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Abstract: 

1. Satellites allow large-scale surveys to be conducted in short time periods with repeat surveys 

possible <24hrs. Very high-resolution satellite imagery has been successfully used to detect and 

count a number of wildlife species in open, homogeneous landscapes and seascapes where target 

animals have a strong contrast with their environment. However, no research to date has detected 

animals in complex heterogeneous environments or detected elephants from space using very high-

resolution satellite imagery and deep learning. 

2.  In this study we apply a Convolution Neural Network (CNN) model to automatically detect and 

count African elephants in a woodland savanna ecosystem in South Africa. We use WorldView-3 and 

4 satellite data – the highest resolution satellite imagery commercially available. We train and test 

the model on eleven images from 2014-2019. We compare the performance accuracy of the CNN 
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against human accuracy. Additionally, we apply the model on a coarser resolution satellite image 

(GeoEye-1) captured in Kenya to test if the algorithm can generalise to an elephant population 

outside of the training area.  

3. Our results show the CNN performs with high accuracy, comparable to human detection 

capabilities. The detection accuracy (i.e., F2 score) of the CNN models was 0.78 in heterogeneous 

areas and 0.73 in homogenous areas. This compares with the detection accuracy of the human 

labels with an averaged F2 score 0.77 in heterogeneous areas and 0.80 in homogenous areas. The 

CNN model can generalise to detect elephants in a different geographical location and from a lower 

resolution satellite. 

4. Our study demonstrates the feasibility of applying state-of-the-art satellite remote sensing and 

deep learning technologies for detecting and counting African elephants in heterogeneous 

landscapes. The study showcases the feasibility of using high resolution satellite imagery as a 

promising new wildlife surveying technique. Through creation of a customised training dataset and 

application of a Convolutional Neural Network, we have automated the detection of elephants in 

satellite imagery with as high accuracy as human detection capabilities. The success of the model to 

detect elephants outside of the training data site demonstrates the generalisability of the technique. 

Keywords: Machine Learning, Convolutional Neural Network, Aerial Survey, Wildlife Census, 

Endangered Species, Conservation, Anthropocene, Object Detection 

1. Introduction  

The planet is in the geological era of the Anthropocene, during which human activity is the driving 

force of change. Many wildlife species are under threat across their geographical range as we are 

currently undergoing the sixth-mass extinction [1-3]. Reliable, accurate and up-to-date data on 

wildlife numbers is essential to monitor population fluctuations and identify causes of decline. 
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Various methods are used for conducting population counts e.g. line transect surveys [4], dung and 

track counts [5], bio-acoustic monitoring [6], camera trap [7] and aerial surveys [8], among others.  

Satellite remote sensing has recently emerged as a new viable monitoring technique for detecting 

wildlife. It has been used to successfully identify and count a number of wildlife species in open, 

homogeneous landscapes and seascapes. The benefits of this monitoring technique are numerous; 

large spatial extents can be covered in short time periods making repeat surveys and reassessments 

possible at short intervals. For example, the satellite used in this study, Worldview-3 has an average 

revisit time of less than one day. It is capable of collecting up to 680,000 square kilometres every 

24hrs. Satellite images are captured over large areas in one shot so issues with double counting and 

miscounts are largely eliminated. Satellite remote sensing is unobtrusive as it requires no human 

presence eliminating the risk of disturbing the species being surveyed. This remains a key concern in 

other surveying techniques [9]. Image acquisition is automated and less logistically complicated 

compared with traditional aerial surveys [10] and setting up camera trap grids or  audio loggers. 

Censuses can be carried out without concern for human safety providing an ability to survey 

previously inaccessible areas. For example, in the case of the Emperor penguin, new colony locations 

were detected in a pan-continental survey of the Antarctic coast [7, 13]. Additionally, cross border 

areas can be surveyed without requiring multiple national civil aviation permissions. 

Detecting wild animals in satellite imagery is influenced by body size, background complexity and 

contrast between species and surrounding habitat. Seascapes provide a uniform high contrast 

background context against which whales have been identified in known breeding, calving and 

feeding grounds [11-13] and flamingos have been identified on a lake [14].  Spectrally uniform rocky 

outcrops and ice have been used to identify several marine species i.e. Emperor and Adelie penguins 

[15-19],  Elephant and Weddell seals [20, 21], Masked Boobies [22] and Albatross [23]. Several Arctic 

species have been identified against snow using shadow and body contrast for detection i.e. Polar 

bears [10, 24-26] and muskoxen [25]. On the African continent only two studies have detected 
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mammals (in the case of wildebeest and zebra) using satellite imagery in open savannah [27, 28]. 

Detection has only been tested in these homogeneous monochrome environmental contexts. No 

study has yet, to the best of our knowledge, detected species in complex heterogeneous landscapes 

from space. 

Various methods have been used to detect species in satellite imagery. The majority of studies have 

manually counted species in imagery using several observers for cross-validation. However, manual 

methods are unfeasible if large areas are surveyed, as counting is labour and time intensive and 

counts tend to be error-prone [29]. Several studies have relied on environmental proxies and 

indirect ecological signs of animal presence e.g. burrows [30], mounds [31], changes in vegetation 

from nest signatures [22] and faecal stains in the case of penguins [15-19, 32]. Image differencing is 

a technique where satellite images are captured in the same location at different times. This 

technique is used for environmental change detection [33] e.g. deforestation and land use change 

[34-36], identification of fire [35, 37], droughts [38, 39] or floods [40, 41]. Three studies used short-

time image differencing to detect polar bears from space [10, 24, 26]. Image differencing is possible 

in cases where multi-temporal imagery is available, and species can be differentiated from static 

objects. e.g. rocks. Images can be acquired via targeted satellite tasking on specific days; however, 

this is more costly than using archive imagery. Cloud cover, environmental variability and changing 

sea states can impede ground visibility which is problematic when image differencing and tasking is 

used. 

Several studies have applied a form of supervised or semi-supervised classification approaches to 

detect species in satellite imagery. One form of image segmentation using semi-supervised 

classification is thresholding method. Pixel values are classified relative to a set of threshold values 

that distinguish species from background. Thresholding method does not make use of geometric 

information but rather relies on spectral signatures (pixel value combinations). Thresholding method 

is reliant on the human classifier to set accurate thresholds which is helped by familiarity with the 
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species and environment [27]. This technique is effective in homogeneous environments where 

species have strong spectral separability from background context. However, in cases where pixel 

values of species and background context are similar it is difficult to draw accurate distinctions. 

The introduction of Convolutional Neural Networks (CNN) in machine learning has revolutionised 

the field of computer vision since 2012 [42]. Machine learning has become a new essential tool used 

by ecologists to detect wildlife in imagery e.g. camera trap images, aerial survey images, and 

unmanned aerial vehicle (UAV) images [43-48]. However, automated detection of wildlife from 

satellite imagery is still in its infancy. To the best of our knowledge only two species have been 

detected in satellite imagery using deep learning: albatross [49] and whales [50, 51]. Object 

detection applications are now easier to develop than ever before. High-performance off-the-shelf 

solutions have made machine learning solutions accessible to non-specialists. These techniques can 

now leverage massive image datasets e.g. ImageNet (>14 million images across 20,000 classes) 

obtaining significant performance improvements compared to previous methods based on manually 

engineered features [52].  A Convolutional Neural Network (CNN) is a deep learning artificial neural 

network architecture that has been extensively used for object detection and recognition in recent 

years. The ‘deep’ stems from the use of multiple layers in the network. In this study we test whether 

it is possible to detect the world’s largest terrestrial mammal – the African elephant – using deep 

learning via a CNN. 

The population of African elephants (Loxodonta africana) has plummeted over the last century due 

to poaching, retaliatory killing from crop raiding and habitat fragmentation [53-55]. To ensure 

conservation is achieved accurate monitoring is vital. Inaccurate counts can result in misallocation of 

scarce conservation resources and misunderstanding population trends. Existing techniques are 

prone to miscounting. The most common survey technique for elephant populations in savannah 

environments is aerial counts from manned aircraft [8]. Aerial surveys are conducted either as total 

counts – flying closely spaced transects, or sample counts, covering 5-20% of an area and 
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extrapolating to a larger area. Several studies have shown that observers on aerial surveys often 

miscount due to fatigue and visibility issues resulting in over-estimates [56-58]. Aerial surveys can 

be costly, logistically challenging in terms of finding suitable runways and refuelling stops and time 

consuming in terms of getting appropriate permissions. This is particularly relevant in cross-border 

areas where multiple national permissions are required. Remotely sensing elephants using satellite 

imagery and automating detection via deep learning may provide a novel avenue for surveying while 

mitigating several of the challenges outlined above. 

In this study we investigate the feasibility of using very high-resolution satellite imagery to detect 

wildlife species in heterogenous environments with deep learning. To test this, we use a population 

in Addo Elephant National Park, South Africa where herds move between open savannah habitat 

and closed heterogeneous woodland and thicket.  

2. Methods 

2.1. Study Site  

Addo Elephant National Park in South Africa was chosen as the study site. It provides a spectrally 
complex heterogeneous background with a high concentration of elephants. The park is the third 
largest park in South Africa at 1,640 km2. Different areas of the park have been sectioned off for 
conservation purposes - elephants were identified in the Main Camp section of the park surrounding 
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Hapoor Dam (

 

Figure 1). The Main Camp is a combination of dense shrubland and low forest (e.g. porkbush 

(Portulcaria afra), White milkwood (Sideroxylon inerme), Cape leadwort (Plumbago auriculate) and 

open grassland [59, 60]. Over six hundred elephants move between these habitats [61, 62]. 

Elephants cover themselves in mud to cool down and adopt a range of postures when foraging, 

playing, sleeping [63, 64] so their shape and colour is continually changing. The background 

environment is also changing as they move between open savannah and woodland and take shelter 

under trees in the mid-day sun. The satellite is on a sun synchronous orbital path, so satellite images 

of the study area are captured between 10.10-10.45am local time. The bright morning light 

improves image clarity, as elephants gather at water holes in the morning which makes them easy to 

identify (Figure 1). 

The park has rainfall year-round [65] and four seasons can be broadly delineated as early wet season 

(Oct -Dec), late wet season (Jan-March), early dry (Apr-Jun) and late dry season (July-Sept) [61, 62]. 
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To ensure a representative and diverse sample of elephants in the park we include training and test 

labels from images captured in different seasons and years (Table 1).  

 

Figure 1. Location of the study area in - Addo Elephant National Park, South Africa. Two example WorldView-3 images 

showing 1) Elephants in open homogeneous area around Hapoor Dam, 2) Elephants in heterogenous woodland and thicket 

area. Satellite image (c) 2020 Maxar Technologies 

2.2. Dataset generation and satellite image pre-processing  

WorldView-3 and WorldView-4 are the highest resolution satellite imagery commercially available. 

They provide imagery at 31cm resolution - WorldView-4 is now out of action but two years of 

archive imagery is available. The image archive for all WorldView 3 & 4 satellite images from Maxar 

Technologies (formerly DigitalGlobe) was searched via the Secure Watch Platform 

[https://www.digitalglobe.com/products/securewatch]. We restricted the search to images that 

contain less than 20% cloud cover and acquired less than 25% off-nadir (degree off centre of image 

captured). We selected eleven images that met these specifications between 2014-2019. 
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Each image was downloaded in two formats: orthorectified images in natural colour and 

orthorectified panchromatic image. We processed the images using a pan-sharpening algorithm 

from ERDAS IMAGINE software package (ERDAS, Inc., Atlanta, GA, USA) Pan-sharpening is an 

automatic image fusion process that uses the multispectral bands red (620–750 nm), green (495–

570 nm), blue (450–495 nm) at 1.24 m resolution and the higher resolution panchromatic  band at 

31 cm to produce a high-resolution multispectral image. We tested several pan-sharpening 

algorithms - the Gram-Schmidt pan-sharpening algorithm provided the cleanest visual result and was 

applied to all images. The satellite images were converted so that pixel values were in the range of 

[0, 255] and the images were sliced into 600x600pixel sub images to make them compatible with the 

deep learning software. 

2.3. Labelling training data in satellite images 

The images were visually scanned for elephants before sub-setting into smaller areas where we 

identified congregations of elephants. In total, 1125 elephants were identified in the training image 

dataset. To ensure training labels are representative of elephants at different times, images were 

selected for different seasons and years in both closed i.e. dense shrubland and forest. and open 

areas of the park i.e. grassland and bare land. Images were labelled by defining bounding boxes 

around each individual elephant using the graphical image annotation tool LabelImg 

[https://github.com/tzutalin/labelImg] [66] shown in Figure 2.  
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Figure 2. Example of elephant labels in a heterogenous area, Addo Elephant National Park, South Africa. Satellite image (c) 
2020 Maxar Technologies 

The baseline we deem as the true number of elephants is a labelled dataset doubled screened by 

two annotators – an Ecologist and Machine Learning Scientist. Any ambiguous labels that were not 

identified by both annotators were removed. We use the method of comparing the accuracy of 

detections from human volunteer annotators and CNN performance against this baseline control 

count  [46, 67]. The same test images used to evaluate CNN performance were sent to 51 human 

volunteer annotators. The images were labelled by the volunteers using the VGG Annotation Tool 

[http://www.robots.ox.ac.uk/~vgg/software/via/ ][68]. Volunteer annotators represent a cross-

section of machine learning scientists, biologists, general public and park rangers who work with 

elephants in Southern Africa. The labellers vary in terms of computer literacy and familiarity with 

elephant behaviour and habitat preference. The experiment involving human participants was 

approved by the University of Oxford CUREC Ethical Committee [R64699]. 

 

2.4. Training and validating the Convolutional Neural Network model  

A CNN is a feed-forward neural network designed to process large-scale images by considering their 

local and global characteristics [69]. A neural network is typically comprised of multiple layers 

connected by a set of learnable weights and biases [70]. Convolutional layers represent a set of 

filters, each able to identify a particular feature in the image. These filters are fed small image 
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patches whilst they scan across the image and generate feature maps for analysis by the next layer. 

The CNN comprises an alternating sequence of convolutional and pooling layers. Pooling layers are 

used to reduce the dimensionality of the feature maps to improve computational efficiency. 

Nonlinear activations are stacked between convolutional layers to enrich their representational 

power [71]. The last layer of the network is fully connected and performs classification [72]. 

Convolutional neural networks have become a key tool in image classification. They are now 

comparable to human performance in a number of challenging image classification tasks e.g. face 

verification, various medical imaging tasks [73, 74]. 

We used the TensorFlow Object Detection API 

[https://github.com/tensorflow/models/tree/master/research/object_detection] to build our model 

[75]. This API provides implementations of different deep learning object detection algorithms. In a 

preliminary assessment of the models available, we selected the model referred to as 

faster_rcnn_inception_resnet_v2_atrous_coco as it provided the best result and it was used for all 

the experiments presented. This model is a Faster Region CNN (RCNN) model – after layers that are 

used to extract features there is a subbranch to propose regions that may contain objects and a 

subbranch that predicts the final object class and bounding box for each of these regions [76]. The 

model we used has an Inception ResNet [77] backbone – this is the underlying CNN that is used for 

feature extraction. We used the model pretrained on the Common Objects in Context (COCO) 

dataset for object detection [https://cocodataset.org/] [78]. We used default values for 

hyperparameters of this model from the API. 

Training a CNN requires images to be split into training, validation and test sets. In total, 188 sub 

images from nine different satellite images were used for training. These training images contain 

1270 elephant labels of which 1125 are unique elephants. There is an overlap of 50 pixels between 

sub images, when elephants appear at the edge of one sub image the overlap ensures they appear 

in whole on the neighbouring sub image. Twelve sub images containing 116 elephant labels were left 
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out as a validation dataset. The validation dataset is used to tune the hyperparameters, to define the 

confidence threshold (above which predictions from the model are counted as detections) and to 

identify the optimal length of CNN training (see Figure 3).  

Table 1  List of satellite images used in the training and test dataset 

2.5. Test dataset  

The test dataset used to test the CNN against human annotator performance contains 164 elephants 

across seven different satellite images. These images do not overlap with any of the training or 

validation sub images. The test sub images cover both heterogeneous and homogeneous areas of 

the park from different seasons and years (see Table 1).  

In addition, an image from the Maasai Mara in Kenya was used to test the transferability of the CNN 

under broader image conditions. The image comes from Geoeye-1 a lower resolution satellite 

(41cm) compared to the images used for training which come from Worldview 3 & 4 (31cm). This 

image allowed us to test the generalisability of our algorithm to a different environment and 

satellite.  

Date of acquisition Satellite Elephant labels in 
training dataset 

Elephant labels 
in validation 

dataset 

Elephant labels 
in  

test dataset 
01_12_2014 WV3 197 52 10 

29_01_2016 WV3 178 9 11 

10_02_2016 WV3 259 19 32 

03_04_2017 WV3 26 19 5 

22_11_2017 WV4 10 / / 

11_01_2018 WV4 117 / 23 

27_03_2018 WV4 236 16 24 

08_10_2018 WV4 119 1 59 

20_01_2019 WV3 22 / / 

11_08_2009 GeoEye-1 / / 32 
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2.6. Accuracy assessment 

We compare the accuracy of detections from the human volunteer annotators and CNN against our 

count which we deem as the baseline i.e. the true number of elephants in the images. To calculate 

the deviation from this baseline we generate an F2 score. 

Object detection performance is usually evaluated by precision and recall: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 !"
!"#$"

  and 𝑅𝑒𝑐𝑎𝑙𝑙 = 	 !"
!"#$%

, 

where 𝑇𝑃 stands for true positives (correctly predicted elephants), 𝐹𝑃 stands for false positives 

(predicted elephants that are not actually elephants, also called false detections), 𝐹𝑁 – false 

negatives (elephants that are not detected by the model, also called missed detections). 

The CNN gives an output in the form of bounding boxes, the same format we use for the training 

labels. We count any intersection between predicted and true bounding boxes as a true positive (i.e. 

the intersection over union threshold used to determine correct predictions was set to 0). Human 

volunteer annotators provide point detections for elephants. If these point detections were inside 

true bounding boxes, they were counted as true positives.  

In precision and recall both types of errors – false positives and false negatives – are weighted 

equally. However, as it is more time consuming for a human annotator to check an entire image for 

missing elephants (false negatives) as compared with reviewing detected elephants and eliminating 

false positives we decided to use an F2 (𝐹&  with 𝛽 = 2) score. The F2 combines precision and recall 

in such a way that more emphasis is put on false negatives [79, 80]: 

𝐹& = (1 + 𝛽') "()*+,+-.∗0)*122
&!∗"()*+,+-.#0)*122

= (4#&!)!"
(4#&!)!"#&!$%#$"

, 

which for 𝛽 = 2 is equivalent to   

𝐹2 = 5 "()*+,+-.∗0)*122
6∗"()*+,+-.#0)*122

=	 7	!"
7	!"#6	$%#$"

. 
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Performance of object detection algorithms are often measured by average precision [75] i.e. the 

area under a precision-recall curve that is obtained by varying the threshold of the confidence score. 

This threshold determines which of the predicted bounding boxes are considered as final detections. 

Average precision allows comparison between different algorithms without the need to specify this 

threshold. Since our goal was to compare the algorithm performance with human performance and 

humans did not provide a confidence score for their detections, we could not use this metric.  

The training process is stochastic due to the stochastic gradient descent algorithm used for 

optimisation of neural network weights. We ran the CNN four times to explore how stable the 

algorithm output is with respect to the stochastic training process. Neural networks models are 

commonly run as many times as time and availability of computational resources allow. Each of the 

models ran for 50,000 training steps (i.e. the number of times the weights were updated by the 

gradient descent algorithm) on the training dataset and the performance was evaluated on the 

validation dataset every 2,500 training steps (Figure 3). All the models reached a plateau in F2 score 

after around 10,000 training steps on the validation dataset. For each of the models we chose the 

weights obtained at the number of training steps that gave the best performance on the validation 

dataset.  

3. Results 

3.1. Human detection accuracy compared with CNN performance           

The results show that overall for the CNN in both homogeneous & heterogeneous areas we received 

an F2 score of 0.75. The CNN performed better in heterogeneous areas with an F2 score of 0.778 

compared to 0.73 in homogeneous areas. The human annotator median F2 score was 0.78 and 

performance was better in homogeneous areas – 0.80 compared to 0.766 in heterogeneous areas. 

These results show that the CNN performed with high comparable accuracy compared to human 

detection capabilities. Visualisation of one of the model detections is shown in Figure 5.  
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Figure 3. F2 score obtained by each of the four models considered over training steps on the validation dataset. All models 
converged during the first 50,000 training steps 

 

Figure 4. Results of human annotation compared with CNN detection for all images (general) and in homogenous and 
heterogeneous areas. The boxplots show the human results (circles represent outliers); lines are results from the 4 different 

CNN models. 
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Figure 5. CNN detections: The images on the left are the raw images and images on the right are CNN detections (green 
boxes) and ground truth labels (red boxes). Satellite image (c) 2020 Maxar Technologies 

3.2. Testing detection under different image conditions 

To test the applicability of the trained CNN model on an elephant population outside of our study 

area we test, without further training, on a known elephant population in the Maasai Mara in Kenya 

(Figure 6). The image covers 0.3 km2 in which 32 elephants were identified. The CNN managed to 

detect more than half the elephants in this image (18 true positives) and the resulting F2 score was 

0.57. Figure 6 provides visualisation of some example CNN detections. 
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Figure 6.  Example of CNN detections in Maasai Mara, Kenya from Geoeye-1 Satellite. Raw images on left and images with 
CNN detections (green boxes) and ground truth labels (red boxes) on right. Satellite image (c) 2020 Maxar Technologies 

Discussion 

For a number of species remote sensing via satellite imagery is already a viable monitoring 

technique. This study shows the feasibility of this monitoring technique in the case of the African 

Elephant. From our results we show it is possible to automate detection of African elephants in very 

high-resolution satellite imagery in both heterogeneous and homogeneous backgrounds using deep 

learning. We have automated the detection of elephants with as high accuracy as human detection 

capabilities. There is less variation in the consistency of detection for the CNN compared to human 
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detection performance (as shown in Figure 4). In addition, we show it is possible to generalise 

detection to elephant populations outside of the site of training data. The transferability of the CNN 

is promising, as a small amount of training data from this locality or satellite would further increase 

accuracy. Elephant calves were accurately detected which is noteworthy considering the lack of 

calves in the training dataset.  

Expediating identification of species by automating detection can allow for large-scale application of 

satellite-based wildlife surveying [26, 46]. The detection process that would usually take weeks can 

now be completed in a matter of hours. Observer variability mean errors in human-labelled datasets 

are inconsistently biased while in contrast, false negatives and positives in deep learning algorithms 

are consistent and can be rectified by systematically improving models. The applicability of this 

technique is set to increase in the future as the resolution of satellite imagery improves, and costs 

fall. The new constellation from Maxar, Worldview Legion, will launch in 2021. This constellation has 

a tropical circle mid-inclined orbit, rather than polar orbit, enabling imagery to be captured in the 

same location more than 15 times per day at 31cm resolution.  

Off-the-shelf object detection tools are increasingly accessible to non-experts; however, the biggest 

obstacle is obtaining sufficiently large training datasets. Crowdsourced labelling platforms, e.g. 

Zooniverse [https://www.zooniverse.org/], Amazon Mechanical Turk [https://www.mturk.com/] can 

help in the creation of these bespoke training datasets using the ‘Wisdom of the crowd’ [81, 82]. A 

remaining obstacle to scaling this surveying technique is the high cost of commercial satellite 

imagery. Worldview-3 costs $17.50 per km2 for archive imagery and tasking new imagery costs 

$27.50 per km2, with a minimum order of 100 km2 (2020 pricing).  

Areas of future research to expand this technique include testing whether there are performance 

improvements for detecting elephants by including the near infrared band and testing for which 

other species this is already a viable monitoring technique. More broadly, deep learning methods for 

detecting small objects can be further improved [83, 84] and large training datasets containing 
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images of wildlife from an aerial perspective should be developed. If satellite monitoring is applied 

at scale then developing methods to ensure standardised and occasional ground-truthing will be 

required to ensure image interpretation is accurate [25]. Using high resolution satellite imagery as a 

wildlife surveying tool will inevitably increase in the future as image resolution improves and costs 

fall. Developing automated detection tools to enable larger scale application of this wildlife 

monitoring technique is highly valuable as satellite image surveying capabilities expand. 
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