1	Enhanced SARS-CoV-2 Neutralization by Secretory IgA in vitro
2	
3	Zijun Wang ^{1, †} , Julio C. C. Lorenzi ^{1, †} , Frauke Muecksch ^{2, †} , Shlomo Finkin ^{1, †} , Charlotte Viant ¹ ,
4	Christian Gaebler ¹ , Melissa Cipolla ¹ , Hans-Heinrich Hoffman ³ , Thiago Y. Oliveira ¹ , Deena A.
5	Oren ⁴ , Victor Ramos ¹ , Lilian Nogueira ¹ , Eleftherios Michailidis ³ , Davide F. Robbiani ⁵ , Anna
6	Gazumyan ¹ , Charles M. Rice ³ , Theodora Hatziioannou ² , Paul D. Bieniasz ^{2,6} , Marina Caskey ¹ ,
7	Michel C. Nussenzweig ^{1,6,*} .
8	
9	¹ Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
10	² Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
11	³ Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY,
12	USA.
13	⁴ Structural Biology Resource Center, The Rockefeller University, New York, NY 10065, USA
14	⁵ Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona,
15	Switzerland.
16	⁶ Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
17	[†] Equal contributions
18	* Correspondence to: mussen@rockefeller.edu (M.C.N)
19	
20	
21	
22	

23	Abstract: SARS-CoV-2 primarily infects cells at mucosal surfaces. Serum neutralizing antibody
24	responses are variable and generally low in individuals that suffer mild forms of the illness.
25	Although potent IgG antibodies can neutralize the virus, less is known about secretory antibodies
26	such as IgA that might impact the initial viral spread and transmissibility from the mucosa. Here
27	we characterize the IgA response to SARS-CoV-2 in a cohort of 149 individuals. IgA responses
28	in plasma generally correlate with IgG responses and clones of IgM, IgG and IgA producing B
29	cells that are derived from common progenitors are evident. Plasma IgA monomers are 2-fold
30	less potent than IgG equivalents. However, IgA dimers, the primary form in the nasopharynx, are
31	on average 15 times more potent than IgA monomers. Thus, secretory IgA responses may be
32	particularly valuable for protection against SARS-CoV-2 and for vaccine efficacy.
33	
24	Introduction
34	Introduction
35	SARS-CoV-2 encodes a trimeric spike surface protein (S) which mediates entry into host cells
35	SARS-CoV-2 encodes a trimeric spike surface protein (S) which mediates entry into host cells
35 36	SARS-CoV-2 encodes a trimeric spike surface protein (S) which mediates entry into host cells $(1, 2)$. The virus initially infects epithelial cells in the nasopharynx when the receptor binding
35 36 37	SARS-CoV-2 encodes a trimeric spike surface protein (S) which mediates entry into host cells $(1, 2)$. The virus initially infects epithelial cells in the nasopharynx when the receptor binding domain (RBD) of S interacts with angiotensin converting enzyme-2 (ACE-2) receptor (3-6).
35 36 37 38	SARS-CoV-2 encodes a trimeric spike surface protein (S) which mediates entry into host cells $(1, 2)$. The virus initially infects epithelial cells in the nasopharynx when the receptor binding domain (RBD) of S interacts with angiotensin converting enzyme-2 (ACE-2) receptor $(3-6)$. SARS-CoV-2 may subsequently spread to other epithelial cells expressing ACE-2 in the lung
35 36 37 38 39	SARS-CoV-2 encodes a trimeric spike surface protein (S) which mediates entry into host cells $(1, 2)$. The virus initially infects epithelial cells in the nasopharynx when the receptor binding domain (RBD) of S interacts with angiotensin converting enzyme-2 (ACE-2) receptor $(3-6)$. SARS-CoV-2 may subsequently spread to other epithelial cells expressing ACE-2 in the lung and gut. These tissues are rich in lymphoid cells that are organized into nasopharynx associated
 35 36 37 38 39 40 	SARS-CoV-2 encodes a trimeric spike surface protein (S) which mediates entry into host cells (1, 2). The virus initially infects epithelial cells in the nasopharynx when the receptor binding domain (RBD) of S interacts with angiotensin converting enzyme-2 (ACE-2) receptor (3-6). SARS-CoV-2 may subsequently spread to other epithelial cells expressing ACE-2 in the lung and gut. These tissues are rich in lymphoid cells that are organized into nasopharynx associated and gut associated lymphoid tissues (NALT and GALT respectively). Vaccines delivered by
 35 36 37 38 39 40 41 	SARS-CoV-2 encodes a trimeric spike surface protein (S) which mediates entry into host cells (1, 2). The virus initially infects epithelial cells in the nasopharynx when the receptor binding domain (RBD) of S interacts with angiotensin converting enzyme-2 (ACE-2) receptor (3-6). SARS-CoV-2 may subsequently spread to other epithelial cells expressing ACE-2 in the lung and gut. These tissues are rich in lymphoid cells that are organized into nasopharynx associated and gut associated lymphoid tissues (NALT and GALT respectively). Vaccines delivered by inhalation to specifically target these tissues appear to be more effective against SARS-CoV-2
 35 36 37 38 39 40 41 42 	SARS-CoV-2 encodes a trimeric spike surface protein (S) which mediates entry into host cells (1, 2). The virus initially infects epithelial cells in the nasopharynx when the receptor binding domain (RBD) of S interacts with angiotensin converting enzyme-2 (ACE-2) receptor (3-6). SARS-CoV-2 may subsequently spread to other epithelial cells expressing ACE-2 in the lung and gut. These tissues are rich in lymphoid cells that are organized into nasopharynx associated and gut associated lymphoid tissues (NALT and GALT respectively). Vaccines delivered by inhalation to specifically target these tissues appear to be more effective against SARS-CoV-2 (7). Among other specializations, NALT and GALT produce large quantities of IgA antibodies.

47	Although most individuals produce antibodies in response to SARS-CoV-2 infection, the
48	neutralizing response is highly variable with as many as 30% of the population showing levels of
49	neutralizing activity below 1:50 in pseudovirus assays (11, 12). Neutralization is associated with
50	prolonged infection and RBD binding activity as measured by ELISA (11-13). IgG antibody
51	cloning experiments from recovered individuals have revealed that neutralizing antibodies target
52	several distinct non-overlapping epitopes on the RBD (11, 14-18). Some of these antibodies are
53	potently neutralizing and can prevent or treat infection in animal models (15-19).
54	
55	Consistent with the fact that SARS CoV-2 initially infects in the nasopharynx, IgA antibodies
56	that bind to SARS-CoV-2 are produced rapidly after infection and remain elevated in the plasma
57	for at least 40 days after the onset of symptoms (20-23). IgA antibodies bind to the RBD and can
58	neutralize SARS-CoV-2 (20-22). However, the precise contribution and molecular nature of the
59	IgA response to SARS-CoV-2 has not been reported to date. Here we examine a cohort of 149
60	convalescent individuals with measurable plasma neutralizing activity for the contribution of IgA
61	to anti-SARS-CoV-2 antibody responses. Cloning IgA antibodies from single B cells reveals that
62	the neutralizing activity of monomeric IgA is generally lower than corresponding IgGs but
63	dimeric IgAs are on average 15-fold more potent than their monomeric counterparts.
64	
65	Results
66	Plasma anti-SARS-CoV-2 RBD IgA
67	IgM, IgG and IgA account for 5%, 80% and 15% of the antibodies in plasma, respectively. IgG
68	responses to RBD are strongly correlated with neutralizing activity (11, 13-17, 24-28). To

 included for normalization of the area under the curve (AUC) and 8 independent healthy donor samples were included as negative controls (Fig. 1A, (11)). Whereas 78% and 15% of the individuals in this cohort showed IgG and IgM anti-RBD levels that were at least 2 standard deviations above control, only 33% did so for IgA (Fig. 1A and B, (11)). Thus, in individuals studied on average 40 days after infection the circulating levels of anti-RBD IgA is more mode than IgG and higher than IgM. Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lowe levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). On note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes 	69	examine the contribution of IgA to the anti-SARS-CoV-2 RBD response we tested plasma
 samples were included as negative controls (Fig. 1A, (11)). Whereas 78% and 15% of the individuals in this cohort showed IgG and IgM anti-RBD levels that were at least 2 standard deviations above control, only 33% did so for IgA (Fig. 1A and B, (11)). Thus, in individuals studied on average 40 days after infection the circulating levels of anti-RBD IgA is more mode than IgG and higher than IgM. Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lowe levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). O note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers 	70	samples for binding to the RBD by a validated ELISA. A positive control sample (COV-21) was
 individuals in this cohort showed IgG and IgM anti-RBD levels that were at least 2 standard deviations above control, only 33% did so for IgA (Fig. 1A and B, (11)). Thus, in individuals studied on average 40 days after infection the circulating levels of anti-RBD IgA is more mode than IgG and higher than IgM. Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lowe levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). O note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	71	included for normalization of the area under the curve (AUC) and 8 independent healthy donor
74 deviations above control, only 33% did so for IgA (Fig. 1A and B, (11)). Thus, in individuals 75 studied on average 40 days after infection the circulating levels of anti-RBD IgA is more mode 76 than IgG and higher than IgM. 77 Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of 78 Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of 79 sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lowe 80 levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than 81 those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). On 82 note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma 83 anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). 84 85 85 Neutralization activity of purified IgG and IgA 86 To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes 87 from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing 88 activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization 89 assays(11). The activity of both isotypes was di	72	samples were included as negative controls (Fig. 1A, (11)). Whereas 78% and 15% of the
 studied on average 40 days after infection the circulating levels of anti-RBD IgA is more mode than IgG and higher than IgM. Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lowe levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). On note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	73	individuals in this cohort showed IgG and IgM anti-RBD levels that were at least 2 standard
 than IgG and higher than IgM. Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lowe levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). O note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	74	deviations above control, only 33% did so for IgA (Fig. 1A and B, (11)). Thus, in individuals
Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lowe levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). C note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (<i>11</i>). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation	75	studied on average 40 days after infection the circulating levels of anti-RBD IgA is more modest
Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lowe levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). On note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation	76	than IgG and higher than IgM.
 sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lowe levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). O note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	77	
 levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). O note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	78	Anti-RBD IgA titers were correlated with duration and severity of symptoms but not timing of
 those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). Onote, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (<i>11</i>). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	79	sample collection relative to onset (Fig. 1C, and fig.S1A, B). Similar to IgG, females had lower
 note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	80	levels of IgA than males and hospitalized individuals showed higher anti-RBD IgA titers than
 anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D). Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	81	those with milder symptoms, but there was no correlation with age (Fig. 1D and E, fig. S1C). Of
 Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	82	note, individuals that suffered gastrointestinal symptoms showed significantly higher plasma
 Neutralization activity of purified IgG and IgA To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	83	anti-RBD IgA but not IgG titers (Fig. 1F and fig. S1D).
To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (<i>11</i>). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation	84	
 from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	85	Neutralization activity of purified IgG and IgA
 activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	86	To compare the neutralizing activity of plasma IgA to IgG directly we purified the 2 isotypes
 assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation 	87	from the plasma of all 99 individuals in our cohort that showed measurable plasma neutralizing
90 and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation	88	activity and tested the two isotypes in HIV-1 based SARS-CoV-2 pseudovirus neutralization
	89	assays (11). The activity of both isotypes was directly correlated with anti-RBD binding titers
between the neutralizing activity of IgG and IgA in a given individual (Fig. 2E). However,	90	and overall plasma neutralizing activity (Fig. 2A-D). In addition, there was good correlation
	91	between the neutralizing activity of IgG and IgA in a given individual (Fig. 2E). However,

92	potency of each of the 2 isotypes varied by as much as 2 orders of magnitude between
93	individuals (Fig. 2F). Purified IgG was generally more potent than IgA in neutralizing SARS-
94	CoV-2 pseudovirus in vitro. The geometric mean IC ₅₀ for IgG was 384 nM vs. 709 nM for IgA
95	(P < 0.0001, Fig. 2F). Nevertheless, IgAs were more potent than IgGs in 25% of the individuals
96	tested (fig. S2A). The 2 isotypes also differed in that the overall potency of purified IgG was

97 correlated with symptom severity and was higher in hospitalized individuals, but purified IgA

was not (Fig. 2G and fig. S2B- D). Finally, the potency of the purified IgA was greater in

⁹⁹ individuals that suffered from gastrointestinal symptoms, but IgG was not (Fig. 2H and fig. S2E).

100

101 Monoclonal anti-SARS-CoV-2 IgM and IgA antibodies

To determine the nature of the IgM and IgA anti-RBD antibodies elicited by SARS-CoV-2 102 infection we used flow cytometry to purify single B lymphocytes that bind to RBD and cloned 103 their antibodies. We obtained 109 IgM and 74 IgA (64 IgA1 and 10 IgA2) matched Ig heavy and 104 105 light chain sequences by reverse transcription and subsequent isotype specific PCR from 3 convalescent individuals (Fig. 3A, B). As reported for IgG antibodies (11, 14, 17, 26, 29), the 106 107 overall number of mutations was generally low when compared to antibodies obtained from 108 individuals suffering from chronic infections such as Hepatitis-B or HIV-1 (30, 31) (fig. S3A, B). However, the number of V gene nucleotide mutations in IgM and IgA heavy and light chains 109 110 varied between individuals. For example, in donor COV21 the number of IgM and IgA heavy 111 chain mutations was similar. In contrast, IgM heavy and light chain nucleotide mutations were 112 significantly greater than IgA mutations in COV47 (fig. S3B). CDR3 length was significantly shorter for IgM than IgA and IgG antibodies and hydrophobicity was slightly higher for IgM 113 114 over control but not for IgA and IgG (figs. S4 and S5). Compared to the normal human antibody

repertoire, several IgA and IgM VH genes were over-represented including VH3-53 which can
make key contacts with the RBD through germline encoded CDRH1 and CDRH2 (*11, 32, 33*)
(fig. S6).

118

119	Like IgG antibodies (11) IgA and IgM antibodies were found in expanded clones in all 3 of the
120	individuals examined. Overall 66.2% and 66.1% of all the IgA and IgM sequences examined
121	were members of expanded clones (Fig. 3A, B and table S1). Nearly identical sequences were
122	shared among the 3 isotypes in clones found in all 3 individuals indicating that switch
123	recombination occurred during B cell clonal expansion in response to SARS-CoV-2 (Fig.3B). In
124	total 11 out of 55 antigen-specific B cell clones in circulation belonged to expanded clones that
125	contained members expressing different constant regions (Fig. 3C and tables S1 and S2). When
126	compared directly, the neutralizing activity of antibodies that were members of B cell clones
127	producing IgA or IgG varied and did not correlate with one or the other isotype (table S3).
128	
129	To examine the binding properties of the anti-SARS-CoV-2 monoclonals we expressed 46 IgMs
125 126 127 128	contained members expressing different constant regions (Fig. 3C and tables S1 and S2). When compared directly, the neutralizing activity of antibodies that were members of B cell clones producing IgA or IgG varied and did not correlate with one or the other isotype (table S3).

and 35 IgAs (table S4). IgM variable regions were produced on an IgG1 backbone to facilitate

expression and purification. IgAs were expressed as native IgA1 or IgA2 monomers. ELISA

assays on RBD showed that 100% and 91.3% of the IgA and IgM antibodies bound to the RBD

with an average half-maximal effective concentration of 52.8 ng/ml and 101.6 ng/ml respectively

135

130

131

132

133

134

(fig. S7A and table S5).

To determine neutralizing activity of the IgM and IgA antibodies we tested them against an HIV1 based SARS-CoV-2 pseudovirus as IgGs and native IgA monomers respectively. Among the

138	42 RBD binding IgM antibodies tested we found 10 that neutralized the virus in the ng/ml range
139	with geometric mean half-maximal inhibitory concentrations (IC ₅₀) of 114.0 nanograms per
140	milliliter (Fig. 4A and fig. S7B, table S5). In contrast, 32 out of 35 RBD binding IgA antibodies
141	tested neutralized the virus in the ng/ml range with geometric mean half-maximal inhibitory
142	concentrations (IC ₅₀) of 53.6 nanograms per milliliter (Fig. 4A and fig. S7B, table S5). Thus,
143	IgM antibodies expressed as monomeric IgGs show lower neutralizing activity than either native
144	IgA or IgG monomers (Fig. 4A).
145	
146	Dimeric anti- SARS-CoV-2 IgA is more potent than monomeric IgA
147	To determine whether these IgAs targeted the same epitopes as previously characterized IgGs we
148	performed bilayer interferometry experiments in which a preformed antibody-RBD complex
149	consisting of C144-RBD, or C121-RBD or C135-RBD or CR3022-RBD (Fig. 4B) was exposed
150	to a monomeric IgA monoclonal. C144 and C121 recognize the ACE-2 interaction domain of the
151	RBD, C135 and CR3022 neutralize without interfering with ACE-2 binding (Fig. 4C) (11, 32,
152	34). Two of the IgA's were in the C144 category, 5 were similar to C121, and 2 resembled C135
153	(Fig. 4C and fig. S9). Thus, RBD recognition by neutralizing IgA is similar to IgG.
154	
155	Mucosal IgA exists predominantly as a dimer. To examine the neutralizing activity of IgA
156	dimers we co-expressed 8 IgA1s and 1 IgA2 with J chain to produce mixtures of monomers and
157	dimers that were purified by size exclusion chromatography (fig. S8). When compared in
158	pseudovirus neutralization assays, 8 out of 9 IgA dimers were more potent than the
159	corresponding monomers with differences in activity ranging from 3.8 to 113-fold (Fig. 4D, fig.
160	S10A and table S6). The relative increase in neutralizing activity between monomer and dimer

161	was inversely correlated with the neutralizing activity of the monomer in this assay (fig. S10B.
162	IC ₅₀ : $r=0.80$, $P=0.014$). For example, whereas C437, the most potent antibody, showed
163	equivalent activity as a monomer and dimer, C408, one of the least potent antibodies, was 113-
164	fold more potent as a dimer (fig. S10B).
165	
166	IgA monomers and dimers were also compared in SARS-CoV-2 microneutralization assays.
167	Neutralizing activities of the 9 monomers and 9 dimers correlated strongly with those measured
168	in the pseudovirus neutralization assay (fig. S10C. IC ₅₀ : r=0.84, P<0.0001; IC ₉₀ : r=0.91,
169	P < 0.0001). On average, there was a 15-fold geometric mean increase in activity for the dimer
170	over the monomer against SARS-CoV-2 and less variability in the degree of enhancement in
171	microneutralization compared to pseudovirus assays (Fig. 4D, fig. S10D and E, and table S6).
172	Thus, dimeric IgA is far more potent than monomeric IgA against SARS-CoV-2 (Fig. 4D).
173	
174	Discussion
175	Neutralizing antibody titers are the best correlates of protection in most vaccines (35). Among
176	antibody isotypes, secretory IgA which is found at mucosal surfaces, plays a crucial role in
177	protecting against pathogens that target these surfaces (36). We find that serum IgA responses to
178	SARS-CoV-2 correlate with IgG responses. Although the monomeric form of IgA found in
179	serum is on average 2-fold less potent than IgG, the dimeric secretory form of IgA found in
180	mucosa is over one log more potent than the monomer against authentic SARS-CoV-2 which
181	makes it a far more potent neutralizer than IgG.
182	

183	The in	creased potency of the dimeric form of IgA suggests that crosslinking the S protein on the		
184	viral surface enhances neutralizing activity either directly or simply through increased apparent			
185	affinity	y. This observation is consistent with the finding that monovalent Fab fragments of serum		
186	IgG antibodies are far less potent than the intact antibody (32) . Whether this effect is due to			
187	inter- o	or intra-spike crosslinking is not known, but it indicates that antibodies or drugs designed		
188	to block entry by binding to the RBD could be made more potent by increasing their valency.			
189				
190	A number of different candidate vaccines to SARS-CoV-2 are currently being evaluated in the			
191	clinic.	Secretory IgA responses may be particularly important to these efforts in that potent		
192	dimeri	c forms of these antibodies are found at the mucosal surfaces where cells are initially		
193	targete	d by SARS-CoV-2. Thus, even vaccines that elicit modest neutralizing activity in serum		
194	may be	e protective because the secretory polymeric forms of antibodies in mucosa can neutralize		
195	the virus. Vaccines that are specifically designed to elicit mucosal IgA responses may be			
196	particularly effective preventing SARS-CoV-2 infection (7).			
197				
198	Reference and notes			
199	1.	A. C. Walls et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike		
200		Glycoprotein. Cell 181, 281-292 e286 (2020).		
201	2.	P. Zhou et al., A pneumonia outbreak associated with a new coronavirus of probable bat		
202		origin. Nature 579, 270-273 (2020).		
203	3.	M. Hoffmann et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is		
204		Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278 (2020).		

205	4.	R. Lu et al., Genomic characterisation and epidemiology of 2019 novel coronavirus:
	4.	
206		implications for virus origins and receptor binding. Lancet 395, 565-574 (2020).
207	5.	D. Wrapp et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion
208		conformation. Science 367, 1260-1263 (2020).
209	6.	J. Lan et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the
210		ACE2 receptor. Nature 581, 215-220 (2020).
211	7.	A. O. Hassan et al., A single-dose intranasal ChAd vaccine protects upper and lower
212		respiratory tracts against SARS-CoV-2. Cell, (2020).
213	8.	B. J. Underdown, J. M. Schiff, Immunoglobulin A: strategic defense initiative at the
214		mucosal surface. Annu Rev Immunol 4, 389-417 (1986).
215	9.	M. E. Koshland, The coming of age of the immunoglobulin J chain. Annu Rev Immunol
216		3 , 425-453 (1985).
217	10.	O. Pabst, New concepts in the generation and functions of IgA. Nat Rev Immunol 12,
218		821-832 (2012).
219	11.	D. F. Robbiani et al., Convergent antibody responses to SARS-CoV-2 in convalescent
220		individuals. Nature, (2020).
221	12.	F. Wu et al., Evaluating the Association of Clinical Characteristics With Neutralizing
222		Antibody Levels in Patients Who Have Recovered From Mild COVID-19 in Shanghai,
223		China. JAMA Intern Med, (2020).
224	13.	B. Ju et al., Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature,
225		(2020).
226	14.	P. J. M. Brouwer et al., Potent neutralizing antibodies from COVID-19 patients define
227		multiple targets of vulnerability. Science, (2020).

228	15.	L. Liu et al., Potent neutralizing antibodies directed to multiple epitopes on SARS-CoV-2
229		spike. Nature, (2020).
230	16.	Y. Wu et al., A noncompeting pair of human neutralizing antibodies block COVID-19
231		virus binding to its receptor ACE2. Science 368, 1274-1278 (2020).
232	17.	T. F. Rogers et al., Isolation of potent SARS-CoV-2 neutralizing antibodies and
233		protection from disease in a small animal model. Science, (2020).
234	18.	S. J. Zost et al., Potently neutralizing and protective human antibodies against SARS-
235		CoV-2. Nature, (2020).
236	19.	A. Baum et al., REGN-COV2 antibody cocktail prevents and treats SARS-CoV-2
237		infection in rhesus macaques and hamsters. <i>bioRxiv</i> , 2020.2008.2002.233320 (2020).
238	20.	H. Ma et al., Serum IgA, IgM, and IgG responses in COVID-19. Cell Mol Immunol 17,
239		773-775 (2020).
240	21.	D. Sterlin et al., IgA dominates the early neutralizing antibody response to SARS-CoV-2.
241		medRxiv, 2020.2006.2010.20126532 (2020).
242	22.	H. Q. Yu et al., Distinct features of SARS-CoV-2-specific IgA response in COVID-19
243		patients. Eur Respir J, (2020).
244	23.	J. Seow et al., Longitudinal evaluation and decline of antibody responses in SARS-CoV-
245		2 infection. medRxiv, 2020.2007.2009.20148429 (2020).
246	24.	X. Chi et al., A neutralizing human antibody binds to the N-terminal domain of the Spike
247		protein of SARS-CoV-2. Science, (2020).
248	25.	Y. Cao et al., Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-
249		Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell 182, 73-84
250		e16 (2020).

251	26.	C. Kreer et al., Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-
252		Neutralizing Antibodies from COVID-19 Patients. Cell, (2020).
253	27.	F. Schmidt et al., Measuring SARS-CoV-2 neutralizing antibody activity using
254		pseudotyped and chimeric viruses. J Exp Med 217, (2020).
255	28.	R. Shi et al., A human neutralizing antibody targets the receptor-binding site of SARS-
256		CoV-2. Nature, (2020).
257	29.	E. Seydoux et al., Analysis of a SARS-CoV-2-Infected Individual Reveals Development
258		of Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity 53, 98-105
259		e105 (2020).
260	30.	J. F. Scheid et al., Broad diversity of neutralizing antibodies isolated from memory B
261		cells in HIV-infected individuals. Nature 458, 636-640 (2009).
262	31.	Q. Wang et al., A Combination of Human Broadly Neutralizing Antibodies against
263		Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. Cell Host
264		Microbe, (2020).
265	32.	C. O. Barnes et al., Structures of Human Antibodies Bound to SARS-CoV-2 Spike
266		Reveal Common Epitopes and Recurrent Features of Antibodies. Cell, (2020).
267	33.	M. Yuan et al., Structural basis of a shared antibody response to SARS-CoV-2. Science,
268		(2020).
269	34.	M. Yuan et al., A highly conserved cryptic epitope in the receptor binding domains of
270		SARS-CoV-2 and SARS-CoV. Science 368, 630-633 (2020).
271	35.	S. A. Plotkin, Correlates of protection induced by vaccination. <i>Clin Vaccine Immunol</i> 17,
272		1055-1065 (2010).

273	36.	K. Chen, G. Magri, E. K. Grasset, A. Cerutti, Rethinking mucosal antibody responses:
274		IgM, IgG and IgD join IgA. Nat Rev Immunol 20, 427-441 (2020).
275	37.	A. Grifoni et al., Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans
276		with COVID-19 Disease and Unexposed Individuals. Cell 181, 1489-1501 e1415 (2020).
277	38.	F. Amanat et al., A serological assay to detect SARS-CoV-2 seroconversion in humans.
278		Nat Med 26, 1033-1036 (2020).
279	39.	T. Tiller et al., Efficient generation of monoclonal antibodies from single human B cells
280		by single cell RT-PCR and expression vector cloning. J Immunol Methods 329, 112-124
281		(2008).
282	40.	L. von Boehmer et al., Sequencing and cloning of antigen-specific antibodies from
283		mouse memory B cells. Nat Protoc 11, 1908-1923 (2016).
284	41.	D. F. Robbiani et al., Recurrent Potent Human Neutralizing Antibodies to Zika Virus in
285		Brazil and Mexico. Cell 169, 597-609 e511 (2017).
286	42.	J. Ye, N. Ma, T. L. Madden, J. M. Ostell, IgBLAST: an immunoglobulin variable domain
287		sequence analysis tool. Nucleic Acids Res 41, W34-40 (2013).
288	43.	N. T. Gupta et al., Change-O: a toolkit for analyzing large-scale B cell immunoglobulin
289		repertoire sequencing data. Bioinformatics 31, 3356-3358 (2015).
290	44.	C. Soto et al., High frequency of shared clonotypes in human B cell receptor repertoires.
291		Nature 566, 398-402 (2019).
292	45.	Y. Guo, K. Chen, P. D. Kwong, L. Shapiro, Z. Sheng, cAb-Rep: A Database of Curated
293		Antibody Repertoires for Exploring Antibody Diversity and Predicting Antibody
294		Prevalence. Front Immunol 10, 2365 (2019).
295		

296	Acknowledgements: We thank all study participants who devoted time to our research; Drs.
297	Barry Coller and Sarah Schlesinger, the Rockefeller University Hospital Clinical Research
298	Support Office and nursing staff; Ivo Lorenz and the Tri-I TDI antibody team for help with BLI
299	measurements. All members of the M.C.N. laboratory for helpful discussions, Maša Jankovic for
300	laboratory support. Funding: This work was supported by NIH grant P01-AI138398-S1 and 2U1
301	9AI111825 to M.C.N. and C.M.R.; George Mason University Fast Grants to D.F.R. and C.M.R.,
302	3 R01-AI091707-10S1 to C.M.R.; The G. Harold and Leila Y. Mathers Charitable Foundation to
303	C.M.R.; European ATAC consortium (EC 101003650) to D.F.R. C.G. was supported by the
304	Robert S. Wennett Post-Doctoral Fellowship, in part by the National Center for Advancing
305	Translational Sciences (National Institutes of Health Clinical and Translational Science Award
306	programme, grant UL1 TR001866) and by the Shapiro-Silverberg Fund for the Advancement of
307	Translational Research. P.D.B. and M.C.N. are Howard Hughes Medical Institute Investigators.
308	Author contributions: Z.W., J.C.C.L., F.M., S.F. and M.C.N. conceived, designed and analyzed
309	the experiments. Z.W., J.C.C.L., F.M., S.F., C.V., M.C., HH.H. L.N. and E.M. carried out all
310	experiments. D.F.R., M. Caskey and C.G. designed clinical protocols. M.C., A.G. and D.O.
311	produced antibodies. T.Y.O., and V.R. performed bioinformatic analysis. C.M.R., T.M. and
312	P.D.B. helped designing the experiments. Z.W., J.C.C.L., F.M., S.F. and M.C.N. wrote the
313	manuscript with input from all co-authors. Declaration of conflict: In connection with this work
314	The Rockefeller University has filed a provisional patent application on which D.F.R. and
315	M.C.N. are inventors. Data and materials availability: Data are provided in table S1, 2, 4. The
316	raw sequencing data associated with Fig. 3 has been deposited at Github
317	(https://github.com/stratust/igpipeline). This study uses data from a database of human shared
318	BCR clonotypes "https://cabrep.c2b2.columbia.edu/home/", and from 'cAb-Rep: A Database of

- 319 Curated Antibody Repertoires for Exploring Antibody Diversity and Predicting Antibody
- 320 Prevalence' and 'High frequency of shared clonotypes in human B cell receptor repertoires'.
- 321 Computer code to process the antibody sequences are available at GitHub
- 322 (<u>https://github.com/stratust/igpipeline</u>).

323
324Supplementary materials:325Materials and Methods326Figs. S1 to S10327Tables S1 to S7328Reference (37-45)

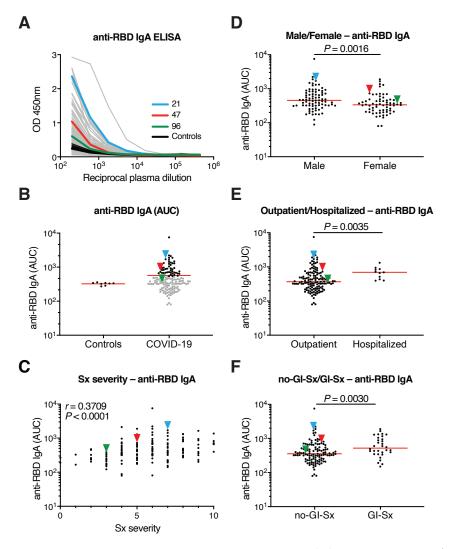


Fig. 1 Plasma IgA against SARS-CoV-2 RBD. (A) ELISAs measuring plasma IgA reactivity to RBD. Graph shows optical density units at 450 nm (OD, Y axis) and reciprocal plasma dilutions (X axis). Negative controls in black; individuals 21, 47, 96 in blue, red and green lines and arrowheads, respectively (*11*). (B) Graph shows normalized area under the curve (AUC) for 8 controls and each of 149 individuals in the cohort. Horizontal bar indicates mean values. Black dots indicate the individuals that are 2 STDV over the mean of controls. (C) Subjective Symptom (Sx) severity (X axis) is plotted against the normalized AUC for IgA binding to RBD (Y axis). *r*

= 0.3709, P < 0.0001. (D) Normalized AUC of anti-RBD IgA ELISA for males	(n=83) and
--	------------

- females (n=66); *P* =0.0016. (E) Normalized AUC of anti-RBD IgA ELISA for outpatients
- (n=138) and hospitalized (n=11) individuals; P = 0.0035. (F) Normalized AUC of anti-RBD IgA
- 342 ELISA for patients with gastrointestinal (GI) symptoms (n=32) and without GI symptoms
- (n=117); P = 0.0030. The r and P values for the correlations in (C) were determined by two-
- tailed Spearman's. For (D-F) horizontal bars indicate median values. Statistical significance was
- 345 determined using two-tailed Mann-Whitney U test.
- 346

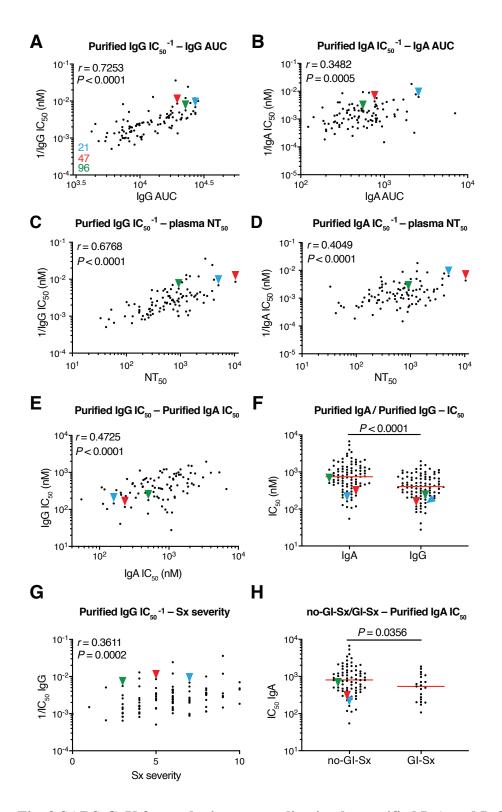
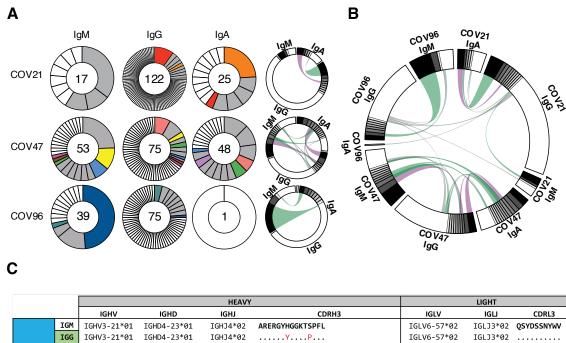



Fig. 2 SARS-CoV-2 pseudovirus neutralization by purified IgA and IgG. Neutralization
 activity of plasma-purified IgG and IgA from 99 participants measured in cell lysates of

350	HT1080 _{ACE2} cl.14 cells 48 h after infection with nanoluc-expressing SARS-CoV-2 pseudovirus.
351	(A) Normalized AUC for plasma IgG anti-RBD ELISA (X axis) plotted against purified IgG
352	pseudovirus neutralization 1/IC ₅₀ values (Y axis). $r = 0.7253$, $P < 0.0001$. (B) Normalized AUC
353	for plasma IgA ELISA (X axis) plotted against purified IgA pseudovirus neutralization $1/IC_{50}$
354	values (Y axis). $r = 0.3482$, $P = 0.0005$. (C) Published plasma NT ₅₀ values (11) (X axis) plotted
355	against purified IgG pseudovirus neutralization $1/IC_{50}$ values (Y axis). $r = 0.6768$, $P <$
356	0.0001. (D) Published plasma NT ₅₀ values (11) (X axis) plotted against purified IgA pseudovirus
357	neutralization 1/IC ₅₀ values (Y axis). $r = 0.4049$, $P < 0.0001$. (E) Purified IgA pseudovirus
358	neutralization IC ₅₀ values (X axis) plotted against purified IgG pseudovirus neutralization IC ₅₀
359	values. $r = 0.4725$, $P < 0.0001$. (F) Comparison of purified IgA and IgG pseudovirus
360	neutralization IC ₅₀ values, $P < 0.0001$. (G) Symptom severity plotted against purified IgG
361	pseudovirus neutralization $1/IC_{50}$ values. $r = 0.3611$, $P = 0.0002$. (H) Purified IgA pseudovirus
362	neutralization IC ₅₀ values for patients with GI symptoms (n=21) and without GI symptoms
363	(n=74); $P = 0.0356$. The <i>r</i> and <i>p</i> values in (A-E, G) were determined by two-tailed Spearman's
364	correlations. In (F and H), p values were determined by two-tailed Mann–Whitney U-tests and
365	horizontal bars indicate median values.
2	

368

		IGHV	IGHD	IGHJ	CDRH3	IGLV	IGLI	CDRL3
	IGM	IGHV3-21*01	IGHD4-23*01	IGHJ4*02	ARERGYHGGKTSPFL	IGLV6-57*02	IGLJ3*02	QSYDSSNYWV
	IGG	IGHV3-21*01	IGHD4-23*01	IGHJ4*02	YP	IGLV6-57*02	IGLJ3*02	
	IGG	IGHV3-21*01	IGHD4-23*01	IGHJ4*02	DP	IGLV6-57*02	IGLJ3*02	
	IGA	IGHV3-21*01	IGHD4-23*01	IGHJ4*02	YP	IGLV6-57*02	IGLJ3*02	
	IGA	IGHV3-21*01	IGHD4-23*01	IGHJ4*02	YP	IGLV6-57*02	IGLJ3*02	
COV47	IGA	IGHV3-21*01	IGHD4-23*01	IGHJ4*02	YP	IGLV6-57*02	IGLJ3*02	
00047	IGM	IGHV4-59*01	IGHD3-10*01	IGHJ4*02	ARYQLAPGSGSYYNWGGYPRESEYYFDY	IGLV2-11*01	IGLJ3*02	CSYAGSYTWV
	IGM	IGHV4-59*01	IGHD3-10*01	IGHJ4*02		IGLV2-11*01	IGLJ3*02	
	IGM	IGHV4-59*01	IGHD3-10*01	IGHJ4*02		IGLV2-11*01	IGLJ3*02	
	IGM	IGHV4-59*01	IGHD3-10*01	IGHJ4*02		IGLV2-11*01	IGLJ3*02	
	IGG	IGHV4-59*01	IGHD3-10*01	IGHJ4*02		IGLV2-11*01	IGLJ3*02	
	IGA	IGHV4-59*01	IGHD3-10*01	IGHJ4*02		IGLV2-11*01	IGLJ3*02	

Fig. 3 Monoclonal anti-SARS-CoV-2 RBD IgM, IgG and IgA. (A) Clonal expansion of B 370 cells producing of IgM, IgG and IgA from three individuals. The number in the inner circle 371 indicates the number of sequences analyzed for the individual denoted above the circle. Pie slices 372 size is proportional to the number of clonally related sequences. Colored pie slices indicate 373 clones or singlets that share the same IGHV and IGLV genes, and highly similar CDR3s. Grey 374 indicates clones that are not shared. White indicates singlets that are not shared. The right side 375 circos plots show the relationship between antibodies of different isotypes that share same IGH 376 V(D)J and IGL VJ genes, and highly similar CDR3s. Purple, green and grey lines connect related 377

378	clones, clones and singles, and singles to each other, respectively. (B) Circos plot shows
379	sequences from all 3 individuals with clonal relationships depicted as in (A). (C) Sample
380	sequence alignment for antibodies of different isotypes that display same IGH V(D)J and IGL VJ
381	genes and highly similar CDR3s. Amino acid differences in CDR3s to the reference sequence
382	(bold) are indicated in red, dashes indicate missing amino acids and dots represent identical
383	amino acids.

385

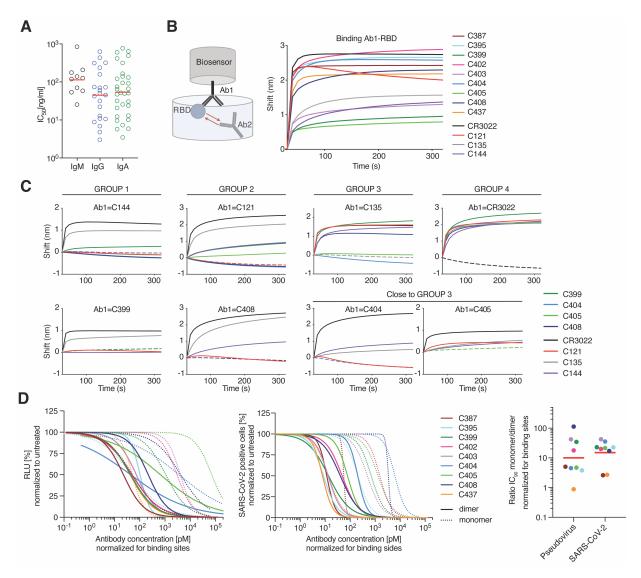


Fig. 4 IgA dimers neutralize SARS-CoV-2 more potently than monomers. (A) Pseudovirus
IC₅₀ neutralization values for IgA, and IgM monoclonals and published IgG monoclonals from
the same individuals (*11*). Antibodies with IC₅₀ less than 1000 ng/ml are shown. Red lines
indicate geometric mean. (B) Diagrammatic representation of biolayer interferometry experiment
(left panel). Binding of C387, C395, C399, C402, C403, C404, C405, C408, C437, CR3022,
C121, C135, C144 to RBD (right panel). (C) Second antibody (Ab2) binding to preformed first

antibody (Ab1)–RBD complexes. Dotted line denotes when Ab1 and Ab2 are the same, and Ab2

394	is according to the colour-coding in g. h, l, Group 1 antibodies were tested. (D) The normalized
395	relative luminescence values for cell lysates of $293T_{ACE2}$ cells after infection with SARS-CoV-2
396	pseudovirus (left panel) or normalized percentage of SARS-CoV-2 positive VeroE6 cells 48 h
397	after infection with SARS-CoV-2 authentic virus (middle panel; values obtained in the absence
398	of antibody are plotted at x=0.1 to be visible on log-scale) in the presence of increasing
399	concentrations of monoclonal antibodies C387, C395, C399, C402, C403, C404, C405, C408,
400	C437 as monomers or dimers. Shown are four-parameter nonlinear regression curve fits of
401	normalized data. Comparison of the ratio of IC90 values of monomer to dimers, normalized to
402	number of antibody binding sites (right panel).

404 Materials and Methods

405 Human Study participants

Samples were obtained from 149 individuals under a study protocol approved by the Rockefeller University in New
York from April 1 through May 8, 2020 as described in (*11*). All participants provided written informed consent
before participation in the study and the study was conducted in accordance with Good Clinical Practice and clinical
data collection. The study was performed in compliance with all relevant ethical regulations and the protocol was
approved by the Institutional Review Board (IRB) of the Rockefeller University.

411

412 Purification and quantification of IgA and IgG from plasma

413 IgA and IgG were purified from samples with measurable neutralizing activity, against SARS-CoV-2-RBD (11). 414 300ul of plasma was diluted with PBS heat-inactivated (56°C for 1 hr) and incubated with peptide M/Agarose 415 (Invivogen) or Protein G/Agarose (GE lifeSciences) overnight at 4 °C. The suspension was transferred to 416 chromatography columns and washed with 10 column volumes of 1X-PBS. IgA and IgG were then eluted with 417 1.5ml of 0.1M glycine (pH=3.0) and pH was immediately adjusted to 7.5 with 1M Tris (pH=8.0). 1X-PBS buffer 418 exchange was achieved using Amicon® Ultra centrifugal filters (Merck Millipore) through a 30-kD membrane 419 according to the manufacturer's instructions. IgA and IgG concentrations were determined by measurement of 420 absorbance at 280nm using a NanoDrop (Thermo Scientific) instrument and samples were stored at 4°C.

421

422 ELISAs

423 ELISAs to evaluate the IgG or IgA binding to SARS-CoV-2 RBD were performed as previously described using a validated assay (37, 38). High binding 96 half well plates (Corning #3690) were coated with 50 µL per well of a 424 425 1µg/mL protein solution in PBS overnight at 4 °C. Plates were washed 6 times with washing buffer (1xPBS with 426 0.05% Tween 20 (Sigma-Aldrich)) and incubated with 170 µL blocking buffer per well (1xPBS with 2% BSA and 427 0.05% Tween20 (Sigma) for 1 hour at room temperature (RT). Immediately after blocking, monoclonal antibodies 428 or plasma samples were added in PBS and incubated for 1 hr at RT. Plasma samples were assayed at a 1:200 starting 429 dilution and seven additional 3-fold serial dilutions. Monoclonal antibodies were tested at 10 µg/ml starting 430 concentration and 10 additional 4-fold serial dilutions. Plates were washed 6 times with washing buffer and then 431 incubated with anti-human IgG (Jackson Immuno Research 109-036-088) or anti-human IgA (Sigma A0295)

432	secondary antibody conjugated to horseradish peroxidase (HRP) in blocking buffer at 1:5000 or 1:3000 dilution
433	respectively. Plates were developed by addition of the HRP substrate, TMB (ThermoFisher) for 10 minutes (plasma
434	samples) or 4 minutes (monoclonal antibodies), then the developing reaction was stopped by adding 50µl 1M
435	H ₂ SO ₄ . ODs were measured at 450 nm in a microplate reader (FluoStar Omega, BMG Labtech). For plasma
436	samples, a positive control (plasma from patient COV21, diluted 200-fold in PBS) and negative control historical
437	plasma samples was added in duplicate to every assay plate for validation. The average of its signal was used for
438	normalization of all the other values on the same plate with Excel software prior to calculating the area under the
439	curve using Prism 8 (GraphPad).
440	
441	Cell lines
442	HT1080 _{Ace2} cl.14 cells (27), 293T _{Ace2} cells (11) and VeroE6 kidney epithelial cells were cultured in Dulbecco's
443	modified Eagle medium (DMEM) supplemented with 10% FCS at 37 °C and 5% CO2. In addition, medium for
444	Ace2-overexpressing cell lines contained 5 μ g/ml blasticidin and medium for VeroE6 cells was supplemented with 1
445	% nonessential amino acids. All cell lines have been tested negative for contamination with mycoplasma and
446	parental cell lines were obtained from the ATCC.
447	
448	Pseudotyped virus neutralization assay
449	SARS-CoV-2 pseudotyped particles were produced by co-transfection of pSARS-CoV-2 S_{trunc} and pNL4-3 Δ Env-
450	nanoluc in 293T cells (11, 27). Four-fold serially diluted purified plasma IgG/IgA from COVID-19 convalescent
451	individuals and healthy donors or monoclonal antibodies were incubated with the SARS-CoV-2 pseudotyped virus
452	for 1 hour at 37 °C. Subsequently, the mixture was incubated with Ace2-expressing cells for 48 hours. $HT1080_{Ace2}$
453	cl. 14 cells (27) were used for plasma-derived IgG/IgA and 293TAce2 cells (11) for monoclonal antibodies. Following
454	incubation, cells were washed twice with PBS and lysed with Luciferase Cell Culture Lysis 5x reagent (Promega).
455	Nanoluc Luciferase activity in lysates was measured using the Nano-Glo Luciferase Assay System (Promega) with a
456	GloMax Natigator Microplate Luminometer (Promega). Relative luminescence units obtained were normalized to
457	those derived from cells infected with SARS-CoV-2 pseudotyped virus in the absence of plasma-derived or
458	monoclonal antibodies. The half-maximal and 90% inhibitory concentrations for purified plasma IgG or IgA or
459	monoclonal antibodies (IC50 and IC90) were determined using 4-parameter nonlinear regression (GraphPad Prism).

- 460
- 461

462 Antibody sequencing, cloning and expression

463 Single B cells were isolated from COV21, COV47 and COV96 patients as previously described(11). Briefly, RNA 464 from single cells was reverse-transcribed (SuperScript III Reverse Transcriptase, Invitrogen, 18080-044) using 465 random primers (Invitrogen, 48190011) and followed by nested PCR amplifications and sequencing using the primers for heavy chain that are listed in (table S7) and primers light chains from (39). Sequence analysis was 466 467 performed with MacVector. Antibody cloning from PCR products was performed as previously described by 468 sequencing and ligation-independent cloning into antibody expression vectors ($Ig\gamma 1$ -, $IG\lambda$ -, $Ig\alpha 1$ and $Ig\alpha 2$) as 469 detailed in (40). The Iga1 and Iga2 vectors were from (Invivogen, pfusess-hcha1for IgA1 and pfusess-hcha2m1 for 470 IgA2). J chain plasmid was a gift from Susan Zolla-Pazner. Recombinant monoclonal antibodies were produced and 471 purified as previously described (39, 41). Briefly, monoclonal antibodies were produced by transient co-transfection 472 of 293-F cells with human heavy chain and light chain antibody expression plasmids using polyethylenimine (PEI) 473 (Sigma-Aldrich, catalog #408727). Seven days after transfection, supernatants were harvested, clarified by 474 centrifugation and subsequently incubated with Peptide M(Invivogen)/Protein G-coupled sepharose beads 475 (Invivogen, catalog# gel-pdm-5; GE healthcare, 17-0618-05) overnight at 4°C. For dimers, antibodies were 476 produced by transfection of Expi293F cells with heavy chain, light chain and J chain expression plasmids 477 at a 1:1:1 ratio. After five days, antibodies were harvested, filtered, incubated with Peptide M overnight and eluted.

478

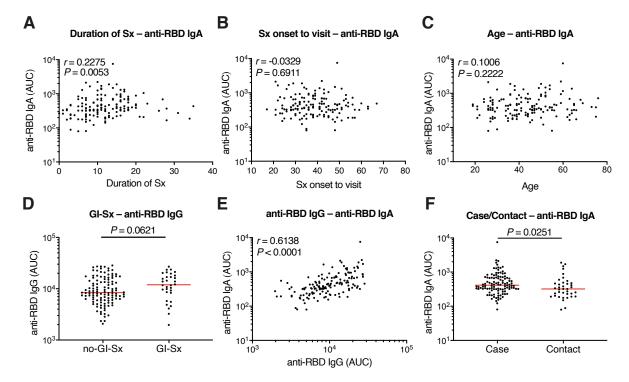
479 Separation of Dimeric IgA from its Monomeric Form by Size Exclusion Chromatography

A Pre-packed HiLoad[™] 16/60 Superdex[™] 200 pg (Cytiva, catalog #28989335) on the NGC[™] Quest 10 Plus
Chromatography System by Bio-Rad was calibrated at room temperature using the HMW Gel Filtration Calibration
Kit (Cytiva, catalog #28403842) and IgG. After equilibration of the column with PBS, each concentrated IgA
preparation was applied onto the column using a 1 ml-loop at a flow rate of 0.5 ml/min. Dimers of IgA1 or IgA2
were separated from monomers upon an isocratic elution with 70 ml of PBS. The fractions were pooled,
concentrated and evaluated by SDS-PAGE using 4 –12% Bis–Tris Novex gels (GenScript catalog #M00652) under
reducing and non-reducing conditions followed by a Coomassie blue staining (Expedeon, catalog #ISB1L).

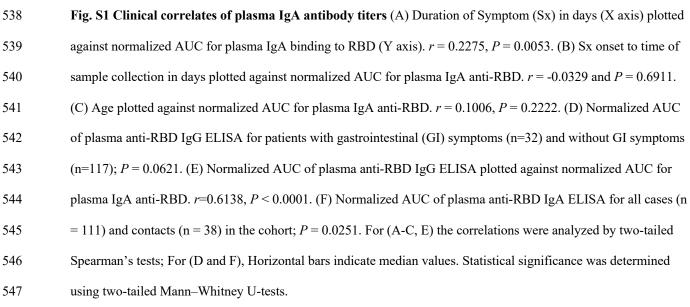
488 Microneutralization assay with authentic SARS-CoV-2.

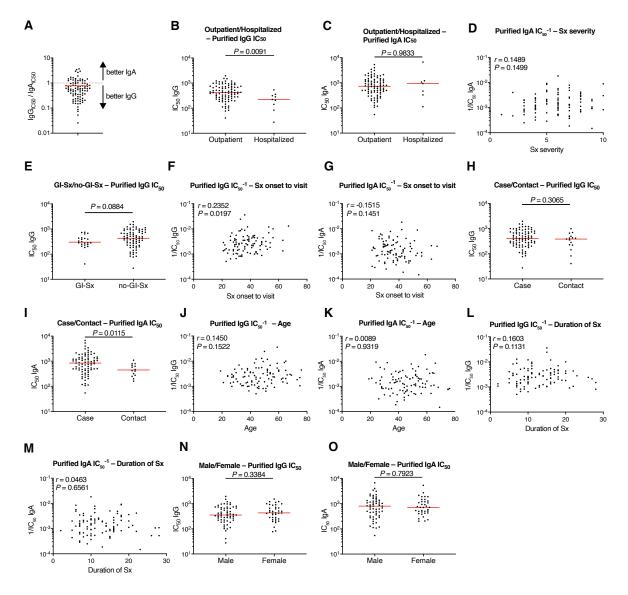
489	Production of SARS-CoV-2 virus was performed as previously described (11). This assay was performed as
490	described previously (11, 42). VeroE6 cells were seeded at $1x10^4$ cells/well into 96-well plates on the day before
491	infection. IgA monomers and dimers were serially diluted (4-fold) in BA-1, consisting of medium 199 (Lonza, Inc.)
492	supplemented with 1% bovine serum albumin (BSA) and 1x penicillin/streptomycin. The diluted samples were
493	mixed with a constant amount of SARS-CoV-2 and incubated for 1hr at 37°C. The antibody-virus-mix was then
494	directly applied to VeroE6 cells (MOI of ~0.1 PFU/cell; n=3) and incubated for 22h at 37°C. Cells were
495	subsequently fixed by adding an equal volume of 7% formaldehyde to the wells, followed by permeabilization with
496	0.1% Triton X-100 for 10 min. After extensive washing, cells were incubated for 1hr at 37°C with blocking solution
497	of 5% goat serum in PBS (catalog no. 005–000-121; Jackson ImmunoResearch). A rabbit polyclonal anti-SARS-
498	CoV-2 nucleocapsid antibody (catalog no. GTX135357; GeneTex) was added to the cells at 1:1,000 dilution in
499	blocking solution and incubated at 4 °C overnight. Goat anti-rabbit AlexaFluor 594 (catalog no. A-11012; Life
500	Technologies) was used as a secondary antibody at a dilution of 1:2,000. Nuclei were stained with Hoechst 33342
501	(catalog no. 62249; Thermo Scientific) at a 1:1,000 dilution. Images were acquired with a fluorescence microscope
502	and analyzed using ImageXpress Micro XLS (Molecular Devices, Sunnyvale, CA). All experiments involving
503	SARS-CoV-2 were performed in a biosafety level 3 laboratory.

504

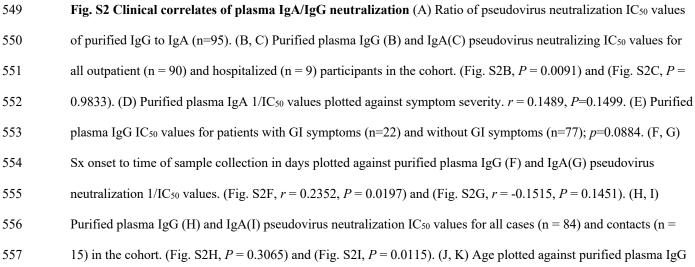

505 **Biolayer interferometry**

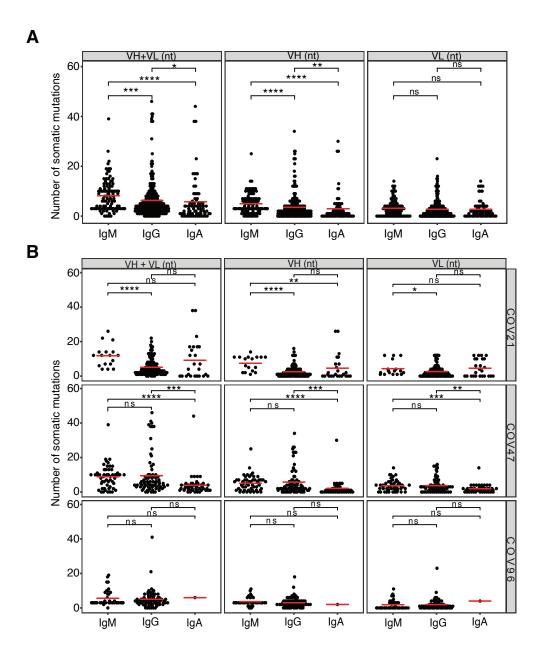
506 BLI assays were performed on the Octet Red instrument (ForteBio) at 30 °C with shaking at 1,000 r.p.m. Epitope 507 binding assays were performed with protein A biosensor (ForteBio 18-5010), following the manufacturer's protocol 508 "classical sandwich assay". (1) Sensor check: sensors immersed 30 sec in buffer alone (buffer ForteBio 18-1105). 509 (2) Capture 1st Ab: sensors immersed 10 min with Ab1 at 40 µg/mL. (3) Baseline: sensors immersed 30 sec in 510 buffer alone. (4) Blocking: sensors immersed 5 min with IgG isotype control at 50 µg/mL. (6) Antigen association: 511 sensors immersed 5 min with RBD at 100 μ g/mL. (7) Baseline: sensors immersed 30 sec in buffer alone. (8) 512 Association Ab2: sensors immersed 5 min with Ab2 at 40 µg/mL. Curve fitting was performed using the Fortebio 513 Octet Data analysis software (ForteBio). 514


. . .


515 Computational analyses of antibody sequences

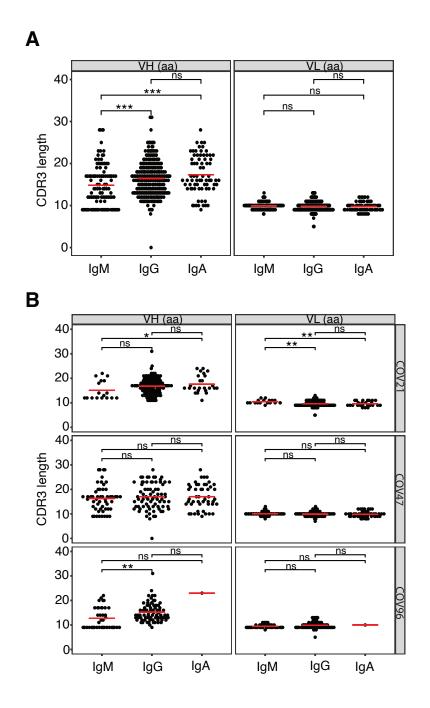
516 Antibody sequences were trimmed based on quality and annotated using Igblastn v1.14.0[ref] with IMGT domain 517 delineation system. Annotation was performed systematically using Change-O toolkit v.0.4.5(43). Heavy and light 518 chains derived from the same cell were paired, and clonotypes were assigned based on their V and J genes using in-519 house R and Perl scripts (Fig. 3 A and B). All scripts and the data used to process antibody sequences are publicly 520 available on GitHub (https://github.com/stratust/igpipeline). Nucleotide somatic hypermutation and CDR3 length 521 were determined using in-house R and Perl scripts. For somatic hypermutations, IGHV and IGLV nucleotide 522 sequences were aligned against their closest germlines using Igblastn and the number of differences were considered 523 nucleotide mutations. The average mutations for V genes was calculated by dividing the sum of all nucleotide 524 mutations across all patients by the number of sequences used for the analysis. Hydrophobicity distribution 525 comparisons were calculated as described in (11) (Fig. S5). The frequency distributions of human V genes in anti-SARS-CoV-2 antibodies from this study was compared to 131,284,220 IgH and IgL sequences generated by (44) 526 527 and downloaded from cAb-Rep (45), a database of human shared BCR clonotypes available at https://cab-528 rep.c2b2.columbia.edu/. Based on the 81 distinct V genes that make up the 1455 analyzed sequences from Ig 529 repertoire of the three patients present in this study, we selected the IgH and IgL sequences from the database that 530 are partially coded by the same V genes and counted them according to the constant region. The frequencies shown 531 in (Fig. S6) are relative to the source and isotype analyzed. We used the two-sided binomial test to check whether 532 the number of sequences belonging to a specific IgHV or IgLV gene in the repertoire is different according to the 533 frequency of the same IgV gene in the database. Adjusted p-values were calculated using the false discovery rate 534 (FDR) correction. Significant differences are denoted with stars.





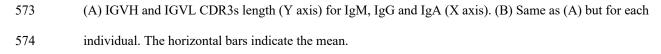
548

- 558 (J) and IgA(K) pseudovirus neutralization $1/IC_{50}$ values. (Fig. S2J, r = 0.1450, P = 0.1522) and (Fig. S2K, P = 0.1520) and (Fig. S2
- 0.0089, P = 0.9319). (L, M) Duration of Symptom (Sx) in days (X axis) plotted against purified plasma IgG (L) and
- 560 IgA(M) pseudovirus neutralization $1/IC_{50}$ values. (Fig. S2L, r = 0.1603, P = 0.1131) and (Fig. S2M, r = 0.0463, P = 0.0463,
- 561 0.6561). (N, O) Purified plasma IgG (N) and IgA(O) pseudovirus neutralization IC₅₀ values for males (n=61) and
- females (n=38). (Fig. S2N, P=0.3384) and (Fig.S2O, P=0.7923). For (A), horizontal bars indicate mean value. For
- 563 (B, C, E, H, I, N, O), horizontal bars indicate median values. Statistical significance was determined using two-tailed
- 564 Mann–Whitney U-tests; For (D, F, G, J-M), the correlations were analyzed by two-tailed Spearman's tests.

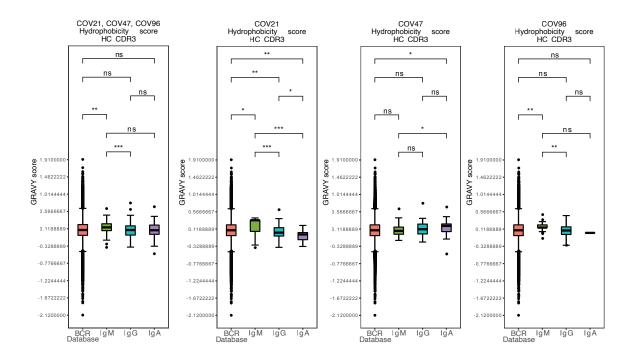

566

567 Fig. S3 Analysis of antibody somatic hypermutation

568 (A) The number of somatic nucleotide mutations (Y axis) at the IGVH and IGVL for IgM, IgG and IgA antibodies

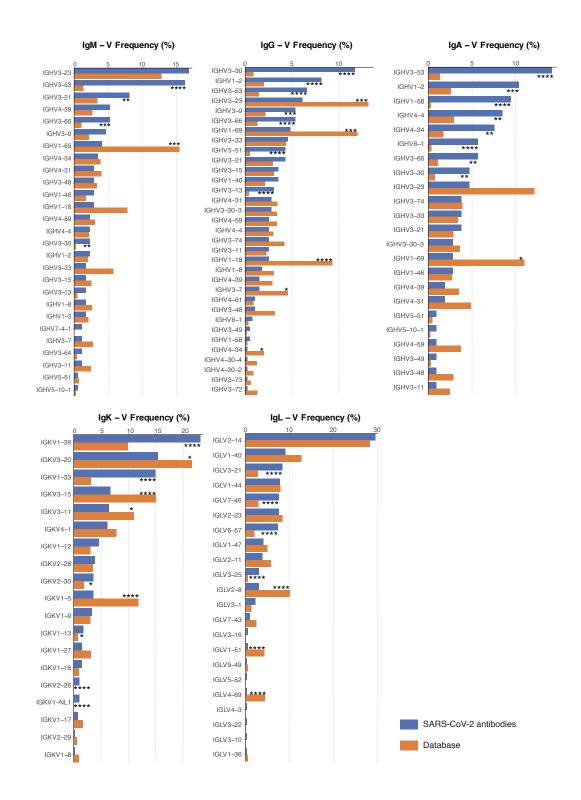

569 (X axis), the horizontal bars indicate the mean. The number of antibody sequences was evaluated for both IGVH and

570 IGVL. (n=455). (B) Same as (A) but for each individual.



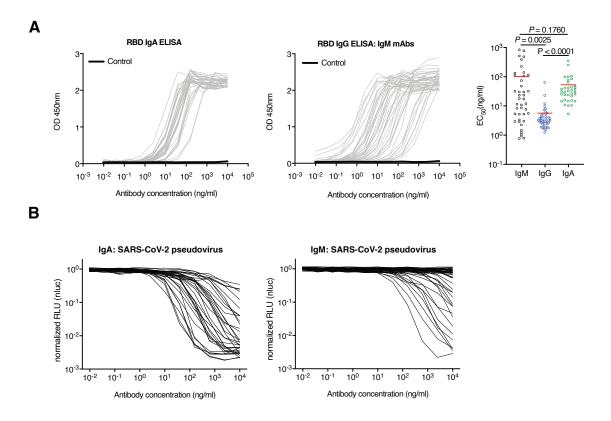
571

572 Fig. S4 Analysis of antibody CDR3 length



578 Fig. S5 Analysis of antibody CDR3 hydrophobicity

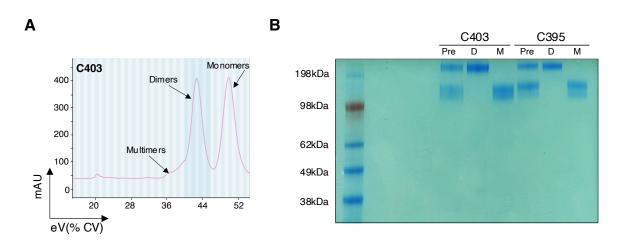
579 Distribution of the hydrophobicity GRAVY scores at the IGH CDR3 in antibody sequences from this study 580 compared to a public database (see Methods for statistical analysis). The box limits are at the lower and upper 581 quartiles, the center line indicates the median, the whiskers are 1.5x interquartile range and the dots represent 582 outliers.

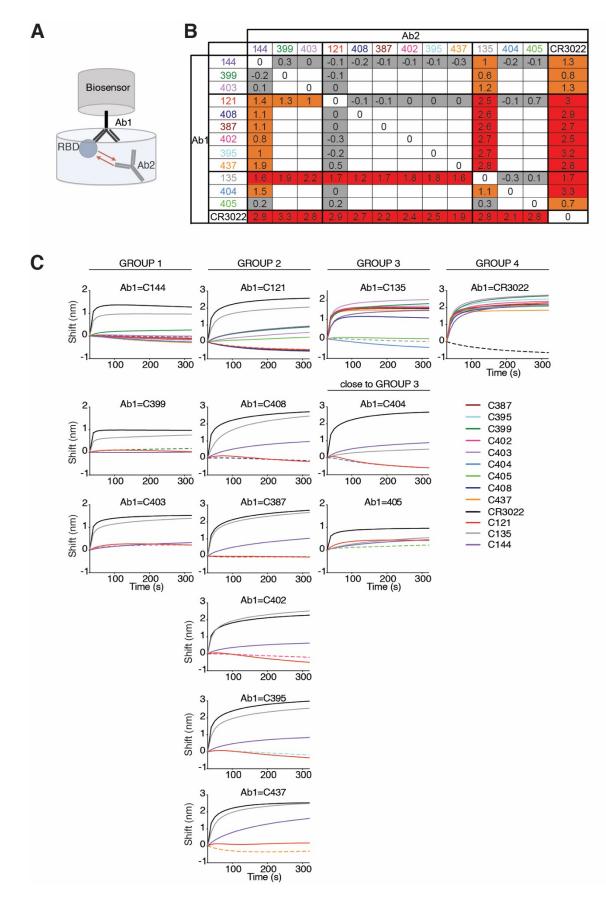


584

585 Fig. S6 Frequency distributions of human V genes.

586 Comparison of the frequency distributions of human V genes for heavy chain (IgM, IgG and IgA) and light chains 587 of anti-SARS-CoV-2 antibodies from this study and from a database of shared clonotypes of human B cell receptor


- 588 generated by Cinque Soto et al. (44). Statistical significance was determined using the two-sided binomial test.
- 589 Significant differences are denoted with stars.


593 Fig. S7 Binding and neutralizing activity of anti-SARS-CoV-2 RBD IgA and IgM monomers.

(A) Binding profiles of 35 IgA and 46 IgM monoclonals against RBD. Comparisons of IgM, published IgG (11) and IgA EC₅₀ values shown as in right panel. Red lines indicate mean value. (B) The normalized relative luminescence values for cell lysates of $293T_{ACE2}$ cells 48 h after infection with SARS-CoV-2 pseudovirus in the presence of increasing concentrations of monoclonal IgA and IgM antibodies. Statistical analysis was performed using the student's *t* test.

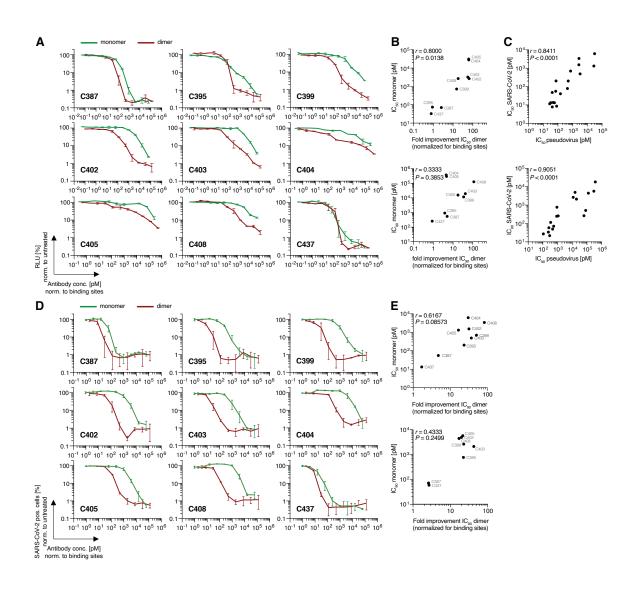

600

Fig. S8 Purification of Dimeric IgA by Size Exclusion Chromatography. (A) Monomers and dimers of IgA1 or
IgA2 were separated using a Superdex 200 (Cytiva) with PBS at a flow rate of 0.5 ml/min. Representative example:
C403. The X axis is elution volume (eV) as a percent of Column volume. The Y axis is absorption at 280nm (mAU).
(B) Coomassie Blue stained non-reducing SDS-PAGE gel of pre-separation antibody mixture (Pre), isolated dimers
(D) and monomers (M).

608 Fig. S9 Biolayer interferometry experiment. (A) Diagrammatic representation of biolayer interferometry

- 609 experiment. (B) The table displays the shift in nanometers after second antibody (Ab2) binding to the antigen in the
- 610 presence of the first antibody (Ab1). Values are normalized by the subtraction of the autologous antibody control.
- 611 (C) Second antibody (Ab2) binding to preformed first antibody (Ab1)–RBD complexes. Dotted line denotes when
- 612 Ab1 and Ab2 are the same, and Ab2 is according to the colour-coding in Fig. 4B (right panel).

614 615

616

617 Fig. S10 Neutralizing activity of monoclonal monomeric and dimeric IgAs

618 (A) The normalized relative luminescence values for cell lysates of 293T_{ACE2} cells 48 h after infection with SARS-

619 CoV-2 pseudovirus in the presence of increasing concentrations of monoclonal antibodies C387, C395, C399, C402,

- 620 C403, C404, C405, C408, C437 in their monomeric (green curves) and dimeric (red curves) form. (B) Fold
- 621 improvement of the IC₅₀ (upper panel) and IC₉₀ (lower panel) values of dimeric IgA to monomeric IgA (X axis)
- 622 plotted against IC₅₀ (r = 0.8000, P = 0.0138), IC₉₀ (r = 0.3333, P = 0.3853) values of monomeric IgAs. (C) IC₅₀
- 623 (upper panel) and IC₉₀ (lower panel) values of dimeric and monomeric IgAs determined by pseudovirus
- 624 neutralization assay (x axis) plotted against IC₅₀ (r = 0.8411, P < 0.0001) and IC₉₀ (r = 0.9051, P < 0.0001) values

625	determined by authentic SARS-CoV-2 neutralization assay (y axis). (D) SARS-CoV-2 neutralization assay. The
626	normalized percentage of SARS-CoV-2 positive VeroE6 cells 48 h after infection with SARS-CoV-2 authentic virus
627	in the presence of increasing concentrations of abovementioned antibodies in their dimeric and monomeric form. (E)
628	Fold improvement of the IC ₅₀ (upper panel) and IC ₉₀ (lower panel) values of dimeric IgA to monomeric IgA (X axis)
629	plotted against IC ₅₀ ($r = 0.6167$, $P = 0.08573$), IC ₉₀ ($r = 0.4333$, $P = 0.2499$) values of monomeric IgAs. Correlations
630	were analyzed by two-tailed Spearman's tests.
631	
632	
633	
634	Table S1. Sequences of anti-SARS-CoV-2 antibodies
635	Auxiliary Supplementary Material.
636	
637	Table S2. Sequences of antibodies from isotype shared clones
638	Auxiliary Supplementary Material.
639	

640 Table S3. Inhibitory concentrations of monoclonal antibodies from isotype shared clones Table S3 Inhibitory concentrations of the monoclonal antibodies from isotype shared clones

Patient ID	lgM	IC50(ng/ml)	IC90(ng/ml)	lgG	IC50(ng/ml)*	IC90(ng/ml)*	lgA	IC50(ng/ml)	IC90(ng/ml)
COV21	-			CG002	8.88	37.61	CA386	5.76	123.33
00021	-			CG005	60.49	205.20	CA387	9.68	129.87
	-			CG144	6.91	29.66	CA394	13.06	371.86
	CM169	UD	UD	CG148	>1000	>1000	-		
	CM170	5806	37082	CG171	5250	17156	CA457	1721.6	298325.6
COV47	-			CG379	126.98	2368.18	CA403	23.88	126.05
	CM381	UD	UD	CG160	>1000	>1000	-		
	CM349	844.59	26446.73	CG380	2.94	35.96	-		
	CM311	126.85	846.13	CG151	31.79	>1000	CA390	417.42	46597.44
COV96	CM194	UD	UD	CG382	42.92	122.33	-		
	CM365	1226.09	8268.46	CG202	>1000	>1000	-		

- UD=Undetectable *(Robbiani et al. 2020)
- 641

642 Table S4. Sequences of cloned recombinant antibodies

- 643 Auxiliary Supplementary Material.
- 644

645 Table S5. Effective and inhibitory concentrations of monoclonal antibodies

646 Auxiliary Supplementary Material.

647

648 Table S6. Inhibitory concentrations of monoclonal IgA monomers and dimers

Table S6. Inhibitory concentrations of monoclonal IgA monomers and dimers

		SARS-CoV	-2 pseudovirus		SARS-CoV-2				
	IC50 (pM)		IC90 (pM)		IC50 (pM)		IC90 (pM)		
Antibody ID	monomer	dimer	monomer	dimer	monomer	dimer	monomer	dimer	
C387	70.68	27.46	543.91	108.06	55.74	11.64	71.46	27.37	
C395	74.15	81.64	909.67	239.03	203.72	8.59	769.49	34.10	
C399	722.84	47.48	11692.05	339.46	700.38	13.67	2636.98	114.74	
C402	2652.52	40.86	15603.86	874.99	1536.24	47.90	4939.53	247.79	
C403	3222.29	57.62	19499.80	461.45	491.11	13.18	2115.67	49.85	
C404	31112.25	502.11	371134.20	82318.65	6182.08	201.78	18271.60	514.05	
C405	27801.09	444.36	294918.48	62867.98	1312.88	78.57	5725.29	266.04	
C408	2691.09	147.89	126130.74	1114.44	3392.62	40.51	4458.13	259.84	
C437	32.67	41.18	258.08	292.35	13.32	7.84	58.85	21.82	

IC50/90 values for dimers were adjusted for number of binding sites

649

650 **Table S7. Primers**

- 651 Auxiliary Supplementary Material.
- 652
- 653
- 055
- 654
- 655