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Summary 23 

When human cord blood derived CD34+ cells are induced to differentiate in vitro, they undergo 24 

rapid and dynamic morphological and molecular transformations that are critical for fate 25 

commitment. Using ATAC-seq and single-cell RNA sequencing, we detected two phases in this 26 

process. In the first phase, we observed a rapid and global chromatin opening that makes most of 27 

the gene promoters in the genome accessible, followed by widespread upregulation of gene 28 

transcription and a concomitant increase in the cell-to-cell variability of gene expression. The 29 

second phase is marked by a slow chromatin closure and a subsequent overall downregulation of 30 

gene transcription and emergence of coherent expression profiles corresponding to distinct cell 31 

subpopulations. These observations are consistent with a model based on the spontaneous 32 

probabilistic organization of the cellular process of fate commitment.  33 
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Introduction 34 

Fate commitment of hematopoietic cells has been widely studied and is commonly considered as 35 

a paradigm of cell differentiation in general. Traditionally, differentiation is believed to proceed 36 

through a series of binary fate decisions under the action of key instructive factors inducing specific 37 

changes in the cell that lead to stepwise switches of the expression profiles at critical decision points 38 

(Kawamoto and Katsura, 2009). The typical representation of this process is a hierarchical decision 39 

tree. Such a strict hierarchical process must imply tight regulation of gene expression. A number 40 

of genes that play a key role in the process have been identified (Sive and Göttgens, 2014). But 41 

recent observations challenge the assumption of a strictly ordered process. Single-cell gene 42 

expression studies demonstrated that, soon after their stimulation for differentiation, multipotent 43 

CD34+ cells go through a phase of disordered gene expression called “multilineage primed” phase 44 

characterized by concomitant expression of genes typical for alternative lineages (Hu et al., 1997; 45 

Moussy et al., 2017; Nimmo et al., 2015; Pina et al., 2012). Other studies demonstrated that 46 

hematopoietic stem cells (HSC) gradually acquire lineage characteristics along multiple directions 47 

without passing through discrete hierarchically organized and demarcated progenitor populations 48 

(Velten et al., 2017). Instead, unilineage-restricted cells emerge directly from a continuum of low-49 

primed undifferentiated hematopoietic stem and progenitor cells (Velten et al., 2017). This phase 50 

is accompanied by instabilities and fluctuation of the cell transcriptome, morphology and dynamic 51 

cell behavior (Moussy et al., 2019, 2017). How this quasi-random gene expression pattern is 52 

generated and how it transforms into a defined gene expression profile remain unknown. In order 53 

to answer these questions, we investigated the nature, the order and the timescale of the early 54 

chromatin and transcriptional changes that follow the induction of differentiation in CD34+ cells.  55 

 56 

To do this, we performed single cell RNA sequencing of human cord blood CD34+ cells at 57 

different time points during the 96h period following their stimulation, a period that has been 58 
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shown to be critical for cell fate decision (Moussy et al., 2017). The gene expression profiles were 59 

correlated to the DNA accessibility changes determined by ATAC-seq at defined time-points 60 

during the same period. The data revealed strikingly different dynamics for chromatin accessibility 61 

and gene expression that challenges the classical model based on specific stepwise switches. 62 

  63 
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Results 64 

Initial transcription burst precedes stable expression profiles. 65 

The experimental strategy is shown in Figure 1A. Human CD34+ cells were isolated from the 66 

cord blood of two healthy donors and cultured in the presence of early acting cytokines as described 67 

previously (Moussy et al., 2017). To identify the transcriptional signatures and to estimate their 68 

variability at the earliest stages of the differentiation process, we performed MARS-seq (massively 69 

parallel single-cell RNA-sequencing, see Materials and Methods) on CD34+ cells randomly sorted 70 

at different time points (5h, 24h, 48h, 72h and 96h) after the cells were cultured in the presence of 71 

cytokines (Jaitin et al., 2014). The uniform random sampling of a heterogenous population allowed 72 

us to evaluate the global changes without any preconceived ideas on the cell categories present in 73 

the population. The quantification of gene expression was calibrated using unique molecular 74 

identifier (UMI) marked RNAs. Details about quality control of the results are shown in Table S1. 75 

In order to avoid potential bias due to batch correction, the results of the two donors were analyzed 76 

separately. 77 

 78 

The results revealed important features in global gene expression dynamics (Figure 1). Following 79 

stimulation, the transcriptome underwent rapid and substantial quantitative and qualitative 80 

changes. Both the number of expressed genes per cell and the number of mRNA molecules per 81 

gene increased substantially (Figure 1B and 1C). The average number of genes detected per cell 82 

at 5h was only 512+/-243 in Donor1. This number increased to 1693 +/-813 at 24h and 2543+/-83 

751 at 48h, but then decreased to 2014+/-714 at 72h and to 1612 +/-613 at 96h. Numbers for 84 

Donor 2 were very similar (see legend Figure 1B).  The rapid increase in global transcription 85 

activity occurred mainly during the first 48h, suggesting that cells expand their repertoire of 86 

transcribed genes during the initial phase of the differentiation process. 87 

 88 
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 99 

Figure 1. Gene expression dynamics of cord blood derived CD34+ cells.  100 
(A) CD34+ cells were isolated from human cord blood and cultured in serum-free medium with 101 
early acting cytokines. Single-cell RNA sequencing (scRNA-seq) was used to analyze single-cell 102 
transcription at 5h, 24h, 48h, 72h and 96h. Concomitantly, at 0h, 5h, 24h and 48h, 5000 living cells 103 
were collected to perform ATAC-seq protocol in order to study DNA accessibility dynamics. (B) 104 
Number of detected genes per cell with scRNA-seq. Two donors were analyzed separately, both 105 
showed similar dynamics. For the Donor 1 see the Results section. For Donor 2, at 5h - 760 genes 106 
+/- 297, at 24h – 2298 genes +/- 822, at 48h – 2036 genes +/- 809, at 72h – 2217 genes +/- 612 107 
and at 96h – 1420 genes +/- 630. (C) Weighted correlation network analysis (WGCNA) reveals 108 
groups of genes with similar dynamic patterns in the average mRNA expression in Donor1 and 109 
Donor2. Note that group 1 reproduces the dynamic pattern observed for genes showing detectable 110 
expression in single cell in (B). Category 1 = 5194 genes (Donor1) and 5518 genes (Donor2), group 111 
2 = 3977 genes (Donor1) and 2602 (Donor2), group 3 = 1089 genes (Donor1) and 609 genes 112 
(Donor2). 113 
 114 

Examination of individual genes confirmed a corresponding increase in the number of mRNA 115 

molecules. Categories of genes with highly correlated mean expression patterns over time could be 116 

defined using Weighted Correlation Network Analysis (WGCNA) (Figure 1C), and the three 117 

largest categories together sum up to more than 10200 genes for Donor 1 and 8700 genes for 118 

Donor 2. Strikingly, all three categories display a similar time profile with an initial increase followed 119 

by a subsequent decrease, pointing to a genome-wide phenomenon. Thus, an average CD34+ cell 120 
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responds to cytokine stimulation with a strong, but transient gene upregulation, both in terms of 121 

gene number and number of transcripts. During the 24h to 48h period after stimulation, the gene 122 

fraction transcribed in each individual cell rose to reach approximately 10-15% of all genes in the 123 

genome (Figure 1B). After 72h, this number started to decrease, coinciding with the time when 124 

the first signs of lineage-specific transcriptional changes appear (Moussy et al., 2017). 125 

  126 

In order to detect emerging gene expression patterns and characterize the lineage progression and 127 

the possible trajectories of the cells during the period under scrutiny, we analyzed our single-cell 128 

RNA dataset using CALISTA (Clustering And Lineage Inference in Single-Cell Transcriptional 129 

Analysis) [10]. CALISTA is likelihood-based method that uses the two-state stochastic model of 130 

gene transcription to describe the cell-to-cell variability of gene expression at single-cell level 131 

(Peccoud and Ycart, 1995). CALISTA can be used to identify cell clusters and cell lineages, calculate 132 

single-cell transcriptional uncertainty and assign to each cell a likelihood value which reflects the 133 

joint probability of its gene expression levels (mRNA counts). Since we were interested in general 134 

tendencies in transcription changes, we analyzed the single-cell mRNA datasets from two donors 135 

independently. In this way, biases related to batch effects and their corrections can be avoided. For 136 

both donors, CALISTA identified five single-cell clusters on the basis of the 200 most variable 137 

genes (Table S2). In both donors, clusters #1 and #2 were essentially composed of cells isolated 138 

at 5h and 24h, respectively (Figure 2B and S1B). Clusters #3, #4 and #5 were mixed containing 139 

cells collected at 48h, 72h and 96h (Figure 2B and S1B). This suggests that individual cells 140 

progress at their own pace. Some cells reached the profile corresponding to clusters #4 or #5 as 141 

early as 48h, while others needed 96h to do so.  142 

 143 
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 144 

Figure 2. Evolution of transcriptome profiles after cell stimulation in Donor 2.  145 
(A) Transcriptome clusters identified by CALISTA for Donor 2. Each dot corresponds to a cell in 146 
the single-cell transcriptomic dataset sampled at 5h, 24h, 48h, 72h and 96h. The x axis corresponds 147 
to the pseudotime, the y-z axes to the first and second principal component (PC). The color code 148 
is given in the upper right inset. The transition edges are represented by black plain lines between 149 
the clusters and the numbers are “cluster distances”, a likelihood-based measure of dissimilarity 150 
(distance) between cell clusters. Note that there are several ways a cell can reach the clusters 3 to 151 
5. The results for Donor 1 are shown on Figure S1. (B) Contribution of the cells collected at 152 
different time points to the clusters identified by CALISTA. The mixed composition of the clusters 153 
#3 to #5 may reflect the different rates of cell transformation and the multiplicity of cell 154 
trajectories. (C) Ic index calculated  for each cluster of Donor 2 as described in (Mojtahedi et al., 155 
2016). The maximum is reached for cluster #2, indicating a phase of critical transition at 24h. After 156 
24h, cells from cluster #3, #4 and #5 undergo stabilization, leading to a decreasing Ic index value.  157 
 158 

CALISTA also produces “cluster distances” between each pair of clusters based on the maximum 159 

difference in the cumulative likelihood values of the gene expression distribution (Papili Gao et al., 160 

2020). This index helps to visualize the most likely sequence of the lineage progression (Figure 2A 161 

and S1A). Overall, the two graphs show highly similar lineage trajectories. Importantly, the close 162 

distances between the clusters #3, #4 and #5 makes likely that a cell can reach any of these clusters 163 

through different pathways or switch between them, as suggested by the reported time-lapse 164 

observations (Moussy et al., 2017).  165 

 166 
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In order to detect early-warning signals that would indicate cell state transitions, we calculated for 167 

each cluster the “index for critical transitions” (Ic) as described in (Mojtahedi et al., 2016).  To do 168 

this, we calculated the pairwise gene-gene correlation between all pairs of gene vectors (R(gn,gm)) 169 

and the cell-cell correlation between all pairs of cell state vectors (R(ci,cj)). The analysis was 170 

performed separately for each cluster and each donor. Only the correlations with a Pearson 171 

coefficient higher than 0.70 were taken into account. The Ic is calculated as the ratio between the 172 

average of all R(gn,gm)-s and R(ci,cj)-s (Mojtahedi et al., 2016). The results shown on Figure 2C 173 

and S1C indicate that in both donors the Ic sharply increased towards a maximum between 24h 174 

and 48h and decreased by 72h to 96h (Figure 2C and S1C) - a typical hallmark of a critical 175 

transition state.   176 

 177 

Then, we performed a comparative Gene Ontology analysis of the cell clusters. For this, we used 178 

the list of genes for which the pairwise gene-gene correlation score was greater than 0.70. The top 179 

“molecular function” GO categories (p < 0,01) were compared between the clusters (Figure S2) 180 

using the “compareCluster” function of the Cluster Profiler package (Yu et al., 2012). The analysis 181 

showed similar enriched GO terms among clusters for donor 1 and donor 2. Cluster #1 is 182 

characterized essentially with broad-spectrum terms associated to translation, transcription 183 

activities and cellular interaction. These categories constitute a common base for all clusters. Cluster 184 

#2 and #3 showed the greatest variety of enriched GO terms, ranging from nucleotide synthesis 185 

to metabolic activities, but with no apparent cell type related functions. Finally, in cluster #5, GO 186 

terms pointing to erythroid lineage related functions emerged (see Table S3 for GO terms 187 

enrichment statistics), suggesting that these cells are progressing in their lineage commitment. 188 

 189 

In order to reveal potentially active regulatory interactions that could account for the transcription 190 

dynamics, we explored on a global scale the correlation between changes in the expression of 191 
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transcription factor-coding genes (TFs) and changes in the expression of their target genes. To do 192 

so, we sorted the genes according to the evolution of their mRNA levels. This classification is based 193 

on the number of UMIs detected in a cell (see STAR Materials and Methods section for details). 194 

Genes that showed a statistically significant change in the corresponding mRNA level in the two 195 

donors are referred to as differentially expressed (DE). Focusing on the early changes, out of the 196 

total number of 14,045 genes that were expressed in at least one time point, we found 5,274 DE 197 

genes between 5h and 24h. Note that such DE genes were mainly upregulated, as only 110 genes 198 

were found downregulated. Genes with unchanged or undetected mRNA level were designated as 199 

“non-DE”. We found 8,771 non-DE genes between 5h and 24h.  Among the 470 expressed genes 200 

encoding transcription factors (TFs), 56 showed a significant change in expression between 5h to 201 

24h., labeled as DE-TF genes. Gene targets of the DE-TFs were identified using the Regulatory 202 

Circuits resource (Marbach et al., 2016). We found 4415 potential DE target genes for the 470 TFs. 203 

Finally, among them, the target genes of the 56 DE-TFs are overrepresented (enriched). Indeed, 204 

2,630 of the target DE-genes (60% of 4415) are targeted by at least one of the DE-TFs (p=1.4×10−6 205 

)  p=1.4×10−6, two-sided Fisher exact test) (Figure 3A).    206 

 207 

 208 

Figure 3. Global influence of transcription factors on targeted gene expression. 209 
(A) Total number of differentially expressed target genes (DE target genes) whether their associated 210 
TF is differentially expressed (DE-TF), or non-differentially expressed (non-DE-TF) between 5h 211 
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and 24h. (B) Total number of differentially expressed target genes (DE target genes) whether their 212 
associated TF is differentially expressed (DE-TF), or non-differentially expressed (non-DE-TF) 213 
between 24h and 48h. Note that the association between differential expression (DE target genes) 214 
and the differentially expressed TF-coding genes targeting them is significant only between 5h and 215 
24h. 216 
 217 

These observations suggest that the increase of transcription between 5h and 24h could be 218 

potentially facilitated by the activity of TFs targeting them. However, TF activity is not sufficient 219 

to fully explain the expression changes since 40% of the DE target genes increase their transcription 220 

without being targeted by a DE-TF. The same strategy applied to the period between 24h to 48h 221 

revealed a different dynamic compared to the first-time interval (5h to 24h). First, only 16 TFs were 222 

detected as DE and among them, 8 were already classified as such between 5h and 24h. This 223 

decrease is expectedly accompanied with a drastic drop of the number of DE target genes from 224 

4415 (5h-24h) to 1259 (24h-48h). 225 

      226 

Chromatin decompaction is a non-specific response to cell stimulation. 227 

In order to uncover if global chromatin changes occur during the critical state transition period, 228 

we determined the DNA accessibility in the CD34+ cells of three independent donors using 229 

ATAC-seq (Corces et al., 2016) at four time points (0h, 5h, 24h, and 48h after cell stimulation). We 230 

performed bulk ATAC-seq analysis because, contrary to the single-cell version of this technique, 231 

this approach can reliably identify global systemic changes in chromatin structure (Chen et al., 232 

2019). In order to identify relevant DNA regions, we applied a stringent filter based on the 233 

reproducible detection of accessibility in all three donors (Aranyi et al., 2016) (see Table S4 for 234 

donor-related information). Performing ATAC-seq on 5000 cells ensured that the detected 235 

accessible DNA regions (peaks) are present in a substantial fraction of cells. Indeed, accessible sites 236 

present in individual, or a small number of cells, could not be differentiated from the technical 237 

noise. 238 

 239 
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We found a large number of ATAC-seq peaks in cells at 0h (Figure 4A). The number of accessible 240 

DNA regions further increased by 10-12% between 0h and 5h around the transcription start 241 

sites/promoters (TSS), in the introns and exons, but not in the intergenic regions, then decreased 242 

gradually at relatively slow rate over the next 48h (Figure 4B). The time-dependent decrease in the 243 

number of ATAC-seq peaks varied with their genomic location (Figure 4B). While the number of 244 

peaks in distal intergenic regions was halved between 5h and 48h, the decrease in the other locations 245 

was less significant (Figure 4B). In particular, the number of peaks in TSS/promoter regions only 246 

dropped by 15% between 0h and 48h indicating that these promoters became inaccessible. The 247 

significant number of peaks that appear or disappear indicate a rapid global dynamical change of 248 

the chromatin structure.  249 

 250 

 251 

Figure 4. Chromatin dynamics as detected by ATAC-seq.  252 
(A) Total number of accessible regions (peaks) at 4 different time points. (B) Number of peaks in 253 
different genomic elements. A single peak may count for two categories, except for the intergenic 254 
category defined by the exclusion of all the others.  255 
  256 

However, the overall tendency emerges from the sum of individual peak dynamics. Therefore, we 257 

have analyzed the changes of individual peaks. First, we estimated the changes in the size of the 258 

peaks that were present at least at two consecutive time points. As a proxy for the size of a peak, 259 

we used the number of sequenced reads that define it. The increase or decrease in read counts for 260 

the same ATAC peak between two consecutive time points was used to assess the tendency of the 261 
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chromatin to open or close, respectively. We calculated the log-fold changes of the number of 262 

reads of each peak for time intervals and the associated p-values and represented them as volcano 263 

plots (Figure 5A). We observed a tendency for the peaks already present at 0h to further increase 264 

in accessibility by 5h, in particular peaks located in the TSS regions (blue dots in Figure 5A). 265 

During this period, accessibility was altered at 17% of the total number of elements detected in our 266 

analysis (9,045 out of 53,797). Between 5h and 24h, 15% of the peaks (7,505 out of 50,936) 267 

displayed significant change, with approximately equal proportions of increased and decreased 268 

subsets. However, between 24h and 48h, only 48 out of 40,248 peaks showed differential read 269 

counts, again with roughly equal proportions of increased and decreased peaks (Figure 5A). 270 

Overall, our ATAC-seq analysis shows that most of the changes in accessibility occurred during 271 

the first 24 hours (Figure 5A). First, new genomic elements become accessible and others already 272 

open become more accessible during the first 5 hours. Then, the trend is reversed: both the number 273 

and size of ATAC-seq peaks decreased between 5h and 24h. The latter trend was maintained, albeit 274 

at a lesser degree, between 24h and 48h. Although this analysis provides a quantitative assessment 275 

of the changes between two time points, it gives no information on the evolution dynamics of 276 

individual peaks. Therefore, we plotted the size of each peak at each time. This representation gives 277 

a precise account of the changes at each peak. On Figure 5B, we represented the peaks detected 278 

in promoters and intergenic regions at all four time points. The majority (75%) of the promoter-279 

associated peaks belong to this category. In the intergenic region, only 27% of the peaks are 280 

detected at all time points. In both cases, the size of the peaks increased rapidly between 5h and 281 

24h and gradually decreased between 24h and 48h (Figure 5B). The peaks that displayed more 282 

complex dynamics are represented on Figure S3; either they appeared later than 5h or disappeared 283 

completely at some stage. However, in both categories, the general tendency to decrease remained 284 

the same.   285 

 286 
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 287 

Figure 5. Rapid decompaction and slow re-compaction of the chromatin. 288 
(A) Quantitative analysis of the peak sizes detected at two consecutive time points. Peaks in 289 
promoter regions are highlighted in blue and in intergenic regions in yellow. Note the significant 290 
increase in size (accessibility) between 0h and 5h and the decreasing number of changes after 24h. 291 
Details about how the differential accessibility has been calculated are given in STAR Materials and 292 
Methods. (B) Evolution of the ATAC peaks in promoters (blue, left panel) and intergenic regions 293 
(yellow, right panel). The size of each ATAC peak is plotted for every time point. Each line 294 
connects the points corresponding to the ATAC peak detected at the same genomic position. Only 295 
the peaks detected at each time point are represented. 296 
 297 

To investigate the potential functional importance of the gene promoter accessibility, we analyzed 298 

the occurrence of various transcription factors binding site (TFBS) motifs in the accessible DNA 299 

regions. We observed that many of the TFBSs of factors known to play a role in hematopoiesis, 300 

such as RUNX1, ERG, PU.1 and FLI1, were highly accessible at 0h and remained detectable at a 301 

similar level up to 48h (Figure S4). We also noted that CTCF (CCCTC-binding factor) binding 302 

sites were detected more than five times more frequently in the accessible regions than expected 303 

on the basis of their frequency in the genome. Indeed, CTCF is known to play a key role of 304 

chromatin remodeling and loop formation in general (Ohlsson et al., 2010), but also more 305 

specifically in the hematopoietic lineage (Kieffer-Kwon et al., 2017). 306 
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 307 

Chromatin decompaction precedes transcriptional burst. 308 

In order to elucidate how the dynamics of chromatin accessibility and the differential gene 309 

expressions were related during the critical state transition, we combined the scRNA-seq and the 310 

ATAC-seq data (see Materials and Methods). Comparison of scRNA-seq and ATAC-seq analysis 311 

in Figure 1 and 5 shows that the wave of global chromatin opening of gene 312 

promoter/transcription start sites (TSSs) precedes the wave of changes in gene transcription. To 313 

make sense of this, we first examined how changes in the accessibility gene promoter regions are 314 

related to changes in the gene expression. We grouped the promoters in 4 groups: “open-open”, 315 

“open-close”, “close-close” and “close-open”, depending on the presence or absence of ATAC-316 

seq peaks at the given promoter at 5h and 24h, respectively (Figure 6A). The period between 5h 317 

and 24h is particularly interesting and important, because most of the changes in gene expression 318 

occur at this stage. We then identified the genes controlled by each promoter using the Regulatory 319 

Circuit resource (see Materials and Methods). Finally, we examined the distribution of DE and 320 

non-DE genes among the four classes of promoter configuration (i.e. open-open, open-close, 321 

close-open, and close-close). Strikingly, 74,2% of DE genes (p < 10-4) had a promoter with “open-322 

open” configuration between 5h and 24h (Figure 6A), meaning that their promoter was already 323 

accessible 5h after cell stimulation, but long before the burst of transcription and they remained so 324 

24h later (Figure 6A). This is significantly higher than the proportion of the DE genes in the other 325 

categories of promoter configuration as assessed by enrichment analysis. The same classification 326 

between 24h and 48h revealed similar repartition of DE genes among categories of promoter 327 

configuration (Figure 6B). Particularly, more than 60% of DE genes are associated with the 328 

“Open-Open” promoter configuration. However, the total number of DE genes is much lower 329 

during this period (n = 1849) compared to the first 24 hours (n = 6230) and statistical tests did not 330 

reveal any significant overrepresentation of gene categories (Figure 6B).  331 
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 332 

 333 

Figure 6. Promoters of differentially expressed genes are continuously accessible.  334 
(A) Total number of differentially expressed genes (DE genes) as a function of their promoter 335 
accessibility at 5h and 24h. (B) Total number of differentially expressed genes (DE genes) as a 336 
function of their promoter accessibility at 24h and 48h. Note that differential genes expression is 337 
significantly associated to the Open-Open promoter configuration between 5h and 24h. 338 
 339 

We finally examined how alterations of TF expression influenced target gene transcription in 340 

combination with the DNA accessibility of the promoter. To do so, we further categorized the DE 341 

genes assigned to the four groups according to the chromatin configuration of their promoters 342 

“open-open”, “open-close”, “close-close” and “close-open”–depending on whether they were 343 

targeted by DE or non-DE TFs, as determined previously (see Single-cell gene expression analysis 344 

using RNA-seq). Between 5h and 24h, we found a significantly higher proportion of DE genes in 345 

the category DE-TF with “open-open” chromatin configuration than in all other categories (46%; 346 

p < 2.5x10-7) (Figure 7A). In comparison, only 33% of the DE genes were in the non-DE-TF 347 

category with “open-open” chromatin. We performed the similar analysis on the ATAC-seq and 348 

sc-RNA-seq results obtained at 24h and 48h (Figure 7B). No significant enrichment was found 349 

for the other categories. The highest fraction of DE genes was found to be associated to the 350 

“Open-Open” promoter configuration category with non-DE-TF (51%) (Figure 7B).  351 

 352 
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 353 

Figure 7. Genes targeted by differentially expressed TF-s are expressed differentially if 354 
their promoters are continuously accessible. 355 
(A) Total number of differentially expressed genes (DE genes) targeted by differentially expressed 356 
(DE-TF) or non-differentially expressed (non-DE-TF) transcription factor-coding genes as a 357 
function of their promoter accessibility at 5h and 24h. (B) The same as in A for 24h and 48h.  358 
 359 

Taken together, the integration of gene expression and chromatin accessibility data shed light on 360 

the chronology of transcriptional regulation in the CD34+ cells. We observed that genome-wide 361 

chromatin opening precedes the multilineage-type mixed hyper-expression of a very large number 362 

of genes. After 48h, both gene hyper-expression and the number of accessible promoters and 363 

extragenic sites started to decrease concomitantly with the emergence of distinct cell populations 364 

with particular gene expression patterns.  365 
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Discussion   366 

In vitro cultured human cord blood derived CD34+ cells are usually considered as a heterogenous 367 

population of cells. Recent studies demonstrated that this heterogeneity is not the result of the 368 

mixture of different cell types or subsets, but a population of cells with a wide distribution of gene 369 

expression patterns (Velten et al., 2017) that fluctuate between transitory states, generating 370 

morphological and transcriptional instability (Moussy et al., 2017). During the first cell cycle, each 371 

cell displays a rather distinct gene expression pattern but similar morphology. By 48 to 72 hours, 372 

one can observe the emergence of two different cellular morphologies and two different 373 

characteristic transcription profiles (Moussy et al., 2017). This observation prompted us to 374 

investigate this critical window of time in more details. 375 

 376 

Using ATAC-seq, we demonstrated that concomitantly with the cell stimulation the chromatin 377 

undergoes very rapid global decompaction followed by gradual condensation. The process of 378 

decompaction reached a maximum as early as 5h after the stimulation of the cells and made most 379 

of the gene promoters in the genome accessible. The opposite process of closure is slow and 380 

gradual.  381 

 382 

Importantly, the rise-and-fall in chromatin opening precede and overlap with a rise-and-fall in 383 

transcriptional activity peaking at 24-48h. Indeed, the variety in transcribed genes and the number 384 

of mRNA molecules per gene was the lowest at 5h – the first time point tested for scRNA-seq – 385 

but both increased sharply at 24h, reached a plateau between 48h and 72h and decreased at 96h 386 

(Figure 1B and 1C). The 5h-to-48h period corresponds to the multilineage-primed stage of the 387 

CD34+ cells that precedes the emergence of the first signs of characteristic gene expression 388 

patterns accompanying differentiation (Moussy et al., 2017).  389 

 390 
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Progress through a transitional cell state marked by the rise-and-fall in transcriptional uncertainty 391 

and a concomitant rise-and-fall of cell-to-cell variability was previously reported as a universal 392 

feature of cells during the initial phases of the fate commitment process  (Gao et al., 2020). We 393 

show here using CD34+ cells that the global increase in transcription most likely arises as a 394 

consequence of a widespread and non-specific chromatin opening that makes widely accessible 395 

more than 50% of gene promoters in the genome. Importantly, the number of gene promoters 396 

becoming accessible largely exceeds the number of genes that are actually transcribed in each cell 397 

(Figure 1B and 4B), pointing to a strong stochastic component in the establishment of the 398 

multilineage primed expression state. Coherent transcription profiles emerge from this 399 

heterogeneous transitory state concomitantly with the gradual chromatin compaction. A significant 400 

fraction of gene promoters (16%) and intergenic sites (46%) in the genome become inaccessible 401 

again between 5h and 48h (Figure 4B). The stabilization of the transcriptome is presumably the 402 

consequence of these chromatin changes. Some promoters gradually become repressed by 403 

chromatin closing, while others are stabilized in an open chromatin configuration. The role of TFs 404 

appears crucial at this stage. Indeed, between 5h and 24h the increase of the transcription of TF-405 

encoding genes correlated with the similar increase of their target genes with accessible promoters. 406 

Changes of the expression of the TF-encoding genes do not alter the target gene expression if their 407 

promoters are in “closed” chromatin configuration around the TSS (Figure 7A and 7B), indicating 408 

that chromatin accessibility plays a permissive or gating role for TF action. Since the number of 409 

the open promoters is higher at the beginning of the process than the number of expressed genes, 410 

a competition for the available TFs among accessible promoters may explain the transcriptional 411 

and phenotypic fluctuations observed during this period (Moussy et al., 2017). These fluctuations 412 

cease when the transcriptome is stabilized (Moussy et al., 2017). The role of TFs may be crucial 413 

during the second phase, because their binding may keep the target genes transcribed and prevent 414 

the closing of the chromatin. The proposed scenario of general non-specific chromatin 415 
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destabilization followed by a selective repression of the genes is also supported by the observations 416 

showing that the inhibition of chromatin compaction using valproic acid (VPA), a histone 417 

deacetylase inhibitor, can maintain the multilineage-primed state with promiscuous transcription 418 

profile for a long period (Chaurasia et al., 2014; Moussy et al., 2019, 2017). The removal of VPA 419 

allows defined transcriptome profiles to be established (Moussy et al., 2019). Therefore, chromatin 420 

structural changes appear to be causally involved both in the generation of a non-specific 421 

multilineage-primed transcriptional state and the stabilization of the cell fate choice.  422 

 423 

Recent mechanistic studies in various cellular systems support our model. For example, a recent 424 

study of human fetal hematopoietic cells demonstrated that extensive epigenetic, but not 425 

transcriptional priming of HSC/MPPs, occurs prior to lineage commitment (Ranzoni et al., 2020). 426 

In another study, monitoring the alterations in the chromatin structure and the nuclear architecture 427 

during B cell activation revealed that as quiescent lymphocytes encounter antigens, they rapidly 428 

decondense chromatin by spreading nucleosomes from the nuclear matrix to the entire 429 

nucleoplasm, decompacting chromatin clusters into mononucleosome fibers, and strengthening 430 

their nuclear architecture by creating new CTCF loops and contact domains. The global 431 

decompaction and loop formation require Myc, constant energy input, histone acetylation, and is 432 

accompanied by an increase in regulatory DNA interactions and gene expression (Kieffer-Kwon 433 

et al., 2017).  Studies on hair bulb stem cells also showed that changes in chromatin accessibility 434 

precede gene expression changes and lineage commitment (Ma et al., 2020). Similarly, the loss of 435 

DNA methylation has been shown to be essential for the establishment of chromatin accessibility 436 

that determines differential transcription factor binding in neural stem and progenitor cells. 437 

Following the differentiation into glial cells, new methylation is acquired to maintain the identity 438 

of glial cells by silencing neuronal genes (Sanosaka et al., 2017). Furthermore, in human cells, most 439 

changes during differentiation arise from dramatic redistributions of repressive H3K9me3 and 440 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2020.09.09.289751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289751
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

21 

 

H3K27me3 marks, which form blocks that significantly expand in differentiated cells (Hawkins et 441 

al., 2010). 442 

 443 

While the rapid and non-specific opening of the chromatin as a general response to stimulation 444 

appears now to be well documented, it is of particular importance for further understanding to 445 

investigate the process of transcriptome stabilization and the feedback mechanisms that must 446 

accompany the emergence of specific gene expression patterns. In this respect, it may be relevant 447 

that a dynamic positive feedback loop between permissive chromatin and translational output has 448 

been previously reported for embryonic stem- and in CD34+ cells (Bulut-Karslioglu et al., 2018). 449 

It is noteworthy that many of the genes with the most variable expression that contribute 450 

significantly to the specification of the emerging transcription patterns are ribosomal protein (RP) 451 

coding genes (Table S2), thus impacting the process of translation (Guo, 2018). A high degree of 452 

RP expression heterogeneity has already been observed in hematopoietic cells, where a small subset 453 

of RPs can discriminate cell types belonging to different hematopoietic lineages (Guimaraes and 454 

Zavolan, 2016). Therefore, it is possible that, in addition to the TF and promoter interactions, a 455 

feedback action of the translational output may also contribute to the stabilization of the 456 

chromatin. Analogous feedback regulation has been described in ES cells where the translational 457 

output directly promotes a permissive chromatin environment, in part by maintaining the levels of 458 

unstable euchromatin (Bulut-Karslioglu et al., 2018). Clearly, the selective stabilization of the 459 

chromatin is impacted by many more mechanisms, but their respective roles remain to be clarified. 460 

 461 

The observed non-specific chromatin opening and the rise of an equally non-specific gene 462 

expression as a first step, followed by a slow relaxation toward a defined gene expression pattern 463 

and chromatin stabilization, brings a new perspective to our understanding of how cell fate 464 

commitment is initiated. According to the conventional view, a switch-like activation of fate-465 
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specifying genes, followed by a cascade of activation of specific downstream targets determines cell 466 

fate. This view is not compatible with the observations reported here. We propose an alternative 467 

model where stochastic and highly variable expression profile of multilineage-primed transitory 468 

stage emerges as a rapid but non-specific response to a substantial change in the cell’s environment. 469 

This reaction is analogous to the physiological stress response whose role is to prepare the organism 470 

to meet new and unforeseen circumstances (Braun, 2015). In the case of the cells, we observe a 471 

general and non-specific opening of the chromatin that lifts the transcription repression and 472 

permits targeted interactions between TFs and gene promoters and enhancers. The quasi-random 473 

activation of genes in a cell under stressful conditions generates a potential of a variety of 474 

phenotypic traits in the cell. Some of these traits promote the cell’s survival under selective 475 

pressures imposed by the evolving microenvironment, and they are gradually and selectively 476 

stabilized by feedback mechanisms. All these mechanisms are not yet identified, but explicit and 477 

testable hypotheses have been made on their nature (Paldi, 2003; Páldi, 2020).  478 

 479 

Overall, fate commitment of the CD34+ cells can be viewed as a continuous iterative process of 480 

constrained optimization of the cell phenotype, a kind of “learning process” that is accomplished 481 

by the cell through interactions and cooperation with the surrounding cells and environment. This 482 

way to conceptualize the question of fate commitment has been theorized long ago (Kupiec, 1997, 483 

1996; Paldi, 2012), and now it is supported by an increasing number single-cell experimental studies 484 

(Gao et al., 2020; Hu et al., 1997; Mojtahedi et al., 2016; Moussy et al., 2017; Richard et al., 2016). 485 

  486 
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Materials and Methods 509 

Cell culture  510 

Umbilical cord blood from anonymous healthy donors was obtained from Centre Hospitalier Sud 511 

Francilien, Evry, France or from AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, CRB-512 

Banque de Sang de Cordon, Paris, France (Authorization number: AC-2016-2759). Mononuclear 513 

cells were isolated from cord blood fractions by density centrifugation using Ficoll (Biocoll, Merck 514 

Millipore, Burlington, Massachusetts). Human CD34+ cells were then enriched in the sample by 515 

immunomagnetic beads using an AutoMACSpro (Miltenyi Biotec, Bergisch Gladbach, Germany). 516 

After collection, enriched CD34+ cells were frozen in a cryopreservation medium containing 90% 517 

of fetal bovine serum (Eurobio, Les Ulis, France) and 10% of dimethylsulfoxide (Sigma, Saint-518 

Louis, Missouri) and stored in liquid nitrogen.  519 

 520 

After thawing, the CD34+ cells were cultured in a 96-well plate in a humidified 5% CO2 incubator 521 

at 37°C. Cells were cultured in prestimulation medium made of X-Vivo (Lonza, Basel, Switzerland) 522 

supplemented with penicillin/streptomycin (respectively 100U/mL and 100ug/mL - Gibco, 523 

Thermofisher Scientific, Waltham, Massachussetts), 50 ng/ml h-FLT3, 25 ng/ml h-SCF, 25 ng/ml 524 

h-TPO, 10 ng/ml h-IL3 (Miltenyi Biotec, Bergisch Gladbach, Germany) final concentration.  525 

  526 

Fast-ATAC-seq  527 

We used Fast ATAC-seq with minor modifications. This protocol was optimized for blood cells 528 

(Corces et al., 2016). Prior to transposition, cells were marked with 7AAD, and dead cells were 529 

removed by FACS (Beckman Coulter, Brea, California). Removing dead cells is an important 530 

parameter to ensure clear nucleosome patterns and to improve signal to noise ratio. 5000 living 531 

cells were used at each time point. A one-step gentle membrane permeabilization and DNA 532 

transposition was performed by adding 50ul transposition mixture (25 uL TD buffer 2X, 2,5uL of 533 
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transposase TDE1 (Illumina, San Diego, California), 0,5 uL digitonin 0,1% (Promega, Madison, 534 

Wisconsin) and 22 uL water) to the cell pellets and by incubating at 37°C for 30 minutes under 535 

agitation. Obtained Transposed DNA were then purified using MinElute PCR Purification Kit 536 

(Qiagen, Hilden, Germany) and preamplified using Nextera barcoded primers (Illumina, San 537 

Diego, California) and NEBNext High-Fidelity 2xPCR Master Mix (New England Biolabs, 538 

Ipswich, Massachusetts) for 5 cycles. A quantitative PCR amplification was made on 5uL of the 539 

sample with SYBR Green to determine the number of additional cycles in order to generate libraries 540 

with a minimal number of PCR cycles and to limit PCR bias (according (Corces et al., 2016)). 541 

Appropriate number of PCR cycles were applied on the rest of the pre-amplified samples. PCR 542 

fragments were purified with MinElute PCR Purification Kit (Qiagen, Hilden, Germany) to get rid 543 

of unused primers. A supplemental purification step was performed using Ampure beads kit 544 

(Beckman Coulter, Brea, California) to size-select DNA fragments ranging between 100 and 700 545 

pb. ATAC-seq libraries were checked for quality using Bioanalyzer (Agilent, Santa Clara, California) 546 

prior to sequencing and sequenced in paired-end mode (2x50bp) on the Illumina HiSeq2500 547 

platform.  548 

  549 

Single-cell RNA sequencing adapted from MARS-seq 550 

To perform scRNA-seq, we adapted the MARS-seq protocol (Massively parallel single-cell RNA 551 

sequencing) (Jaitin et al., 2014). CD34+ cells were stained with 7AAD to only work living cells and 552 

cells were isolated by FACS. Individual cells were sorted into 96-well plates containing 4uL of lysis 553 

buffer with specific barcoded RT primers (final concentration: 0,2% Triton, 0,4 U/L RNaseOUT 554 

(Thermofisher Scientific, Waltham, Massachussetts), 400nM idx_RT_primers). Idx_RT_primers 555 

contain a T7 RNA polymerase promoter for further in vitro transcription (IVT), single cell barcodes 556 

for subsequent de-multiplexing and unique molecular identifiers (UMIs) allowing correction for 557 

amplification biases (Table S6). After cell sorting, plates were immediately centrifuged and put into 558 
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dry ice before storage at -80°C preceding the reverse transcription (RT). To open RNA secondary 559 

structure, plates containing single cells were incubated at 72°C for 3 minutes and immediately put 560 

in ice. 4L of RT mix were added in each well (final concentration of RT mix: 20mM DTT, 2mM 561 

dNTP, 2X First stranded buffer, 5 U/L Superscript III RT enzyme, 10% (W/V) PEG 8000). 562 

PEG8000 was added in the RT mix because it has been shown that it can increase the cDNA yield 563 

in scRNA sequencing (Bagnoli et al., 2018).  ERCC RNA spike-in mix (Thermofisher Scientific, 564 

Waltham, Massachussetts) was also added to the solution for further amplification quality filtering 565 

(dilution 1/40.10e7). The plate was then put into thermocycler (thermocycler program: 42°C-2min, 566 

50°C-50min, 85°C-5min, 4°C hold). 567 

 568 

After first retro-transcription, samples were pooled (see (Jaitin et al., 2014)) and ExonucleaseI 569 

digestion was performed, followed by 1,2X AMpure beads purification kit (Beckman Coulter, Brea, 570 

California) to keep only retro-transcribed single strand cDNA. Samples were eluted in 17L of 571 

10mM Tris-HCl, pH=7,5. Second strand cDNA synthesis (SSS) using NEBNext mRNA second 572 

strand synthesis module kit was then performed (SSS mix: 2L 10x SSS buffer, 1L SSS enzyme; 573 

thermocycler program: 16°C-150min, 65°C-20min, 4°C hold). Obtained cDNA was linearly 574 

amplified by overnight IVT (HighScribe T7 High Yield RNA synthesis, NEB) at 37°C under T7 575 

promoter. The product was purified with 1,3X Ampure beads and eluted in 10L of 10mM Tris-576 

HCl, 0,1mM EDTA. 9L of amplified RNA were then enzymatically fragmented with 1uL of 10x 577 

RNA fragmentation reagents (Thermofisher Scientific, Waltham, Massachussetts) in 70°C for 3 578 

min. The fragmentation was stopped with 34L of STOP mix (1,2uL Stop solution, 26,4L 579 

AMpure beads, 9,8uL TE) and samples were purified. Differing from original MARSseq protocol, 580 

the second RT was done with primers (P5N6_XXXX) containing random hexamers and specific 581 

barcode (Table S6) to distinguish the different plates (ie. times) (final concentration: 5mM DTT, 582 
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583 

584 

585 

586 

587 

588 

589 

590 

591 

592 

593 

594 

595 

596 

597 

598 

599 

600 

601 

602 

603 

604 

605 

606 

500uM dNTP, 10uM P5N6_XXXX, 1X First stranded buffer, 10U/L Superscript III RT 

enzyme, 2U/L RNaseOUT; thermocycler program: 25°C 5min, 55°C 20min, 70°C 15min, 

4°C hold). cDNA was purified with 1,2x AMpure beads and eluted in 10L.  

As for ATAC-seq , the appropriate number of PCR cycles was determined using a fraction of the 

library with SYBR Green based qPCR as described in (Zilionis et al., 2017) (final concentration: 

1x Kapa Hifi HotSTart PCR mix, 1x SybrGreen, 0,5M mix primer P5.Rd1/P7.Rd2; 

Thermocycler program: 95°C 3min – 40cycles: 98°C 20sec , 57°C 30sec , 72°C 40sec – 72°C 

5min, 4°C hold). After PCR amplification, libraries were purified with 0,7x AMpure beads. 

Libraries were checked for quality, using Bioanalyzer HighSensitivity DNA (Agilent, Santa Clara, 

California) prior to sequencing. Libraries were finally sequenced in paired-end mode 

(2x50bp) on Illumina HiSeq2500 platform. 

Idx RT primers: TTTTTTTTTTTTTTTTTTTTN = poly-T allowing matching with mRNA poly-A tail, 

NNNN = 4 bases UMI (randomly generated), XXXXXX = 6 bases cell barcode (Table S6). The 

rest of the sequence consists of a PCR adaptor and a T7 promoter sequence for further IVT 

amplification. P5N6 XXX: NNNNNN = random hexamer allowing the capture of the 

fragmented IVT amplified RNA, XXXX = 4 bases “plate barcode” (Table S6). The rest of 

the sequence consists of a PCR adaptor. P5.Rd1/P7.Rd2 : P5 and P7 Illumina sequencing 

adaptors. 

Bioinformatic analysis 

Single-cell RNA-seq (scRNA-seq) 

 Raw data processing 

Cell and plate barcode demultiplexing steps were accomplished under strict selection criteria with 

the following command:  

607 
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< cutadapt -q 30 -e 0 -m 30:20 --no-trim --no-indels --pair-filter = any >  608 

 609 

Sequence for both barcodes (cells and time) sequences are given in Table S6. 610 

 611 

ERCC mapping was performed using bowtie2 (Langmead and Salzberg, 2012) on ERCC known 612 

sequences and regular mapping was performed using STAR (Dobin et al., 2013) on the reference 613 

genome version hg19 and aligned reads annotated. After quality filtering, reads and UMIs count 614 

per gene and ERCC were calculated for expression analysis. 615 

 616 

Cell and gene filtering 617 

Chromosome Y was removed from the analysis to avoid unwanted effects and only protein coding 618 

genes were kept for further analysis. Cells with less than 80 000 total reads were removed, as well 619 

as cells with more than 10% of reads corresponding to mitochondrial RNA. To reduce undesired 620 

effect due to PCR non-linear amplification, ERCC spikes were used to assess the linearity of 621 

amplification. Pearson correlation coefficient was calculated for each cell, and only cells above 0,6 622 

were retained. For each cell remaining, genes were defined as detectable if at least two cells 623 

contained more than a single UMI (=transcript) and a minimum of 5 reads in total.  624 

 625 

Single-cell clustering and variability analysis  626 

Clustering analysis was performed with CALISTA (Clustering and Lineage Inference in Single-Cell 627 

Transcriptional Analysis) (Papili Gao et al., 2020), a numerically efficient and highly scalable 628 

toolbox for end-to-end analysis of single-cell transcriptomic profiles. This approach includes 629 

single-cell mRNA counts in a probabilistic distribution function associated with stochastic gene 630 

transcriptional bursts and random technical dropout events. In the data pre-processing, we 631 

removed cells with more than 95% of zero expression values and then selected the top 200 most 632 
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informative genes for further analysis. The optimal number of clusters was chosen to be five based 633 

on the eigengap plot (see (Papili Gao et al., 2020) for more details). 634 

 635 

WGCNA 636 

We applied Weighted Correlation Network Analysis (WGCNA) (Langfelder and Horvath, 2008) 637 

to the mRNA expression data from each donor separately, to identify modules of genes with similar 638 

gene transcriptional dynamics. We excluded genes without any detectable expression in all samples. 639 

In implementing WGCNA, we set the soft-thresholding power for a scale-free topology index of 640 

0,9. For each module, we calculated the mean expression of genes by averaging the UMI counts 641 

from the two donors separately.  642 

 643 

Enrichment Analysis 644 

We obtained a curated collection of TFs to CAGE-defined promoters to gene isoform mapping 645 

for a total of 662 human TFs from the Regulatory Circuits resource (Marbach et al., 2016; Noguchi 646 

et al., 2017). In our analysis, we used only TF – Promoter pairs with moderate confidence scores 647 

> 0.5. We grouped genes based on whether the relevant TFs demonstrated differential expressions. 648 

More specifically, a classification of “changes in TF” was given to any gene in which at least one 649 

of its TFs showed a differential expression. Otherwise, a classification of “no change in TF” was 650 

assigned. A two-sided Fisher exact test was used to perform over- and under-representation 651 

analysis (Agresti, 2007).  652 

 653 

Bulk ATAC-seq  654 

Raw data processing 655 

Tn5 adapters sequences were first trimmed with the following command: 656 
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 < cutadapt -q 20 -g "AGATGTGTATAAGAGACAG; max_error_rate=0.1; min_overlap = 10" -A 657 

"AGATGTGTATAAGAGACAG; max_error_rate = 0.1; min_overlap = 10" --minimum-length 18 --658 

times 2 --pair-filter = both > 659 

 660 

Genome alignment (hg19) was performed using Bowtie2 with the following parameters:  661 

< bowtie2 -x hg19 --no-unal -X 800 > 662 

 663 

Only Paired-End fragments were kept, considering mapping quality (phred score = 30). Duplicated 664 

reads were removed using Picard MarkDuplicates tool. In attempt to not bias the signal recovered 665 

after peak calling due to multiple donors, all paired-end files were randomly downsampled to 16M 666 

reads (without disrupting pairs of reads) as regard to the smallest number of reads detected in the 667 

cohort (Donor 1 – 0h, see Table S4).  668 

 669 

ATAC-seq peaks were then called on those downsampled files using: 670 

< macs2 callpeak -f BAMPE -g hs -B --broad --broad-cutoff 0.1 --keep-dup all >  671 

 672 

In order to retain only significant accessibility peaks across samples, each list of peaks used in 673 

advanced analysis has been defined as the intersection between peaks of the 3 donors tested at the 674 

same time point. 675 

 676 

Peak annotation  677 

Peaks were assigned to genomic regions thanks to a home-made script based on the FindOverlap 678 

function from the R package “GenomicRanges” (Lawrence et al., 2013). Genomic elements 679 

positions (exons, introns, CpG islands and CTCF) were retrieved from UCSC database (hg19). As 680 

for the RNA-seq analysis, promoters regions were retrieved from the online database FANTOM5 681 
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(Noguchi et al., 2017). Intergenic category was defined as the exclusion of all other defined 682 

categories. No priority has been set across the different genomic elements. Therefore, peaks 683 

overlapping several genomic features are counted multiple times, resulting in a total number of 684 

peaks across elements exceeding the total number of peaks detected at each time point.  685 

 686 

Peak differential analysis 687 

DEseq2 tool was used to calculate difference in read count between peaks in two consecutive time 688 

points (Love et al., 2014). More precisely, the region considered is defined as the interval formed 689 

by the union of two overlapping peaks at t2 and t1. 690 

 691 

Motif enrichment 692 

Peak motif enrichment analysis was conducted with the tool “findMotifsGenome.pl” from the 693 

HOMER software tool suite (Heinz et al., 2010). Background file was generated using an auto-694 

generated list of random regions across the genome (hg19). Motifs were scanned using the total 695 

length of our peaks by providing the option <size given>. 696 

 697 

ATAC-seq and scRNA-seq combined analysis (accessibility – expression) 698 

Identification of Promoters that have configurational changes  699 

In an effort to identify promoter regions that are affected (and not affected) by configurational 700 

changes of the chromatin, we employed the R Bioconductor package “GenomicRanges” 701 

(Lawrence et al., 2013). By comparing the peaks overlapping the promoters between two time 702 

points (0h – 5h, 5h – 24 h and 24h – 48h), we grouped promoters into 4 possible chromatin 703 

accessibility configurations: “open-open”, “open-close”, “close-open”, and “close-close”. We then 704 

used the CAGE-defined promoters to gene isoform mapping from the Regulatory Circuits 705 
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resource (Marbach et al., 2016; Noguchi et al., 2017) to identify promoters that overlap with the 706 

peaks of ATAC-seq and their corresponding target genes. 707 

  708 

Differential gene expression of single-cell RNA sequencing 709 

We computed Z-scores for every gene in each of the two donors between two different time points 710 

using the mean and standard deviation of the UMI counts of approximately 100 single cells. 711 

 712 

𝑍𝑖𝑗
𝑡2−𝑡1 =

𝑚𝑒𝑎𝑛(𝑈𝑀𝐼𝑗
𝑡2) − 𝑚𝑒𝑎𝑛(𝑈𝑀𝐼𝑗

𝑡1)

((𝑠𝑑 (𝑈𝑀𝐼𝑗
𝑡2))

2

+ (𝑠𝑑 (𝑈𝑀𝐼𝑗
𝑡1))

2

)

1
2⁄

10

 713 

  714 

𝑍𝑖𝑗
𝑡2−𝑡1 denotes the Z-score of the expression change of gene j in donor i between time t2 and t1. 715 

An average Z-score between the two donors was computed and used to identify the set of 716 

differentially expressed genes. We selected Z-score thresholds of 2 and –2 (i.e., two standard 717 

deviations of change) to designate upregulated and downregulated genes, respectively. Collectively, 718 

they represent the set of differentially expressed genes (DE genes). 719 

 720 

Enrichment Analysis of Combined ATAC-seq and scRNA-seq 721 

For the combined ATAC- and scRNA-seq analysis, we grouped genes into 8 possible groups based 722 

on the chromatin accessibility configurations (i.e., one of the following four configurations: “open-723 

open”, “open-close”, “close-open”, and “close-close”) and whether at least one of their TFs coding 724 

genes showed differential expression (i.e., one of the following two groups: “DE-TF” and “non-725 

DE-TF”) (Figure 5C). As with the analysis of scRNA-seq data, a gene was assigned to the group 726 

“DE -TF” when at least one of its TFs showed differential expression; otherwise, the gene was 727 

classified as “non-DE-TF”. Note that different isoforms of the same gene can have distinct TSSs 728 
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that are under the control of different promoters. Thus, a gene might be counted in more than one 729 

category in the chromatin accessibility configurations. Consequently, the total sum of the genes in 730 

the 8 groups as described above might exceed the total number of genes. A two-sided Fisher exact 731 

test was used to perform over- and under-representation analysis (Agresti, 2007).  732 

  733 
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Supplemental information 903 

 904 

 905 

Figure S1. Evolution of transcriptome profiles after cell stimulation in Donor 1. 906 
(A) Transcriptome clusters identified by CALISTA for donor 1. Each dot corresponds to a cell in 907 
the single-cell transcriptomic dataset sampled at 5h, 24h, 48h, 72h and 96h. The x axis corresponds 908 
to the pseudotime, the y-z axes to the first and second principal component (PC). The color code 909 
is given in the upper right inset. The transition edges are represented by black plain lines between 910 
the clusters and the numbers are “cluster distances”, a likelihood-based measure of dissimilarity 911 
(distance) between cell clusters. Note that there are several ways a cell can reach the clusters 3 to 912 
5. The results for Donor 2 are shown on Figure 2. (B) Contribution of the cells collected at 913 
different time points to the clusters identified by CALISTA. The mixed composition of the clusters 914 
#3 to #5 may reflect the different rates of cell transformation and the multiplicity of cell 915 
trajectories. (C) Ic index calculated  for each cluster of donor 1 as described in (Mojtahedi et al., 916 
2016). The maximum is reached for cluster #3, indicating a phase of critical transition at 48h. As 917 
soon as 24h, but mainly after 48h, cells from cluster #4 and #5 undergo stabilization, leading to a 918 
decreasing Ic index value. 919 
 920 
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 921 

Figure S2. Comparative GO enrichment analysis of clusters in both donors. 922 
Top gene ontology categories (GO) found in the clusters of cells determined with CALISTA (p-923 
adj < 0.05). Genes with pairwise gene-gene correlation scores greater than 0.70 were used for the 924 
GO analysis. Columns correspond to individual clusters (#) from donor 1 (d1) and 2 (d2). 925 
Numbers of genes associated to each cluster are indicated between parentheses under each cluster, 926 
on the x-axis. For GO terms associated statistics and entrez gene IDs, see Table S3. 927 
 928 
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 929 

Figure S3. Promoter-associated and intergenic ATAC peaks with complex dynamics. 930 
(A) Promoters (blue). (B) intergenic regions (yellow). The size of each ATAC peak is plotted for 931 
every time point. Each line connects the points corresponding to the same genomic position where 932 
a peak was found.  933 
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 934 

 935 

Figure S4. Enrichment of selected known hematopoiesis related transcription factor 936 
binding motifs. 937 
At each time point, peak sequences were scanned by HOMER for “known motifs”. The motifs 938 
five of the factors selected here showed the most significant enrichment. They are well known to 939 
be associated with hematopoiesis and chromatin remodeling. For an extensive list of tested motifs 940 
and statistics, see Table S4. 941 
 942 
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