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Figure 5. CNN detections: The images on the left are the raw images and images on the right are CNN detections (green 
boxes) and ground truth labels (red boxes). Satellite image (c) 2020 Maxar Technologies 

3.2.! Testing detection under different image conditions 

To test the applicability of the trained CNN model on an elephant population outside of our study 

area we test, without further training, on a known elephant population in the Maasai Mara in Kenya 

(Figure 6). The image covers 0.3 km2 in which 32 elephants were identified. The CNN managed to 

detect more than half the elephants in this image (18 true positives) and the resulting F2 score was 

0.57. Figure 6 provides visualisation of some example CNN detections. 
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Figure 6.  Example of CNN detections in Maasai Mara, Kenya from Geoeye-1 Satellite. Raw images on left and images with 
CNN detections (green boxes) and ground truth labels (red boxes) on right. Satellite image (c) 2020 Maxar Technologies 

Discussion 

For a number of species remote sensing via satellite imagery is already a viable monitoring 

technique. This study shows the feasibility of this monitoring technique in the case of the African 

Elephant. From our results we show it is possible to automate detection of African elephants in very 

high-resolution satellite imagery in both heterogeneous and homogeneous backgrounds using deep 

learning. We have automated the detection of elephants with as high accuracy as human detection 

capabilities. There is less variation in the consistency of detection for the CNN compared to human 
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detection performance (as shown in Figure 4). In addition, we show it is possible to generalise 

detection to elephant populations outside of the site of training data. The transferability of the CNN 

is promising, as a small amount of training data from this locality or satellite would further increase 

accuracy. Elephant calves were accurately detected which is noteworthy considering the lack of 

calves in the training dataset.  

Expediating identification of species by automating detection can allow for large-scale application of 

satellite-based wildlife surveying [26, 46]. The detection process that would usually take weeks can 

now be completed in a matter of hours. Observer variability mean errors in human-labelled datasets 

are inconsistently biased while in contrast, false negatives and positives in deep learning algorithms 

are consistent and can be rectified by systematically improving models. The applicability of this 

technique is set to increase in the future as the resolution of satellite imagery improves, and costs 

fall. The new constellation from Maxar, Worldview Legion, will launch in 2021. This constellation has 

a tropical circle mid-inclined orbit, rather than polar orbit, enabling imagery to be captured in the 

same location more than 15 times per day at 31cm resolution.  

Off-the-shelf object detection tools are increasingly accessible to non-experts; however, the biggest 

obstacle is obtaining sufficiently large training datasets. Crowdsourced labelling platforms, e.g. 

Zooniverse [https://www.zooniverse.org/], Amazon Mechanical Turk [https://www.mturk.com/] can 

help in the creation of these bespoke training datasets using the ‘Wisdom of the crowd’ [81, 82]. A 

remaining obstacle to scaling this surveying technique is the high cost of commercial satellite 

imagery. Worldview-3 costs $17.50 per km2 for archive imagery and tasking new imagery costs 

$27.50 per km2, with a minimum order of 100 km2 (2020 pricing).  

Areas of future research to expand this technique include testing whether there are performance 

improvements for detecting elephants by including the near infrared band and testing for which 

other species this is already a viable monitoring technique. More broadly, deep learning methods for 

detecting small objects can be further improved [83, 84] and large training datasets containing 
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images of wildlife from an aerial perspective should be developed. If satellite monitoring is applied 

at scale then developing methods to ensure standardised and occasional ground-truthing will be 

required to ensure image interpretation is accurate [25]. Using high resolution satellite imagery as a 

wildlife surveying tool will inevitably increase in the future as image resolution improves and costs 

fall. Developing automated detection tools to enable larger scale application of this wildlife 

monitoring technique is highly valuable as satellite image surveying capabilities expand. 
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