.09.08.288563doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288563
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S16. Correlation between all-genes ExPecto, all-genes Imperio, and gene
set-specific Imperio annotations. Correlation matrix of Whole blood MaxCPP27, Whole
blood ExPecto27, and 6 Imperio annotations corresponding to 2 deep learning models (DeepSEA
and Basenji) and three sets of genes (all genes, pLI genes and PPI-enhancer genes). The
correlations range from slightly positive to medium high positive values.
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