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Abstract 21 

Deregulation of the protein secretory pathway (PSP) is linked to many hallmarks of cancer, 22 

such as promoting tissue invasion and modulating cell-cell signaling. The collection of 23 

secreted proteins processed by the PSP, known as the secretome, is often studied due to its 24 

potential as a reservoir of tumor biomarkers. However, there has been less focus on the 25 

protein components of the secretory machinery itself. We therefore investigated the 26 

expression changes in secretory pathway components across many different cancer types. 27 

Specifically, we implemented a dual approach involving differential expression analysis and 28 

machine learning to identify PSP genes whose expression was associated with key tumor 29 

characteristics: mutation of p53, cancer status, and tumor stage. Eight different machine 30 

learning algorithms were included in the analysis to enable comparison between methods 31 

and to focus on signals that were robust to algorithm type. The machine learning approach 32 

was validated by identifying PSP genes known to be regulated by p53, and even 33 

outperformed the differential expression analysis approach. Among the different analysis 34 

methods and cancer types, the kinesin family members KIF20A and KIF23 were consistently 35 

among the top genes associated with malignant transformation or tumor stage. However, 36 

unlike most cancer types which exhibited elevated KIF20A expression that remained 37 

relatively constant across tumor stages, renal carcinomas displayed a more gradual increase 38 

that continued with increasing disease severity. Collectively, our study demonstrates the 39 

complementary nature of a combined differential expression and machine learning approach 40 

for analyzing gene expression data, and highlights key PSP components relevant to features 41 

of tumor pathophysiology that may constitute potential therapeutic targets. 42 

  43 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289413doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289413


Author Summary 44 

The secretory pathway is a series of intracellular compartments and enzymes that process 45 

and export proteins from the cell to the surrounding environment. Dysfunction of the 46 

secretory pathway is associated with many diseases, including cancer, and therefore 47 

constitutes a potential target for novel therapeutic strategies. The large number of interacting 48 

components that comprise the secretory pathway pose a challenge when attempting to 49 

identify where the dysfunction originates and/or how to restore healthy function. To improve 50 

our understanding of how the secretory pathway is changed within tumors, we used gene 51 

expression data from normal tissue and tumor samples from thousands of individuals which 52 

included many different types of cancers. The data was analyzed using various machine 53 

learning algorithms which we trained to predict sample characteristics, such as disease 54 

severity. This training quantified the relative degree to which each gene was associated with 55 

the tumor characteristic, allowing us to predict which secretory pathway components were 56 

important for processes such as tumor progression—both within specific cancer types and 57 

across many different cancer types. Our approach demonstrated excellent performance 58 

compared to traditional gene expression analysis methods and identified several secretory 59 

pathway components with strong evidence of involvement in tumor development. 60 
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1. Introduction 62 

One of the most challenging features in diagnosing and treating cancer is its heterogeneity – 63 

the tissue of origin, gene mutation profile, patient, and local tumor environment are some of 64 

the many factors that can affect the pathophysiology and response to treatment of a 65 

particular cancer [1]. However, a core set of features exhibited by cancer cells establish a 66 

common thread despite other variations. Many of these shared features have been distilled 67 

into a set of “cancer hallmarks”, such as resisting cell death, activating invasion and 68 

metastasis, and avoiding immune destruction [2]. Furthermore, tumor cells acquire and 69 

sustain many of these hallmarks through interactions with each other and with neighboring 70 

“normal” cells, which together with the cancer cells form the tumor microenvironment [3]. An 71 

important system that links tumor cells to each other and to the microenvironment is the 72 

protein secretory pathway (PSP) [4]. Secreted and membrane proteins processed by the 73 

PSP contribute to critical tumor functions, such as facilitating communication among different 74 

cells residing in the microenvironment (and even with distant tissue sites in the body), and for 75 

construction and turnover of the tumor extracellular matrix. Collectively, these functions 76 

support a key role for the PSP in cancer physiology, making it an attractive target for 77 

potential therapeutic approaches. 78 

 79 

Advancements in high-throughput molecular profiling technologies such as transcriptomics 80 

and proteomics have enabled extensive investigation and characterization of the human 81 

secretome [5] and its changes during the onset and progression of diseases such as cancer 82 

[6,7]. Although many components of the PSP that drive these important secretome changes 83 

have been studied individually, an investigation of how these constituents behave together as 84 

a system is lacking, particularly in the context of cancer. Recent efforts have begun to 85 

elucidate this system by exploring how PSP expression patterns compare to those of the 86 

secretome among different human tissues [8], and by developing genome-scale 87 

reconstructions of the PSP to mechanistically link these characteristics to the metabolic 88 
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network [9]. We sought to further extend the systematic investigation of the PSP through the 89 

application of machine learning (ML) approaches. 90 

The efficacy of ML-based approaches in the investigation of omics datasets has been 91 

demonstrated in a number of recent studies [10–14]. For example, van IJzendoorn and 92 

colleagues applied a random forest algorithm to three gene expression databases (TCGA, 93 

GTEx, and the French Sarcoma Group) to identify novel diagnostic markers for soft tissue 94 

sarcoma, which was validated with qRT-PCR in an independent experiment [11]. In another 95 

study, Wood and colleagues used L1-regularized logistic regression (Lasso) to develop a 96 

classifier for nonalcoholic fatty liver disease (NAFLD) based on phenotypic, genomic, and 97 

proteomic features [10]. Furthermore, the MLSeq R package was developed to facilitate the 98 

use of over 90 different ML algorithms for the analysis of RNA-Seq or microarray data, 99 

enabling the generation of classification models and identification of potential biomarkers 100 

[15]. 101 

 102 

We applied differential expression (DE) analysis and 8 different ML methods on RNA-seq 103 

data from The Cancer Genome Atlas (TCGA) to identify genes encoding PSP machinery that 104 

are associated with clinical features including cancer status, tumor stage, and mutation 105 

profile. The classification performance of the ML algorithms was evaluated for each of the 106 

clinical features, and relevant PSP genes were identified by DE analysis and compared with 107 

those identified by ML. The analyses reveal PSP components that exhibit pan-cancer and 108 

cancer-specific roles, and demonstrate the complementarity of DE and ML methods in the 109 

analysis of omics data.  110 

 111 
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2. Results 112 

2.1 Data retrieval and definition of PSP genes 113 

We retrieved 11,053 RNA-seq samples and 9,375 mutation profiles from TCGA, spanning 114 

10,198 individuals and 33 cancer types (Table S1). Our analysis was focused on the subset 115 

of 575 genes encoding and/or regulating the human PSP machinery, as defined in the study 116 

by Feizi et al. [8]. These PSP genes encode for secretory processes such as folding, 117 

glycosylation, and trafficking, as well as protein-related stress responses (e.g., the unfolded 118 

protein response). 119 

 120 

2.2 ML-based gene scoring 121 

We developed a gene scoring approach (Fig. 1) whereby samples were grouped according 122 

to a known binary variable of interest (such as normal vs. tumor), and a ML classifier was 123 

trained to predict the group (class) of each sample based on the expression of its PSP 124 

genes. Classifiers were trained using 10-fold cross validation, and prediction performance 125 

was quantified by area under the receiver operating characteristic (ROC) curve (ROC AUC). 126 

The resulting feature importance scores of the trained classifier, which quantify roughly how 127 

useful each gene is in predicting sample class, were normalized by taking the absolute value 128 

and scaling to a range of 0 to 1. A consensus score for each gene was computed as the 129 

average score across the 8 different ML algorithms.  130 

 131 

The ML algorithms used in the present study were random forests [16], extremely 132 

randomized trees (ExTrees) [17], adaptive boosting (AdaBoost) [18], extreme gradient 133 

boosted trees (XGBoost) [19], linear discriminant analysis (LDA), Lasso regression [20], 134 

Ridge regression, and support vector machine (SVM) [21]. We did not seek to include a 135 

comprehensive coverage of the available ML algorithms, as this would be infeasible and 136 

beyond the scope of the study. The algorithms were selected to include some of the most 137 
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commonly employed methods for biological data [22,23], and to span different classes such 138 

as ensemble learning (random forests, ExTrees), boosting (AdaBoost, XGBoost), regularized 139 

logistic regression (lasso and ridge regression), and other common linear classifiers (LDA 140 

and SVM). Furthermore, algorithms were limited to those for which feature importance scores 141 

could be calculated. 142 

 143 

Fig. 1. Schematic of the ML gene scoring approach. (A) RNA-Seq data from TCGA was 144 
filtered to remove non-PSP genes and cancer types were analyzed individually. (B) Samples 145 
within each cancer type were grouped according to a binary variable (e.g., Class 1 = normal; 146 
Class 2 = tumor), and 8 different ML algorithms were used to train models to predict sample 147 
class based on PSP gene expression levels (red X’s in the plot indicate failed predictions). 148 
(C) The prediction performance of each model was evaluated by ROC AUC, and the feature 149 
(gene) importance scores were extracted from each ML model, normalized to a range of 0-1, 150 
and averaged to obtain a consensus ML gene score. Abbreviations: c.v., cross-validation; 151 
TPR, true positive rate; FPR, false positive rate; FIS, feature importance score. 152 
 153 

2.3 Mutation of tumor protein 53 154 

We first sought to validate our ML gene scoring approach using a class variable for which the 155 

associated gene(s) are well-established. A mutation in the TP53 gene (encoding the p53 156 

protein) is one of the most common mutations observed in human cancers, and the resulting 157 

loss or change in its activity as a tumor suppressor contributes to malignant progression [24]. 158 

Since p53 and its regulatory targets have been extensively characterized, we began our 159 

investigation with p53 mutation status as the class variable by which to group samples (non-160 

mutated vs. mutated p53). Of the 575 PSP genes considered in the study, 3 are known to be 161 

direct targets of p53 regulation: BCL2 Associated X (BAX), Heat Shock Protein Family A 162 

Member 4 Like (HSPA4L), and Kinesin Family Member 23 (KIF23). It is therefore expected 163 
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that an effective approach should be able to identify some or all of these 3 genes as being 164 

associated with p53 mutation status. 165 

 166 

Mutation data for the TP53 gene in TCGA subjects was obtained from whole-exome 167 

sequencing data and aligned with the RNA-seq data, enabling the classification of tumor 168 

RNA-seq samples in each cancer type as “mutated” or “non-mutated” in TP53. Cancer types 169 

with fewer than 10 samples in each class were discarded, leaving a total of 22 different 170 

cancer types. Each of the 8 ML algorithms were trained on the data to predict p53 mutation 171 

status based on PSP gene expression, and the resulting gene scores (Table S2) and ROC 172 

AUC values (Table S3) were calculated. In addition, DE analyses were performed between 173 

mutated and non-mutated samples for each cancer type, yielding a log2 fold-change and 174 

associated significance (p-value; adjusted for the false discovery rate (FDR)) for each PSP 175 

gene (Table S4).  176 

 177 

The consensus ML gene scores were averaged across all cancer types to identify genes that 178 

were generally associated with the p53 mutation (Fig. 2A-B). The top 3 genes were BAX, 179 

HSPA4L, and KIF23—precisely those known to be regulated by p53—thus providing support 180 

for the validity of the ML gene scores. Although these 3 genes were significantly differentially 181 

expressed (p53 mutated vs. non-mutated) in many of the cancer types, only KIF23 was 182 

among the top 3 when averaging DE gene scores across all cancers, whereas BAX and 183 

HSPA4L were ranked 9th and 24th (out of 575), respectively (Fig. S1). The ML gene scoring 184 

approach thus outperformed the DE method in identifying the genes most directly associated 185 

with the p53 mutation status.  186 

 187 
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 188 

Fig. 2. Identification of PSP genes associated with p53 mutation. (A) Histogram of ML 189 
gene scores averaged across all cancer types, with the top 3 scoring genes labeled. (B) 190 
Heatmap of the ML gene scores for each cancer type, showing only the top 10 scoring genes 191 
on average across cancer types. (C) Density histogram of all ROC AUC values for each ML 192 
algorithm and cancer type. Boxplots of ROC AUC values grouped by (D) cancer type or (E) 193 
ML algorithm. 194 
 195 

Despite the excellent performance of the ML scoring approach in identifying relevant genes, 196 

this was not entirely reflected in the associated ROC AUC values. The average ROC AUC 197 

across all cancer and ML algorithm types was 0.74 ± 0.11 (mean ± standard deviation) (Fig 198 

2C), where a value of 1 corresponds to a perfect predictor and 0.5 is no better than random. 199 

There were no clear differences between algorithms in terms of ROC AUC, though the 200 

regularized regression methods (Ridge and Lasso) exhibited slightly higher values. A much 201 

larger difference was observed between cancer types, where the average ROC AUC for 202 

LGG, BRCA, and UCEC exceeded 0.85, but was at or below 0.60 for SKCM, OV, and LUSC 203 

(Fig. 2D-E). Interestingly, BAX, HSPA4L, and KIF23 were not among the top-scoring genes 204 

for any of the three cancer types with the highest ROC AUC values, except for KIF23 in 205 
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BRCA. This suggests that useful information can be extracted from the feature scores of 206 

trained ML classifiers despite a relatively poor corresponding ROC AUC. 207 

 208 

2.4 Investigation of PSP genes associated with malignant transformation 209 

After validating the ML gene scoring approach, we used it to evaluate the relative importance 210 

of each PSP component in distinguishing normal vs. tumor samples and identify genes that 211 

are likely to contribute to the tumor phenotype. Analogous to the p53 mutation analysis, 212 

samples for each cancer type were grouped according to cancer status (normal or tumor) 213 

and each of the 8 ML algorithms, as well as DE analysis, were used to score the 575 PSP 214 

genes. Cancer types without at least 10 samples in each group were excluded, yielding a 215 

total of 16 cancer types. 216 

 217 

Unlike the classifiers trained on p53 mutation status, the ROC AUC for predicting normal vs. 218 

tumor samples based on PSP gene expression was high across all cancer types and ML 219 

methods, with an overall average of 0.98 ± 0.03 (Fig. S2). Only the LDA algorithm and the 220 

ESCA cancer type tended to exhibit lower ROC AUC values relative to the others, but the 221 

lowest value for each was still greater than 0.80. This higher prediction performance for 222 

cancer status as compared to p53 mutation status was expected since there is a much 223 

broader range of differences between normal and tumor tissues than there are between 224 

tumor cells differing in a single gene mutation. 225 

2.4.1 Pan-cancer features 226 

Inspection of the ML gene scores and DE analysis results revealed that kinesin-6 family 227 

proteins (KIF20A and KIF23), Crystallin Alpha B (CRYAB), and a few proteins belonging to 228 

the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) family 229 

(STX1A, STX12, STX11, and VAMP2) generally scored highly in both ML and DE 230 

approaches among the different cancer types (Fig. 3A-B, Fig. S3), suggesting that these 231 

proteins play an important role in tumor physiology. KIF20A and KIF23 were among the top 3 232 
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genes with the highest average ML consensus scores and exhibited a significant (FDR 233 

adjusted p-value < 0.01) expression increase in tumor compared to normal samples for all 16 234 

cancer types except two renal carcinomas, KICH and KIRP (Fig. S4). Although they are 235 

associated with Golgi-to-ER retrograde transport and intracellular organelle transport, 236 

KIF20A and KIF23 play a critical role in mitosis and cytokinesis [25,26]. Inhibitors of these 237 

and other kinesin family proteins are undergoing clinical trials as anticancer therapeutics [27]. 238 

 239 

 240 

Fig. 3. Kinesins and components of the SNARE complex are associated with cancer 241 
status. Boxplots show the (A) consensus ML gene scores and (B) normalized DE gene 242 
scores among the different cancer types. Only the top 10 scoring genes on average for each 243 
scoring type are shown. (C) Log-transformed expression fold-changes and significance 244 
(FDR-adjusted p-values) of PSP genes belonging to the STX family, from the DE analysis. 245 
Color indicates fold-change magnitude and direction, whereas circle size indicates 246 
significance. 247 
 248 

Although STX1A exhibited a similar expression increase across most cancer types as the 249 

kinesin-6 family proteins, the expression of STX11, STX12, and VAMP2 was significantly 250 

decreased in tumors across nearly all 16 cancer types. We further investigated the 251 

expression changes of the PSP genes belonging to the STX (Fig. 3C) or VAMP (Fig. S5) 252 

gene families. There was a common restructuring pattern of STX expression among the 253 

different cancer types, involving a mixture of increases and decreases across the different 254 

STX genes, whereas VAMP genes tended to be more broadly decreased with the exception 255 

of VAMP1 and VAMP8. SNARE proteins, which include the STX and VAMP families, mediate 256 

the membrane fusion necessary for trafficking through the different steps of the secretory 257 

pathway [28]. SNAREs have been found to support many tumorigenic functions such as 258 
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autophagy, cell invasion, and chemo-resistance, and thus constitute potential targets in anti-259 

cancer therapies [29]. 260 

 261 

The CRYAB gene exhibited the second highest ML consensus score on average across the 262 

16 cancer types (Fig. 3A), and was significantly differentially expressed (FDR-adjusted p < 263 

0.01) in all but 3 cancer types. Unlike the kinesins whose expression was nearly always 264 

increased in tumor relative to normal tissue, CRYAB expression was significantly decreased 265 

in tumor for 10 cancer types and increased in only 3: LIHC, KIRC, and KIRP (Fig. S6). The 266 

mean CRYAB mRNA abundance of LIHC samples were the lowest of all cancer types (< 10 267 

TPM) and thus the DE results are less reliable; however, both KIRC and KIRP exhibited 268 

among the highest expression of CRYAB in paired normal samples which further increased 269 

by 1.9- and 6.5-fold in their corresponding tumor samples, respectively. The main role of 270 

CRYAB is to form multimeric structures with other proteins to prevent aggregation, but it has 271 

also been shown to exhibit other activities such as protection from oxidative stress and 272 

apoptotic stimuli [30]. In the context of cancer, there does not appear to be a clear consensus 273 

as to whether CRYAB supports or suppresses tumorigenesis [30]. Many studies conclude a 274 

pro-tumorigenic effect of CRYAB and a positive correlation between its expression and tumor 275 

aggression [31], whereas others report a tumor-suppressive activity and/or decreased 276 

expression in more aggressive tumors [32,33]. Our results suggest that cancer type is one 277 

factor determining whether CRYAB exerts an inhibitory or supportive role in a tumor, and that 278 

renal carcinomas in particular may be susceptible to CRYAB-modulating therapies. 279 

2.4.2 Cancer-specific features 280 

Although the kinesins, SNAREs, and CRYAB were among the highest ML gene scores when 281 

averaging over all 16 cancer types, no genes were consistently high-scoring in more than a 282 

few of the cancer types. An inspection of the top-scoring genes of each individual cancer 283 

type revealed that high-scoring genes were primarily cancer-specific (Fig. S7). For example, 284 

RAS oncogene family member 17 (RAB17) scored highly in prostate adenocarcinoma 285 
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(PRAD) across nearly all ML algorithms with a consensus score of 0.82, whereas its score in 286 

all other cancer types ranged from 0.01 to 0.17. Members of the RAB family regulate vesicle 287 

trafficking and are known to both promote and suppress tumor growth, depending on the 288 

family member and cancer type [34]. Although increased expression of RAB25 has been 289 

shown to contribute to prostate cancer malignancy and recurrence [35], similar studies or 290 

observations involving RAB17 are lacking.  291 

 292 

When investigating the highest-scoring genes for each individual cancer type, we observed a 293 

high frequency of genes associated with glycosylation, particularly for five cancer types: 294 

STAD, READ, COAD, KICH, and THCA (Fig 4). For each of these cancer types, 3 out of their 295 

top 5 scoring genes encoded some form of glycosylation activity, despite such activity 296 

accounting for less than 18% of the 575 PSP genes considered in this study.  297 

 298 

 299 

Fig. 4. Glycosylation is an enriched function among the top PSP genes associated 300 
with a subset of cancer types. The heatmap shows the consensus ML gene scores of the 301 
cancer types for which 3 out of 5 top-scoring genes encode for glycosylation activity. The 302 
colorbar on the left indicates the function associated with each gene. 303 
 304 

Genes associated with O-linked peptide glycosylation (LARGE2, B3GNTL1, B4GALNT2, and 305 

the GALNT family) were associated with KICH, COAD, and to a lesser extent READ, 306 
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whereas genes encoding N-linked glycosylation activity (DPM2, MAN1A1, TUSC3, and the 307 

ALG family) scored highly for the STAD and THCA cancer types. The expression and 308 

specific patterns of glycans dictate cellular functions such as adhesion, signal transduction, 309 

differentiation, and proliferation, and the alteration of such patterns is a hallmark of tumor 310 

physiology [36,37]. It is therefore logical that genes encoding these post-translational 311 

modifications scored highly in the ML classifiers distinguishing normal from tumor samples. 312 

Furthermore, the cancer-specificity of these high-scoring genes is likely a reflection of the 313 

specificity and complexity of the glycosylation machinery and its large repertoire of glycan 314 

patterns [38]. 315 

 316 

2.5 Analysis of different tumor stages 317 

We next focused on PSP gene expression changes between tumor stages to identify 318 

secretory pathway components that were associated with disease severity and tumor 319 

development. Most TCGA samples are annotated with tumor stage information which 320 

generally ranges from stage I to stage IV, enabling the investigation of transcriptomic 321 

changes as a function of disease progression. Primary tumor samples were grouped into 322 

stages I, II, III, and IV within each cancer type, and ML classifiers were trained on all possible 323 

pairs of tumor stages to predict a sample’s stage based on its corresponding PSP gene 324 

expression profile. Cancer types without at least 10 samples in at least 3 tumor stages were 325 

discarded, yielding a total of 17 cancer types.  326 

 327 

The ROC AUC values for the ML classifiers of tumor stage were substantially lower than 328 

those trained to separate normal vs. tumor samples, where many performed no better than 329 

random (ROC AUC ~ 0.5) (Fig. 5A and Fig. S8). This was expected given that physiological 330 

differences between tumor stages are relatively subtle when compared to those between 331 

normal and cancerous tissue. Although our initial analysis with the p53 mutation ML 332 

classifiers suggested that feature importance scores can still provide some meaningful 333 
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information despite relatively low ROC AUC values, we expect that such scores will largely 334 

degrade into random noise when approaching very poor values near (or below) 0.5. We 335 

therefore continued the analysis using only the top 5 performing cancer types based on their 336 

average ROC AUC values across the different ML algorithms and pairs of tumor stages: 337 

THCA, TGCT, KIRP, KIRC, and ACC (Fig. 5A). 338 

 339 

Among the PSP genes exhibiting the highest average consensus ML scores across the 340 

different cancer types and tumor stages, hyaluronan synthase 3 (HAS3) and KIF20A were 341 

the most prominent (Fig. 5B and Fig. S9). Hyaluronan, an extracellular matrix 342 

polysaccharide, is enriched in the matrix surrounding virtually all epithelial tumors [39], and 343 

has been shown to promote tumor malignancy and metastasis by increasing cell 344 

invasiveness and anchorage-independent growth [40]. Consistent with the malignant function 345 

of hyaluronan, HAS3 exhibited a high consensus ML score for TGCT and to a lesser extent 346 

THCA, suggesting an association between HAS3 expression and tumor stage. This was 347 

reflected in the gene expression profiles of TGCT tumor samples, which showed increasing 348 

expression of HAS3 and HAS2 with increasing tumor stage (Fig. S10). Conversely, THCA did 349 

not exhibit a substantial difference in HAS3 expression as a function of tumor stage, but a 350 

positive relationship was observed between THCA tumor stage and HAS1 expression (Fig. 351 

S10).  352 

 353 
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 354 

Fig. 5. PSP genes associated with tumor stage. (A) Boxplots of mean ROC AUC values 355 
for the prediction of tumor stage based on PSP gene expression. Only cancer types with 356 
sufficient samples in >2 different tumor stages are included. Dark blue boxes indicate the 357 
cancer types with the top 5 ROC AUC values on average, which were used in subsequent 358 
analyses. (B) Heatmap of consensus ML gene scores for the different stage comparisons of 359 
each cancer type, showing only the top 10 scoring genes on average. (C) Expression (log 360 
transformed TPM) of KIF20A among different cancer types, grouped by tumor stage. 361 
 362 

The top-scoring gene on average across the 5 cancer types was KIF20A, which exhibited 363 

particularly high scores for distinguishing tumor stages of KIRP, and to a lesser extent those 364 

of KIRC and ACC. Interestingly, the renal carcinomas (KIRP, KICH, and KIRC) were among 365 

the few cancer types for which the kinesins (KIF23 and KIF20A) were either not significantly 366 

DE and/or exhibited a very low consensus ML score (less than 0.1 on average) when 367 

comparing normal to tumor tissues. This distinction becomes clear when comparing the 368 

expression of KIF20A between normal tissue and different tumor stages for each cancer type 369 

(Fig. 5C). Most cancer types exhibit a sharp increase in KIF20A expression between normal 370 

and tumor samples that remain relatively constant across the different tumor stages, whereas 371 
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renal carcinomas display a more gradual change in KIF20A expression that continues to 372 

increase with increasing tumor stage. Although KIF20A has been implicated in the 373 

development of many other cancer types [27,41,42], its involvement in renal carcinoma has 374 

not been addressed. The expression dynamics observed here suggest that KIF20A may 375 

support more invasive and metastatic functions associated with later stages of renal 376 

carcinoma, and thus constitutes a potential therapeutic target for this cancer type. 377 

 378 

3. Discussion 379 

The secretory pathway and its products are essential to the viability of eukaryotic organisms, 380 

but the deregulation of secretory machinery can support detrimental processes such as those 381 

driving tumorigenesis [7,43]. The identification of PSP components exhibiting oncogenic or 382 

tumor suppressive activities can aid in the development of novel anti-cancer therapies that 383 

aim to restore healthy PSP function through the modulation of these components. We 384 

therefore conducted a focused investigation of the PSP transcriptional changes associated 385 

with malignant transformation and tumor progression across many different cancer types. 386 

This allowed us to identify patterns in PSP expression that were common to carcinogenesis 387 

independent of cancer type, as well as explore secretory elements that exhibited cancer type 388 

specific behavior. 389 

 390 

Accessing and interpreting the information embedded within omics data is non-trivial due to 391 

its high volume and dimensionality, and has traditionally been limited to a few methods, such 392 

as DE analysis and principal component analysis (PCA) [44]. We therefore sought to deepen 393 

the investigation by applying different machine learning (ML) approaches to provide a more 394 

detailed understanding of PSP behavior in tumors. However, ML methods generally struggle 395 

when the number of features (genes) greatly exceeds the number of samples, which is often 396 

the case for RNA-seq or other omics datasets and is referred to as the curse of 397 

dimensionality [45]. The ML methods were therefore well-suited for this focused study 398 
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because the number of features was greatly reduced by including only the 575 PSP genes in 399 

the analyses. Furthermore, there is often a risk of over-fitting or a high frequency of false 400 

positives when using a data-driven approach such as ML. We therefore implemented 8 401 

different types of ML algorithms in our analyses and used a normalized average consensus 402 

score that combined the results of each algorithm. This ensured that genes identified as 403 

relevant to a given biological class variable were robust to the choice of ML algorithm or 404 

effects of overfitting. 405 

 406 

The use of several different ML algorithms also enabled comparison of their predictive 407 

performance for each of the investigations, as quantified by ROC AUC. Although some ML 408 

algorithms (such as regularized regression and extreme gradient boosted trees) tended to 409 

outperform others (such as LDA and adaptive boosting) among the different class variables 410 

and cancer types, the difference was marginal and far from significant. This further supported 411 

using a consensus score that combined the output of the 8 different methods with equal 412 

weighting because no method consistently outperformed the others. 413 

 414 

We used a well-studied feature in cancer biology - the mutation of p53 - to evaluate the 415 

performance of the ML approach in terms of identifying biologically relevant features, and to 416 

compare with DE analysis. The highest consensus ML gene scores were exhibited by the 417 

known regulatory targets of p53 in the 575 PSP genes (BAX, HSPA4L, and KIF23), providing 418 

confidence in the biological relevance of the ML results. Although the DE analysis identified 419 

these genes as important, some were not ranked as highly as other PSP genes. A reason for 420 

why the ML methods outperformed DE analysis in this case is because the ML algorithms 421 

can capture interactions between genes and their expression patterns in different samples, 422 

whereas DE analysis estimates a fold-change and confidence for each gene individually. 423 

 424 

A recurring gene of importance in our analyses was KIF20A, which was remarkably among 425 

the top-scoring genes for both ML and DE approaches and for all class variables (p53 426 
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mutation status, normal vs. tumor, and different tumor stages). This is consistent with the 427 

abundance of studies that have identified KIF20A to be highly expressed, linked to tumor 428 

aggressiveness, correlate with poor survival, diagnostic, and/or prognostic in many different 429 

cancer types [41], which support a critical and diverse role of the protein in general tumor 430 

development and progression. There are however a lack of studies identifying any role or 431 

association of KIF20A with renal carcinoma other than a co-expression network analysis of 432 

clear cell renal cell carcinoma (ccRCC) by Yuan and colleagues, in which KIF20A was 433 

identified as one of six hub genes associated with ccRCC progression [46]. We observed a 434 

substantial difference in the pattern of KIF20A expression among normal and stage-stratified 435 

tumor samples in all renal carcinomas (KICH, KIRP, KIRC) compared to other cancer types; 436 

KIF20A expression in renal carcinomas increased more gradually with increasing tumor 437 

stage rather than a sharp increase between normal and tumor that remained relatively 438 

constant across stages. We cannot speculate from this data alone as to the cause for the 439 

different dynamics, but it may indicate that anti-cancer treatments targeting KIF20A could 440 

exhibit variable efficacy with tumor stage for renal carcinomas. 441 

 442 

Our investigation demonstrates the efficacy of using a consensus ML-based gene scoring 443 

approach to predict biologically relevant features from a focused set of genes, and highlights 444 

the utility of using such an approach to complement and support the results of DE analysis. 445 

Furthermore, we present a set of PSP-associated proteins and protein families that exhibit a 446 

robust association with malignant transformation and tumor progression, and thus hold 447 

potential as targets in the development of anti-cancer therapeutics. 448 

 449 
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4. Methods 450 

Analysis and figure scripts 451 

The scripts used to perform the analyses and generate the figures presented here, as well as 452 

all analysis outputs, are available on GitHub: 453 

https://github.com/SysBioChalmers/CancerProteinSecretionML. Data files too large to host 454 

on GitHub were deposited on Zenodo: https://doi.org/10.5281/zenodo.3978373. 455 

 456 

RNA-Seq and mutation data retrieval 457 

Transcriptomic (RNA-seq) and mutation annotation data was retrieved from TCGA using the 458 

TCGAbiolinks R package [47]. Raw gene counts and normalized (FPKM) gene counts were 459 

retrieved for 33 available cancer types. Mutation annotation information was obtained using 460 

the MuTect2 variant calling pipeline [48], and processed such that each gene in each sample 461 

was classified as mutated if it was modified in any way (insertion, deletion, missense, silent, 462 

etc.), otherwise it was classified as non-mutated.  463 

 464 

Differential expression analysis 465 

Differential expression analysis was performed on raw gene counts using the edgeR 466 

package [49]. Samples were grouped according to a binary class variable of interest (e.g., 467 

p53 mutation status, cancer status, or tumor stage), and all genes were included except for 468 

those that had fewer than 10 counts in 70% of the samples of the smallest group. Genes 469 

excluded from an analysis due to low counts were automatically assigned a log2 fold-change 470 

of zero and a p-value of one. The design matrix included only information regarding group 471 

membership of each sample. We did not account for patient identity when performing the 472 

normal vs. primary tumor analysis because it would require the exclusion of many tumor 473 

samples which were used in the ML analyses. The expression fold-changes and associated 474 
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significance (FDR-adjusted p-values) were calculated prior to filtering out non-PSP genes. 475 

Analyses were performed on each cancer type individually, where cancer types with fewer 476 

than 10 samples in a group were excluded.  477 

 478 

A DE gene score was formulated to enable comparison with the ML gene score described 479 

below. The FDR-adjusted p-values of PSP genes for a given comparison and cancer type 480 

were log-transformed, negated, and normalized to a range of 0 to 1. 481 

 482 

ML model training and gene scoring 483 

All ML methods were implemented in python using the scikit-learn package [50] or the 484 

XGBoost package [19]. Gene expression values were converted to transcripts per million 485 

(TPM), and natural log transformed after adding a pseudocount of 1 TPM to avoid logarithm 486 

of zero. Samples were grouped according to a binary class variable of interest (e.g., p53 487 

mutation status, cancer status, or tumor stage), and cancer types were analyzed individually, 488 

where cancer types with fewer than 10 samples in a group were excluded. Non-PSP genes 489 

and genes with a median expression below 0.1 TPM among both sample groups were also 490 

excluded.  491 

 492 

For each cancer type and class variable, 8 classification models were trained using each of 493 

the 8 ML algorithms (random forests, ExTrees, AdaBoost, XGBoost, LDA, lasso regression, 494 

ridge regression, and SVM). Default parameters were used for each algorithm when 495 

available. For the tree-based methods, the number of estimators was set to the 496 

recommended value of the square root of the number of features, rounded down to the 497 

nearest integer. For the ridge and lasso regression methods, the “saga” solver was used with 498 

a maximum of 10,000 iterations. Training was performed using stratified 10-fold cross 499 

validation, such that each fold contained approximately the same proportion of samples from 500 

each group. Feature importance scores were extracted from each trained model, and 501 
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normalized by taking the absolute value and scaling to a range of 0 to 1. A consensus score 502 

was calculated for each gene by averaging the normalized importance scores obtained from 503 

each of the 8 algorithms. 504 

 505 

We note that our primary interest was to determine the relative importance of features 506 

(genes), as quantified by the gene scores, rather than developing predictive models. We 507 

therefore used all available samples when training each classifier and did not exclude any 508 

samples for a separate test set, meaning that the reported ROC AUC values are likely higher 509 

than what one would expect if the trained model predictions were evaluated using an 510 

independent test set of samples. The ROC AUC values were determined using stratified 10-511 

fold cross validation, where the reported values are the mean of the 10 folds.  512 

 513 

Tumor stage processing 514 

Tumor stages in TCGA are often provided with sub-stage detail, such as stage IIa, stage IIb, 515 

etc. We merged such annotations to achieve only four different stages: I, II, III, and IV. The 516 

merging was performed to avoid increasingly large numbers of pairwise stage comparisons, 517 

as well as groups with very few samples.  518 
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Supporting information captions 665 

Supporting Figures 666 

 667 

Figure S1. Consensus ML and DE gene scores for p53 mutation status. Histogram of 668 

(A) mean ML gene scores and (B) mean DE gene scores across all available cancer types, 669 

where the three PSP genes known to be regulated by p53 are labeled. Boxplots of (C) 670 

consensus ML gene scores and (D) DE gene scores for the top 10 scoring genes on 671 

average. Clustered heatmaps showing the (E) consensus ML gene scores and (F) DE gene 672 

scores for individual cancers for the top 10 scoring genes on average. 673 

 674 

Figure S2. ROC AUC values for the prediction of cancer status by the trained ML 675 

models. (A) Density histogram of all ROC AUC values across different cancer types and ML 676 

algorithms. Boxplots showing the ROC AUC values grouped by (B) cancer type or (C) ML 677 

algorithm. 678 

 679 

Figure S3. Consensus ML and DE gene scores for cancer status. Histogram of (A) mean 680 

ML gene scores and (B) mean DE gene scores across all available cancer types. Boxplots of 681 

(C) consensus ML gene scores and (D) DE gene scores for the top 10 scoring genes on 682 

average. Clustered heatmaps showing the (E) consensus ML gene scores and (F) DE gene 683 

scores for individual cancers for the top 10 scoring genes on average. 684 

 685 

Figure S4. Expression fold-change and significance of PSP genes belonging to the KIF 686 

family from the DE analysis of normal vs. tumor. Color indicates fold-change magnitude 687 

and direction, whereas circle size indicates significance (FDR-adjusted p-value). 688 

 689 

Figure S5. Expression fold-change and significance of PSP genes belonging to the 690 

VAMP family from the DE analysis of normal vs. tumor. Color indicates fold-change 691 

magnitude and direction, whereas circle size indicates significance (FDR-adjusted p-value). 692 

 693 

Figure S6. Expression of CRYAB in normal and tumor tissue samples across different 694 

cancer types. Cancer types are grouped according to whether CRYAB significantly (FDR-695 

adjusted p-value < 0.01) changed in expression between normal and tumor, and whether that 696 

change was a decrease or increase. 697 

 698 

 699 
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Figure S7. Heatmap of the consensus ML gene scores for cancer status. The heatmap 700 

includes all available cancer types and the top 5 scoring genes of each type. For visual aid, 701 

rows and columns were clustered such that high-scoring genes for each cancer tend to lie 702 

along or near the diagonal. 703 

 704 

Figure S8. ROC AUC values for the prediction of tumor stage by the trained ML 705 

models. (A) Density histogram of all ROC AUC values across different cancer types and ML 706 

algorithms. Boxplots showing the ROC AUC values grouped by (B) cancer type, (C) ML 707 

algorithm, or (D) each pair of tumor stages. 708 

 709 

Figure S9. Consensus ML and DE gene scores for tumor stage. Histogram of (A) mean 710 

ML gene scores and (B) mean DE gene scores across the 5 cancer types with the highest 711 

average ROC AUC values. Boxplots of (C) consensus ML gene scores and (D) DE gene 712 

scores for the top 10 scoring genes on average. Clustered heatmaps showing the (E) 713 

consensus ML gene scores and (F) DE gene scores for individual cancers for the top 10 714 

scoring genes on average. 715 

 716 

Figure S10. Expression of PSP genes belonging to the HAS family among different 717 

tumor stages in TGCT and THCA cancer types. 718 

 719 

Supporting Tables 720 

Table S1. TCGA cancer abbreviations and sample metadata. [.docx] 721 

 722 

Table S2. Consensus ML gene scores for p53 mutation, cancer status, and tumor 723 

stage. [.xlsx] 724 

 725 

Table S3. ROC AUC values of each ML algorithm for predicting p53 mutation, cancer 726 

status, and tumor stage. [.xlsx] 727 

 728 

Table S4. Differential expression log2 fold-changes, FDR-adjusted p-values, and gene 729 

scores for p53 mutation, cancer status, and tumor stage. [.xlsx] 730 

 731 
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