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Abstract 

Defects in protein O-mannosylation lead to severe congenital muscular dystrophies known as -

dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on -

dystroglycan, which leads to a reduction in cell adhesion to the extracellular matrix. Mutations in protein 

O-mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-

mannosyl glycans, are mainly associated with muscle-eye-brain (MEB) disease. In addition to defects in 

cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response 

to defects in POMGNT1. However, direct molecular mechanisms are largely unknown. We used 

POMGNT1 knock-out HEK293T cells and fibroblasts from a MEB patient to gain a deeper insight into the 

molecular changes in POMGNT1 deficiency. A combination of biochemical and molecular biological 

techniques with proteomics, glycoproteomics and glycomics revealed that a lack of POMGNT1 activity 

strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an 

increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in 

the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. We 

found that in POMGNT1 deficient cells ERK1/2 and p38 signaling pathways are activated and 

transcriptional changes that are comparable to the epithelial-mesenchymal transition (EMT) are triggered, 

defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that 

changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the 

complex clinical symptoms of MEB or -dystroglycanopathy in general, and suggests a previously 

underestimated impact of changes in O-mannosylation on N-glycosylation.  
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Introduction 

The modification of proteins by glycosylation is an ubiquitous feature of all living organisms (1). 

Protein-linked glycans are involved in a multitude of cellular processes ranging from monitoring the folding 

state of glycoproteins to cell adhesion and migration (2). Among the different types of glycosylation, N-

glycosylation and O-mannosylation are evolutionary conserved from bacteria to mammals. In humans, 

changes in those essential protein modifications inter alia can modulate immune responses, promote cancer 

cell metastasis and underlie the pathophysiology of severe congenital disorders (3-5). Both modifications 

initiate at the endoplasmic reticulum (ER), where the target polypeptides and the donor saccharides are 

synthesized and eventually covalently linked (2). Only properly glycosylated and folded proteins can leave 

the ER and travel through the Golgi apparatus to reach their final cellular destinations. On their way, N-

linked and O-mannosyl glycans can be further modified which leads to diverse species- or even cell type-

specific glycans (2). 

In the case of N-glycosylation, the dolichol-pyrophosphate-linked oligosaccharide Glc3Man9GlcNAc2 

is assembled at the ER membrane and the glycan moiety is transferred en bloc to Asn residues of the 

consensus sequon Asn-Xaa-Ser/Thr/Cys (X: proline is excluded). This way, the vast majority of proteins 

that enter the secretory pathway are N-glycosylated including many cell surface receptors and cell adhesion 

molecules (6). Protein-linked carbohydrate moieties are then further processed, and finally extended in the 

Golgi through the concerted action of diverse specific glycosyltransferases resulting in three distinct types 

of N-glycans: high-mannose, complex- and hybrid-type, which contain the common core Man3GlcNAc2-

Asn (2). The diverse glycan structures and glycosylation patterns on cell surface molecules are highly 

dynamic and can be differentially regulated both during development and in certain pathological conditions, 

often associated with the acquisition of altered cellular properties (4). 

Classically, O-mannosylation is initiated by the conserved PMT family of protein O-

mannosyltransferases (POMT1 and POMT2 in mammals), which catalyse the transfer of mannose from 

dolichol-phosphate-linked mannose to Ser and Thr residues of nascent proteins (7). Three different core 

structures can be built on the protein-linked mannose (8). Linear core m1 and branched core m2 glycans, 

which share the common inner core GlcNAc-β1,2-Man-Ser/Thr, are initiated in the cis Golgi by the addition 

of a GlcNAc residue by the protein O-mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), and 

are further extended while proteins travel through the Golgi to the cell surface. In contrast, core m3 glycans 

are already elongated in the ER (GalNAc-β1,3-GlcNAc-β1,4-(phosphate-6)-Man-Ser/Thr) and then further 

modified in the Golgi by the sequential action of numerous glycosyltransferases including the ribulose-5-

phosphate transferase fukutin (FKTN). The resulting complex polysaccharide structure, known as 

“matriglycan” is so far only found on α-dystroglycan (α-DG), a central member of the dystrophin 

glycoprotein complex family in peripheral membranes, and enables its interaction with extracellular matrix 
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(ECM) components such as laminin (9). Defects in this complex biosynthetic pathway lead to the loss of 

the matriglycan on α-DG, and consequently impair interactions between α-DG and e.g. laminin, which 

interferes with the formation of basement membranes (9). This defect has been recognized as a major patho-

mechanism of severe congenital muscular dystrophies with neuronal migration defects, known as α-

dystroglycanopathy (OMIM 236670; 253280; 253800; 606612; 607155; 608840) (10).  

The glycosyltransferase POMGNT1 has a key role in the elongation of O-mannosyl glycans (11). In its 

absence not only core m1 and m2 structures are missing, also formation of the matriglycan fails, since 

POMGNT1 recruits FKTN to maturing core m3 structures (12, 13). The great majority of mutations in 

POMGNT1 have been linked to muscle-eye-brain disease (MEB; OMIM 253280), a congenital muscular 

dystrophy in humans, which is characterized by additional brain malformations and structural anomalies in 

the eye (11). In the murine model, knock-out of POMGNT1 is viable with multiple developmental defects, 

similar to the clinical picture of human MEB patients (14, 15). The pathology of MEB suggests a functional 

role for POMGNT1 in control of cell adhesion and migration. For example, in the transgenic POMGNT1-

based MEB mouse model impaired cell-ECM adhesion results in disruption of basement membranes and 

over migration of neurons during development of the cerebral cortex (15). However, also clusters of granule 

cells which failed to migrate have been frequently observed (15). In addition to its important role during 

mammalian development, POMGNT1 has recently been linked to the progression of glioblastoma, fatal 

primary brain tumors with survival time of 12-15 months, as well as the resistance of glioblastoma cells to 

the chemotherapeutic agent temozolomide (16, 17). Strikingly, in glioblastoma models increased cell-cell 

adhesion has been observed when POMGNT1 is missing (16). However, molecular reasons for the different 

consequences of POMGNT1 deficiency are just emerging. 

Very recently, glyco-engineered human embryonic kidney (HEK) 293 cells turned out to be especially 

useful for the characterization of known, as well as the identification of new glycosylation pathways (18, 

19). In the present work, we took advantage of a gene-targeted POMGNT1 knock-out in HEK293T cells to 

study the consequences of POMGNT1 deficiency. The combination of glyco(proteo)mics with classic 

biochemistry, molecular and cell biology resulted in the discovery that cell-cell adhesion mediated by 

neuronal cadherin (N-Cdh) is affected and defined a possible molecular mechanism underlying the observed 

phenotype. Similar effects in MEB patient-derived fibroblasts confirmed the validity of the HEK293T 

model to study molecular effects of O-mannosylation deficiencies. 

Results 

POMGNT1 deficiency impairs cell-matrix and reinforces cell-cell interactions in a HEK293T cell model 

To gain insight into functional implications of POMGNT1 deficiency, we generated a gene-targeted 

knock-out in HEK293T cells (ΔPOMGnT1) as detailed in Experimental procedures and Fig. S1. The loss 
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of POMGNT1 activity was confirmed by the O-mannosylation status of the endogenous substrate α-DG 

using the matriglycan-directed antibody IIH6. Whereas the O-linked matriglycan is absent in POMGNT1-

depleted cells, reintroduction of human POMGNT1 rescued O-mannosylation of α-DG verifying the 

specificity of the system (Fig. 1A). General characterization of the morphology of POMGNT1 knock-out 

cells by confocal microscopy revealed that POMGNT1-deficient cells appear more rounded and stronger 

aggregated compared to wild type cells which show extensive spreading and even distribution. This 

phenotype is also reverted upon reintroduction of POMGNT1 (Fig. 1B).  

To further characterize molecular events responsible for the morphological differences, we analyzed 

cell-matrix and cell-cell adhesion. As expected, POMGNT1-deficient cells adhere to laminin, a major ECM 

component and interactor of the α-DG matriglycan, to a significantly lower extent when compared to wild 

type cells (Fig. 2A). Intriguingly, when confluent monolayers of wild type cells were incubated with wild 

type and knock-out cells, respectively, cell-cell adhesion of ΔPOMGnT1 cells turned out to be significantly 

increased. The same result is observed using a monolayer of ΔPOMGnT1 cells (Fig. 2B). Since cell-matrix 

and cell-cell interactions are major opposing forces balancing cellular migration, we further took advantage 

of xCELLigence real-time cell analysis that allows live monitoring of cell proliferation and cell migration. 

ΔPOMGnT1 cells proliferate slower than wild type cells with slopes of 0.07 and 0.09, respectively (Fig. S2, 

A and B). In agreement with increased cell-cell adhesion, the migration rate of ΔPOMGnT1 cells is reduced 

by a factor of three (Fig. 2C and Fig. S2D).  

Taken together, the POMGNT1 knock-out HEK293T cell model revealed that cell-cell adhesion 

increases, whereas cell-matrix interactions and cell migration are negatively affected when O-mannosyl 

glycans are not further elongated.  

Increased cell-cell adhesion of POMGNT1-deficient cells is caused by changes in N-Cdh abundance  

In order to identify determinants which underlie the observed phenotype in ΔPOMGnT1 cells, we 

performed label-free quantitative proteomics of whole cell lysates from wild type and ΔPOMGnT1 

HEK293T cells. Five independent replicates were analyzed and homoscedasticity and normal distribution 

were confirmed (Fig. S3, A and B). Altogether, 86 out of 437 proteins with differential abundance in 

POMGNT1-deficient cells could be identified (Fig. 3A and Fig. S3D, Table S4). Interestingly, gene 

ontology term functional annotation of proteins with a significant regulation revealed enrichment for 

proteins under the molecular function term of "cadherin binding involved in cell-cell adhesion" (Fig. 3A 

and S3D, Table S4), pointing to an impact of POMGNT1 deficiency on cadherin-mediated cell-cell 

adhesion. In addition, the protein N-Cdh was found to be increased by a factor of three in ΔPOMGnT1 cells 

(Fig. 3A). This result was also confirmed by Western blot (Fig. 3, B and C) and correlated well with 

increased mRNA levels of N-Cdh (Fig. 3D). To investigate the general validity of our findings, we took 

advantage of skin fibroblasts derived from an MEB patient who presented characteristic symptoms such as 
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mental retardation and blindness due to variant c.535_751del (p.Asp179Argfs*11) in the POMGNT1 gene 

(NM_017739.4). In accordance with our HEK293T model, protein and mRNA abundance of N-Cdh in MEB 

patient-derived fibroblasts showed increased values compared to fibroblasts from two healthy donors (Fig. 

3, E-G). 

Cadherins are major players in the formation of cellular junctions (20). These membrane-anchored cell 

surface glycoproteins mediate cell-cell adhesion through homotypic interactions of their conserved 

extracellular domains. Thus, to determine whether elevated cell-cell adhesion observed in POMGNT1-

deficient cells is directly linked to the increased abundance of N-Cdh, we performed cell-cell adhesion 

assays in presence of either N-Cdh blocking or IgG-directed antibodies. As shown in Fig. 4, ΔPOMGnT1 

cells show increased adhesion to wild type and other ΔPOMGnT1 cells in the IgG-treated controls. This 

increase, however, is diminished upon incubation with an N-Cdh targeting antibody, demonstrating N-Cdh 

as a key molecular driver for increased cell-cell adhesion in the established ΔPOMGnT1 HEK293T cell 

model. 

POMGNT1 deficiency affects N-Cdh N-glycosylation 

N-Cdh is highly N-glycosylated and N-linked glycans affect its adhesive properties by modulating its 

homomeric interactions in cis and in trans (21, 22). We therefore asked whether an altered N-glycosylation, 

as an indirect effect of POMGNT1 deficiency, could contribute to increased N-Cdh-mediated cell-cell 

adhesion. We performed comprehensive N-glycomics and N-glycoproteomics on N-Cdh. For that purpose, 

the extracellular domain (EC) of N-Cdh was recombinantly expressed and purified from wild type and 

ΔPOMGnT1 cells (detailed in Experimental procedures; Fig. S4). N-glycomics analysis by multiplexed 

capillary gel electrophoresis with laser induced fluorescence detection (xCGE-LIF) revealed that total 

abundance of fully galactosylated and sialylated N-glycan structures is remarkably decreased on N-Cdh 

derived from ΔPOMGnT1 cells when compared to wild type (Fig. 5A, normalized intensity of peaks 2, 4, 

9 and 10). In accordance, the abundance of non-galactosylated N-glycan structures is increased (Fig. 5A, 

normalized intensity of peaks 6 and 7). Moreover, fully galactosylated multiantennary N-glycans (Fig. 5A, 

A3+F) are reduced on ΔPOMGnT1-derived N-Cdh and a non-galactosylated complex-type N-glycan with 

a bisecting GlcNAc (GlcNAc(5)Man(3)+Fuc(1)) represents the dominating N-glycan structure (detailed in 

Supporting information SI5). 

In order to gain even deeper insights, an exploratory site-specific approach was taken to 

comprehensively map glycosylation sites and the corresponding N-glycoforms of N-Cdh. Hydrophilic 

interaction liquid chromatography (HILIC)-enriched tryptic and proteinase K-generated N-Cdh N-

glycopeptides were analyzed by nano-reverse-phase liquid chromatography coupled online to an 

electrospray ionization orbitrap tandem mass spectrometer (nano-RP-LC-ESI-OT MS/MS) (for details see 

Experimental procedures). All eight potential N-glycosylation sites (Asn190, 273, 325, 402, 572, 622, 651, 
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692) of N-Cdh were identified (Fig. 5B, indicated as red ribbons). With the exception of Asn651 which 

predominantly carries a high-mannose-type N-glycan, all sites feature complex-type N-glycans. 

Characterization of the N-glycan microheterogeneity based on intact N-glycopeptides revealed differences 

in relative abundance of the major N-glycoform at each site on N-Cdh derived from ΔPOMGnT1 compared 

to wild type cells (Fig. 5C). All N-glycosylation sites (except for Asn651 and Asn692 which are both located 

at the stem region of the molecule) feature non-galactosylated complex-type N-glycans with a bisecting 

GlcNAc (GlcNAc(5)Man(3)±Fuc(1)) as the dominating composition on N-Cdh from ΔPOMGnT1 cells. 

Comparative and site-specific N-glycoproteomics of quantitative changes in the N-glycan 

microheterogeneity revealed a significant decrease in galactosylation (-27% on average) and sialylation        

(-16% on average) throughout the vast majority of N-glycosylation sites (only exception are Asn190 and 

Asn651) (Fig. 5C). This decrease in galactosylation and sialylation is associated with a significant increase 

of non-galactosylated N-glycan compositions that feature a bisecting GlcNAc (Fig. 5B). The site-specific 

relative changes of N-glycan traits on N-Cdh are shown in detail in Supporting information SI1-SI3. Overall, 

N-glycosylation of N-Cdh in ΔPOMGnT1 cells exhibits a reduction in the degree of galactosylation and 

sialylation with non-galactosylated complex-type N-glycans with a bisecting GlcNAc dominating. 

We next measured the transcript levels of genes encoding for major glycosyltransferases of N-glycan 

processing that could be responsible for the observed changes in the N-glycan profile of N-Cdh using the 

nCounter technology (23). A decrease by 27% of β-1,4-galactosyltransferase 1 B4GALT1 mRNA as well as 

a reduction by 83 % in the transcript level of sialyltransferase ST6GAL1 was detected, explaining the limited 

occurrence of respective N-glycans on N-Cdh in ΔPOMGnT1 cells (Table S6). Further, mild reduction in 

the mRNA levels of the Golgi GlcNAc-transferases MGAT1 (by 17%), MGAT2 (by 13%) and MGAT5 (by 

19%) were observed. 

In summary, our data demonstrate that in POMGNT1-deficient cells the N-glycan profile of N-Cdh is 

changed and that the observed alterations correlate to a great extent with transcriptional changes of 

respective N-glycan modifying enzymes.  

In addition to N-glycans, N-Cdh carries non-elongated O-linked mannose residues (24, 25) which 

depend on a recently identified class of O-mannosyltransferases (tetratricopeptide repeats (TPR)-containing 

proteins (TMTC 1-3), rather than classic O-mannosylation (18). The O-mannose glycoproteome of N-Cdh 

revealed 15 O-mannose glycosylation sites – four of which have not been reported before (Supporting 

information SI4). However, no difference in the O-mannosylation pattern of N-Cdh between ΔPOMGnT1 

and wild type HEK293T cells was detected, excluding indirect effects on the activity of TMTCs.  

Changes in N-Cdh N-glycosylation impact on its homotypic interactions in vitro 

Hypo-N-glycosylation of N-Cdh increases the prevalence of cis N-Cdh dimers on the cell membrane, 

thereby stabilization of cell-cell contacts (21, 22). To determine whether the observed changes in N-
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glycosylation of N-Cdh also favor homotypic interactions, the adhesive properties of the recombinant 

extracellular domain of N-Cdh (see above) were analyzed using an in vitro bead aggregation assay (26). 

Dynabeads coated with the protein isolated from wild type or ΔPOMGnT1 HEK293T cells were incubated 

with either CaCl2 or EDTA as a control. Aggregation of beads, reflecting Ca2+-dependent homotypic 

interactions of the extracellular domain of N-Cdh, was recorded and quantified at specific time intervals 

over the course of 1 hour. As shown in Fig. 6A, ΔPOMGnT1-derived N-Cdh triggers the formation of larger 

aggregates in comparison to wild type-derived N-Cdh, demonstrating that the adhesive properties of N-Cdh 

from ΔPOMGnT1 cells are enhanced. Taken together, changes in cell-cell adhesion of ΔPOMGnT1 cells 

are due to a higher frequency of N-Cdh with less complex N-linked glycan structures that facilitate stronger 

homotypic interactions. 

Loss of function of POMGNT1 activates ERK and p38 signaling 

To further investigate how POMGNT1 deficiency modulates N-Cdh-mediated cell-cell adhesion, we 

explored possible changes in cellular signaling using a human phosphokinase array with 46 different 

kinases. Of all kinases examined, the extracellular signal-regulated kinase ERK1/2 and the mitogen-

activated protein kinase p38 showed significantly enhanced phosphorylation in ΔPOMGnT1 HEK293T 

cells when compared to wild type cells (Fig. 7, A and B). Since dysregulation of DG and matriglycan 

biosynthesis has been associated with modulation of the ERK-MAPK pathway (27, 28), the identified 

changes were further validated by Western Blot. Consistent with the phospho-kinase array data, 

ΔPOMGnT1 cells showed a significant increase in the phosphorylation levels of ERK1/2. Additionally, 

phosphorylation of the upstream MAP kinase kinase MEK1/2 (29) was found to be increased (Fig. 7, C and 

D) further corroborating that the ERK-MAPK pathway is activated in our ΔPOMGnT1 HEK293T cell 

model. 

Lack of POMGNT1 activity induces an EMT-related transcriptional response 

Increased expression of N-Cdh (30), transcriptional modulation of N-glycan modifying enzymes (31) 

and activation of the ERK-MAPK pathway (32) have been linked to epithelial-mesenchymal transition 

(EMT), a process which is of major importance during development, wound healing as well as tumor 

progression and metastasis (33). Therefore, the impact of POMGNT1 deficiency on the expression of EMT 

marker genes was investigated. As shown in Fig. 8A, the mRNA levels of the epithelial markers LAMA2 

(encoding laminin subunit α2) and CLDN6 (encoding claudin 6) are markedly decreased, whereas 

expression levels of the mesenchymal markers ACTA2 (encoding actin α2) and CDH2 (encoding N-Cdh) 

are significantly elevated in ΔPOMGnT1 compared to wild type cells. Reintroduction of the POMGNT1 

gene reversed the observed transcriptional changes thereby confirming their specificity. Moreover, mRNA 
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levels of the EMT-inducing transcription factors (Slug, Snail, TCF3, LEF1) showed significant upregulation 

in ΔPOMGnT1 cells (Fig. S5).  

EMT processes are associated with the upregulation of matrix metallopeptidases (MMPs) which 

represent a family of zinc-dependent endoproteases involved in degrading ECM components (34). A strong 

and specific increase of MMP1, MMP3, MMP8 and MMP17 mRNA is observed in ΔPOMGnT1 cells (Fig. 

8A). Also expression of metallopeptidase inhibitors (TIMPs; (35)) is affected. Likewise, analysis of the 

abundance of MMP proteins using a human MMP antibody array showed that MMP1, MMP3 and MMP8 

levels are increased (Fig. 8, B and C).  

To determine whether decreased POMGNT1 activity also triggers an EMT-like transcriptional response 

in MEB patient-derived fibroblasts, mRNA levels of the above genes were assessed. Indeed, in comparison 

to control fibroblasts, epithelial markers (LAMA2 and CLDN6) were found to be significantly reduced, 

whereas mesenchymal markers (ACTA2, VIM encoding vimentin and FN encoding fibronectin) were 

significantly elevated in MEB patients (Fig. 9A). In addition, the transcriptional modulation of MMPs and 

TIMPs was also comparable to the changes observed in ΔPOMGnT1 HEK293T cells with particularly large 

increase in transcript levels of MMP1 and MMP17 (Fig. 9B).  

Altogether, our data demonstrate that lack of POMGNT1 activity induces an EMT-like transcriptional 

response resulting, inter alia, in elevated levels of ECM degrading enzymes. 

Discussion 

-Dystroglycanopathy is associated with the development of a variety of medical conditions, including 

muscular dystrophy and mild to severe changes in the central nervous system and the eyes. So far, 18 

causative genes for α-dystroglycanopathy have been identified that are associated with the O-mannose 

glycosylation pathway of α-DG (10). Among those are POMT1/POMT2 and POMGNT1, the major disease 

causing factors of the Walker Warburg syndrome (WWS; lacking classic O-mannose glycans), and MEB 

(no elongation of O-linked mannoses), respectively. Current knowledge regarding the predominant disease 

mechanism suggests that incomplete matriglycan biosynthesis impairs the binding of α-DG to extracellular 

matrix proteins such as laminin, resulting in damage to cell membrane integration and defective basement 

membranes (9). In recent years, it turned out that changes in classic O-mannosylation due to altered 

expression of POMT2 impact also on epithelial cadherin (E-Cdh)-mediated cell-cell adhesion during murine 

embryonic development and in human gastric carcinoma (36, 37). However, whether the observed changes 

only apply to E-Cdh and POMT2 is unclear, as are the underlying molecular mechanisms. Taking advantage 

of POMGNT1-deficient HEK293T cells and MEB patient-derived fibroblasts, we now show that, in general, 

aberrant classic O-mannosylation impacts on cadherin-mediated cell-cell adhesion. We demonstrate that 

loss of POMGNT1 function results in (1) reinforced N-Cdh-mediated cell-cell adhesion and impaired cell 
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migration potential; (2) increased levels of N-Cdh and changed N-glycan structures on its extracellular 

domain, which in turn enhance its intrinsic adhesive properties; (3) activation of ERK1/2 and p38 signaling 

pathways and induction of transcriptional modulations which are comparable to EMT-like events.  

Changing cell migration behavior is a (patho)physiological process determined by the opposing forces 

that define cell-ECM and cell-cell interactions. In invasive cancers, decreased levels of POMT1, POMT2 

and other enzymes of the classic O-mannosylation pathway correlate with high cell migration and invasion 

(28). But, low POMGNT1 levels can also hinder cell migration. A POMGNT1-based MEB mouse model 

revealed clusters of granule cells within the cerebellum, which have failed to migrate during development 

(14). Further, Abbott and coworkers reported that knock-down of POMGNT1 and MGAT5B impairs 

neuronal cell migration (38), and Lan and coworkers found that silencing of POMGNT1 decreases cell 

proliferation and invasion in glioblastoma (16). Therefore, POMGNT1 deletion may also act as a break on 

invasion and migration, however, the direct molecular mechanism for the observed phenotypes are not fully 

understood. Our HEK293T cell model recapitulates the observed impact of POMGNT1 on cell adhesion 

and migration observed in neuronal and glioblastoma cells, and identifies increased N-Cdh-mediated cell-

cell adhesion as one of the reasons that influences the cellular migration potential when POMGNT1 activity 

is reduced. In addition to the increased amount of N-Cdh, its N-glycosylation pattern is changed to further 

promote N-Cdh homotypic interactions. In general, on N-Cdh from POMGnT1 N-glycans with a lower 

degree of galactosylation and sialylation, along with a slight increase in the abundance of bisecting GlcNAc 

are observed. These changes are driven by the transcriptional regulation of specific glycosyltransferases, 

such as B4GALT1 and ST6GAL1, which act as heteromeric complex in the successive addition of terminal 

ß1,4-linked galactose and -2,6-linked sialic acid to N-glycans (39). Most interestingly, the changes in N-

glycosylation are site specific and especially site N402 in the EC3 domain contains less branched complex 

glycans, which have been reported to favor cell-cell adhesion. N402, along with N273 and N325, has 

previously been identified as one of the most relevant N-glycosylation sites that strongly increase cis-

dimerization of N-Cdh when complexity of N-glycans is decreased (21). In line with previous findings of 

the group of S. Pinho (in collaboration with our group) that in human gastric carcinomas expression levels 

of POMT2 correlate with altered structures of N-glycans on E-cadherin (37), we now demonstrate a link 

between classic O-mannosylation and N-glycosylation of cadherins which was for the first time analyzed in 

such depth.  

Very recently it turned out that cadherins are also major targets of TMTC1-3 which add single non- 

extended O-linked mannoses to EC domains (18) that impact on cellular adherence (40). Indirect effects on 

TMTC-based O-mannosylation of N-Cdh due to lack of POMGNT1 could be excluded, as its O-

mannosylation is not altered in our HEK293T cell model.  
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Increased expression of N-Cdh is part of a transformation process that mostly epithelial cells undergo 

known as epithelial-to-mesenchymal transition (30). EMT is inherent to physiological processes such as 

embryonic stem cell differentiation and development (41) and has further been associated with pathological 

conditions such as wound healing, fibrosis and cancer stemness and progression (42-45). Key events of 

EMT are dissolution of epithelial cell-cell junctions, loss of the apical-basal polarity and reorganization of 

the cytoskeleton as well as downregulation of epithelial gene expression in favor of genes that establish the 

more motile mesenchymal phenotype (33). Long regarded as an all-or-nothing event, EMT is now 

considered a transition suggesting a gradual and reversible process that does not exclusively concern 

epithelial cells (46). EMT does not necessarily include increased cell motility but can even lead to the 

opposite migration behavior (47, 48). Our results on POMGNT1-deficient HEK293T and fibroblast cells 

point to a partial EMT event that is accompanied by reduced expression of epithelial and increased 

expression for most of the mesenchymal markers tested. Very recently differential expression of POMGNT1 

in human glioma cell lines has been reported to impact on the expression of some EMT marker proteins 

(17) further corroborating the general relevance and validity of our HEK293T cell model. We also observe 

a predominant induction of MMPs that is indicative of an EMT-like transition. Increased level of MMPs 

have been shown to be involved in degradation of the basement membrane in developmental processes (49, 

50), wound healing (51) and cancer progression (34). Since breakdown of basement membranes is also one 

of the hallmark events in MEB disease (11) or -dystroglycanopathy in general, elevated levels of MMPs 

could increase ECM protein degradation and impede cell-ECM interactions further deteriorating the clinical 

outcome of these patients. A similar role has been suggested for MMP2 and MMP9 in physiological and 

pathological conditions involving members of the dystrophin glycoprotein complex (52).  

In POMGnT1 cells partial EMT correlates with sustained activation of ERK1/2 and p38 MAPK 

signaling which have been associated with EMT induction (53). Whereas these pathways seem to be 

decisive for the EMT response observed, the source of its activation remains unclear. Although other factors 

cannot be excluded completely, the most likely candidate that induces ERK signaling is the dystrophin 

glycoprotein complex and DG in particular, that was suggested as a multifunctional adaptor, capable of 

interacting with components of the MAPK cascade including MEK and ERK (27). The role of DG on 

developmental and pathological EMT processes is well documented (50, 54). In line with our data, α-DG 

glycosylation and its interaction with laminin has been suggested to enable β-DG to sequester ERK 

preventing it from translocating into the nucleus and promoting differentiation of a mesenchymal phenotype 

(55). To our best knowledge, so far no link between p38 and DG has been reported. How p38 MAPK 

pathway is linked to POMGNT1 deficiency will be an interesting future question. In many cancers, 

heterogeneity in protein structures due to aberrant glycosylation results in induction of EMT (31). Thus, the 
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observed modulation of N-glycan modifying enzymes in ∆POMGnT1 cells also might contribute to some 

extend to the induction of EMT-linked signaling pathways. 

Our study proved ∆POMGnT1 HEK293T cells as an excellent system to study molecular details 

underlying -dystroglycanopathy. Our data suggest a model (Fig. 10) in which due to the loss of O-linked 

matriglycan on α-DG, ERK and p38 signaling cascades are activated in POMGNT1-deficient cells. As a 

consequence, EMT-like transcriptional events result inter alia in the induction of N-Cdh (CDH2) and 

MMPs. In addition, transcriptional modulation of N-glycan modifying enzymes contributes to increased N-

Cdh homotypic interactions. In combination, these events result in enhanced cell-cell adhesion and 

disordered basement membranes thereby contributing to the molecular pathogenesis of MEB disease. 

Experimental procedures 

Cell lines and culture conditions 

HEK293T cells were maintained in high glucose DMEM (ThermoFisher Scientific) supplemented with 

10% FBS (ThermoFisher Scientific), 1% non-essential amino acids (ThermoFisher Scientific) and 1% 

Pen/Strep (ThermoFisher Scientific) (referred to as complete media) at 37 °C in a humidified incubator with 

5% of CO2. 

Generation of TALEN-mediated POMGNT1 knock-out cells 

Transcription Activator-Like Effector Nuclease (TALEN)-based constructs were designed utilizing the 

TAL Effector Nucleotide Targeter 2.0 online tool (56). Three TALEN constructs were selected which target 

the ATG start codon of POMGNT1, the coding sequence of the D-X-D motif and an intron-exon boundary 

upstream of the exon containing the D-X-D motif. All constructs present a restriction site close to the 

predicted TALEN cleavage site to allow screening of induced mutations by restriction fragment length 

polymorphism (RFLP) analysis. TALENs were assembled using the Golden Gate TALEN and TAL Effector 

Kit 2.0 (57) and employing pC-GoldyTALEN as the final expression vector (#1000000024 and #38143 

respectively; both from Addgene). Correct assembly of TALEN plasmid DNA was verified by restriction 

site analysis and sequencing and TALEN plasmids were transfected into wild type HEK293T cells. Next, 

genomic DNA was isolated from transfected cells using the DNeasy Blood and Tissue Kit (Qiagen) 

according to manufacturer's instructions and POMGNT1 regions were amplified by PCR and digested using 

restriction sites close to the predicted TALEN cutting site. Detection of PCR products resistant to restriction, 

indicated efficient cleavage by TALENs and was followed by dilutional cloning (1 cell/100 μl/96-well) and 

further genomic DNA isolation, PCR and RFLP analysis to obtain single cell knock-outs. From the selected 

TALEN construct combinations, the one targeting the ATG start codon of POMGNT1 (close to a HpaII 

restriction site; forward TALEN construct: TGGTGACCCGCCAAT, reverse TALEN construct: 
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GGAAGCCCAGCCCCCTC) was the most efficient in inducing mutations and was therefore used for 

subsequent dilutional cloning, PCR and RFLP. PCR analysis and sequencing of genomic DNA confirmed 

the knock-out of POMGNT1 (Fig. S1). POMGNT1 knock-out clones were furthermore evaluated by Wheat 

Germ Agglutinin (WGA) enrichment for absence of reactivity towards matriglycan on α-DG recognized by 

IIH6 antibodies (58) (see below). For POMGNT1 complementation, pMBA40 was stably transfected into 

POMGNT1 knock-out HEK293T cells. 

Generation of stable cell lines 

Transfections were performed with the calcium phosphate method (59). In short, 5 µg of plasmid DNA 

in 250 mM CaCl2 were added dropwise to double strength HBSS (280 mM NaCl, 2.8 mM Na2HPO4, 50 

mM HEPES, pH 7.2) while mildly vortexing and the final transfection solution was applied drop wise to 

cells with 40-50% confluency in 15 cm dishes. After 6 h the medium was replaced, and selection was 

performed with 500 μg/ml Zeocin (Invitrogen) for 4 weeks. 

Patient material 

The study was performed in accordance with the declaration of Helsinki and approved by the Ethics 

Committee of the Medical Faculty Heidelberg. MEB skin fibroblasts were derived from a patient who 

presented with characteristic stigmata as mental retardation, blindness, spastic tetraplegia, contracture of 

limbs and severely reduced proprioceptive reflex due to variant c.535_751del (p.Asp179Argfs*11) in the 

POMGNT1 gene (NM_017739.4). Control skin fibroblasts were obtained from two healthy anonymous 

donors. Fibroblasts were maintained in high glucose DMEM (ThermoFisher Scientific) supplemented with 

10% FBS (PAN Biotech) and 1% Pen/Strep at 37 °C in a humidified incubator with 5% of CO2. Growth 

medium was changed every 72 h. 

Plasmid construction 

To generate pMLHD7 for expression and subsequent purification of N-Cdh extracellular domain (EC) 

(EC-N-Cdh) C-terminally fused to a His8/Strep-tag, PCR was performed on mouse cDNA using primers 

Forward: acGGCGCGCCGACTGGGTCATCCCGCCAA and Reverse: 

ccgCTCGAGTTATTTTTCGAACTGCGGGTGGCTCCAAGCGCTGTGATGATGGTGGTGAGGTGAT

GGGCGCCCGTGCCAAGCC. The encoded protein shows 96.8% identity with human N-Cdh. AscI and 

XhoI restriction sites are shown in italics, His8- and Strep-tag coding sequences are underlined and the 

overlapping sequences to the extracellular domain of N-Cdh are depicted in bold. Purified PCR products 

were digested with AscI and XhoI and inserted into the pSecTag2 expression vector (Invitrogen). 

Human full-length POMGNT1 was amplified by PCR from cDNA extracted from HEK293T cells using 

primers Forward: cgaCTCGAGTGTCTGTTCTGGGGCTCCTGG and Reverse: 
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cttgaGCTAGCCCCGCCAATCCGGTATGGA. XhoI and NheI restriction sites are shown in italics and 

the overlapping sequences to human POMGNT1 are depicted in bold. Purified PCR products were digested 

with XhoI and NheI and inserted into the pcDNA6/V5-His expression vector (Invitrogen) generating 

plasmid pMBA40 for POMGNT1 complementation. All plasmids created in this study were verified by 

sequencing. 

Whole cell lysate and crude membrane preparation 

Cells at 90% confluency (~5.0 x 106 cells) were washed with ice-cold PBS and lysed with 500 µl of 

lysis buffer (10 mM Tris-HCl pH 7.6, 1% (w/v) SDS, 1 mM EDTA, supplemented with Halt™ protease and 

phosphatase inhibitor cocktail without EDTA (ThermoFisher Scientific)). Lysis was performed for 30 min 

at 4 °C on a rotator with occasional vortexing and whole cell lysates were collected upon centrifugation 

(16,000 x g, 10 min, 4 °C). 

For crude membrane extraction, cell pellets of ~5.0 x 106 cells were resuspended in 750 µl of ice-cold 

hypotonic buffer (20 mM Tris-HCl pH 7.4, 10 mM NaCl, 1.5 mM MgCl2, supplemented with protease 

inhibitor cocktail without EDTA (ThermoFisher Scientific) and 0.05 U/μl benzonase (Sigma Aldrich) and 

homogenized by passing through a 27-gauge needle for 10 times. Homogenized samples were subjected to 

centrifugation (16,000 x g, 15 min, 4 °C) and resulting pellets were resuspended in 500 µl of hypotonic 

buffer. Protein concentration was measured using the BCA protein assay (Pierce). 

WGA pull-down 

Around 1.0 x 107 cells were incubated with 500 µl of ice-cold homogenization buffer (50 mM Tris-HCl 

pH 7.6, 150 mM NaCl, 1% Triton X-100, 1 mM PMSF and 1 mM benzamidine) for 20 min at 4 °C. Lysates 

were subjected to centrifugation (20,000 x g, 5 min, 4 °C), equivalent amounts of solubilized proteins from 

the supernatant (input) were added to 75 µl of WGA-bound agarose beads (Vector Laboratories) and 

incubated o/n at 4 °C. After centrifugation (2,000 rpm, 3 min, 4 °C) the supernatants (void) were removed, 

and beads washed three times with 1 ml of ice-cold wash buffer (50 mM Tris-HCl pH 7.6, 150 mM NaCl, 

0.1% Triton X-100). Bead-bound proteins were eluted by boiling in 100 µl of 2.5x SDS sample buffer (5x 

sample buffer: 250 mM Tris-HCl pH 6.8, 500 mM DTT, 50% glycerol (v/v), 0.25% Bromophenol blue 

(w/v), 10% SDS (w/v)) (3 min, 95 °C) followed by centrifugation at 14,000 rpm for 1 min. 30 µl of eluted 

proteins were analyzed by SDS-PAGE and Western Blot. 

Heterologous protein expression and purification 

For expression of EC-N-Cdh, HEK293T cells stably transfected with pMLHD7 were cultured for 72 h 

in serum-free medium. Upon initial centrifugation for removal of dead cells (1,000 x g, 10 min, 4 °C) culture 

medium from two 90% confluent 15 cm dishes was filtered through a 1.2 μm filter (Sartorius Stedim 
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Biotech) and applied to a HisTrap column (1 ml bed volume, GE Healthcare) at a drop rate of 500 µl/min 

at 4 °C for o/n. The column was washed with 10 ml of wash buffer (20 mM Na3PO4, 500 mM NaCl, 5 mM 

imidazole, pH 7.4) and elution of bound proteins was performed in 10 fractions of 500 µl elution buffer (20 

mM Na3PO4, 500 mM NaCl, 500 mM imidazole, pH 7.4). Protein concentration of eluates was determined 

by BCA protein assay (Pierce) and analyzed by SDS-PAGE followed by Coomassie blue staining and 

Western Blot. 

Western Blot 

Protein samples were resolved on 10% SDS PAA gels and transferred on nitrocellulose membranes 

according to standard protocols. After blocking and incubation with respective antibodies, proteins were 

detected using ECL Prime Western Blotting Detection Reagent (GE Healthcare) and imager ImageQuant 

LAS 500 (GE Healthcare). Protein levels were normalized to the loading control using ImageJ software 

(version 1.52i, NIH). Antibodies used: Rabbit anti-N-cadherin (#22018-1-AP, Proteintech), 1:1000; Mouse 

anti-α-dystroglycan, clone IIH6C4 (#05-298, Millipore), 1:2500; Rabbit anti-β-dystroglycan (AP83, kind 

gift from K. Campbell), 1:1000; Mouse anti-Sec61α (#sc-393182, Santa Cruz), 1:100; Mouse anti-Penta-

His-tag (#P-21315, ThermoFisher Scientific), 1:2000; Mouse anti-β-tubulin (#T6199, Sigma Aldrich), 

1:500; Rabbit anti-ERK1/2 (#9102, Cell Signaling), 1:1000; Rabbit anti-Phospho-ERK1/2(Thr202/Tyr204) 

(#9101, Cell Signaling), 1:1000; Rabbit anti-MEK1/2 (#9122, Cell Signaling), 1:1000; Rabbit anti-

Phospho-MEK1/2(Ser217/221) (#9121, Cell Signaling), 1:1000; Goat anti-rabbit HRP-conjugated IgG 

(#12-348, Sigma Aldrich), 1:5000; Rabbit anti-mouse HRP-conjugated IgG (#AP160P, Sigma Aldrich), 

1:5000. 

Cell proliferation and migration assay 

Cell proliferation and migration were monitored by the xCELLigence system (ACEA Biosciences) 

according to manufacturer’s instructions. The xCELLigence system is a real-time, non-labeled, impedance-

based cell analysis system that allows cell proliferation and migration to be monitored in a continuous and 

quantitative manner. 

To monitor proliferation, cells from exponential phase cultures were detached using 0.05% Trypsin-

EDTA (Invitrogen), counted with a Scepter 2.0 device (Merck-Millipore) and 2.0 x 104 cells were seeded 

in each well of a 96-well E-Plate in a final volume of 200 μl complete growth medium. The xCELLigence 

station was placed in a standard cell culture incubator and the cell index was monitored every 15 min over 

a period of 90 h. The background impedance of the E-Plate was determined with complete growth medium 

alone. 

Cell migration was monitored using a 16-well cell invasion/migration plate with each well consisting 

of an upper and a lower chamber separated by a microporous membrane containing randomly distributed   
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8 µm pores. Cells deprived of FBS for 24 h were seeded in the upper chambers at a density of 7.5 x 103 

cells/well in a total volume of 180 μl of FBS-free media. The lower chamber was filled with 160 µl of 

complete medium. After mounting both chambers to each other, the plate was loaded into the xCELLigence 

station and placed into a standard cell culture incubator. Impedance read out, expressed as cell index, was 

executed every 15 min over a period of 90 h. Cell proliferative and migratory responses were determined 

by calculating the mean cell index value and slope of the line between two given time points. Each sub-

population was measured in quadruplicate. 

Cell-ECM and cell-cell adhesion assay 

ECM adhesion was monitored using the Millicoat™ ECM Screening Kit (Millipore). Prior to each 

experiment, cells were deprived of FBS for 24 h. To initiate the experiment, sub-confluent cell monolayers 

were treated with 10 mM EDTA in PBS to obtain a single cell suspension. Cells were washed twice with 

FBS-free medium, added at a density of 8.0 x 104 cells per 96-well in a total volume of 180 μl and allowed 

to adhere for 1 h at 37 °C. Unattached cells were removed by washing three times with ice-cold PBS 

containing 1 mM CaCl2 and 1 mM MgCl2. Attached cells were fixed with freezer-cold 100% methanol. 

Adherent cells were stained with 0.2% (v/v) crystal violet, washed and the staining was released according 

to manufacturer’s instructions. To determine the relative number of bound cells, OD600 recorded for BSA- 

coated wells was subtracted from OD600 recorded for ECM-coated wells. Percentage of adhesion of 

ΔPOMGnT1 cells to ECM was calculated taking adhesion of wild type as 100%. 

To analyze cell-cell adhesion, 1.0 x 104 cells/well were plated in flat-bottom 96-well plates and allowed 

to grow to a confluent monolayer for 48 h. Single cell suspensions (5.0 x 104 cells/well) were added on top 

of each cell monolayer and allowed to adhere for 20 min at 37 °C. Subsequent steps including washing, 

fixing, staining and OD600 measurement were performed as mentioned above. 

To analyze N-Cdh-mediated cell-cell adhesion, wild type or ΔPOMGnT1 cells deprived of FBS o/n 

were incubated for 30 min with 15 µg/ml human anti-N-Cdh antibody (#22018-1-AP, Proteintech) and 

seeded on anti-N-Cdh antibody pre-treated confluent cell monolayers. As a negative control, both single 

cell suspensions and cell monolayers were pre-treated with anti-human IgG antibody. The adhesion assay 

was performed as described above. The absorbance measured was normalized against the mean absorbance 

of wells, where no cells were added. The quantification of respective cell-cell adhesion was represented as 

relative adhesion in %, considering relative adhesion of wild type to wild type cells pre-treated with anti-

human IgG antibody as 100%. 

Bead aggregation assay 

To detect the homophilic interactions of the recombinant extracellular domain (EC) of N-Cdh, bead 

aggregation assays were conducted as previously described with slight modifications (26). Briefly, EC-N-
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Cdh protein purified from wild type and ΔPOMGnT1 HEK293Τ cells (see above) was incubated with pre-

washed Dynabeads™ (Invitrogen) at a ratio of 40 μg of protein per 40 μl of bead suspension o/n at 4 °C. 

Next, beads were washed twice in binding buffer (50 mM Tris-HCl pH 7.2, 100 mM NaCl, 10 mM KCl and 

0.2% BSA) and resuspended in 200 µl of the same buffer. Bead suspensions were briefly sonicated and split 

into two tubes, and either 2 mM CaCl2 or 2 mM EDTA was added to each tube for the “calcium” and “no-

calcium” conditions, respectively. The samples were incubated at room temperature. Bead aggregation was 

assessed by spotting 10 µl of each condition on glass depression slides at various time points and images 

were captured on an Axiostar microscope (Zeiss) at 10 fold magnification. Bead aggregates were quantified 

using ImageJ software (version 1.52i, NIH). Briefly, images were thresholded, the area of the detected 

aggregated particles was measured in units of pixels and the average size was calculated. Assays were 

repeated three times using two independent protein purifications and their mean aggregate size (± SDM) at 

each time point was plotted. To quantify protein coupled to the beads, 100 µl of bead suspension were heated 

with SDS sample buffer (10 min, 95 °C) and the supernatant was analyzed by SDS-PAGE and Western 

Blot. 

Proteomics 

Proteome analysis of wild type and ΔPOMGnT1 cells was performed in five replicates. Cells were 

grown to 90% confluency in 15 cm dishes and lysed in 1 ml lysis buffer (PBS with 1% Triton X-100 (v/v), 

1 mM PMSF, 1 mM benzamidine, 0.25 mM TLCK, 50 µg/ml TPCK, 20 µg/ml antipain, 1 µg/ml leupeptin, 

1 µg/ml pepstatin) for 30 min on ice. Supernatants of whole cell lysates were collected after centrifugation 

(20,000 x g, 10 min, 4 °C), sonicated (Branson Sonifier 450 at 60% Duty Cycle, Level 6 Output Control) 

for 15 min and resolved on 10% SDS PAA gels. Gels were washed four times in ddH2O (200 ml, 30 min), 

stained in a colloidal Coomassie solution (5% aluminium sulphate hydrate (w/v), 10% ethanol (v/v), 0.02% 

Coomassie Brilliant Blue G-250 (w/v), 2% phosphoric acid (v/v)) for 1-2 h and destained o/n in 500 ml 

ddH2O. Proteins were isolated from respective gel pieces, carbamidomethylated, subjected to tryptic 

digestion (1:50) and acidified with 1% trifluoroacetic acid. Peptide analysis was performed on a liquid 

chromatography-mass spectrometer (LC-MS), therefore an UltiMate 3000 nanoRSLC (ThermoFisher 

Scientific) was used coupled to an LTQ Orbitrap Elite MS (ThermoFisher Scientific). Peptides were trapped 

and desalted on a C18-column (5 μm Acclaim PepMap100 300 μm x 5 mm, ThermoFisher Scientific) at a 

flow rate of 30 μl/min with solution A (1% acetonitrile (ACN), 1% formic acid (FA)). After 3 min of loading, 

peptides were separated on an analytical column (2 μm Acclaim PepMap RSLC 75 μm x 25 cm, 

ThermoFisher Scientific) using a 150 min method and an effective gradient of solution A (1% ACN, 5% 

DMSO, 0.1% FA) and B (90% ACN, 5% DMSO, 0.1% FA): 3% to 40% B in 110 min; 40% to 90% B in 

10 min; flow rate: 300 nl/min. Full‐scan mass spectra were acquired in the Orbitrap analyzer in the positive 

ion mode at 60,000 resolution at 200 m/z. A lock-mass of 445.120020 m/z was used for internal 
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recalibration, followed by collision‐induced dissociation fragmentation of the thirty most intense ions (top 

30). Spectra were acquired in the centroid mode using an ion trap detector. MS data were analyzed by 

MaxQuant (version 1.6.5.0) (60) and Andromeda search engine (61) with standard settings except noted 

otherwise. The UniProt human database was used (downloaded on July 08/2019, reviewed database entries: 

26468). Carbamidomethylation of cysteine was set as a fixed modification. Methionine oxidation, 

asparagine/glutamine deamidation, protein N-terminus acetylation and serine/threonine mono hexosylation 

were set as variable modifications. A minimal peptide length of seven amino acids, and at maximum two 

miscleavages (trypsin/p) were allowed. The maximum protein, peptide and site false discovery rates were 

set to 0.05. “Re‐quantify” and “Match between runs (2 min)” was activated. LFQ-intensities of the proteins 

were used and analyzed in the program Perseus (label-free quantification). Only identified by site, reverse 

and potential contaminants were filtered out. LFQ-intensities were logarithmized to the base of 2. Multi 

scatter plot and histograms were performed with that data. For the analysis of the principle component 

analysis (PCA) and the heat map the candidates were filtered, only proteins with valid values in all ten 

samples were allowed. The MS proteomics data have been deposited to the ProteomeXchange Consortium 

via the PRIDE (62) partner repository with the dataset identifier PXD021321.  

N- and O-mannose glycoproteomics of N-cadherin 

Sample preparation, measurement and glycoproteomic analysis was conducted as previously described 

in Hoffmann et al. (63). Briefly, EC-N-Cdh purified from wild type and ΔPOMGnT1 ΗΕΚ293T cells was 

proteolytically digested for 8 h at 37 °C using trypsin (enzyme:substrate ratio 1:30) as well as proteinase K 

(enzyme:substrate ratio 1:10). Specifically, for O-mannose glycoproteomics, proteins were treated with 

PNGase F (Sigma Aldrich) (0.5 U, 37 °C, 8 h) prior to the proteolytic digest. Enrichment of N-linked and 

O-mannosyl glycopeptides was performed using spin-cotton HILIC SPE. Enriched glycopeptides were 

analyzed by reverse-phase liquid chromatography coupled online to RP-LC-ESI-OT MS/MS (ThermoFisher 

Scientific) using two higher-energy collision dissociation fragmentation regimes (HCD.low and HCD.step). 

Glycopeptide mass spectra were analyzed using glyXtoolMS (in-house developed software) (64), as well as 

Byonic and Byologic (both from Protein Metrics). All MS glycoproteomics raw data have been deposited 

to the MassIVE repository under the dataset identifier MSV000085243.  

N-glycome analysis of N-cadherin 

N-glycan structures were analyzed by xCGE-LIF, as previously described with slight modifications (65-

67). Briefly, proteins were linearized and disulfide bonds were reduced using SDS and DTT for 10 min at 

60 °C. N-glycans were released from protein backbone by PNGase F incubation (Sigma Aldrich) for 12 h 

at 37 °C. Released N-glycans were labeled with 8-aminopyrene-1,3,6-trisulfonic acid (APTS, Sigma 

Aldrich), followed by a sample clean-up step (HILIC SPE) using glyXbeads™ (glyXera) to remove excess 
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label, salt and other impurities. The purified labeled N-glycans were analyzed by xCGE-LIF. Using the 

glycoanalysis system glyXbox™ (incl. kits, software (glyXtool™ v5.3.1) and database (glyXbase™); 

glyXera), the generated N-glycan electropherogram data (migration times) were normalized to an internal 

standard, resulting in a so-called “N-glycan fingerprint” with highly reproducible standardized migration 

time units. Subsequently, glyXtool™ was utilized for automated peak picking, integration and relative 

quantification, as well as for the structural assignment of the N-glycan peaks by migration time matching to 

the N-glycan database glyXbase™. To confirm N-glycan compositions and linkages, a comprehensive 

exoglycosidase sequencing was performed, using the enzymes α(2–3) sialidase (Prozyme), α(2–3,6,8) 

sialidase (Prozyme), α(1–2,3,4,6) fucosidase (Prozyme), β(1–4,6) galactosidase (Prozyme) and α (1–2,3,6) 

mannosidase (Prozyme). All exoglycosidase digests were carried out at 37 °C and at the reaction conditions 

recommended by the respective enzyme supplier. Each exoglycosidase enzyme was carefully tested for 

activity, specificity and possible side activities. Please note, differing from the original protocol, HEK293T 

cell-derived EC-N-Cdh samples were desalted prior to N-glycan release. To this end, each N-Cdh sample 

was desalted against PBS using Amicon centrifugal filters with a 3 kDa molecular weight cutoff according 

to the manufacturer’s protocol (Merck-Millipore). Unprocessed xCGE-LIG N-glycocomics raw data are 

available upon request. 

Quantitative real-time PCR 

Total RNA from cells was extracted using the Universal RNA Purification Kit (Roboklon) according to 

the manufacturer’s recommendations. 2 μg of total RNA were reverse transcribed into cDNA using the 

FastGeneScriptase Basic cDNA Kit (Tiangen Biotech) with random Oligo(dT) primers following 

manufacturer’s instructions. Quantitative real-time PCR  was performed on a Rotor-Gene Q (Qiagen) using 

the qPCRBIO SyGreen Mix Lo-ROX (PCR Biosystems). PCR reactions were performed as follows: 95 °C 

for 30 s followed by 40 cycles of 95 °C for 30 s, 60 °C for 30 s and 72 °C for 30 s in a final volume of  

15 μl containing 3 μl of 1:10 cDNA dilution and 0.5 mM of respective oligonucleotides. As technical 

replicates and for determination of qRT-PCR efficiency, 1:100 and 1:1000 cDNA dilutions were included. 

Only qRT-PCR reactions with efficiencies ranging from 0.9 to 1.1 were further analyzed. Gene expression 

was normalized to expression of the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase 

(HPRT). For calculation of relative gene expression, the standard curve-based method was used. The 

primers are provided in Table S1. 

nCounter gene expression profiling 

Total RNA was isolated from 1.0 x 106 HEK293T cells  by using the RNeasy Mini Kit (Qiagen) in 

combination with the QIAshredder system (Qiagen) according to the manufacturer’s protocol. 50 ng of total 

RNA were used per hybridization reaction to determine the transcript levels of Golgi glycosyltransferases. 
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Further processing was conducted at the nCounter Core Facility Heidelberg using the nCounter SPRINT 

system and nCounter Elements chemistry as described (68). Probe design for the glycosyltransferase genes 

and reference genes are given on request. Data normalization was performed with the nSolver Analysis 

Software 3.0 (nanoString Technologies). 

Human phospho-kinase and MMP array 

Phosphorylation of several kinases and expression levels of matrix metallopeptidases (MMPs) were 

analyzed using Proteome Profiler Human Phospho-Kinase Array Kit (R&D Systems) and Human MMP 

Antibody Array Kit (Abcam), respectively, according to the manufacturer’s instructions. Briefly, ~2.0 x 106 

cells were grown in complete media for 48 h, lysed and protein concentration was measured using the BCA 

protein assay (Pierce). For both arrays, pre-blocked nitrocellulose membranes were incubated with 500 μg 

of cellular extract o/n at 4 °C and subsequently washed and incubated with biotin-conjugated antibodies and 

HRP-conjugated streptavidin. Membranes were then incubated with Chemi Reagent Mix and developed in 

ImageQuant LAS 500 imaging system (GE Healthcare). For protein level quantification, the integrated 

optical density (IOD) of each array spot was quantified using ImageJ software (version 1.52i, NIH). IOD 

values were normalized to those of the positive controls on each membrane and corrected for background 

signal. Relative expression levels of proteins in two groups of cells were calculated as %. The relative 

amount of the respective protein in wild type was considered as 100%.  

Immunofluorescence 

For actin staining, cells were seeded on poly-L-lysine-coated coverslips and fixed after 72 h with pre-

warmed paraformaldehyde (3% in PBS) for 10 min. Subsequently, cells were washed with PBS and 

permeabilized for 5 min with 0.1% Triton X-100 in PBS and blocked with 5% ChemiBlocker (Merck-

Millipore) in PBS for 30 min. Coverslips were incubated with Rhodamine Phalloidin (ThermoFisher 

Scientific) and DAPI (Sigma Aldrich) both at 1:1000 dilution in blocking solution for 1 h at 37 ºC in a wet 

chamber, washed three times with PBS and mounted in Mowiol (Polysciences). Images were acquired using 

an Olympus IX81 inverted microscope (Olympus) equipped with a Spectra Xlight system (Lumencor), 

Dualband GFP/mCherry sbx ET and QuadDAPI/FITC/Cy3/Cy5 sbx HC filter sets, an UPLSAPO 20x/0.75 

Air objective lens (Olympus), an ORCA-R2 camera (Hamamatsu) and CellSens dimension software 

(Olympus). Image brightness and contrast were linearly adjusted for publication using ImageJ software 

(version 1.52i, NIH). 

Statistical analysis 

For statistical testing, two-sided paired Student’s t-tests were performed using Excel. Error bars 

represent standard deviations of at least three independent experiments unless indicated otherwise.  
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Data availability 

MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (62) 

partner repository with the dataset identifier PXD021321. MS glycoproteomics raw data have been 

deposited to the MassIVE repository under the dataset identifier MSV000085243. Unprocessed xCGE-LIG 

N-glycocomics raw data are available upon request. All other data described are contained within the article. 
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Figure 1. Characterization of POMGNT1 knock-out HEK293T cells. (A, B) WT and ΔPOMGnT1 cells 

with or without POMGNT1 complementation are shown. POMGnT1 cells were stably transfected with 

either empty vector (POMGnT1 + empty vector) or vector carrying POMGNT1 (POMGnT1 + 

POMGNT1). (A) Western Blot analysis of α-DG from WGA-enriched fractions (first and second panel). 

Genome targeting of POMGNT1 results in loss of its enzymatic activity as demonstrated by the lack of 

matriglycan on α-DG (as identified by IIH6 immuno-reactivity) (compare lanes 1 and 2). O-mannosylation 

of α-DG is restored upon reintroduction of POMGNT1 (compare lanes 2 and 4). Analysis of whole cell 

lysates with anti-5x-His antibody shows His-tagged POMGNT1 in POMGnT1 cells (third and fourth 

panel). β-DG served as a loading control for the WGA-enriched fractions and α-Tubulin (α-Tub) for the 

whole cell lysates. (B) Confocal images displaying differences in cell-cell adhesion among WT, 

∆POMGnT1 and POMGNT1-transfected ∆POMGnT1 cells. In the upper panels, cells fixed and stained with 

Rhodamine Phalloidin (red; actin filaments) and DAPI (blue; nucleus) after three days of seeding are shown. 

In the lower panels, the area of interest of each image is magnified. The scale bar represents 10 μm.  
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Figure 2. POMGNT1 deficiency affects cell adhesion and migration in HEK293T cells. (A) Relative 

adhesion of WT and ∆POMGnT1 cells to the ECM component laminin. WT or ∆POMGnT1 cells deprived 

of FBS were seeded on laminin or BSA (as a control) pre-coated wells and allowed to adhere for 1 h at 

37°C. Adherent cells were stained with crystal violet and quantified at OD600 after stain extraction. The 

absorbance for each laminin coated well was normalized against the mean absorbance of BSA-coated wells. 

Adhesion of ∆POMGnT1 cells to laminin is represented as relative adhesion in %, considering adhesion of 

WT cells to laminin as 100%. (B) Relative cell-cell adhesion of WT and ∆POMGnT1 cells to cell 

monolayers as indicated. WT or ∆POMGnT1 cells deprived of FBS were seeded on confluent monolayers 

of cells with either the same or different genotype and allowed to adhere for 20 min at 37°C. Adherent cells 

were stained with crystal violet and quantified at OD600 after stain extraction. The absorbance of each well 

to which cells were added was normalized against the mean absorbance of wells, where no cells were added. 

Respective cell-cell adhesion is represented as relative adhesion in %, considering adhesion of WT to WT 

cells as 100%. (C) Comparison of the migration rate between WT and ∆POMGnT1 cells. WT and 

∆POMGnT1 cells deprived of FBS were seeded on xCELLigence microelectrode-equipped trans-well 

chambers and allowed to migrate for 90 h at 37°C. Migration was monitored in real-time as increase of 

impedance and was expressed as Cell Index, an arbitrary unit. The migration rate was calculated from the 

slope of the curves between 20 h and 60 h (Fig. S2D). (A-C) Assays were performed at least in triplicate 

from two independent experiments. Data are represented as means ± SD (Standard Deviation). Asterisks 

denote statistical significance in comparison to WT cells: *** p ≤ 0.001.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289306


 

 

28 

 

 

 

Figure 3. Defects in POMGNT1 induce expression of N-Cadherin. (A) Volcano plot of differentially 

expressed proteins of WT and ∆POMGnT1 cells identified by label-free LC-MS/MS of five biological 

replicates each. The solid lines represent the threshold of statistical significance with false discovery rate 

(FDR) < 0.05 and an s0 of 0.1 (controlling the relative importance of t-test p-value and the difference 

between means. The complete list of proteins is included in Table S4. Proteins with a significant fold change 

are depicted in blue dots, with a subset of Cadherin-associated proteins in red dots. Gray dots indicate 

proteins that failed to meet the criteria of FDR or fold change. (B, E) Representative Western Blot used for 

N-Cdh protein quantification in 20 µg of membrane fractions from WT and ΔPOMGnT1 cells (B) and from 

control and MEB patient-derived fibroblasts (E). Sec61α was used as loading control. (C, F) Densitometry-

based quantification of N-Cdh signal detected by Western Blot in WT and ΔPOMGnT1 cells (C) and in 

control and MEB patient derived fibroblasts (F). N-Cdh signals for ∆POMGnT1 cells and MEB patient-

derived fibroblasts were normalized to the respective Sec61α signal and subsequently normalized to the N-

Cdh/Sec61α ratio calculated for WT cells and control fibroblasts, respectively. Protein levels of N-Cdh are 

represented in %, considering pixel density of N-Cdh in WT cells and MEB patient-derived fibroblasts as 

100%, respectively. Assays were performed with three biological replicates. (D, G) qRT-PCR analysis of 

CDH2 mRNA levels in WT and ∆POMGnT1 cells (D) and in control and MEB patient-derived fibroblasts 

(G). CDH2 mRNA levels in ∆POMGnT1 cells and MEB patient-derived fibroblasts are calculated as %, 

considering CDH2 mRNA levels in WT cells and MEB patient derived fibroblasts as 100%, respectively. 

For normalization the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) was 

used. Assays were performed in duplicate with three dilutions from three biological replicates. All data are 

presented as means ± SD. Asterisks denote statistical significance in comparison to WT cells: ** p ≤ 0.01, 

*** p ≤ 0.001.  
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Figure 4. Increased cell-cell adhesion of POMGNT1-deficient cells is mediated by increased 

abundance of N-cadherin. Relative cell-cell adhesion of WT (bright bars) and ∆POMGnT1 (dark bars) 

cells to the indicated cell monolayers in presence of either N-Cdh targeting or anti-human IgG antibody. 

WT or ∆POMGnT1 cells that were deprived of FBS, were incubated with an anti-N-Cdh antibody and 

subsequently seeded on an anti-N-Cdh antibody-treated confluent monolayer of cells. Anti-human IgG 

antibody served as a control. Cells were allowed to adhere for 20 min at 37 °C. Adherent cells were stained 

with crystal violet and quantified at OD600 after stain extraction. The absorbance of each well to which cells 

were added was normalized against the mean absorbance of wells, where no cells were added. Respective 

cell-cell adhesion is represented as relative adhesion in %, considering relative adhesion of WT to WT cells 

pretreated with anti-human IgG antibody as 100%. Assays were performed in triplicate from two 

independent experiments. All data are presented as means ± SD. Asterisks denote statistical significance in 

comparison to WT cells: * p ≤ 0.05, *** p ≤ 0.001, n.s. not significant.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289306


 

 

30 

 

 

 

Figure 5. Deficiency in POMGNT1 affects N-glycosylation of N-cadherin. (A) Comparative overlay of 

the electropherograms as obtained by xCGE-LIF after APTS labeling to evaluate N-glycan profile of N-Cdh 

derived from WT (red line) and ∆POMGnT1 (blue line) HEK293T cells. The normalized signal intensity of 

APTS-labeled N-glycans (relative signal intensity (%), i.e. peak signal divided by the summed peak height 

of all quantifiable N-glycan peaks with signal-to-noise-ratio >9) is plotted over their normalized migration 

time units (MTU”). Relevant peaks are numbered and annotated with corresponding glycan structures. A3 

and A4 indicate three- and four-antennary N-glycan structures, respectively; while F indicates the presences 

of a fucose among the N-glycan structures. The asterisk denotes a peak of an internal migration time 

standard. (B) Overview of site-specific N-glycan microheterogeneity on extracellular domains (EC1-5) of 

N-Cdh, purified from WT and ∆POMGnT1 HEK293T cells. Cartoon represents the molecular structure of 

five EC domains (EC1–EC5) of N-Cdh, which form a β-barrel structure (brown and blue ribbons represent 

beta sheet and alpha helix, respectively). The position of identified N-glycosylation site are shown in red 

ribbons. For each N-glycosylation site, the major N-glycoform detected in WT (left) and ∆POMGnT1 (right) 

is depicted. Values beneath the each glycan structures represent the relative abundance of this N-glycoform 
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(quantitative values for each glycoform as proportions relative to the sum of all glycoforms detected) and 

the total of N-glycoforms detected on this site, respectively. Values for ∆POMGnT1 are highlighted in black. 

Asterisk at position Asn190 indicates the scarcely N-glycosylated site (only one N-glycopeptide derived 

from WT N-Cdh could be identified). The molecular structure of N-Cdh was modeled by using open source 

software UCSF Chimera Version 1.10.2. (A, B) N-glycan structures were drawn with GlycoWorkbench 

Version 1.1, by following the guideline of the Consortium for Functional Glycomics. Pep = peptide moiety; 

Green circle = mannose; yellow circle = galactose; blue square = N-acetylglucosamine; red triangle = 

fucose; purple diamond = N-acetylneuraminic acid. (C) Site-specific relative changes in the N-glycan traits 

(bisecting GlcNAc, sialylation and galactosylation) in ∆POMGnT1-derived N-Cdh. For each N-

glycosylation site, quantitative changes in the N-glycan microheterogeneity are depicted as increase or 

decrease in ∆POMGnT1-derived N-Cdh relative to the level in the WT. The quantities represent N-

glycopeptide AUC values (EIC MS1) that were summed based on common N-glycan traits (N-glycopeptides 

carrying a bisecting GlcNAc, sialylation and/or galactosylation). Since site N190 is only scarcely N-

glycosylated, its microheterogeneity could not be quantified.  
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Figure 6. N-Cadherin from POMGNT1-deficient cells shows enhanced homotypic interactions in vitro. 

(A) Semi-quantitative analysis of the mean size of dynabead aggregates coated with the recombinant 

extracellular domain of recombinant N-Cdh purified from WT (gray line) and ∆POMGnT1 cells (black 

line). Protein-coated dynabeads were imaged following incubation in the presence of either CaCl2 (solid 

lines) or EDTA (broken lines) at the indicated time intervals. Mean aggregate size is plotted against time. 

Assays were performed at quadruplicate from two independent experiments. Data are represented as means 

± SD. Asterisks denote statistical significance in comparison to WT cells: * p ≤ 0.05, ** p ≤ 0.01. (B) 

Western Blot analysis evaluating levels of protein from WT and ∆POMGnT1 () bound to dynabeads. 

Dynabead-bound recombinant N-Cdh was eluted in SDS sample buffer (beads), resolved on a 10% SDS 

PAA gel. For detection on Western blot an anti-5xHis antibody was used. In addition, protein before binding 

to beads (input) and unbound fractions (void) are shown.  
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Figure 7. POMGNT1 deficiency activates ERK1/2 and p38 signaling pathways. (A) Representative 

phospho-kinase array performed with 500 µg of whole cell extract from WT (left panel) and ∆POMGnT1 

cells (right panel). Antibodies against phosphorylated protein kinases are spotted in duplicate. Signals for 

phosphorylated ERK1/2 and p38 are highlighted in boxes and denoted as 1 and 2, respectively.  

(B) Densitometry-based quantification of phosphorylated ERK1/2 and p38 signals detected in phospho-

kinase array for WT and ΔPOMGnT1 cells. Protein signals detected in ΔPOMGnT1 cells were normalized 

to the reference protein signal and subsequently normalized to the protein/ reference signal ratio in WT 

cells. Analysis is based on two independent experiments. (C) Representative Western Blot analysis of  

p (phosphorylated)-ERK1/2 and MEK1/2 levels in 20 µg of whole cell extract from WT and ∆POMGnT1 

cells. Total levels of ERK1/2 and MEK1/2 were analyzed using protein-directed antibodies. α-Tubulin (α-

Tub) was used as a loading control. (D) Densitometry-based quantification of phosphorylated ERK1/2 and 

MEK1/2 signals detected in Western Blot analysis for WT and ΔPOMGnT1 cells. Phosphorylated protein 

signals detected in ΔPOMGnT1 cells were normalized to the respective total protein signals and 

subsequently normalized to the phosphorylated/ total protein signal ratio in WT cells. Data of three technical 

replicates are shown. (B, D) Protein levels of phosphorylated kinases in ∆POMGnT1 cells is calculated as 

%, considering pixel density of the respective protein in WT cells as 100%. All data are presented as means 

± SD. Asterisks denote statistical significance in comparison to WT cells: *** p ≤ 0.001.  
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Figure 8. POMGNT1 deficiency induces changes in the expression of EMT-related genes in HEK293T 

cells. (A) Gene expression analysis by qRT-PCR of selected EMT-related genes. Epithelial markers: 

LAMA2 and CLDN6; mesenchymal markers: ACTA2,CDH2 and VIM; matrix metallopeptidases (MMPs): 

MMP1, MMP2, MMP3, MMP8 and MMP17; tissue inhibitors of metalloproteinases (TIMPs): TIMP1 and 

TIMP2. Relative mRNA levels in WT cells (white bars) were compared with levels detected in ∆POMGnT1 

cells (gray bars), POMGNT1-transfected ∆POMGnT1 cells (∆POMGnT1 + POMGNT1; strip gray bars) 

and empty vector-transfected ∆POMGnT1 cells (∆POMGnT1 + empty vector; strip white bars). Transcript 

levels are calculated as %, considering transcript levels of respective genes in WT cells as 100%. HPRT 

was used for normalization. Assays were performed in duplicate with three dilutions from three biological 

replicates. (B) Representative MMP array performed with 500 µg of whole cell extract from WT cells (left 

panel) and ∆POMGnT1 cells (right panel). Antibodies against MMPs and TIMPs are spotted in duplicate. 

Signals for MMPs and TIMPs on the representative membranes are highlighted in boxes and denoted with 

numbers. (C) Densitometry-based quantification of MMP and TIMP signals detected in MMP array for WT 

and ΔPOMGnT1 cells. Protein signals detected in ΔPOMGnT1 cells were normalized to the reference 

protein signal and subsequently normalized to the protein/reference signal ratio in WT cells. Protein levels 

of MMPs and TIMPs in ∆POMGnT1 cells are calculated in %, considering pixel density of the respective 

protein in WT cells as 100%. Analysis is based on two independent experiments. (A, C) Data are presented 

as means ± SD. Asterisks denote statistical significance in comparison to WT cells: * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001, n.s. not significant.  
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Figure 9. MEB patient-derived fibroblasts show changes in the expression of EMT-related genes. 

Gene expression analysis by qRT-PCR of (A) epithelial (LAMA2 and CLDN6), and mesenchymal (ACTA2, 

FN1 and VIM) marker genes as well as (B) the indicated MMPs and TIMPs. Data were calculated as 

described in Fig. 8A. 
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Figure 10. Hypothetical model integrating the observed changes in POMGNT1-deficient cells. For 

details see discussion 
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