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Abstract:  18 

 19 

When human cord blood derived CD34+ cells are induced to differentiate in vitro, they undergo 20 

rapid and dynamic morphological and molecular transformation that are critical for the fate 21 
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commitment. Using ATAC-seq and single-cell RNA sequencing, we detected two phases of this 22 

process. In the first phase, we observed that a rapid and widespread chromatin opening - that 23 

makes most of the gene promoters in the genome accessible - precedes a global upregulation of 24 

gene transcription and a concomitant increase in the cell-to-cell variability of gene expression. The 25 

second phase is marked by a slow chromatin closure that precedes an overall downregulation of 26 

gene transcription and the emergence of coherent expression profiles that characterize distinct cell 27 

subpopulations. We further showed that the accessibility of promoters has a crucial effect on 28 

whether transcription factor changes will lead to alterations in the expression of their target genes. 29 

Our observations are consistent with a model based on the spontaneous probabilistic organization 30 

of the cellular process of fate commitment. 31 

 32 

Background 33 

 34 

Hematopoietic cells are a widely used model for the study of fate decision and cell 35 

differentiation and it is frequently considered as a paradigm of cell differentiation in general. 36 

Differentiation is believed to proceed through a series of binary fate decisions under the action of 37 

key instructive factors inducing specific changes in the cell that lead to stepwise switches of the 38 

expression profiles at critical decision points [1]. The typical representation of this process is a 39 

hierarchical decision tree. Such a strict hierarchical process must imply tight regulation of gene 40 

expression. The genes involved in the process are well known [2]. But recent single-cell gene 41 

expression studies directly contradict the assumption of precise regulation and strictly ordered 42 

process. It has been shown that, soon after their stimulation for differentiation, multipotent 43 

CD34+ cells go through a phase of disordered gene expression called “multilineage primed” phase 44 

characterized by concomitant expression of genes typical for alternative lineages [3–6]. Other 45 
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studies demonstrated that hematopoietic stem cells (HSC) gradually acquire lineage characteristics 46 

along multiple directions without passing through discrete hierarchically organized progenitor 47 

populations [7]. Instead, unilineage-restricted cells emerge directly from a continuum of low-48 

primed undifferentiated hematopoietic stem and progenitor cells [7]. This phase is accompanied 49 

by instabilities and fluctuation of the cell transcriptome, morphology and dynamic cell behavior 50 

[6,8]. How this quasi-random gene expression pattern is generated, how it is transformed into a 51 

defined gene expression profile remains unknown. In order to answer these questions, we 52 

determined the order and the timescale of the early chromatin and transcriptional changes that 53 

follow the induction of differentiation in CD34+ cells.  54 

 55 

To do this, we performed single cell RNA sequencing of human cord blood CD34+ cells at 56 

different time points during the 96h period following their stimulation, a period shown to be 57 

critical for cell fate decision [6]. The gene expression profiles were correlated to the DNA 58 

accessibility changes determined by ATAC-seq at defined time-points during the same period. The 59 

experimental strategy is shown in Fig. 1A. The data revealed strikingly different dynamics of 60 

chromatin accessibility and gene expression that challenges the classical model based on specific 61 

stepwise switches. 62 

 63 

Keywords 64 

 65 

hematopoietic stem cell, fate commitment, single-cell, chromatin remodeling, ATAC-seq, 66 

scRNA-seq, transcription factor, promoter accessibility, CD34+ 67 

 68 
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Results 69 

 70 

Single-cell gene expression analysis using RNA-seq  71 

 72 

Human CD34+ cells were isolated from the cord blood of two healthy donors and cultured 73 

in the presence of early acting cytokines as described [6]. To identify the transcriptional signatures 74 

and estimate their variability at the earliest stages of the differentiation process, we adapted MARS-75 

seq protocol (massively parallel single-cell RNA-sequencing, see Methods) on CD34+ cells 76 

randomly sorted at different time points (5h, 24h, 48h, 72h and 96h) after the cells were cultured 77 

in the presence of cytokines [9] . A uniform random sampling of a heterogenous population 78 

allowed us to evaluate the global changes without any preconceived ideas on the cell categories 79 

present in the population. The quantification of gene expression was calibrated using unique 80 

molecular identifier (UMI) marked RNAs. Details about quality control of the results are shown 81 

in Additional Table 1. In order to avoid the potential bias due to batch correction, the results of 82 

the two donors were analyzed separately. 83 

 84 
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 85 

Fig. 1 Gene expression dynamics of cord blood derived CD34+ cells. A CD34+ cells were 86 

isolated from human cord blood and cultured in serum-free medium with early acting cytokines. 87 

Single-cell RNA sequencing (scRNA-seq) was used to analyze single-cell transcription at 5h, 24h, 88 

48h, 72h and 96h. Concomitantly, at 0h, 5h, 24h and 48h, 5000 living cells were collected to 89 

perform ATAC-seq protocol in order to study DNA accessibility dynamics. B Number of detected 90 

genes per cell with scRNA-seq. Two donors were analyzed separately, both showed similar 91 

dynamics. C Weighted correlation network analysis (WGCNA) reveals clusters of genes with 92 

similar dynamic patterns in the average mRNA expression in Donor1 and Donor2. Note that 93 

cluster 1 reproduces the dynamic pattern observed for genes showing detectable expression in 94 

single cell in Fig. 1B. Cluster 1 = 5194 genes (Donor1) and 5518 genes (Donor2), cluster 2 = 3977 95 

genes (Donor1) and 2602 (Donor2), cluster 3 = 1089 genes (Donor1) and 609 genes (Donor2). 96 
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 97 

The results revealed important features of the gene expression dynamics (Fig. 1). Following 98 

stimulation, the transcriptome of the cells underwent rapid and substantial quantitative and 99 

qualitative changes. Both the number of expressed genes per cell and the number of mRNA 100 

molecules per gene increased substantially (Fig. 1B and Fig. 1C). The average number of genes 101 

detected per cell at 5h was only 512+/-243 in Donor1. This number increased to 1693 +/-813 at 102 

24h and 2543+/-751 at 48h, but then decreased to 2014+/-714 at 72h and to 1612 +/-613 at 96h. 103 

The numbers for the cells from Donor 2 were very similar (Fig. 1C). The rapid increase of global 104 

transcription activity in the cells, that occurred mainly during the first 48h, suggests that cells 105 

significantly expand their repertoire of transcribed genes during the initial period of differentiation. 106 

 107 

When individual genes were examined, we observed that the corresponding number of mRNA 108 

molecules also increased. Using Weighted Correlation Network Analysis (WGCNA), we found 109 

clusters of genes with highly correlated mean expression patterns over time (Fig. 1C). The three 110 

largest clusters together contain more than 8500 genes with mean expressions that generally show 111 

a characteristic time profile with an initial increase followed by a subsequent decrease. Thus, the 112 

average CD34+ cell responds to cytokine stimulation by a strong, but transitory, upregulation of 113 

transcriptional activity both in terms of the number of genes and the number of transcripts. Due 114 

to the very high number of genes in the first cluster, gene ontology (GO) analysis was 115 

unsurprisingly irrelevant and showed significant enrichments for all basic cellular functions. 116 

Notably, none of the most represented functions were directly related to the hematopoietic lineage 117 

(Additional File. 1). During the 24h to 48h period after the stimulation, the fraction of the genes 118 

transcribed in individual cells raised up to approximately 10-15% of all genes in the genome (Fig. 119 
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1B). After 72h, this number started to decrease (Fig.1B). Importantly, this timing coincides with 120 

the period when the first signs of lineage-specific transcriptional changes appear [6].  121 

 122 

In order to better characterize cell type specific gene expression patterns, lineage progression, and 123 

trajectory of the cells during the fate decision process, we applied a recent method CALISTA 124 

(Clustering And Lineage Inference in Single-Cell Transcriptional Analysis) to the single-cell RNA 125 

dataset [10]. CALISTA is a likelihood-based method that uses the two-state stochastic model of 126 

gene transcription to describe the cell-to-cell variability of gene expression at single-cell level [11]. 127 

Here, we employed CALISTA for cell clustering, lineage inference, and calculating single-cell 128 

transcriptional uncertainty. In CALISTA, to each cell is assigned a likelihood value, which reflects 129 

the joint probability of its gene expression (mRNA counts) based on the mRNA distribution from 130 

the two-states model. In order to avoid potential batch effects, we analyzed the single-cell mRNA 131 

datasets from two donors independently. For both donors, CALISTA identified five single-cell 132 

clusters on the basis of the 200 most variable genes (Additional Fig. 1 and Fig. 2A). In both 133 

donors, clusters #1 and #2 were essentially composed of cells isolated at 5h and 24h, respectively 134 

(Additional Fig. 2). Clusters #3, #4 and #5 contained cells isolated at 48h, 72h and 96h, but with 135 

a higher degree of cells from different time points compared to clusters #1 and #2 (Additional 136 

Fig. 1). CALISTA generated the lineage progression using the clusters based on the distances 137 

between each pair of clusters, specifically by adding “transition” edges in the order of increasing 138 

distances and cluster pseudotimes – defined by the mode of the sampling time points of the cells 139 

in each cluster. The cluster distance between any two clusters gives a measure of dissimilarity in 140 

their gene expression distributions and is defined as the maximum difference in the cumulative 141 

likelihood values upon reassigning the cells from the original cluster to the other cluster [10]. The 142 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

8 

 

inferred lineage progression graphs for each of the two donors are depicted in Fig. 2, showing the 143 

emergence of two distinct cell clusters with divergent transcription profiles.  144 

 145 

Note that each gene in each individual cell in a cluster can be characterized by a unique likelihood 146 

value (see Methods). Here, we use the negative logarithm of the gene likelihood value (NLL) as a 147 

metric of transcriptional uncertainty, using which we can probe into the intra-cluster cell-to-cell 148 

heterogeneity in the gene expression [10,12]. As shown in Fig. 2B, the gene-wise NLLs in the 149 

clusters reveal that clusters #2 and #3 are much more heterogenous than the other clusters. 150 

Importantly, clusters #2 and #3 contain the cells that display the highest number of expressed 151 

genes and of transcripts per gene. In other words, the upregulation of global transcriptional activity 152 

in response to cytokine stimulation also causes an increase in transcriptional uncertainty and cell-153 

to-cell heterogeneity in gene expression. Also, the peak of such transcriptional uncertainty 154 

precedes the emergence of two distinct gene expression profiles. At 72h and 96h, both the total 155 

number of transcribed genes and the number of transcripts per individual gene decrease 156 

simultaneously. In a previous study, the gradual emergence of defined expression profiles was 157 

observed after 72 hours [6], in agreement with our observations. The analysis of single-cell RNA 158 

profiles using CALISTA above demonstrated that starting from 48h, two distinct gene expression 159 

profiles start to diverge (Fig. 2A). 160 

 161 
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 162 

Fig. 2 Evolution of transcriptome profiles after cell stimulation. A Transcriptome clusters 163 

identified by CALISTA [10]. Each dot corresponds to a cell in the single-cell transcriptomic dataset 164 

of cells sampled at 5h, 24h, 48h, 72h and 96h. The x axis corresponds to the pseudotime values 165 

and the y-z axes to the first and second principal component (PC) coordinates. The color code for 166 

the clusters appears in Fig.2B. The transition edges are represented by black plain lines between 167 

the clusters and the numbers are “cluster distances”, a likelihood-based measure of dissimilarity 168 

(distance) between cell clusters. Left panel: Donor1, right panel: Donor2. B Negative Likelihood 169 

matrix for the 200 most variable genes computed by CALISTA for each cluster. Each plot 170 

corresponds to a cluster indicated by a color code as in A and the cluster number. Left panel: 171 

Donor1, right panel: Donor2. 172 
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The conclusions drawn on the basis of the general trends in single-cell gene expressions are 174 

supported by the expression of genes coding for transcription factors (TFs) essential for 175 

hematopoietic differentiation (Additional Fig. 2) [2]. Notably, TF-encoding genes showed highly 176 

dynamic expression by cells during differentiation. Both the fraction of expressing cells and the 177 

number of mRNAs per cell increased and went through a plateau at 48-72h. However, each 178 

individual cell expressed a different combination of these genes and no obvious dynamic patterns 179 

could be identified. The tendency toward defined hematopoietic transcription profiles can hardly 180 

be observed by the end of the time series at 96h.  181 

 182 

In order to reveal potentially active regulatory interactions, we identified genes coding for 183 

transcription factors (TFs) that showed a change in expression (Fig. 3). We used the terminology 184 

“change” or “differentially expressed (DE)” to refer to genes that show a statistically significant 185 

increase or decrease in the corresponding mRNA level based on the number of UMIs detected in 186 

a cell (two-tailed Fisher exact test, see Methods for details). For each TF, we identified its target 187 

genes using human transcriptional regulatory networks from the Regulatory Circuits resource [13]. 188 

A TF may have multiple target genes, and vice versa, a gene may have several TF regulators. A 189 

gene is counted in the “changes in TF” group when at least one of the genes coding for a TF 190 

targeting it shows differential expression between 5h and 24h or between 24h and 48h. Note that 191 

the genes belonging to this group may or may not themselves be differentially expressed. A gene 192 

is counted in the “no change in TF” group when none of its TFs show any differential expression. 193 

Genes in the “changes in TF” group between 5h and 24h are significantly over-represented 194 

(p=1.4e-6) for genes that are differentially expressed (i.e. DE genes), but not for those between 195 

24h and 48h (Fig. 3). Genes in the “no change TF” group between 5h and 24h are enriched for 196 

genes showing no significant differential expression, but again not for those between 24h and 48h. 197 
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These observations indicate that differential expression of genes between 5h and 24h is connected 198 

to changes in the expression of the TF regulators, which reflects the regulatory activity of TFs. 199 

However, the regulatory activity of TFs appears to have been restricted after 24h. 200 

 201 

 202 

Fig. 3 Global influence of transcription factors on targeted gene expression. Enrichment 203 

analysis of genes in the “change in TF” and “no change in TF” group for differentially expressed 204 

(DE) and non-DE genes.  205 

      206 

ATAC-seq analysis of DNA accessibility 207 

 208 

DNA accessibility in CD34+ cells was determined using ATAC-seq [14] at four time points (0h, 209 

5h, 24h, and 48h after cell stimulation). We applied a stringent filter to identify accessibility by only 210 

retaining peaks that are uniformly detected in the cells of three different donors (see Additional 211 

Table. 2 for donor-related information). Performing ATAC-seq on 5000 cells ensured that the 212 

detected accessible DNA regions are present in a substantial fraction of cells. Indeed, accessible 213 

sites present in individual or a small number of cells could not be differentiated from the technical 214 

noise. 215 

5488
4168

7170
1331

5h 24h

24h 48h

p-value= 0,01

Gene
count

Changes
in TF

0 5 10

1262
757

2710
464

5h 24h

24h 48h

DE genes
Non-DE genes

Fig. 3

N
o change 

in TF

-log10(p-value)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

12 

 

 216 

Fig. 4 Chromatin accessibility dynamics as detected by ATAC-seq. A Number of accessible 217 

regions (peaks) at 4 different time points. B Number of peaks in different genomic elements. A 218 

single peak may count for two categories if overlapping both. Intergenic category was defined as 219 

the exclusion of any other category tested. 220 

 221 

Apart from the peaks in intergenic regions, the total number of ATAC-seq peaks first increased 222 

rapidly by 10-12% between 0h and 5h in all genomic regions, then decreased gradually at slower 223 

rate over the next 48h (Fig. 4B). The time-dependent decrease in the number of ATAC-seq peaks 224 

varied with their genomic location (Fig. 4B). While the number of peaks in distal intergenic regions 225 

was halved between 5h and 48h, the decrease in the other locations was less significant (Fig. 4B). 226 

Particularly, the number of peaks in promoter regions only dropped by 15% between 0h and 48h. 227 

 228 

In order to further characterize the dynamics of the ATAC-seq, we also estimated the changes in 229 

the size of the peaks present at least at two consecutive time points. As a proxy for the size of a 230 

peak, we used the number of sequenced reads that define it. Here we assumed that the normalized 231 

number of reads can be used as a rough estimation of the fraction of the cells with at least one of 232 

the two copies of the region having accessible DNA. The difference of read counts for the same 233 
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ATAC peak detected at two consecutive time points was used to assess the chromatin dynamics. 234 

We calculated the log-fold changes of the number of reads of each peak for time intervals and the 235 

associated p-values and represented them as volcano plots (Fig. 5). We observed a significative 236 

tendency of the peaks already present at 0h to increase in accessibility by 5h (Fig. 5), especially for 237 

peaks located in the TSS regions. During this period, a total of 17% (9045 out of 53797 peaks) 238 

showed significant changes regarding accessibility. In the same range, between 5h and 24h, 15% 239 

(7505 out of 50936 peaks) of the peaks present at both time points changed significantly with an 240 

approximately equivalent number of increased and decreased ATAC-seq read counts. However, 241 

between 24h and 48h, only 2% (48 out of 40248 peaks) of the peaks showed differential read 242 

counts, but again, with roughly equal proportions of increased and decreased peaks (Fig. 5). 243 

Overall, most of the changes occurred during the first 24 hours (Fig. 5). First, we observed a rapid 244 

increase in peak number and an increase in size (read counts) for the peaks already present. Then 245 

the trend was reversed: both the number and size of the peaks decreased between 5h and 24h. 246 

This trend was maintained, albeit at a lesser degree, between 24h and 48h. Overall, the ATAC-seq 247 

observations indicate an unusually strong wave of chromatin fluctuations during the initial 48 248 

hours long period. The dynamic fluctuations appear to be higher in intergenic regions than in gene-249 

associated regions. 250 

 251 

 252 

-lo
g₁
₀(

p-
va

lu
e)

Peaks spaning promoter regions
Peaks spaning intergenic regions

7-7 -3.5 0 3.5

0

20

5

10

15

TAL 1

ERG

RUNX1
GATA2SPi1

ERG

RUNX1

CBFA2T3

CBFA2T3

GATA2

SMAD6

FLI1

5h vs 0h

HEX

7-7 -3.5 0 3.5

0

20

5

10

15

24h vs 5h

7-7 -3.5 0 3.5

0

20

5

10

15

ERG

GATA2

RUNX1

SPi1
RUNX1

ERG

FLI1

SMAD6

TAL 1

GATA2

CBFA2T3

48h vs 24h

HEX
SMAD6RUNX1

ERG

CBFA2T3

ERG

SPi1

TAL 1

FLI1

RUNX1

CBFA2T3

GATA2

GATA2

p-value = 0.05

HEX

2 22

Fig. 5

log2(Fold Change) log2(Fold Change) log2(Fold Change)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

14 

 

Fig 5. Differential analysis of ATAC-seq peaks present at least in two consecutive time 253 

points. The differential analysis is detailed in Methods. Peaks overlapping with promoter regions 254 

are highlighted in blue, while those overlapping with intergenic regions are highlighted in yellow. 255 

The promoters of the 11 hematopoietic transcription factors are indicated. Only 3 of them 256 

(RUNX1, CBFA2T3, TAL1) showed significant differential changes in accessibility between 0h 257 

and 5h. After 5h, none of the TF showed significant changes in their TSS region. Note that a TF 258 

can be displayed more than once, it is explained by the fact that a TF can have multiple TSSs, also, 259 

more than one peak can fit the TSS region. 260 

 261 

We explored further the chromatin dynamics in promoter regions of 11 TF-encoding genes known 262 

to act as early hematopoiesis regulators [2]. With the exception of GATA1, every gene has 263 

accessible promoters with at least one ATAC-seq peak (Fig. 5 and Additional Fig. 3), suggesting 264 

that even before cell stimulation with cytokines, the promoter regions of these key regulators genes 265 

are fully accessible and remain so along the entire experiment.  266 

 267 

To further investigate the gene promoter accessibility, we analyzed the enrichment of various 268 

transcription factors binding site (TFBS) motifs among peaks. We observed that many of the TFSs 269 

of factors known to play a role in hematopoiesis, such as RUNX1, ERG, PU.1 and FLi1 are already 270 

highly accessible at 0h and remain detectable at relatively the same level up to 48h (Additional 271 

Fig. 4). We also note that CTCF (CCCTC-binding factor) binding sites were detected more than 272 

five times more frequently among the detected peaks than in other regions, suggesting the 273 

implication of chromatin remodeling during this period [15]. 274 

 275 

Combined scRNA-seq and ATAC-seq Analysis 276 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

15 

 

 277 

In order to elucidate how the dynamics of chromatin accessibility and the differential gene 278 

expressions were related, we combined the scRNA-seq and the ATAC-seq data (see Methods). A 279 

careful comparison of scRNA-seq and ATAC-seq analysis in Fig. 1 and Fig. 5 shows that the 280 

wave of opening and closing of accessible gene promoters/transcription start sites (TSSs) precedes 281 

the wave of the increase and decrease of the gene transcription. To make sense of this, first we 282 

examined how promoter accessibility of the genes is related to the gene expression. Specifically, 283 

we grouped the promoters based on the configuration change of ATAC-seq peaks between 5h 284 

and 24h (Fig. 6A). By doing so, there are 4 possible combinations of chromatin accessibility state: 285 

“open-open”, “open-close”, “close-close” and “close-open”, depending on the presence or 286 

absence of ATAC-seq peaks at the given promoter at 5h and 24h, respectively. The period between 287 

5h and 24h is particularly interesting and important, because most of the changes in gene 288 

expression and DNA accessibility occur at this stage. We then identified the target genes for each 289 

promoter using the Regulatory Circuit resource (see Methods). Note that a promoter may regulate 290 

multiple genes and a gene may be regulated by several promoters. Therefore, the total numbers of 291 

promoters and genes may be different. Finally, we examined the overrepresentation of DE and 292 

non-DE genes among the groups of genes that are the target of each of the four classes of 293 

promoter configuration (i.e. open-open, open-close, close-open, and close-close). The analysis 294 

showed a significant overrepresentation (p-value<10e-4) for genes showing DE in the set of genes 295 

associated with the “open-open” promoter configuration (Fig. 6A). In the “open-close” promoter 296 

class, genes showing no DE were overrepresented (Fig. 6A). Non-DE genes were also 297 

overrepresented in the “close-close” promoter class.  298 

 299 
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To understand how alterations in DNA accessibility and TF expressions in combination regulated 300 

target gene transcription, we classified genes according to whether any of the TFs were 301 

differentially expressed between two different time points, 5h and 24h, as we had done earlier – 302 

that is, “changes in TF” vs. “no change in TF” grouping (details about the method are explained 303 

in Additional Fig. 5). We tested the overrepresentation of DE genes among the eight groups of 304 

genes based on the different classes of promoter configuration and the DE of the TFs (Fig. 6B). 305 

We found a significant overrepresentation for DE genes among the genes with at least one of the 306 

TFs differentially expressed, but only when the target promoters were accessible at both time 307 

points, i.e. in the “open-open” configuration. For the same “open-open” promoter configuration, 308 

genes with no change in expression between 5h and 24h were significantly overrepresented in the 309 

gene set whose TF expressions were not altered. In other terms, the regulatory action of the TFs 310 

can only be observed if and only if the promoters of the target genes are already accessible and 311 

remain so between the two time points.  312 

 313 

Similar analysis was done between 24h and 48h (Additional Fig. 6). During this period, promoters 314 

that remain accessible are enriched for DE genes, while inaccessible promoters are enriched for 315 

genes showing no DE. Interestingly, the combined enrichment analysis of ATAC-seq and scRNA-316 

seq did not show any significant over-representation for DE or non-DE genes. 317 

 318 

Taken together, the integration of gene expression and chromatin accessibility data support the 319 

idea that differential expression of genes can be explained by changes in the expression of at least 320 

one its TFs. However, the regulatory action of TFs only applies when the promoter remains 321 

accessible. Subsequently, the closing of the chromatin on the promoters seems to prohibit the 322 

action of TFs. 323 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

17 

 

 324 

In order to verify if the observations above hold for specific genes, we compared the gene 325 

expression and ATAC-seq profiles of the 11 genes essential for hematopoietic differentiation 326 

already considered above (Additional Fig. 3) [2].  We saw no correlation between promoter 327 

accessibility and transcription. For example, the promoter of the SMAD6 gene is accessible at all 328 

time points, still not expressed as shown on the heat-map (Additional Fig. 2). 329 

 330 

 331 

Fig. 6 Promoter configuration dynamics and transcription influence on gene expression 332 

regulation between 5h and 24h. A Enrichment analysis for differentially expressed genes (DE) 333 

and non-DE genes depending on the promoter accessibility dynamics. B Enrichment analysis 334 

differentially expressed genes (DE) and non-DE genes depending on the promoter accessibility 335 

dynamics and the changes of the expression of TF-encoding genes that regulate them (two-tailed 336 

Fisher exact test, see Methods for details). 337 

 338 

0 1 2 3

4475
3850

766
295

175
82

2339
511

912
700

206
80

49
22

1081
226

-log10(pValue)

Closed Closed

Closed Open

Open Closed

Open Open

Closed Closed

Closed Open

Open Closed

Open Open

pValue = 0,05

Gene
count

Changes in TF
N

o change in TF

5h 24h

Promoter
configuration

Fig.6

DE genes
Non-DE genes

A B

6647
5335

1385
555

pValue = 0,01
Gene
count

0 5 10

324
153

5290
1260

-log10(pValue)

15

Closed Closed

Closed Open

Open Closed

Open Open

5h 24h

Promoter
configuration

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

18 

 

These observations clearly reveal the unequal role of the chromatin configuration and TF action 339 

on gene expression and explain the chronology of why the initial increase in DNA accessibility 340 

precedes the burst in the level and diversity of gene transcription. Since TF action alone is unable 341 

to make the promoters accessible, the initial opening of the chromatin has to be a global and non-342 

specific event. This explains why only a subset of genes with initially accessible promoters become 343 

transcribed during the later stages.  344 

 345 

Discussion  346 

 347 

In vitro cultured human cord blood derived CD34+ cells are usually considered as a 348 

heterogenous population of cells. Recent studies demonstrated that this heterogeneity is not the 349 

result of the mixture of different cell types, but a population of cells with a wide distribution of 350 

gene expression patterns [7] that fluctuate, generating morphological instability [6]. The first 351 

morphological and molecular signs of the phenotypic diversification appear at the end of the 352 

unusually long first cell cycle that follows cytokine stimulation [6]. During the first cell cycle, each 353 

cell displays a rather distinct gene expression pattern but is usually morphologically similar. By 48 354 

to 72 hours, one can observe the emergence of two different cellular morphologies and two 355 

different characteristic transcription profiles [6]. Such an observation prompted us to investigate 356 

the narrow window of time within 48h in more details. The observations reported here reveal the 357 

interplay between the dynamic chromatin and gene expression changes.  358 

 359 

Using ATAC-seq, we detected at 0h more than 46000 peaks, about 30% of them in gene promoters 360 

(TSSs). The number of detected TSSs increased sharply during the first 5 hours of culture (Fig. 361 

4). At the 5h time point, more than 50% of all TSSs promoters in the genome displayed accessible 362 
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DNA (Fig. 4B). After the rapid initial increase, the number of the peaks started to decrease (Fig. 363 

4). There were approximately 16% less accessible TSSs 48 hours later. The number of open 364 

intronic and intergenic genomic regions decreased even more rapidly and fell to 50% of the initial 365 

number. The tendency to chromatin closing therefore appears as a general feature. Importantly, 366 

the wave of chromatin opening and closing is followed by a wave of transcriptional activity. The 367 

variety of the transcribed genes and the number of the mRNA molecules per gene was the lowest 368 

at 5h – the first time point tested for scRNA-seq – but both increased sharply at 24h, reached a 369 

plateau between 48h and 72h and decreased at 96h (Fig. 1B and Fig. 1C). The 5h-to-48h period 370 

corresponds to the multilineage-primed stage of the CD34+ cells that precedes the emergence of 371 

the first signs of characteristic gene expression patterns accompanying differentiation [6]. It is a 372 

universal feature of the cells during the initial phases of the fate commitment process to progress 373 

through a transitional cell state marked by the rise-then-fall in transcriptional uncertainty and a 374 

concomitant rise-and-fall of cell-to-cell variability [12]. As reported here, the gene transcription in 375 

the CD34+ cells clearly follows the same pattern. The global increase of transcription is preceded 376 

by a widespread and non-specific chromatin opening that makes accessible more than 50% of gene 377 

promoters in the genome.  378 

 379 

Importantly, there is a strong stochastic component in the establishment of the multilineage 380 

primed expression state, because the number of gene promoters that are accessible exceeds the 381 

number of actually transcribed genes in each cell by 3 to 5 times (Fig. 1B and Fig. 4B). The 382 

emergence of coherent transcription profiles from this heterogeneous transitory state is preceded 383 

by chromatin rearrangements. A significant fraction of gene promoters (16%) and intergenic sites 384 

(46%) in the genome become inaccessible through chromatin closing between 5h and 48h (Fig. 385 

4B). The stabilization of the transcriptome is presumably the consequence of these chromatin 386 
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changes. Some promoters gradually become repressed by chromatin closing, while others are 387 

stabilized in an open chromatin configuration. The role of TFs appears crucial at this stage. Indeed, 388 

the transcription of a gene is changed between 5h and 24h if the expression of TF-encoding genes 389 

that regulate them also changes. However, changes of the expression of the TF-encoding genes 390 

do not lead to alteration of their target gene expression if the promoters are in “closed” chromatin 391 

configuration around the TSS (Fig. 6B), indicating that TFs alone are not able to efficiently 392 

regulate the gene transcription, and the chromatin accessibility is a pre-requisite for TF action. 393 

Since the number of the open promoters is high at the beginning of the process, a competition for 394 

the available TFs among accessible promoters may explain the transcriptional and phenotypic 395 

fluctuations observed during this period [6]. These fluctuations cease when the transcriptome is 396 

stabilized [6].  397 

 398 

The proposed scenario of general chromatin destabilization followed by a selective repression of 399 

the genes is also supported by the observations showing that the inhibition of chromatin 400 

compaction using valproic acid (VPA), a histone deacetylase inhibitor, can maintain the 401 

multilineage-primed state with promiscuous transcription profile for a long period [6,8,16]. The 402 

removal of VPA allows defined transcriptome profiles to be established [8]. Therefore, chromatin 403 

structural changes appear to be causally involved both in the generation of a multilineage-primed 404 

state and the stabilization of cell fate choice. In line with this conclusion, a recent study of human 405 

fetal hematopoietic cells has also concluded that extensive epigenetic but not transcriptional 406 

priming of HSC/MPPs occurs prior to lineage commitment [17]. 407 

 408 

It will be of particular importance to investigate the process of transcriptome stabilization and the 409 

feedback mechanisms that must certainly accompanied it. In this respect, a dynamic positive 410 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

21 

 

feedback loop between permissive chromatin and translational output has been previously 411 

reported for embryonic stem- and in CD34+ cells [18]. It is noteworthy that many of the genes 412 

with the most variable expression that contribute significantly to the specification of the emerging 413 

transcription patterns are ribosomal protein (RP) coding genes (Additional File. 2), thus 414 

impacting the process of translation [19]. A high degree of RP expression heterogeneity has already 415 

been observed in hematopoietic cells, where a small subset of RPs can discriminate cell types 416 

belonging to different hematopoietic lineages [20]. Therefore, it is possible that, in addition to the 417 

TF and promoter interactions, a feedback action of the translational output may also contribute 418 

to the stabilization of the chromatin. 419 

 420 

The observed non-specific chromatin opening and the rise of an equally non-specific gene 421 

expression as a first step, followed by a slow relaxation toward a defined gene expression pattern 422 

and chromatin stabilization, brings a new perspective to our understanding of how cell fate 423 

commitment is initiated. According to the conventional view, a switch-like activation of fate-424 

specifying genes, followed by a cascade of activation of specific downstream targets determines 425 

cell fate. This view is not compatible with the observations reported here. The alternative 426 

possibility is that the typical expression pattern of a committed cell results from the stabilization 427 

of a network of interacting set of select genes through a transitory multilineage-primed state that 428 

is characterized by stochastic and highly variable expression profile. The transitory stage emerges 429 

as a rapid and non-specific answer to a substantial change in the cell’s environment that is 430 

analogous to the physiological stress response whose role is to prepare the organism to meet new 431 

and unforeseen circumstances [21]. Here, we observed a general and non-specific opening of the 432 

chromatin that lifts the transcription repression and permits targeted interactions between TFs and 433 

gene promoters and enhancers. Put in another way, the quasi-random activation of genes in a cell 434 
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under stressful conditions generates a potential of a variety of phenotypic traits in the cell. Some 435 

of these traits promote the cell’s survival under the new constraints imposed by the evolving 436 

microenvironment, and they are selectively stabilized by feedback mechanisms. These mechanisms 437 

are not yet identified, but explicit hypotheses have been made [22,23]. Therefore, the process of 438 

choice can be viewed as a continuing iterative process of constrained optimization of the cell 439 

phenotype over time, a kind of “learning process” that is accomplished by the cell through 440 

interactions and cooperation with the surrounding cells and environment. This way to frame the 441 

question of fate commitment has been theorized long ago [24–26], and single-cell studies in the 442 

recent years have provided more and more experimental support [3,6,12,27,28]. 443 

 444 

Conclusions 445 

 446 

In the present study we show that chromatin accessibility and gene expression follow different 447 

dynamics. Most of the gene promoters become accessible immediately after stimulation of the 448 

cells. The non-specific chromatin opening is followed 24 h later by a wave of high and unrestrained 449 

gene expression. Each cell has disordered and unique expression profile. However, the DNA 450 

accessibility at the gene promoters starts to decrease rapidly. It is followed by the decrease of gene 451 

expression and the slow emergence of two distinct profiles by the end of the period. This is likely 452 

to be the result of a selective repression process because the evolution of the gene expression 453 

profile goes from the general toward more specific. This corresponds to the gradual acquisition of 454 

two different morphological forms in the cell population. 455 

  456 

Methods 457 

 458 
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Cell culture  459 

 460 

Umbilical cord blood from anonymous healthy donors was obtained from Centre Hospitalier Sud 461 

Francilien, Evry, France or from Etablissement Français du Sang (EFS), Saint Louis Hospital, 462 

Paris, France. Mononuclear cells were isolated from cord blood fractions by density centrifugation 463 

using Ficoll (Biocoll, Merck Millipore). Human CD34+ cells were then enriched in the sample by 464 

immunomagnetic beads using an AutoMACSpro (Miltenyi Biotec). After collection, enriched 465 

CD34+ cells were frozen in a cryopreservation medium containing 90% of fetal bovine serum 466 

(Eurobio) and 10% of dimethylsulfoxide (Sigma) and stored in liquid nitrogen.  467 

 468 

After thawing, the CD34+ cells were cultured in a 96-well plate in a humidified 5% CO2 incubator 469 

at 37°C. Cells were cultured in prestimulation medium made of X-Vivo (Lonza) supplemented 470 

with penicillin/streptomycin (respectively 100U/mL and 100ug/mL - Gibco, Thermo Scientific), 471 

50 ng/ml h-FLT3, 25 ng/ml h-SCF, 25 ng/ml h-TPO, 10 ng/ml h-IL3 (Miltenyi) final 472 

concentration.  473 

  474 

Fast-ATAC-seq  475 

 476 

We used Fast ATAC-seq with minor modifications. This protocol was optimized for blood cells 477 

[14]. Prior to transposition, cells were marked with 7AAD and dead cells were removed by FACS 478 

(Beckman Coulter). Removing dead cells is an important parameter to ensure clear nucleosome 479 

patterns and to improve signal to noise ratio. 5000 living cells were used at each time point. A one-480 

step gentle membrane permeabilization and DNA transposition was performed by adding 50ul 481 

transposition mixture (25 uL TD buffer 2X, 2,5uL of transposase TDE1 (Illumina), 0,5 uL 482 
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digitonin 0,1% (Promega) and 22 uL water) to the cell pellets and by incubating at 37°C for 30 483 

minutes under agitation. Obtained Transposed DNA were then purified using MinElute PCR 484 

Purification Kit (Qiagen) and preamplified using Nextera barcoded primers (Illumina) and 485 

NEBNext High-Fidelity 2xPCR Master Mix (New England Biolabs) for 5 cycles. A quantitative 486 

PCR amplification was made on 5uL of the sample with SYBR Green to determine the number 487 

of additional cycles in order to generate libraries with a minimal number of PCR cycles and to limit 488 

PCR bias (according Corces et al [14]). Appropriate number of PCR cycles were applied on the 489 

rest of the pre-amplified samples. PCR fragments were purified with MinElute PCR Purification 490 

Kit (Qiagen) to get rid of unused primers. A supplemental purification step was performed using 491 

Ampure beads kit (Beckman Coulter) to size-select DNA fragments ranging between 100 and 700 492 

pb. ATAC-seq libraries were checked for quality using Bioanalyzer (Agilent) prior to sequencing 493 

and sequenced in paired-end mode (2x50bp) on the Illumina HiSeq2500 platform.  494 

  495 

Single-cell RNA sequencing adapted from MARS-seq 496 

 497 

To perform scRNA-seq, we adapted MARS-seq protocol (Massively parallel single-cell RNA 498 

sequencing) [9]. CD34+ cells were stained with 7AAD to only work living cells and cells were 499 

isolated by FACS. Individual cells were sorted into 96-well plates containing 4uL of lysis buffer 500 

with specific barcoded RT primers (final concentration: 0,2% Triton, 0,4 U/uL RNaseOUT 501 

(Thermofisher Scientific), 400nM idx_RT_primers). Idx_RT_primers (see Table. 1) contain a T7 502 

RNA polymerase promoter for further in vitro transcription (IVT), single cell barcodes 503 

(Additional. File. 3) for subsequent de-multiplexing and unique molecular identifiers (UMIs) 504 

allowing correction for amplification biases. After cell sorting, plates were immediately centrifuged 505 

and put into dry ice before storage at -80°C preceding the reverse transcription (RT). To open 506 
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RNA secondary structure, plates containing single cells were incubated at 72°C for 3 minutes and 507 

immediately put in ice. 4uL of RT mix were added in each well (final concentration of RT mix: 508 

20mM DTT, 2mM dNTP, 2X First stranded buffer, 5 U/uL Superscript III RT enzyme, 10% 509 

(W/V) PEG 8000). PEG8000 was added in the RT mix because it has been shown that it can 510 

increase the cDNA yield in scRNA sequencing [26].  ERCC RNA spike-in mix (Thermo Scientific) 511 

was also added to the solution for further amplification quality filtering (dilution 1/40.10e7). The 512 

plate was then put into thermocycler (thermocycler program: 42°C-2min, 50°C-50min, 85°C-5min, 513 

4°C hold). 514 

 515 

After first retro-transcription, samples were pooled (see Jaitin et al [9]) and ExonucleaseI digestion 516 

was performed, followed by 1,2X AMpure beads purification kit (Beckman Coulter) to keep only 517 

retro-transcribed single strand cDNA. Samples were eluted in 17uL of 10mM Tris-HCl, pH=7,5. 518 

Second strand cDNA synthesis (SSS) using NEBNext mRNA second strand synthesis module kit 519 

was then performed (SSS mix: 2uL 10x SSS buffer, 1uL SSS enzyme; thermocycler program: 16°C-520 

150min, 65°C-20min, 4°C hold). Obtained cDNA was linearly amplified by overnight IVT 521 

(HighScribe T7 High Yield RNA synthesis, NEB) at 37°C under T7 promoter. The product was 522 

purified with 1,3X Ampure beads and eluted in 10uL of 10mM Tris-HCl, 0,1mM EDTA. 9uL of 523 

amplified RNA were then enzymatically fragmented with 1uL of 10x RNA fragmentation reagents 524 

(Thermofisher Scientific) in 70°C for 3 min. The fragmentation was stopped with 34uL of STOP 525 

mix (1,2uL Stop solution, 26,4uL AMpure beads, 9,8uL TE) and samples were purified. Differing 526 

from original MARSseq protocol, the second RT was done with primers (P5N6_XXXX, Table. 527 

1) containing random hexamers and specific barcode (Additional. File. 3) to distinguish the 528 

different plates (final concentration: 5mM DTT, 500uM dNTP, 10uM P5N6_XXXX, 1X First 529 

stranded buffer, 10U/uL Superscript III RT enzyme, 2U/uL RNaseOUT; thermocycler program: 530 
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25°C 5min, 55°C 20min, 70°C 15min, 4°C hold). cDNA was purified with 1,2x AMpure beads 531 

and eluted in 10uL.  532 

 533 

As for ATAC-seq , the appropriate number of PCR cycles was determined using a fraction of the 534 

library with SYBR Green based qPCR as described in Zilionis et al [27] (final concentration: 1x 535 

Kapa Hifi HotSTart PCR mix, 1x SybrGreen, 0,5uM mix primer P5.Rd1/P7.Rd2 (Table.1); 536 

Thermocycler program: 95°C 3min – 40cycles: 98°C 20sec , 57°C 30sec , 72°C 40sec – 72°C 5min, 537 

4°C hold). After PCR amplification, libraries were purified with 0,7x AMpure beads. Libraries were 538 

checked for quality, using Bioanalyzer HighSensitivity DNA (Agilent) prior to sequencing. 539 

Libraries were finally sequenced in paired-end mode (2x50bp) on Illumina HiSeq2500 platform. 540 

 541 

Table 1: structure of primer sequences used in scRNA-seq. 542 

Primer name Sequence (5’ to 3’) 

Idx RT primers 
5’-CGATTGAGGCCGGTAATACGACTCACTATAGGGGCGACGTGTG 

CTCTTCCGATCTXXXXXXNNNNTTTTTTTTTTTTTTTTTTTTN3’ 

P5N6. XXX 5’-CTACACGACGCTCTTCCGATCTXXXXNNNNNN-3’ 

P5.Rd1 
5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA 

CGACGCTCTTCCGATCT-3’ 

P7.Rd2 
5’-CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGA 

CGTGTGCTCTTCCGATCT-3’ 

Idx RT primers: TTTTTTTTTTTTTTTTTTTTN = poly-T allowing matching with mRNA poly-A tail, 543 

NNNN = 4 bases UMI (randomly generated), XXXXXX = 6 bases cell barcode (Additional. 544 

File. 3). The rest of the sequence consists of a PCR adaptor and a T7 promoter sequence for 545 

further IVT amplification. P5N6 XXX: NNNNNN = random hexamer allowing the capture of 546 

the fragmented IVT amplified RNA, XXXX = 4 bases “plate barcode” (Additional. File. 3). The 547 

rest of the sequence consists of a PCR adaptor. P5.Rd1/P7.Rd2 : P5 and P7 Illumina sequencing 548 

adaptors. 549 
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 550 

Bioinformatic analysis 551 

  552 

Bulk ATAC-seq  553 

 554 

Raw data processing 555 

 556 

Tn5 adapters sequences were first trimmed with the following command: 557 

 < cutadapt -q 20 -g "AGATGTGTATAAGAGACAG; max_error_rate=0.1; min_overlap = 10" -A 558 

"AGATGTGTATAAGAGACAG; max_error_rate = 0.1; min_overlap = 10" --minimum-length 18 --559 

times 2 --pair-filter = both > 560 

 561 

Genome alignment (hg19) was performed using Bowtie2 with the following parameters:  562 

< bowtie2 -x hg19 --no-unal -X 800 > 563 

 564 

Only Paired-End fragments were kept, considering mapping quality (phred score = 30). Duplicated 565 

reads were removed using Picard MarkDuplicates tool. In attempt to not bias the signal recovered 566 

after peak calling due to multiple donors, all paired-end files were randomly downsampled to 16M 567 

reads (without disrupting pairs of reads) as regard to the smallest number of reads detected in the 568 

cohort (Donor 1 – 0h, see Additional Table. 2).  569 

 570 

ATAC-seq peaks were then called on those downsampled files using: 571 

< macs2 callpeak -f BAMPE -g hs -B --broad --broad-cutoff 0.1 --keep-dup all >  572 

 573 
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In order to retain only significant accessibility peaks across samples, each list of peaks used in 574 

advanced analysis has been defined as the intersection between peaks of the 3 donors tested at the 575 

same time point. 576 

 577 

Peak annotation  578 

 579 

Peaks were assigned to genomic regions thanks to a home-made script based on the FindOverlap 580 

function from the R package “GenomicRanges” [29]. Genomic elements positions (TSS, exons, 581 

introns, CpG islands and CTCF) were retrieved from UCSC database (hg19). Intergenic category 582 

was defined as the exclusion of all other defined categories. No priority has been set across the 583 

different genomic elements. Therefore, peaks overlapping several genomic features are counted 584 

multiple times, resulting in a total number of peaks across elements exceeding the total number of 585 

peaks detected at each time point.  586 

 587 

Peak differential analysis 588 

 589 

DEseq2 tool was used to calculate difference in read count between peaks in two consecutive time 590 

points [30]. More precisely, the region considered is defined as the interval formed by the union 591 

of two overlapping peaks at t2 and t1. 592 

 593 

Motif enrichment 594 

 595 

Peak motif enrichment analysis was conducted with the tool “findMotifsGenome.pl” from the 596 

HOMER software tool suite [31]. Background file was generated using an auto-generated list of 597 
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random regions across the genome (hg19). Motifs were scanned using the total length of our peaks 598 

by providing the option <size given>. 599 

  600 

Single-cell RNA-seq (scRNA-seq)  601 

  602 

Raw data processing 603 

 604 

Cell and plate barcode demultiplexing steps were accomplished under strict selection criteria with 605 

the following command:  606 

< cutadapt -q 30 -e 0 -m 30:20 --no-trim --no-indels --pair-filter = any >  607 

Fasta files for both barcodes (cells and time) sequences are given in Additional File. 3. 608 

 609 

ERCC mapping was performed using bowtie2 [32] on ERCC known sequences and regular 610 

mapping was performed using STAR [33] on the reference genome version hg19 and aligned reads 611 

annotated. After quality filtering, reads and UMIs count per gene and ERCC were calculated for 612 

expression analysis. 613 

 614 

Cell and gene filtering 615 

 616 

Chromosome Y was removed from the analysis to avoid unwanted effects and only protein coding 617 

genes were kept for further analysis. Cells with less than 80 000 total reads were removed, as well 618 

as cells with more than 10% of reads corresponding to mitochondrial RNA. To reduce undesired 619 

effect due to PCR non-linear amplification, ERCC spikes were used to assess the linearity of 620 

amplification. Pearson correlation coefficient was calculated for each cell, and only cells above 0,6 621 
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were retained. For each cell remaining, genes were defined as detectable if at least two cells 622 

contained more than a single UMI (=transcript) and a minimum of 5 reads in total.  623 

 624 

Single-cell clustering and variability analysis 625 

 626 

Clustering analysis was performed with CALISTA (Clustering and Lineage Inference in Single-Cell 627 

Transcriptional Analysis), a numerically efficient and highly scalable toolbox for end-to-end 628 

analysis of single-cell transcriptomic profiles. This approach includes single-cell mRNA counts in 629 

a probabilistic distribution function associated with stochastic gene transcriptional bursts and 630 

random technical dropout events. In the data pre-processing, we removed cells with more than 631 

95% of zero expression values and we selected the top 200 most informative genes for further 632 

analysis. The optimal number of clusters was chosen to be five based on the eigengap plot (see 633 

[10] for more details). 634 

 635 

WGCNA 636 

 637 

We applied Weighted Correlation Network Analysis (WGCNA) [34] to mRNA expression data 638 

from each donor, to identify modules of genes with similar gene transcriptional dynamics. We 639 

excluded genes without any detectable expression in all samples. In implemented WGCNA, we 640 

set the soft-thresholding power for a scale-free topology index of 0,9. For each module, we 641 

calculated the mean expression of genes by averaging the UMI counts from the two donors.  642 

 643 

Enrichment Analysis 644 

 645 
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We obtained a curated collection of TFs to CAGE-defined promoters to gene isoform mapping 646 

for a total of 662 human TFs from the Regulatory Circuits resource [13]. In our analysis, we used 647 

only TF – Promoter pairs with moderate confidence scores > 0,5. We grouped genes based on 648 

whether the relevant TFs demonstrated differential expressions. More specifically, a classification 649 

of “changes in TF” was given to any gene in which one of its TFs showed a differential expression. 650 

Otherwise, a classification of “no change in TF” was assigned. A Fisher exact test was used to 651 

perform over- and under-representation analysis [35].  652 

 653 

ATAC-seq and scRNA-seq combined analysis (accessibility – expression) 654 

 655 

Identification of Promoters that have configurational changes 656 

 657 

In an effort to identify promoter regions that are affected (and not affected) by configurational 658 

changes of the chromatin, we used the CAGE-defined promoters to gene isoform mapping from 659 

the Regulatory Circuits resource [13] to identify the promoters that overlap with the peaks of 660 

ATAC-seq and the corresponding target genes (see Additional Fig. 5B). For this purpose, we 661 

employed the R Bioconductor package “GenomicRanges” [29]. By comparing the peaks 662 

overlapping the promoters between two time points (5h – 24 h and 24h – 48h), we grouped 663 

promoters into 4 possible chromatin accessibility configurations: “open-open”, “open-close”, 664 

“close-open”, and “close-close”.  665 

  666 

Differential gene expression of single-cell RNA sequencing 667 

 668 
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We computed Z-scores for every gene in each of the two donors between two different time points 669 

using the mean and standard deviation of the UMI counts of approximately 100 single cells. 670 

  671 

 672 
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 673 

  674 

𝑍"#
$%&$'  denotes the Z-score of the expression change of gene j in donor i between time t2 and t1. 675 

An average Z-score between the two donors was computed and used to identify the set of 676 

differentially expressed genes. We selected a threshold Z-score of 2 and –2 (i.e., two standard 677 

deviations of change) to designate upregulated and downregulated genes, respectively. Collectively, 678 

they represent the set of differentially expressed genes. 679 

 680 

Enrichment Analysis of Combined ATAC-seq and scRNA-seq 681 

 682 

For the combined ATAC- and scRNA-seq analysis, we grouped genes into 8 possible groups based 683 

on the chromatin accessibility configurations (i.e., one of the following four configurations: “open-684 

open”, “open-close”, “close-open”, and “close-close”) and whether any one of their TFs showed 685 

differential expression (i.e., one of the following two groups: “changes in TF” and “no change in 686 

TF”) (see Additional Fig. 5C). As with the analysis of scRNA-seq data alone, a gene was assigned 687 

to the group “changes in TF” when at least one of its TFs showed differential expression; 688 

otherwise, the gene was classified as “no change in TF”. Note that different isoforms of the same 689 

gene can have distinct TSSs that are under the control of different promoters. Thus, a gene might 690 
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be counted in more than one category in the chromatin accessibility configurations. Consequently, 691 

the total sum of the genes in the 8 groups as described above might exceed the total number of 692 

genes. A Fisher exact test was used to perform over- and under-representation analysis [35].  693 
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Supplementary information 1 

 2 

 3 

Additional Fig. 1 Repartition of single cells in CALISTA clusters according time of 4 

sampling. For each donor, 5 pie charts represent the proportion of cell corresponding to different 5 

time points (5h, 24h, 48h, 72h, 96h) defining the 5 clusters computed by CALISTA (Fig. 2). Note 6 

that cluster #1 and cluster #2 are almost uniformly composed of cells from 5h and 24h 7 

respectively. Starting from 48h, cells tend to fall into several clusters, indicating multiple routes. At 8 

96h, corresponding to the lowest transcriptional level measured, we can observe that cells start to 9 

resemble each other again. Left panel: Donor 1, right panel: Donor 2. 10 

 11 
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 12 

Additional Fig. 2 Heat-map of 11 TFs known to play a role in hematopoiesis regulatory 13 

network. For each donor, 5 heat maps (one per time point) were drawn on the basis of gene 14 

expression intensity for the 11 TFs described in [13]. Gene expression was measured as the sum 15 

of UMIs for each gene considered, a log2 transformation was applied for better visualization. Note 16 

that for the gene SMAD6, no transcripts were detected, all time and donor considered.  17 
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Additional Fig. 3 Detailed accessibility profiles of 2 TFs known to play a role in 19 

hematopoiesis regulatory network. For the sake of clarity, only two out of the 11 TFs described 20 

in [2] are represented here. The rest of the coverage plots can be found in Additional File.4. 21 

Green regions drawn on gene sequence represent CAGE-defined promoter considered in this 22 

study [13]. Red regions represent peaks computed with MACS2 algorithm. Blue “signal” depicts 23 

read coverage for one of the three samples available for each time point (the most representative 24 

one). Note that except for GATA1, promoter regions always overlap with detected peaks, no 25 

matter the time considered. Interestingly, whereas SMAD6 promoter is accessible, no transcript 26 

was detected for both Donor 1 and Donor 2, all times considered (Additional Fig. 2). This 27 

illustrates that accessibility is not sufficient to guarantee transcription.  28 

 29 

 30 

 31 

Additional Fig. 4 Motif enrichment for selected known hematopoiesis related transcription 32 

factors. At each time point, peak sequences were scanned by HOMER for significantly enriched 33 

“known motifs”. The motifs selected here illustrate a significant enrichment (zero or one 34 

occurrence per sequence coupled with the hypergeometric enrichment calculations) of motifs 35 

associated with hematopoiesis and chromatin remodeling. For an extensive list of tested motifs, 36 

see Additional File.5. 37 
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  38 

 39 

Additional Fig. 5 Combined Analysis of scRNA-seq Single cell RNA expression with 40 

ATAC-seq chromatin accessibility peaks. A An example showing the changes in the 41 

configuration of the chromatin reflected by differences in the peaks of the ATAC-seq and aligning 42 

the genomic coordinates with CAGE-defined promoter region (yellow box). B The CAGE-43 

defined promoters are linked to gene isoforms. C Changes in the promoter accessibility from the 44 

ATAC-seq is integrated with the changes in the expression of the gene (RNA-Sequencing of single-45 

cells). In this example, the promoter changes from an open configuration to a close configuration, 46 

and the gene isoform in its control changes expression. D TFs are then linked to the promoter 47 

using moderate to high confidence of motif occurrences in the specific genomic region. TFs 48 

themselves could change in their expression. In the example shown, the TF changes in expression, 49 

subsequently acting on a promoter that changes from an open to a close configuration and finally 50 

regulating a gene that changes in its expression between time t2 and t1.  51 
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 53 

Additional Fig. 6 Promoter configuration dynamics and transcription influence on gene 54 

expression regulation between 24h and 48h. A Enrichment analysis for differentially expressed 55 

genes (DE) and non-DE genes depending on the promoter accessibility dynamics. B Enrichment 56 

analysis differentially expressed genes (DE) and non-DE genes depending on the promoter 57 

accessibility dynamics and the changes of the expression of TF-encoding genes that regulate them. 58 

 59 

Additional Table. 1. Impact of quality filters on the number of cells retained for final 60 

analysis.  61 

   Quality filters 

Time Donor Initial 
UMI sum 

filter 

Chr Mito 

filter 

ERCC spike 

filter 

5h 1 96 88 88 88 

24h 1 96 79 78 78 

48h 1 96 93 93 93 

72h 1 96 45 45 45 

0 1 2 3

5645
1117

971
157

260
37

2678
256

2005
399

465
72

105
15

1722
152

-log10 (p-value)

Closed Closed

Closed Open

Open Closed

Open Open

Closed Closed

Closed Open

Open Closed

Open Open

p-value = 0,05

Gene
count

Changes in TF
N

o change in TF

24h 48h

Promoter
configuration

Fig. add. 6

DE genes
Non DE genes

A B

9206
1745

2023
304

p-value = 0,01
Gene
count

0 5 10

519
82

6718
639

-log10(p-value)
15

Closed Closed

Closed Open

Open Closed

Open Open

24h 48h

Promoter
configuration

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

6 

 

96h 1 96 89 89 89 

5h 2 96 88 88 88 

24h 2 96 95 95 95 

48h 2 96 92 91 88 

72h 2 96 96 96 94 

96h 2 96 72 70 68 

Initially, we lysed 96 cells for each condition. First, we filtered out cells with less than 80 000 reads 62 

in total. Among remaining cells, cells with more than 10% of reads assigned to mitochondrial 63 

genome were also not included in the final dataset. Finally, ERCC spikes allowed removing cells 64 

with not satisfying linear amplification criterion (Pearson coefficient < 0,6). 65 

 66 

Additional Table. 2 Total number of peaks in ATAC-seq samples and number of common 67 

peaks retained for analysis.  68 

 0h 5h 24h 48h 

 Donor 1 Donor 2 Donor 3 Donor 1 Donor 2 Donor 3 Donor 1 Donor 2 Donor 3 Donor 1 Donor 2 Donor 3 

Unique pairs of 
reads detected 

8 391 
299 

14 310 
319 

15 701 
894 

13 372 
383 

17 359 
415 

14 998 
407 

16 460 
386 

19 605 
272 

11 588 
529 

8 569 
939 

14 513 
711 

12 665 
206 

Nb peaks  
detected after 
down sampling 

66 155 72 075 66 708 60 734 78 486 68 173 54 288 70 713 65 096 50 404 55 249 49 219 

Nb common peaks 
between donors 

46 942 47 023 38 711 29 255 

We randomly downsampled each sample to the same level of 16M reads. Peak calling was applied 69 

on downsampled bam files. Finally, we considered only the intersection of the 3 peaks dataset 70 

available at each time point for further analyses. 71 

 72 

Additional File. 1 GO terms results for scRNA-seq WGCNA clusters  73 
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(GO_results_WGCNA_clusters.xlsx). 74 

 75 

Additional File. 2 CALISTA 200 most variable genes matrix and cluster transition genes 76 

(CALISTA_200_Top_Variable_Genes.xlsx). 77 

 78 

Additional File. 3 scRNA-seq barcode sequences used for cell and plate demultiplexing 79 

(scRNA-seq_barcodes.tar.gz). 80 

 81 

Additional File. 4 Detailed accessibility profile of 11 TFs known to play a role in 82 

hematopoiesis regulatory network (11_TF_Gene_Coverage.tar.gz). 83 

 84 

Additional File. 5 Motif enrichment obtained with HOMER for 400 known motifs between 85 

t = 0h and t = 48h (homer_results.tar.gz). 86 

 87 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Parmentier et al combined manuscrip file
	Supplementary information Parmentier



