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Much is still not understood about the human adaptive immune
response to SARS-CoV-2, the causative agent of COVID-19. In
this paper, we demonstrate the use of machine learning to clas-
sify SARS-CoV-2 epitope specific T-cell clonotypes in T-cell re-
ceptor (TCR) sequencing data. We apply these models to pub-
lic TCR data and show how they can be used to study T-cell
longitudinal profiles in COVID-19 patients to characterize how
the adaptive immune system reacts to the SARS-CoV-2 virus.
Our findings confirm prior knowledge that SARS-CoV-2 reac-
tive T-cell diversity increases over the course of disease progres-
sion. However our results show a difference between those T
cells that react to epitope unique to SARS-CoV-2, which show
a more prominent increase, and those T cells that react to epi-
topes common to other coronaviruses, which begin at a higher
baseline.
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Introduction
The emergence of a novel coronavirus in 2019, termed
SARS-CoV-2, has led to the most prominent global pan-
demic in recent history. Infection by SARS-CoV-2 manifests
as COVID-19, a disease of which symptoms and severity
greatly vary, and which has caused substantial loss of life all
over the world. Characterizing the immune response against
this novel virus has become a top priority, in the hope that
novel insights can lead to new treatment plans or can aid in
vaccine development.
Special attention is now being paid to T-cell response in par-
ticular, which was already determined an important factor in
long-term immunity against coronaviruses during SARS and
MERS outbreaks (1–3). Moreover, SARS-specific T cells
are still found in individuals 17 years later and demonstrate
robust cross-reactivity against SARS-CoV-2 suggesting the
possibility of long-term protection for SARS-CoV-2 (4).
Current findings indicate that T cells play a key role in sus-
ceptibility to and severity of the ongoing COVID-19 pan-
demic as well. In particular, disease severity has been found
to be linked with a sub-optimal or excessive T-cell response
(5). Similarly, while most of the patients present with high
antibody titers (6), frequently they do not provide necessary
virus neutralization (7). Moreover, some studies have re-
ported that around 30% of patients recover with very low lev-
els of neutralizing antibodies or none at all (8). Most of the

patients, however, developed CD8+ T cell response (9), with
cells predominantly showing activation signals (10). Acti-
vated CD4+ T cells were also detected in the majority of
patients, sometimes even reaching 100% in convalescent pa-
tients (9). Interestingly, 83% of patients were found to have
CD4+ T cells specific to the SARS-CoV-2 spike protein in
one study (11), and the magnitude of antibody response was
correlated to the CD4+ T cell with the same protein speci-
ficity in another (9). Surprisingly, T cells specific to the
SARS-CoV-2 epitopes were even found in a high proportion
of unexposed individuals (4, 9, 11), which was later demon-
strated to be due to cross-reactivity with common cold coron-
aviruses (12) and might explain pre-existing protection from
the SARS-CoV-2 in some individuals. Altogether those find-
ings support a key role for T cells in the immune defense
against SARS-CoV-2 and are important considerations for
vaccine development.

A multitude of computational approaches to discover T-cell
epitopes for rational SARS-CoV-2 vaccine design have been
performed using different perspectives: genetic similarity be-
tween SARS and SARS-CoV-2 (9, 13–15), previous knowl-
edge about SARS immunogenic epitopes (13), de novo epi-
tope prediction with respect to affinity to MHC estimated
utilizing structural biology (16, 17) or machine learning
(13, 14, 17), and MHC distribution across populations (14).
Different approaches resulted in various numbers of potential
targets in different groups. For instance, Lee et al. reported
28 SARS-CoV-2 peptides identical to those of SARS (13),
and Fast et al. yielded 405 de novo candidate T-cell epitopes
(17). For some predictions, experimental validation was later
performed by different groups (18).

One key technique that facilitates insights into the make-
up of an individual’s T-cell repertoire is high-throughput T-
cell receptor sequencing. Several TCR sequencing studies
have now been performed in COVID19 patients and revealed
some characteristics of the T-cell receptor repertoire during
COVID-19. One study, for example, found clusters of T cells
tied to disease severity, which predominantly comprised pub-
lic clonotypes (19). Another group identified statistically en-
riched public TCR sequences from a large number of reper-
toires to distinguish SARS-CoV-2 positive from healthy in-
dividuals (20). In addition, several studies have determined
SARS-CoV-2 specific TCRs and distinct CDR3 motifs down
to the individual epitope level (18, 20). However, one key
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downside of T-cell receptor sequencing is the high diversity
of TCR sequences across individuals. Only a handful of TCR
sequences can be found across different individuals. These
so-called ’public’ clones can therefore be tracked across indi-
viduals and stored in databases for reference. However, TCR
repertoires consist mostly of individual-specific sequences,
which due to their individual nature cannot be expected to be
found in a database. Recently, computational methods have
been developed to convert epitope-TCR pairing data to pre-
dictive models (21) that generalize the epitope-TCR speci-
ficity determinants. Such models can be used to screen TCR
repertoires to find additional potential epitope-specific TCRs
that are not contained in any database (22). These models are
based on the concept that TCRs targeting the same epitope
tend to have similar amino acid sequences (23). In this study,
we create such prediction models for SARS-CoV-2 epitopes
and apply them to track epitope-specificity over time.

Methods
Epitope-TCR data. A collection was established of experi-
mentally validated TCR-epitope pairs by combining two pri-
mary sources:

• The VDJdb database, which contained tetramer-
derived data from Shomuradova et al (18). Accessed
on the 26th of May, 2020.

• The ImmuneCODE collection from Adaptive Tech-
nologies and Microsoft, which contained pairs derived
through MIRA assay (20). Accessed on the 25th of
June, 2020.

For all extracted pairs, several data curation steps were per-
formed. All pairs matching more than one possible SARS-
CoV-2 epitope were removed for training data. Only valid
TCR sequences that could be matched to standard IMGT
were kept. Where needed, a limit was placed on 5000 unique
TCRs, which were then selected randomly.

Longitudinal TCR data. Public repertoire data was re-
trieved through the iReceptor gateway (24) in the week of
the 13th of July, 2020. In particular, TCR data was extracted
of those studies that had longitudinal tracking of COVID-19
patients, namely from Minervina et al. (25) and Schultheiß
et al (19). Only those TCRs that occur at a frequency of at
least 1 in 100 000 were retained, to compensate for the differ-
ent sequencing depths between studies. Meta data was made
uniform so that the time points are annotated by days after
onset of symptoms.

Protein and sequence data. Protein sequence data for
119 Nidovirales species, which included the human and
non-human SARS viruses along with other coronaviruses
and single-strand RNA viruses, were downloaded from the
Corona OMA Orthology Database (26). In this manner,
the used protein amino acid sequences for SARS-CoV-2
corresponds to Genbank accession GCA_009858895.3, and
the protein sequences for SARS-CoV to GCA_000864885.1.

Epitopes were matched to all proteins for all 119 species
with an exact match, as the degree of variation allowed in
the epitope space while retaining TCR recognition is still an
unsolved question. Matches across all species for each epi-
tope were tallied, and the annotation for SARS-CoV-2 was
retained. Sequence identity between proteins was established
using a pairwise protein BLAST.

Model training and application. For the machine learning
part of this study, we made use of the TCRex framework (22).
We trained models for all epitopes that had more than 30 dis-
tinct TCRs. Only those models that had an AUC ROC higher
than 0.7 and a AUC PR higher than 0.35 in a cross-validated
setting were retained, as per the default TCRex criteria. The
models were then applied to full TCR repertoires, where a
match was defined as a probable epitope-specific TCR if the
score is higher than 0.9 and the BPR is lower than 1e-4. For
normalization, reported hits were divided by the unique TCR
repertoire size.

Results
Recognition model performance. In total, 47 distinct epi-
tope TCRex models could be trained for SARS-CoV-2. An
overview of all models and their performance can be found
in Table S1. This is almost as many models as are avail-
able for all non-SARS-CoV-2 epitopes combined (49), in-
dicating the vast amount of data that has been generated in
the past few months compared to what has been collected
for all prior pathogens and diseases. 24 of these epitopes
match the SARS-CoV-2 replicase protein coded by ORF1ab,
16 match the SARS-CoV-2 spike protein encoded by ORF2
and the final 7 are distributed across the remaining proteins.
In addition, 19 of the epitopes are unique to SARS-CoV-
2 in our data set of 119 Nidovirales species. As can been
seen in figure 1, this does not seem to be evenly distributed
across the protein of origin. 9 out of the 16 epitopes derived
from the spike protein are unique to SARS-CoV-2, whereas
only 6 out of 24 are unique for the ORF1ab replicase pro-
tein. As previously reported (27), the spike protein of SARS-
CoV-2 shares 76% amino acid sequence identity to that of
SARS-CoV. In contrast, the replicase protein has 86% se-
quence identity between SARS-CoV-2 and SARS-CoV. It is
well known that viruses accumulate mutations to avoid po-
tential immunogenic epitopes (28, 29), and the same process
may be playing a role here.
As we are integrating models from different resources and di-
verse experimental methods, we wished to confirm if this data
is comparable. Interestingly, one epitope has both tetramer
(315 TCRs) and MIRA data (366 TCRs), namely YLQPRT-
FLL (YLQ). However in the case of the MIRA data, the
TCRs were not uniquely assigned to this epitope, but all were
assigned to the trio YLQPRTFL,YLQPRTFLL, and YYV-
GYLQPRTF. These 366 TCRs were thus excluded from the
training data. Thus the tetramer-based YLQ model can be
applied on the MIRA YLQ data as an independent model.
In this manner, TCRex predicted 81 putative YLQ-reactive
T-cells in the YLQ MIRA data out of 366 TCRs. Note that
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Fig. 1. Distribution of the 47 epitopes for which models could be created across
SARS-CoV-2 proteins (x-axis) and 119 Nidovirales species.

only 35 TCRs matched between the two datasets based on
CDR3 sequence (not accounting for V/J genes), showing
that TCRex is able to extrapolate from found TCR patterns.
This number of TCRex predictions was assigned an enrich-
ment P-value of 6.44e-246 based on the built-in binomial test.
No other epitopes present in TCRex (including the 49 non-
SARS-CoV-2 models) were predicted to have a single TCR
target within this data set. Thus the data is comparable and
the models can be used without respect of their origin.

Longitudinal tracking. Once established, these models can
be applied to any TCR repertoire data and thus can be used to
study putative SARS-CoV-2 reactive T cells in the currently
available COVID-19 data. A large TCR data set was made
available by Schultheiß et al (19), which featured longitudi-
nal samples from both patients with active disease and those
that have recovered. As can be seen in Figure 2, the per-
centage of predicted SARS-CoV-2 reactive TCRs increases
as time goes on after on-set of symptoms (Spearman rho =
0.36, P-value = 0.0022). This is both due to an expansion
of distinct SARS-CoV-2 TCR sequences and a contraction of
the remainder of the TCR repertoire. This matches findings
from prior studies investigating T-cell immunity, which have
observed that SARS-CoV-2 specific T-cell immunity mounts
as disease progresses, alongside an absolute decrease in T-
cell population size (30, 31). In addition, the increase is irre-
spective of final disease outcome.
As can be seen in Figure 3, there seems to be a difference
between those TCRs that are unique to SARS-CoV-2 versus
those that are not. The fraction of TCRs that are predicted to
match unique SARS-CoV-2 epitopes shows a similar increase
as was found for all epitopes (Spearman rho = 0.36, P-value
= 0.0021). While that for the epitopes occurring across coro-
naviruses have a markedly lower increase signal that is not
significant (Spearman rho = 0.23, P-value = 0.057). Indeed
cross-reactive TCRs predicted to target epitopes not unique to
SARS-CoV-2 start at a higher level, and only seem to gradu-
ally increase as the infection progresses. This may be in line
with prior reports of existing cross-reactive T cells in unin-
fected patients (9, 11, 32).
The number of SARS-CoV-2 TCRs do decrease once the pa-
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Fig. 2. SARS-CoV-2 predicted TCRs plotted against time on the data from
Schultheiß et al.
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seen as ’cross-reactive’ across species.
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Fig. 4. Predicted TCRs in the contracted TCRs identified in donor M on the data
from Minervina et al. The x-axis shows the frequency of predicted TCRs for each
epitope. Yellow bar color denotes significant enrichment of epitope-reactive TCRs
against the default TCR background according to TCRex criteria.

tient enters recovery. An example can be seen in Figure S1.
This can also be seen based on the TCR data from Minervina
et al., where both donors were sampled after symptoms had
disappeared as per Figure S2. T cells contracted over time
points within a single individual were considered as associ-
ated with SARS-CoV-2. A list of 661 and 372 contracted
TCRs (one set for each donor) were identified using EdgeR
in the original study and published as supplemental materi-
als. At the time, no epitope-specific TCR data was available
for SARS-CoV-2 and thus it could not be analysed in this
manner. If we apply all TCRex models (both SARS-CoV-2
and other viruses), we find strong enrichment for two SARS-
CoV-2 epitopes in one donor (donor M), as can be seen in
Figure 4. The TCRs associated with the most prominent
epitope, namely YLQPRTFLL, clearly decrease over time in
donor M as seen in the original TCR data set as can been seen
in figure S3. Note that the YLQ epitope originates from the
spike protein and is unique to SARS-CoV-2, which matches
the previous findings. The other donor had no such enriched
epitopes of any origin, indicating that these TCRs might still
be resulting from a not-included set of epitopes.

Conclusions
In this paper, we have shown that there is sufficient SARS-
CoV-2 epitope-TCR data to create a large number of epitope-
specific TCR recognition models. These models can be used
to screen TCR data from various individuals to track their
T-cell immunity. In addition, using such models on longitu-
dinal data reveals a potential difference in temporal dynam-
ics between T cells predicted to react against epitopes that
are unique to SARS-CoV-2 and those that are shared among
other coronaviruses.
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Supplementary Note 1: SARS-CoV-2 epitope recognition models statistics

Epitope Protein No. training TCRs Balanced accuracy AUC ROC AUC PR
ALSKGVHFV ORF3a 129 0.53 ± 0.01 0.79 ± 0.03 0.4 ± 0.09
EILDITPCSF S (ORF2) 68 0.63 ± 0.03 0.73 ± 0.06 0.46 ± 0.09

FADDLNQLTGY ORF1ab 70 0.61 ± 0.04 0.7 ± 0.05 0.44 ± 0.11
FLNGSCGSV ORF1ab 2332 0.61 ± 0.0 0.86 ± 0.01 0.56 ± 0.02
FLNRFTTTL ORF1ab 104 0.54 ± 0.03 0.72 ± 0.07 0.38 ± 0.12
FLPRVFSAV ORF1ab 773 0.59 ± 0.02 0.84 ± 0.01 0.51 ± 0.03
FPPTSFGPL ORF1ab 621 0.69 ± 0.01 0.85 ± 0.01 0.61 ± 0.01
FTISVTTEIL S (ORF2) 159 0.55 ± 0.03 0.73 ± 0.03 0.37 ± 0.04
FVDGVPFVV ORF1ab 2420 0.54 ± 0.0 0.77 ± 0.01 0.37 ± 0.01
HLVDFQVTI ORF6 69 0.61 ± 0.04 0.75 ± 0.06 0.44 ± 0.09

HTTDPSFLGRY ORF1ab 5000 0.7 ± 0.01 0.9 ± 0.01 0.7 ± 0.02
ILGLPTQTV ORF1ab 198 0.68 ± 0.02 0.83 ± 0.05 0.6 ± 0.08
ILHCANFNV ORF1ab 185 0.61 ± 0.02 0.84 ± 0.03 0.52 ± 0.05
IPIQASLPF ORF3a 104 0.51 ± 0.02 0.74 ± 0.09 0.35 ± 0.11
IQYIDIGNY ORF8 149 0.56 ± 0.03 0.82 ± 0.04 0.47 ± 0.06

ITEEVGHTDLMAAY ORF1ab 156 0.57 ± 0.02 0.78 ± 0.02 0.49 ± 0.04
IVDTVSALV ORF1ab 36 0.51 ± 0.03 0.76 ± 0.12 0.36 ± 0.18
KAYNVTQAF N (ORF9) 708 0.61 ± 0.02 0.83 ± 0.01 0.57 ± 0.03
KEIDRLNEV S (ORF2) 57 0.58 ± 0.02 0.7 ± 0.08 0.43 ± 0.1

KLPDDFTGCV S (ORF2) 1160 0.59 ± 0.01 0.84 ± 0.01 0.54 ± 0.02
KLSYGIATV ORF1ab 2149 0.58 ± 0.0 0.84 ± 0.01 0.51 ± 0.01

KLWAQCVQL ORF1ab 266 0.55 ± 0.01 0.8 ± 0.02 0.46 ± 0.05
KPLEFGATSAAL ORF1ab 344 0.59 ± 0.02 0.8 ± 0.04 0.49 ± 0.07

KTSVDCTMYI S (ORF2) 70 0.7 ± 0.05 0.89 ± 0.05 0.72 ± 0.08
LEPLVDLPI S (ORF2) 367 0.54 ± 0.01 0.76 ± 0.02 0.35 ± 0.05

LLFNKVTLA S (ORF2) 39 0.51 ± 0.03 0.76 ± 0.04 0.37 ± 0.1
LPPAYTNSF S (ORF2) 127 0.53 ± 0.02 0.82 ± 0.03 0.45 ± 0.06

MPASWVMRI ORF1ab 477 0.62 ± 0.02 0.82 ± 0.01 0.53 ± 0.01
NLDSKVGGNY S (ORF2) 45 0.73 ± 0.06 0.96 ± 0.03 0.85 ± 0.05

NLNESLIDL S (ORF2) 132 0.59 ± 0.03 0.74 ± 0.02 0.42 ± 0.05
NQKLIANQF S (ORF2) 51 0.76 ± 0.02 0.95 ± 0.02 0.78 ± 0.07

QECVRGTTVL ORF7a 147 0.71 ± 0.02 0.85 ± 0.02 0.66 ± 0.04
RQLLFVVEV ORF1ab 841 0.57 ± 0.01 0.83 ± 0.01 0.46 ± 0.02

SEISMDNSPNL ORF1ab 95 0.52 ± 0.01 0.79 ± 0.05 0.45 ± 0.13
SEPVLKGVKL S (ORF2) 80 0.57 ± 0.02 0.79 ± 0.05 0.38 ± 0.1

SEVGPEHSLAEY ORF1ab 250 0.54 ± 0.01 0.79 ± 0.01 0.42 ± 0.05
SSNVANYQK ORF1ab 74 0.61 ± 0.04 0.77 ± 0.04 0.45 ± 0.08
TLDSKTQSL S (ORF2) 107 0.83 ± 0.06 0.97 ± 0.02 0.88 ± 0.06
TLIGDCATV ORF1ab 467 0.55 ± 0.02 0.73 ± 0.03 0.36 ± 0.04
TLVPQEHYV ORF1ab 154 0.53 ± 0.03 0.72 ± 0.02 0.42 ± 0.07
TPINLVRDL S (ORF2) 249 0.64 ± 0.02 0.81 ± 0.03 0.53 ± 0.04

VLWAHGFEL ORF1ab 695 0.65 ± 0.02 0.85 ± 0.02 0.6 ± 0.04
WICLLQFAY M (ORF5) 515 0.64 ± 0.02 0.81 ± 0.02 0.56 ± 0.06
YFPLQSYGF S (ORF2) 357 0.53 ± 0.01 0.79 ± 0.03 0.4 ± 0.04
YLDAYNMMI ORF1ab 197 0.62 ± 0.03 0.74 ± 0.03 0.42 ± 0.05
YLNTLTLAV ORF1ab 390 0.58 ± 0.02 0.8 ± 0.01 0.46 ± 0.04
YLQPRTFLL S (ORF2) 315 0.91 ± 0.01 0.97 ± 0.01 0.92 ± 0.01
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Fig. S1. SARS-CoV-2 predicted TCRs time profile of Patient "7".
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Fig. S2. SARS-CoV-2 predicted TCRs plotted against time on the data from Minervina et al.
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Fig. S3. YLQ epitope predicted TCRs from donor M over time on the data from Minervina et al. Samples at day 15, 30, 37, were all
found to have a sufficient high level of YLQ reactive TCRs to be marked as significantly enriched by TCRex.
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