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14 Abstract 

15 Monitoring animals in their natural habitat is essential for advancement of animal behavioural studies, 

16 especially in pollination studies. Non-invasive techniques are preferred for these purposes as they 

17 reduce opportunities for research apparatus to interfere with behaviour. One potentially valuable 

18 approach is image-based tracking. However, the complexity of tracking unmarked wild animals using 

19 video is challenging in uncontrolled outdoor environments. Out-of-the-box algorithms currently present 

20 several problems in this context that can compromise accuracy, especially in cases of occlusion in a 3D 

21 environment. To address the issue, we present a novel hybrid detection and tracking algorithm to 

22 monitor unmarked insects outdoors. Our software can detect an insect, identify when a tracked insect 

23 becomes occluded from view and when it re-emerges, determine when an insect exits the camera field 

24 of view, and our software assembles a series of insect locations into a coherent trajectory. The insect 

25 detecting component of the software uses background subtraction and deep learning-based detection 

26 together to accurately and efficiently locate the insect among a cluster of wildflowers.

27 We applied our method to track honeybees foraging outdoors using a new dataset that includes complex 

28 background detail, wind-blown foliage, and insects moving into and out of occlusion beneath leaves 

29 and among three-dimensional plant structures. We evaluated our software against human observations 

30 and previous techniques. It tracked honeybees at a rate of 86.6% on our dataset, 43% higher than the 

31 computationally more expensive, standalone deep learning model YOLOv2.  We illustrate the value of 

32 our approach to quantify fine-scale foraging of honeybees. The ability to track unmarked insect 

33 pollinators in this way will help researchers better understand pollination ecology. The increased 

34 efficiency of our hybrid approach paves the way for the application of deep learning-based techniques 

35 to animal tracking in real-time using low-powered devices suitable for continuous monitoring.

36 Keywords: individual behaviour, flying insect, deep learning, animal movement, occlusion

37
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38 Introduction

39 Studying animal behaviour helps address key questions in ecology and evolution, however, collecting 

40 behavioural data is difficult [1]. While direct observation by ethologists is useful, this approach has low 

41 sampling resolution [2] and create bias due to attentional limitations [3], which makes it difficult to 

42 monitor fast moving animals such as insects [4]. Additionally, the accuracy of data may later be 

43 questioned since visual records of incidents are not preserved [5]. Video recordings potentially help 

44 overcome some methodological limitations by preserving observations. Unfortunately, manually 

45 extracting animal behaviour from video remains time consuming, and error prone due to the attentional 

46 limitations of human processing [3]. Recent advances in automated image-based tracking tackle these 

47 problems by extracting and identifying animal behaviours and trajectories without human intervention 

48 [5,6]. Whilst these techniques promise improved sampling of data, performance is still limited, in this 

49 case by environmental and animal behavioural complexity, and computational resources.

50 One area in which accurate, fine-scale behavioural data is particularly valuable is the study of insect 

51 pollination. Pollination is an integral requirement for horticulture and ecosystem management – insect 

52 pollinators impact 35% of global agricultural land [7], supporting over 87 food crops [8]. However, due 

53 to their small size and high speed whilst operating in cluttered 3D environments [4], insect pollinator 

54 monitoring and tracking is challenging. Since pollination is an ongoing requirement of crops and 

55 wildflowers alike, it would be ideal to establish field stations that can provide ongoing data on pollinator 

56 behaviours. To be practical, such a solution would need to be cheap to assemble and install. They would 

57 need to provide low cost, reliable and continuous monitoring of pollinator behaviour. These 

58 requirements exclude many current approaches to insect tracking, but the challenge is suitable for 

59 innovations involving imaging and AI.

60 Previous research has developed both invasive and non-invasive insect tracking methods. Invasive 

61 methods for example mark insects with electronic tags such as Passive Integrated Transponders (PIT) 

62 [9–12] or tags facilitating image-based tracking [13]. PIT-based tracking requires an electronic tag (e.g., 

63 harmonic radar, RFID) to be attached to an insect’s body. Although, these methods can track insects 
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64 over expansive areas and thus provide important larger scale information [14], the spatiotemporal 

65 resolution of collected data is lower than that of image-based tracking [5]. The latter approach is 

66 therefore better for data collection on fine insect movements likely to provide insight into cognition and 

67 decision making. Attaching tags to insects adds to their mass and may increase stress and alter behaviour 

68 [5,15,16], and, tagging individual insects is laborious, especially outdoors. For continuous season-long 

69 insect monitoring, attaching tags to populations of wild insects and managed honeybee hives containing 

70 potentially thousands of colony members is infeasible. Therefore, non-invasive methods such as 

71 unmarked image-based tracking can potentially make important contributions to our knowledge. Any 

72 improvements made to supporting technology can increase the scope and value of the approach.

73 Following unmarked insects is a difficult image-based tracking problem [17].  Previous tracking 

74 programs have been developed to research insect and small animal behaviour [17–22]. But their 

75 application is often confined to laboratories offering constant backgrounds and illumination needed for 

76 accurate tracking [17–21]  or require human intervention [22].  Behavioural research on animals shows 

77 that environmental factors such as wind, temperature, humidity, sky exposure, may affect behaviour 

78 and interactions [23,24], and these are exactly the kinds of factors that field monitoring must explore. 

79 It is therefore essential to track insects outdoors in a biologically relevant scenario, rather than in a lab. 

80 In this study, we present novel methods and algorithms to enable this. We illustrate the application of 

81 our methods by automatically tracking freely foraging honeybees. 

82 Segmentation methods such as background subtraction and thresholding are widely used in image-based 

83 tracking to identify the position of animals in a video frame [17–19,25–28]. Background subtraction is 

84 efficient where background and illumination are constant, and significant background/object contrast 

85 exists [5]. This method has also been used to count and track honeybees [29–37] and bumblebees [1]. 

86 Most of this research to date has been conducted in laboratories, or in front of and within beehives with 

87 relatively constant backgrounds. This makes the application of pure background subtraction 

88 challenging. 

89 Recently, there has been increased use of deep learning and neural networks for animal tracking [38]. 

90 Deep learning can detect and identify animals in a frame irrespective of the environment as it does not 
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91 rely on foreground-background segmentation. The  application of deep learning however has a high 

92 computational cost, and detection rate and accuracy depend on the quality and quantity of training data 

93 [39]. For rare species, or for species not previously tracked, a requirement for large training datasets 

94 increases the difficulty in implementing a tracking algorithm. Together, these factors currently limit the 

95 use of deep learning for generalised animal tracking, and for its application in remote devices for 

96 ecological research extracting movement and behavioural data from high-resolution data. Previous 

97 tracking approaches have used convolutional neural networks (CNNs) to estimate honeybee posture 

98 [25], distinguish between pollen-bearing and non-bearing honeybees [40], monitor interactions of 

99 honeybees in a hive [13] and monitor hive entry/exits [41]. However, taking steps towards the efficient 

100 and autonomous video tracking of unmarked insects in complex outdoor environments remains key to 

101 improving pollination and insect behavioural studies.

102 Insects forage amongst trees, leaves and flowers subject to changing illumination and movements 

103 caused by wind and animals (Fig. 1). This increases tracking complexity [6] since the changes detected 

104 in a frame of the video may relate to instances where one, the other, or both insect and non-insect 

105 elements (such as wind-blown leaves or flowers manipulated by an insect) in the environment move 

106 with respect to the camera. Ideally, it is desirable to detect an insect and identify its position in all of 

107 these scenarios to enable accurate census of pollinators, and what flowers they visit. Further 

108 complications arise as insects don’t always fly, sometimes they crawl among and behind vegetation 

109 [42–44]. This can cause the insect to be occluded from view, or the insect may leave the camera's field 

110 of view completely resulting in frames where no position is recorded. To maintain the identity of the 

111 insect and terminate tracking if necessary, it is important for accurate recognition of insects as they 

112 move through a complex environment. Although previous research has tracked insects through 

113 occlusions in an open arena [45–47], identifying occlusions and view exits in unbounded, complex 

114 outdoor environments has not been previously reported.

115

116 Fig 1: Foreground masks of an image showing a honeybee on a carpet of flowers obtained using 

117 background subtraction. The KNN background subtractor [48] was used to obtain foreground masks 
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118 when the background is (a) constant; (b) wind-blown. Moving objects are shown in white pixels, the 

119 honeybee is circled.

120

121 In this paper, we present a novel Hybrid Detection and Tracking (HyDaT) algorithm to monitor foraging 

122 insects outdoors. Our purpose is to accurately map a sequence of interactions between a particular insect 

123 and its foraging environment. Hence, our implementation tracks one insect at a time from its entry to 

124 its exit from view, or from the start of a video sequence to the conclusion. In order to extract multiple 

125 plant-pollinator interaction sequences (actually, sequences of interactions between a unique pollinator 

126 and a set of flowers) we re-run the software on each insect detected in a region / clip in turn. To 

127 demonstrate our software in action, we train the detection model and tune parameters to track 

128 honeybees. We compare the efficiency and effectiveness of our algorithm against human ground 

129 observations and previously described methods, and apply our approach to track foraging on flower 

130 carpets in a new dataset (78 minutes of outdoor video). Finally, we discuss our results and suggest future 

131 improvements.

132 Materials and methods

133 Our Hybrid Detection and Tracking (HyDaT) algorithm has four main components (Fig. 2). A hybrid 

134 detection algorithm begins at the start of the video and moves through the footage until it first detects 

135 and identifies an as yet untracked insect. If this insect is not detected within a subset of subsequent 

136 frames, the algorithm uses novel methods to predict if it is occluded or has exited the view. Positional 

137 data collected from the algorithm is then linked to synthesise coherent insect trajectories. Finally, this 

138 information is analysed to obtain movement and behavioural data (e.g. heat-maps, speed or turn-angle 

139 distributions).

140 Fig 2: Hybrid Detection and Tracking (HyDaT) algorithm overview and components.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.09.289215doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289215
http://creativecommons.org/licenses/by/4.0/


7

141 The hybrid detection algorithm

142 We use a hybrid algorithm consisting of background subtraction and deep learning-based detection to 

143 locate an insect. As discussed in the introduction, background subtraction can detect movements in the 

144 foreground without prior training and works efficiently where the background is mainly stationary. In 

145 contrast, deep learning-based detection can detect and identify an insect irrespective of changes in the 

146 background, but it requires training with a dataset prior to use. We designed our hybrid detection 

147 algorithm to work with the strengths of each detection technique and intelligently switch between the 

148 two approaches depending on variations in the video’s background. Prior to algorithm commencement, 

149 the deep-learning detection model must be trained on a dataset of the target insect species.

150 The algorithm begins using the trained deep learning model to initialise the detection process by locating 

151 the insect’s first appearance in a video. This ensures identification of an insect with a low probability 

152 of false positives, even if the background is moving. After initial identification, the technique used for 

153 insect detection is determined by the number of regions of inter-frame change within a calculated radius 

154 𝑀𝐷𝑇𝐷𝐿 of the predicted position of the insect in the next frame (Data association and tracking, Equation 

155 4). If there is a single region of significant change identified between frames, the background subtraction 

156 technique is used to locate the insect. If a small number of regions of change are detected within the 

157 predicted radius of the insect, then the region closest to the predicted position is recorded as the insect's 

158 position. (With our setup, three regions of movement within the calculated radius around the predicted 

159 position of the insect offered an acceptable compromise between algorithm speed and tracking 

160 accuracy. This trade-off can be user-adjusted). However, sometimes the region within the radius around 

161 the insect’s predicted position is too full of movement to be sure which is the insect. In this case, 

162 background subtraction is unusable, or perhaps insufficiently inaccurate, so the hybrid algorithm 

163 switches to deep learning. In addition, whenever the background subtraction technique fails to detect 

164 movement likely to indicate the insect’s position, deep leaning is used.
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165 The hybrid detection algorithm consists of a modular architecture allowing state-of-the-art deep 

166 learning and background subtraction algorithm plug-ins to be incorporated as these tools advance. 

167 Details of deep-learning and background subtraction algorithms we use appear below.

168 Deep learning-based detection

169 We use a convolutional neural network (CNN)-based YOLO (You Only Look Once) [49] object 

170 detection algorithm to detect insects in a video frame because it is well supported and convenient.

171 Background subtraction-based detection

172 We use K-nearest neighbour (KNN)-based background/foreground segmentation [48] (OpenCV 3.4.1 

173 [50]) to detect foreground changes in the video. The KNN background subtractor works by updating 

174 parameters of a Gaussian mixture model for better kernel density estimation [51]. The resulting binary 

175 image includes changes of the foreground assuming a constant background. A median filter and an 

176 erosion-based morphological filter are applied to the segmented image to remove noise. The resulting 

177 image contains changes in the foreground caused by insects and moving objects. Next, contours of the 

178 foreground detections (blobs) are extracted from the binary image and filtered based on their enclosing 

179 area to remove areas of movement less than a predetermined minimum pixel count covered by the focal 

180 insect. The position of the insect is designated by the centroid of this filtered blob (Fig. 3).

181

182 Fig 3: Detecting an insect with background subtraction. (a) Honeybee and flower shown at pixel 

183 resolution typical of that we employed for our study; (b) Binary image extracted using KNN background 

184 subtractor [48]; Resulting image with (c) median filter; (d) erosion-based morphological filter (centroid 

185 indicated) .

186
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187 Identifying occlusions

188 In the event that the focal insect is undetected, our algorithm analyses the variation in insect body area 

189 before its disappearance to identify a possible occlusion. Background subtraction is used to measure 

190 this change from the video. Variation of visible body area is modelled linearly using a least squares 

191 approach (Equation 1) to determine whether the insect is likely to have been occluded by moving under 

192 foliage.

193

𝑚 =  
𝑛 ∑ 𝐴𝑓 ―  ∑ 𝐴 ∑ 𝑓

𝑛 ∑ 𝑓2 ―  (∑ 𝑓)2 (1)

194

195 Where 𝑚 m is the gradient of the linear polynomial fit, 𝑛 is the number of frames considered, 𝑓 is frame 

196 number, and 𝐴 is visible insect body area in frame 𝑓. When the insect crawls or flies under foliage, the 

197 variation of visible body area before disappearance shows a negative trend (𝑚 < 0). Our algorithm 

198 utilises this fact to identify whether the insect is occluded from view due to movement under foliage 

199 (Fig. 4). If the insect disappears along a frame edge designating the camera's field of view, then the 

200 disappearance is assigned to a possible exit from the field of view, as discussed below. The algorithm 

201 for insect occlusion is not executed in this case.

202

203 Fig 4: An example of an insect occluded under foliage. Scatterplot shows the variation of insect 

204 visible body area before occlusion, and the corresponding least squares polynomial fit. Pixel intensity 

205 in the greyscale image represents the amount of change detected in the foreground.

206

207
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208 Identifying an insect exiting the field of view

209 To identify an insect’s exit from view, we use Algorithm 1 to calculate an exit probability value 𝛽 when 

210 it has been undetected for a threshold of 𝜏 consecutive frames.  If 𝛽 is higher than a predefined threshold 

211 value 𝛽, the algorithm pauses tracking the focal insect, and begins to search for new insects to track. If 

212 an insect is re-detected near the point of disappearance of the original focal insect before a new insect 

213 appears, the algorithm resumes tracking it, assuming this to be the original focal insect (see Discussion 

214 on Identity Swap management). Otherwise, the algorithm terminates and stores the previous track. Any 

215 new insect detections will be assigned to new tracks.
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Algorithm 1: Calculating exit probability 𝛽

Input: Insect speeds, 𝑑𝑒

Output: 𝛽

initialisation;

if 𝜏 ==  𝜏  then

𝑖 = 1.00;

else 

𝑖 = 𝑙𝑎𝑠𝑡 𝑖;

end

𝑑𝑡 =  𝜏 ×  𝜂𝑖;

if 𝑑𝑡 >  𝑑𝑒 then

while  𝑑𝑡 <  𝑑𝑒 do

   𝑖 ―= 0.01;

   𝑑𝑡 =  𝜏 ×  𝜂𝑖;

end

else

return;

end

𝛽 = (1 ― 𝑖) × 100%

𝛽 Exit probability

𝑑𝑒 Shortest distance to frame boundary from insect’s last 

detected position

𝑑𝑡 Predicted distance travelled by the insect during  𝜏 

number of undetected frames

𝜏 Consecutive number of frames insect is not detected

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.09.09.289215doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289215
http://creativecommons.org/licenses/by/4.0/


12

𝜏 Threshold number of consecutive frames insect is not 

detected

𝑖 Quantile value

𝜂𝑖 𝑖𝑡ℎquantile value of speed of the insect

216

217

218 Data association and tracking

219 For applications discussed above, our algorithm tracks one insect at a time from its first appearance 

220 until its exit from view, before it is re-applied to track subsequent insects in footage. As a given frame 

221 may contain multiple insects simultaneously foraging in a region, a "predict and detect" approach is 

222 used to calculate the focal insect's track over successive frames. In a set of three successive frames, the 

223 predicted insect position in the third is calculated from the detected positions in the first two frames, 

224 assuming constant insect velocity over the three frames [35,52]. The predicted position 𝑃𝑘 of the insect 

225 in frame 𝑘 of the video is defined as: 

226

𝑃𝑘 =  [𝑥𝑝𝑘,𝑦𝑝𝑘 ]𝑇 = 𝐴 ∗  [𝐷𝑘―1,𝐷𝑘―2]𝑇 (2)

227

228 Where, 

𝐴 =  [2 0
0 2   ―1 0

0 ―1]
229

230 In equation (2) 𝑥𝑝𝑘 and 𝑦𝑝𝑘 refer to coordinates of the predicted position of the insect in the frame 𝑘 

231 and [𝐷𝑘―1,𝐷𝑘―2] are the detected positions of the insect in the two previous frames.
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232 When an insect is first detected, the predicted position for the next frame is assumed to be the same as 

233 its current position (as there are no preceding frames). In the case of occlusions or frames in which no 

234 insect is detected, the predicted position is carried forward until the insect is re-detected.

235 In cases where multiple insects are detected within a single video frame using the hybrid algorithm, it 

236 is necessary to assign the predicted position of the focal insect to an individual detection within the 

237 frame. This is done using a process derived from the Hungarian method [53] which minimises the 

238 distance between assigned detections and predictions. To avoid recording false-positive detections, a 

239 detection is not associated with a prediction if the distance between the two surpasses a maximum 

240 threshold calculated using equations (3 & 4), based on distances travelled by the focal insect between 

241 consecutive frames within previously analysed data. Different detection thresholds are used for 

242 background subtraction (𝑀𝐷𝑇𝐵𝑆) and deep learning-based detection (𝑀𝐷𝑇𝐷𝐿) techniques, with 𝑀𝐷𝑇𝐵𝑆

243 <  𝑀𝐷𝑇𝐷𝐿  since background subtraction-based detections are more prone to false positives. 

244 Thresholds are defined as follows.

245

𝑀𝐷𝑇𝐵𝑆 = max {𝑑𝑖𝑛𝑡, 𝑑𝑚𝑎𝑥} (3)

246

𝑀𝐷𝑇𝐷𝐿 = 2 × (𝑀𝐷𝑇𝐵𝑆 +  𝜂𝑚𝑖𝑛{max{0, (𝜏― 𝜏)}
100 , 0.99}) (4)

247

248 Where 𝑑𝑖𝑛𝑡 is the initial value for 𝑀𝐷𝑇𝐵𝑆 set to the average body length (in pixels) of the target insect 

249 species, 𝑑𝑚𝑎𝑥 is the maximum recorded distance travelled by the focal insect between consecutive 

250 frames, 𝜂𝑖 is 𝑖𝑡ℎ quantile of recorded speeds of the insect, 𝜏 is the number of consecutive frames during 

251 which the insect is not detected, and  𝜏 is the predefined threshold number of consecutive frames during 

252 which the insect has gone undetected.

253
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254 Experiments and results

255 In this section, we evaluate the performance of our method (HyDaT) on honeybees (Apis mellifera). 

256 Honeybees are social insects that forage in wild, urban and agricultural environments. They are 

257 widespread, generalist pollinators of extremely high value to the global economy and food production 

258 [5], making honeybees particularly relevant organisms suited for testing our tracking.

259 We selected a patch of Scaevola (Scaevola hookeri) groundcover as the experimental site to evaluate 

260 our methods because of the species’ tendency to grow in two dimensional carpets and to flower in high 

261 floral densities. Due to the undercover’s structural density, honeybees both fly and crawl from flower 

262 to flower as they forage. Honeybees often crawl under the foliage to visit flowers that are obscured from 

263 above. These complexities in honeybee behaviour in Scaevola help us evaluate the robustness of our 

264 methods.

265

266 Data collection for experiments

267 Videos required for experiments were recorded on the grounds of Monash University’s Clayton campus, 

268 Melbourne, Australia (lat. 37.9115151° S, long. 145.1340897° E) in January 2019. All the videos were 

269 recorded between 10:00 am – 1:00 pm, ambient temperature 23 ℃ ― 26 ℃, wind speeds 9 ― 26 𝑘𝑚ℎ―1

270 . The study area contained ~446 flowers making a density of ~2340 𝑓𝑙𝑜𝑤𝑒𝑟𝑠/𝑚―2 . A Samsung 

271 Galaxy S8 phone camera (12 MP CMOS sensor, f/1.7, 1920 ×1080 pix, 60 fps) mounted on a tripod 

272 was set 600 𝑚𝑚 above the groundcover to record videos (

273 Fig 5: Experimental setup for recording videos.). A ruler placed in the recorded video frame was 

274 later used to convert pixel values to spatial scale (millimetres). Recorded videos covered an area of 

275 600 𝑚𝑚 × 332 𝑚𝑚 with a density of 10.24 𝑝𝑖𝑥𝑒𝑙𝑠/𝑚𝑚―2. Average area covered by a honeybee was 

276 1465 ± 531 𝑝𝑖𝑥𝑒𝑙𝑠 (e.g. see Fig 3a).

277
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278 Fig 5: Experimental setup for recording videos.

279 Software development

280 We developed the software using Jupyter Lab (Python 3.7.1), Computer Vision Library (OpenCV) 3.4.1 

281 and Tensorflow 1.13.1.  A Dell Precision 5530 workstation with Intel(R) Core i7-7820HQ (2.90 GHz) 

282 CPU, 32 GB Memory, 512 GB (SSD) storage and Microsoft Windows 10 Enterprise OS was used for 

283 processing. Data analysis was conducted using NumPy 1.16.2, Pandas 0.24.2 and Matplotlib 3.0.3. The 

284 code is available at github.com/malikaratnayake/HyDaT_Tracker.

285 A YOLOv2 object detection model [54] was used as the deep learning-based detection model in HyDaT. 

286 A Darkflow [55] implementation of YOLOv2 was trained using Tensorflow [56]. Images required for 

287 training the deep learning-based detection model were extracted from videos recorded in Scaevola 

288 groundcover using FrameShots [57]. Extracted images were then manually filtered to remove those 

289 without honeybees. The 2799 selected images containing honeybees were manually annotated with 

290 bounding boxes using LabelImg [58]. The annotated images and trained YOLOv2 model can be found 

291 in S1 Data.

292 Experiment 1: Detection rate and tracking time

293 We evaluated the detection rate and tracking time of HyDaT using a data set of seven video sequences 

294 of honeybees foraging in Scaveola. These videos were randomly selected from continuous footage of 

295 foraging honeybees. Each video was between 27 and 71 seconds long, totalling 6 minutes 11 seconds 

296 of footage in all. HyDaT was tuned to track the path of a honeybee from its first appearance in the video 

297 to its exit. All videos contained natural variation in background, lighting and bee movements. Fig. 6 

298 provides an explicit representation of each video sequence’s changeability. One or more honeybee 

299 occlusions from the camera occurred in all of the videos. 

300
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301 Fig 6: Number of image region changes per frame in test videos. Box plot showing the distribution 

302 of number of image regions with greater than one pixel change per frame in test videos. The filled red 

303 diamond indicates the mean number of region changes per frame.

304 Detection rate is our measure to evaluate the number of frames where the position of the insect is 

305 accurately recorded with respect to human observations. For the purpose of the experiment, frames 

306 where the honeybee is fully or partially hidden from the view were considered to be occlusions. If the 

307 algorithm recorded the position of the honeybee in an area that was in fact covered by the body of the 

308 bee, this was considered as a successful detection. The time taken by the algorithm to process the video 

309 was recorded as the tracking time. 

310 We also compared the detection rate and tracking time of HyDaT to the stand-alone deep learning-

311 based YOLOv2 [49] model after using the same training dataset for each. The aim of this was to evaluate 

312 the improvement in detection rate our methods can achieve compared to a deep-learning model under 

313 the same training regime and limitations. Parameters of our algorithm and the stand-alone YOLOv2 

314 detection model were tuned separately to achieve maximum detection rates for each and allow it to 

315 operate at its best for comparison purposes (S2 Table). To benchmark our results further, we also 

316 processed the seven honeybee videos using Ctrax [18], current state-of-the-art insect tracking software.

317 Results are provided in Table 1. HyDaT detected the position of the honeybee and associated it to a 

318 trajectory in 86.6% of the frames in which it was visible to human observation. Compared to the stand-

319 alone deep learning-based method YOLOv2 [49] model, HyDaT achieved higher detection rates for all 

320 seven test videos, a 43% relative increase in detection rate and a relative reduction in error of 66%. 

321 HyDaT processed the seven videos totalling 6 minutes 11 seconds (22260 frames at 60 fps) of footage 

322 in 3:39:16 hours, a reduction in tracking time of 52% over YOLOv2. This improvement in speed is 

323 possible because 91% of detections by HyDaT were made with background subtraction which requires 

324 much lower computational resources than purely deep learning based models. Ctrax, an existing animal 

325 tracking package we used for comparison, was completely unable to differentiate the movement of the 

326 honeybee from background movement.  Its attempts to locate the honeybee were unusable and it would 

327 be meaningless to attempt to compare its results in these instances. In addition, when the honeybee was 
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328 occluded for an extended period, Ctrax assumed it had left the field of view and terminated its track. 

329 Therefore, in these cases also it is meaningless to compare Ctrax’s outputs with HyDaT. Tracks of 

330 honeybees extracted using HyDaT are shown in 

331 Fig 7: Trajectories for a single honeybee in test videos. Tracks were extracted using HyDaT from 

332 seven test video files..

333 Table 1: A quantitative comparison of HyDaTs’ tracking performance against a stand-alone 

334 deep learning-based model (YOLOv2) [49] of honeybees foraging in Scaevola.

Number of frames Detection rate (%) Tracking time 

(hh:mm:ss)

HyDaT’s Detection 

method utilisation (%)

Video

(Scaevola)

Video Honeybee 

visible

HyDaT YOLOv2 HyDaT YOLOv2 Background 

Subtraction

Deep 

Learning 

(YOLOv2)

V1 3540 2670 97.7 76.4 00:29:29 01:18:26 94.9 5.1

V2 2940 2148 51.5 36.9 00:45:45 01:03:55 95.8 4.2

V3 3600 3016 91.9 63.1 00:33:51 01:19:20 85.2 14.8

V4 2820 1612 72.6 50.1 00:38:16 00:53:05 98.7 1.3

V5 3480 2802 89.2 26.9 00:30:26 01:05:40 94.5 5.5

V6 4260 3882 97.1 84.0 00:28:58 01:22:11 87.6 12.4

V7 1620 1414 89.1 77.3 00:12:32 00:33:17 88.2 11.8

Overall 22260 17544 86.6 60.7 03:39:16 07:35:54 91.0 9.0

335 Algorithm performance is assessed by detection rate (percentage of frames where the position of the 

336 honeybee accurately corresponds to human observations) and tracking time (the time taken to process 

337 a video). The “detection method utilisation” column shows the percentage of frames our algorithm used 

338 background subtraction versus deep learning methods to detect honeybee position. The best performing 

339 algorithm is indicated in bold.

340

341 Fig 7: Trajectories for a single honeybee in test videos. Tracks were extracted using HyDaT from 

342 seven test video files.
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343 Experiment 2: Occlusion identification and exit frame estimation

344 The performance of the occlusion identification algorithm and the insect frame exit estimation were 

345 evaluated against human observations using a continuous video of duration 8 min. 15 sec. (29,700 

346 frames) showing foraging honeybees in Scaevola. For this evaluation we only consider trajectories of 

347 bees visible for more than 120 frames (2 seconds at 60 fps). Threshold number of consecutive 

348 undetected frames, 𝜏, was set to 15, and the threshold exit probability, 𝛽, was 85%. The following 

349 guidelines were followed when conducting the experiment and determining the human ground 

350 observation values. 

351 1. An insect was considered to be occluded from the view if it was partially or fully covered by a 

352 flower or a leaf and if it was not detected for over 𝜏 frames.

353 2. An insect was considered to have exited the frame when it had completely left the camera view.

354

355 Results are given in Table 2. The video evaluated for the study consisted of 54 instances where the 

356 honeybee was undetected by the software for over threshold value 𝜏 (15) frames. The algorithm detected 

357 68.57% of occlusions and all honeybee field of view (FoV) exits when compared to human analysis of 

358 the video.

359 Table 2: Occlusion detection algorithm performance and field of view (FoV) exit estimate for an 

360 8:15 minute video of honeybees recorded in Scaevola.

Event
Actual no. 

of events

No. of events 

recorded 

(correct/incorrect)

No. of events 

missed

Detection 

rate (%)

Error in 

estimate (%)

Occluded 35 24 (24/0) 11 68.57 0.00

Exited FoV 16 19 (16/3) 0 100.00 15.79

Other 3 11 (3/8) 0 100.00 72.72

361 Detection rate = percentage of events correctly recorded compared to actual number of events; Error in 

362 estimate = percentage of incorrect recordings out of events recorded. “Other” in the Events column 
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363 refers to instances where the insect was visible and the detection algorithm failed to locate it for over 𝜏 

364 (15) continuous frames.

365
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366 Example data analysis

367 To demonstrate the value of our approach for extracting meaningful data from bee tracks, we studied 

368 the behaviour of honeybees foraging in a Scaevola (Scaevola hookeri) as already discussed, and also in 

369 Lamb's-ear (Stachys byzantine) ground cover. We extracted spatiotemporal data of foraging insects and 

370 analysed their changes in position, speed and directionality. We tested our setup on both Scaevola and 

371 Lamb's-ear to assess the capability of our system to generalise, while simultaneously testing its ability 

372 to extend to tracking in three-dimensional ground cover, within the limits imposed by the use of a single 

373 camera.

374 We followed methods presented in Data collection for experiments section to collect study data. A 

375 dataset of 451 images was used to train the deep learning model of HyDaT on Lamb’s-ear while the 

376 dataset used in experiments 1 and 2 was re-used for Scaevola (S3 Text). We extracted movement data 

377 from 38 minutes and 40 minutes of videos of honeybees foraging in Scaevola and Lamb's-ear 

378 respectively. Tracks longer than 2 seconds in duration were used for the analysis. Results of the study 

379 are shown in Fig 9.

380

381 Fig 8: HyDaT algorithm tracking honeybee movement. (a) Scaevola and (b) Lamb's-ear. Red 

382 indicates recorded positions.

383

384 Fig 9: Data analysis of honeybees foraging in Scaevola (N = 47) and Lamb's-ear (N = 90). (a) 

385 Honeybee trajectories, (b) Location heat-maps, and (c) Visibility duration for Scaevola and Lamb's-ear. 

386 Honeybee (d) Speed distribution, (e) turn-angle distribution in Scaevola. In (b) the heat-map scale 

387 shows the aggregate of durations honeybees spent in a region. Bin size of the heat-map is the average 

388 area covered by a honeybee in pixels. In (c) recorded time is divided into durations the honeybee spends 

389 on the flower carpet (visible), under the carpet (occluded), and un-estimated, based on the output of the 

390 occlusion identification algorithm. The red dashed line shows the mean foraging time of honeybees 

391 within the field of view of the camera.
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392 Our algorithm was able to extract honeybee movement data in both two-dimensional (Scaevola) and 

393 three-dimensional (Lamb’s-ear) ground covers. However, since our approach with a single camera is 

394 primarily suited to two-dimensional plant structures, the occlusion detection algorithm was unable to 

395 estimate the honeybee position in 36.5% of instances in the Lamb’s-ear, compared to 8.8% of the 

396 instances in Scaevola (Fig. 9c). We did not plot speed or turn-angle distributions for Lamb’s-ear since 

397 a single camera setup cannot accurately measure these attributes for three-dimensional motion, a 

398 limitation we discuss below. 

399 Discussion

400 To address concerns about insect pollination in agriculture and ecosystem management, it is valuable 

401 to track individual insects as they forage outdoors. In many cases, such a capacity to work in real world 

402 scenarios necessarily requires handling data that includes movement of the background against which 

403 the insects are being observed, and movement of insects through long occlusions. We tackle this 

404 complexity using a novel approach that detects an insect in a complex dynamic scene, identifies when 

405 it is occluded from view, identifies when it exits the view, and associates its sequence of recorded 

406 positions with a trajectory. Our algorithm achieved higher detection rates in much less processing time 

407 than existing techniques.

408 Although we illustrated our method’s generalisability in two differently structured ground covers, there 

409 remain several limitations associated with our method suited for further research. Our algorithm tracks 

410 one insect in sequence and must be restarted to track subsequent insects within a video. Future work 

411 could address this by considering models of multi-element attention [59], however this is unnecessary 

412 for the applications for which the software is currently being applied and was out of our scope. 

413 Regarding species other than honeybees; although we trained and tested our algorithm with honeybees 

414 as this is our research focus in the current study, tracking other species is feasible after retraining the 

415 YOLOv2 model and adjusting parameters for the area an insect occupies in the video frame and the  

416 𝑀𝐷𝑇𝐵𝑆, maximum detection threshold. Another potential subject for future study relates to identity 

417 swaps during occlusions, in which a single track is generated by two insects. This is likely to be a 
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418 problem only in instances where insect densities are high and two insects cross paths, perhaps whilst 

419 occluded. Fingerprinting individual unmarked animals to avoid this is a complex image-based tracking 

420 problem [17,20,47] that, if solved, would enable such errors to be avoided. Previous research in the area 

421 has been conducted in controlled environments. Its application to the dynamic backgrounds necessary 

422 for our purpose of tracking insects in the wild will be challenging. Lastly, the accuracy of our single-

423 camera method is diminished in three-dimensional plant structures such as the Lamb’s Ear. Extending 

424 our method for multi-cameras would be worthwhile future work if insect behaviour within such plants 

425 was required for a particular study, although such solutions would increase cost base and complexity 

426 for surveying.

427 Our research’s hybrid detection method combines existing background subtraction and deep learning-

428 based detection techniques, to track honeybee foraging in complex environments, even with a limited 

429 training dataset. As applications of deep learning-based tracking is still relatively new to ecology, there 

430 is a scarcity of annotated datasets of insects. We also observe that the applicability of the datasets that 

431 are available currently to specific ecological problems will be dependent on the importance of the 

432 species documented and the environmental context in which the recordings were made. Therefore, in 

433 most instances ecologists will have to build and annotate new datasets from scratch to use deep learning-

434 based tracking programs. Our methods will ease this burden on ecologists by enabling them to track 

435 insects with a relatively small training dataset. 

436 Our algorithm is designed with a modular architecture, which enables any improvement to individual 

437 detection algorithms to be reflected in overall tracking performance. The current version of HyDaT was 

438 implemented with a KNN background subtractor and a YOLOv2 detection model. However, use of 

439 different combinations of detection models for background subtraction and for deep learning models 

440 may further improve detection rates and tracking speeds. This allows ecologists to quickly adopt 

441 advancements in deep learning or computer vision research for improved tracking. 

442 Mapping interactions between insect pollinators and their foraging environments improves our 

443 understanding of their behaviour. Previous research has studied the movement patterns of insect 

444 pollinators such as honeybees [44,60–63] and bumblebees [42–44,62,64,65] to document their flight 
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445 directionality, flight distance, time on a flower, nature of movement etc. Most of this research relied on 

446 manual observations conducted inside laboratories or on artificial rigs. However, environmental factors 

447 such as wind, temperature and other conditions may play a role in driving insect behaviour outdoors 

448 [23,24]. Our tracking method facilitates researchers to study insect pollinators in their natural habitat 

449 and enables collection of accurate, reliable data. This capacity may be expanded across a network of 

450 monitoring sites to assist in the automatic measurement of behavioural traits such as flower constancy 

451 of bees in complex environments [66]. In addition, our algorithm can record when insects crawl under 

452 flowers, a frequent occurrence that previous algorithms have not considered. 

453 Commercial crops such as strawberry, carrot and cauliflower flower in a somewhat flat carpet of 

454 inflorescences when compared against other insect-pollinated crops such as raspberry and tomato. Our 

455 algorithm is particularly suited to record and analyse the trajectories of insect pollinators on such two-

456 dimensional structures and can therefore be used to monitor agricultural insect pollination in these 

457 circumstances. This enables growers and beekeepers to estimate pollination levels and take proactive 

458 steps that maximise pollination for better crop yield [67]. We hope that ultimately these findings will 

459 be helpful in pollinator conservation and designing pollinator-friendly agricultural setups[67] for 

460 increased food production.

461 While our main contribution is tracking insect pollinators in complex environments, our results are an 

462 important step towards real-time tracking and implementing deep learning-based object detection 

463 models in low powered devices such as the Raspberry Pi (www.raspberrypi.org) which are suited to 

464 ongoing field monitoring of insect populations and behaviours. Through experiments, we have shown 

465 that combining computationally inexpensive detection methods like background subtraction with deep 

466 learning can increase the rate of detection and reduce computational costs. Hence, our hybrid approach 

467 may be suited to applications where low-powered devices should be used. 
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