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Abstract 

Over the last few years, an increasing body of evidence points to the hemodynamic 

response function as an important confound of resting-state functional connectivity. Several 25 

studies in the literature proposed using blind deconvolution of resting-state fMRI data to retrieve 

the HRF, which can be subsequently used for hemodynamic deblurring. A basic hypothesis in 

these studies is that relevant information of the resting-state brain dynamics is condensed in 

discrete events resulting in large amplitude peaks in the BOLD signal. In this work, we showed 

that important information of resting-state activity, in addition to the larger amplitude peaks, is 30 

also concentrated in lower amplitude peaks. Moreover, due to the strong effect of physiological 

noise and head motion on the BOLD signal, which in many cases may not be completely removed 

after preprocessing, the neurophysiological origin of the large amplitude BOLD signal peaks is 

questionable. Hence, focusing on the large amplitude BOLD signal peaks may yield biased HRF 

estimates. To define discrete events of neuronal origins, we proposed using simultaneous EEG-35 

fMRI along with convolutional sparse coding analysis. Our results suggested that events detected 

in the EEG are able to describe the slow oscillations of the BOLD signal and to obtain consistent 

HRF shapes across subjects under both task-based and resting-state conditions. 

1. Introduction 

Over the last 30 years, blood oxygenation level-dependent functional magnetic resonance 40 

imaging (BOLD-fMRI) has been widely used for studying brain function and its organization into 

functional networks (Belliveau et al., 1991; Kwong et al., 1992; Ogawa et al., 1990b, 1990a). The 

popularity of this technique derives from its ease to operate, non-invasive nature and high spatial 

resolution (Glover, 2011). The BOLD contrast mechanism depends on the dynamics of the local 

concentration in deoxygenated hemoglobin. The latter, in its turn, is influenced by local changes 45 

in cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), and cerebral blood 

volume (CBV), which are induced by increases in neuronal activity. Hence, BOLD-fMRI is an 

indirect measurement of neuronal activity through a series of physiological events that are 

collectively known as the hemodynamic response (Buxton, 2009).  

This complex link between neuronal activation and its corresponding changes in BOLD-50 

fMRI is typically modelled with the hemodynamic response function (HRF) (Buxton et al., 2004). 

A large number of studies in the literature pointed out that the HRF is region- and subject-specific 
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(Aguirre et al., 1998; Handwerker et al., 2004; Rangaprakash et al., 2017), and that more accurate 

shapes of HRF are needed to obtain precise localization of brain activity (Lindquist et al., 2009b; 

Lindquist and Wager, 2007; Loh et al., 2008). In addition, there is a growing body of evidence to 55 

suggest that functional or effective connectivity measures suffer from the sluggishness of the HRF, 

and trying to account for the hemodynamic blurring using inaccurate HRF shapes make unclear 

whether observed changes in connectivity are due to neuronal activity or HRF variability  

(Deshpande et al., 2010; Handwerker et al., 2012; Rangaprakash et al., 2018; G.-R. Wu et al., 

2013).  60 

HRF estimation has been a topic of continual research since the inception of BOLD-fMRI. 

The first class of HRF estimation algorithms that are found in the literature includes parametric 

identification methods, which assume a specific structure for the unknown HRF. In this context, 

the HRF shape is controlled by a few parameters that could be estimated from the data. Algorithms 

of this type usually involve Gaussian HRF shapes (Kruggel and Cramon, 1999; Rajapakse et al., 65 

1998), gamma HRF shapes (K. J. J. Friston et al., 1998; Miezin et al., 2000), or spline-like 

functions (Gössl et al., 2001). The second class includes non-parametric methods, which make no 

prior hypotheses about the shape of the HRF estimates. Such methods include selective averaging 

(Dale and Buckner, 1997), smooth HRF filtering (Goutte et al., 2000), Bayesian methods (Ciuciu 

et al., 2003; Marrelec et al., 2003b), linear subspace methods (Hossein-Zadeh et al., 2003; 70 

Steffener et al., 2010; Woolrich et al., 2004b), wavelet methods (Lina et al., 2010), and machine 

learning methods (Güçlü and van Gerven, 2017; Luo and Puthusserypady, 2007; Pedregosa et al., 

2015). Most of these HRF estimation methodologies were developed under the assumption that 

neuronal activity and the corresponding BOLD responses are known. In task-related studies, 

neuronal activity is assumed to closely follow the external stimulus or task execution. In resting-75 

state studies on the other hand, the absence of a specific task renders HRF estimation a challenging 

endeavor.  

Recent studies in the literature attempted to address HRF estimation in resting-state fMRI 

using events detected in the BOLD signal (G.-R. Wu et al., 2013). These works laid on the 

hypothesis that the neural events that govern the dynamics of the brain in resting-state are reflected 80 

in the large amplitude peaks or transients in the BOLD signal, which can be retrieved using point-

process analysis (PPA) (Tagliazucchi et al., 2012, 2011) or sparse-promoting deconvolution 

(Caballero Gaudes et al., 2013; Karahanoğlu et al., 2013). Subsequently, resting-state fMRI was 
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considered as spontaneous event-related, and the HRF was estimated using those pseudo-events 

(Abe et al., 2015; Alavash et al., 2016; Case et al., 2017; Chen and Glover, 2015; Iwabuchi et al., 85 

2014; Rangaprakash et al., 2018; G. Wu et al., 2013). Spontaneous, large amplitude peaks observed 

in the BOLD have also been associated with functional resting-state networks (Karahanoğlu et al., 

2013; Petridou et al., 2013; Tagliazucchi et al., 2012), as well as transient, recurrent patterns of 

co-activation observed with fMRI (Liu et al., 2013; Liu and Duyn, 2013), suggesting their 

neurophysiological origins. 90 

Large amplitude peaks or transients in the BOLD, however, in addition to neural events 

may also reflect motion (Power et al., 2012) and physiological noise, such as spontaneous 

fluctuations in arterial CO2 (Golestani et al., 2016; Prokopiou et al., 2019, 2016), cardiac 

pulsatility (Glover et al., 2000), respiration and heart rate variability (Birn et al., 2008; Chang et 

al., 2013, 2009; Kassinopoulos and Mitsis, 2019).  These non-neuronal sources of BOLD signal 95 

variability have been shown to elicit networks of coherent BOLD activity, which resemble 

previously reported resting-state networks derived from fMRI data (Chen et al., 2019; Nalci et al., 

2019; Nikolaou et al., 2016; Shokri-Kojori et al., 2018). In addition, covariation of the BOLD 

signal in different brain regions that is sufficient to give rise to spatial patterns of resting-state 

activity can be also observed at the timings of lower amplitude peaks, or even at regularly or 100 

randomly selected timepoints along the time course of the signal. Hence, the neural events that 

govern the dynamics of the brain in resting-state may not be reflected only in the large amplitude 

peaks of the BOLD signal. In light of the above considerations, the neurophysiological origin of 

its high amplitude peaks is questionable. A propitious avenue for obtaining more reliable HRF 

estimates from resting-state measurements is by using multimodal imaging techniques, such as 105 

simultaneous electro-encephalography (EEG)-fMRI, where the neuronally-driven activity in the 

EEG is combined with the high spatial resolution of the fMRI. 

In this work, we initially employed resting-state fMRI data and PPA analysis to define 

sparse events in the BOLD signal corresponding to large amplitude peaks. We showed that the 

mean interval between the detected events is smaller than the maximum (Nyquist) sampling 110 

interval that is required to retain the slow dynamics of the BOLD during the resting state. 

Subsequently, using seed-based correlation analysis with a seed selected in the precuneus cortex 

(PCC) we showed that the covariation between regularly spaced, as well as randomly spaced 

BOLD samples, which do not always coincide with high amplitude peaks obtained from individual 
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voxels and the seed is sufficient to derive the default mode network (DMN) of the brain. Moreover, 115 

after regressing out the defined PPA events from the original BOLD time-series, we showed that 

new events obtained by re-applying PPA on the residual time-series yield the same patterns of 

concurrent activity between individual voxels and the seed (conditional rate maps) as the ones 

obtained using the events defined in the original time-series. Therefore, we concluded that the 

important information of resting-state BOLD activity is not condensed only in its high amplitude 120 

peaks, and that the neurophysiological origin of high amplitude peaks in the BOLD is not 

warranted. Hence, using these events for HRF estimation may yield biased estimates.  

To define more reliable neural events that can be used for HRF estimation, we employed 

EEG data collected simultaneously with BOLD-fMRI along with convolutional sparse coding 

(CSC) analysis with rank-1 constraints. CSC analysis is a dictionary learning technique that can 125 

be used to provide information about the spatial pattern, temporal waveform, and the timing of 

neural events defined in EEG data. We initially performed this analysis using task-based data 

collected during two separate experiments: (1) a visual target detection and (2) a hand grip task. 

To show the functional relevance of the detected CSC events for each task we performed event-

related fMRI analysis. Subsequently, we compared the resultant activation maps with the 130 

corresponding maps obtained using external measurements of the subjects’ behavioral response to 

each task. Our results revealed concordance between the activation maps obtained in each case, 

suggesting that CSC analysis can be used to detect events in the EEG that are associated with each 

task, and which are able to describe the slow dynamics of the BOLD signal. In addition, we used 

the detected CSC events to obtain estimates of the HRF in large functionally defined ROIs, which 135 

revealed consistent shapes across subjects. 

We also employed CSC analysis to define events in resting-state EEG data collected 

simultaneously with BOLD-fMRI. The results suggested that CSC analysis can be used to detect 

events in the EEG even during resting-state, where SNR is lower, and that these events can be used 

to obtain reliable estimates of the resting-state HRF. The latter could be of great importance for 140 

hemodynamic deblurring in resting-state fMRI connectivity studies. 
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2. Methods  
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Figure 1 (a) Schematic representation of the visual oddball paradigm that was employed 

for the collection of dataset 1. (b) Illustration of the paradigm that was employed for the 

collection of dataset 2.  
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2.1. Experimental methods 145 

Two datasets were employed in this study. Dataset 1: Seventeen healthy subjects (6 

females; mean of 27.7 years, 20-40 range) participated in a visual target detection task (visual 

oddball paradigm). All subjects gave informed consent following the protocol of the Columbia 

University Institutional Review Board1. Dataset 2: 12 healthy volunteers (age range 20-29 years) 

participated in a resting-state experiment (session 1) followed by a hand grip task (session 2) after 150 

giving a written informed consent in accordance with the McGill University Ethical Advisory 

Committee. All participants were right-handed according to the Edinburgh Handedness Inventory 

(Oldfield, 1971). 

2.2. Experimental paradigm 

Dataset 1 (Figure 1a): A total of 125 stimuli were presented for 200 ms each. The inter-155 

trial interval was uniformly distributed between 2–3 s. The standard stimuli were large red circles. 

The target stimuli were small green circles presented with probability 0.2. Both visual cues were 

presented to subjects on isoluminant gray backgrounds (3.45° and 1.15° visual angles) using the 

E-Prime software (Psychology Software Tools) and VisuaStim Digital System (Resonance 

Technology). The first two stimuli were constrained to be standards. The subjects were asked to 160 

respond to target stimuli, using a button press with the right index finger on an MR-compatible 

button response pad. Response time (RT) events were modeled using unit amplitude boxcars with 

onset at stimulus time and offset at subject’s response time indicated by the button press. 

Dataset 2 (Figure 1b): The study was divided in two scans. In the first scan, subjects were 

instructed to stare at a white fixation cross hair displayed in a dark background (resting-state 165 

experiment). After the first scan, the maximum voluntary contraction (MVC) was obtained from 

each subject using the same hand gripper that was employed during the hand grip task. In the 

second scan, subjects were asked to perform unimanual isometric right-hand grips to track a target 

as accurately as possible while receiving a visual feedback. The task consisted of 50 trials, and 

each trial lasted 11 s. At the beginning of each trial, an orange circle appeared on the screen and 170 

 

1 Dataset 1 was initially presented in (Walz et al., 2013). The dataset is publicly available through 

the OpenNeuro (Gorgolewski et al., 2017) online platform for sharing and analysis of 

neuroimaging data   https://openneuro.org/datasets/ds000116.  
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subjects had to adapt their grip force at 15% of their MVC to reach a white vertical block (low 

force level). This force was held for 3 s. Subsequently, subjects had to linearly increase their force 

following a target block to reach 30% of their MVC over a 3-s period, and to hold their grip force 

at this level for another 3 s (high force level). The inter-trial interval was randomly jittered between 

3-5 s. 175 

2.3. EEG data acquisition and preprocessing 

Dataset 1: EEG was continuously recorded during the fMRI scanning at 1 kHz using a 

custom-built, multi-channel MR-compatible EEG system (Goldman et al., 2009), with differential 

amplifier and bipolar EEG cap. The caps were configured with 36 Ag/AgCl electrodes (including 

the left and right mastoids), arranged as 43 bipolar pairs. The gradient artifact was removed via 180 

mean template subtraction. Subsequently, a 10 ms median filter was applied to remove residual 

spike artifacts. The gradient-free data were then re-referenced to a 34-electrode space (Walz et al., 

2013). Further preprocessing was performed using 1 Hz high pass filtering to remove DC drift, 

notch filtering at 60 and 120 Hz to remove powerline artifacts, 70 Hz low pass to remove high 

frequency artifacts and down sampling at 150 Hz. Temporal independent component analysis 185 

(ICA) (Delorme and Makeig, 2004) was performed on each subject separately and non-neural 

sources of noise were removed using MARA (I. Winkler et al., 2014). After preprocessing, one 

subject was excluded from further analysis due to excessive noise that remained in the data. 

Dataset 2: EEG was continuously recorded during the fMRI scanning at 5 kHz using a 64 

channel MR-compatible EEG system. The caps were configured with ring Ag/AgCl electrodes, 190 

which were distributed according to the 10/20 system and referenced to electrode FCz (Brain 

Products GmbH, Germany). EEG data acquired inside the scanner were corrected off-line for 

gradient and ballisto-cardiogram (BCG) artifacts using the BrainVision Analyser 2 software 

package (Brain Products GmbH, Germany). The gradient artifact was removed via adaptive 

template subtraction (Allen et al., 2000). Gradient-free data were band-passed from 1-200 Hz, 195 

notch-filtered at 60, 120, and 180 Hz to remove power-line artifacts, and down-sampled to a 400 

Hz sampling rate. The BCG artifact was removed as follows: First, temporal independent 

component analysis (ICA) was performed on each subject separately (Delorme and Makeig, 2004). 

Temporal ICA components associated with spatial patterns corresponding to BCG artifacts were 

visually inspected to identify the one exhibiting periodic peaks at around 1 Hz frequency, and thus 200 
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be more likely to be associated to heartbeats, while accounting for most of the variance in the data. 

Subsequently, this component was used as a surrogate of the ECG signal to detect heartbeat events. 

Lastly, the BCG artifact was removed via adaptive template subtraction on a channel-by-channel 

basis using the detected heartbeat events (Allen et al., 1998). Subsequently, the data were re-

referenced to average reference, and a second temporal ICA was performed. Noisy components 205 

associated with non-neural sources were detected and removed using MARA (I. Winkler et al., 

2014). Lastly, the noise free data were down sampled to a 100 Hz sampling rate. After 

preprocessing, one subject was excluded from further analysis due to excessive noise that remained 

in the data. 

2.4. Hand grip force measurements 210 

For dataset 2, a non-magnetic hand clench dynamometer (Biopac Systems Inc, USA) was 

used to measure the subjects’ hand grip force strength during the execution of the hand grip task 

(session 2). The dynamometer was connected to an MR compatible Biopac MP150 data acquisition 

system from which the signal was transferred to a computer. 

2.5. BOLD acquisition and preprocessing 215 

Dataset 1: One hundred seventy echo-planar imaging (EPI) functional volumes were 

acquired on a 3T Philips Achieva MR Scanner (Philips Medical systems). EPI sequence 

parameters: TR/ TE =2000/35 ms (Repetition/Echo Time), Voxel size = 3×3×4 mm3, 32 slices with 

64×64 voxels, 3 mm in-plane resolution, Slice thickness = 4 mm, and 0 mm gap. For each subject, 

a single 1×1×1 mm3 spoiled gradient recalled (SPGR) image was also acquired for purposes of 220 

registration.  

Dataset 2: Whole-brain BOLD-fMRI volumes were acquired on a 3T MRI scanner 

(Siemens MAGNETOM Prisma fit) with a standard T2*-weighted echo planar imaging (EPI) 

sequence. Sequence parameters: TR/TE = 2120/30 ms (Repetition/Echo Time), Voxel size = 

3×3×4 mm3, 35 slices, Slice thickness = 4 mm, Field of view (FOV) = 192 mm, Flip angle = 90°, 225 

Acquisition matrix = 64×64  (RO×PE), Bandwidth= 2368 Hz/Px. For each subject, a single 1×1×1 

mm3 magnetization-prepared rapid gradient-echo (MPRAGE) high-resolution T1-weighted 

structural image was also acquired for the purposes of registration. 
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For both datasets, fMRI data preprocessing was carried out using the FSL Software Library 

(FMRIB, Oxford, UK, version 5.0.10) (Jenkinson et al., 2012). fMRI preprocessing steps included 230 

image realignment, spatial smoothing with a Gaussian kernel of 5 mm full-width at half maximum 

(FWHM), and high-pass temporal filtering. Spatial ICA was carried out for each subject using 

MELODIC, and spatial maps associated with cardiac pulsatility, head motion, susceptibility and 

other MRI-related artefacts were removed. Noise-free data were subsequently registered with T1-

weighted structural images and normalized to the Montreal Neurological Institute (MNI)-152 brain 235 

template, with resolution of 2×2×2 mm3.  

2.6. Data analysis 

2.6.1. High amplitude peaks in resting-state BOLD correspond to sub-Nyquist sampling 

intervals 

In this analysis we sought to investigate the following hypotheses: (1) the interval between 240 

events defined at the high amplitude peaks in resting-state BOLD is smaller than half the Nyquist 

interval of the signal, (2) the covariation of regularly- or randomly-spaced BOLD samples obtained 

with a sampling interval smaller than the Nyquist interval of the BOLD is sufficient to derive 

patterns of resting-state brain activity, and (3) the patterns of coactivation (conditional rate maps) 

obtained using events defined at lower amplitude BOLD signal peaks are similar to the ones 245 

obtained with events defined at higher amplitude peaks. These hypotheses suggest that relevant 

information related to the spatiotemporal dynamics of resting-state activity, in addition to the high 

amplitude peaks in the BOLD may also be condensed in lower amplitude peaks. Moreover, taking 

into consideration the strong effects of physiological processes in the BOLD signal, they also 

suggest that the neurophysiological origin of the high amplitude peaks in the BOLD is not 250 

warranted. 

Group average power spectral density (PSD): The Nyquist interval of the resting-state 

BOLD-fMRI signal was determined based upon the group average PSD obtained using the resting-

state data from dataset 2.  

A PSD was estimated at each voxel using the Welch method: the original data were 255 

segmented into 8 data segments on which a Hamming window was applied. Consecutive data 

segments were overlapped by 50%. For each of the 8 segments the Fourier Transform (FFT) was 

calculated and the power of the FFT coefficients was averaged across the overlapping windows. 
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The PSD obtained at each voxel was initially averaged within subjects, and subsequently between 

subjects to obtain a group average PSD. 260 

Point process analysis (PPA): Events corresponding to large amplitude peaks in the BOLD 

were defined using PPA (Tagliazucchi et al., 2012). The BOLD time-series at each voxel was 

initially normalized by its own standard deviation (SD). Subsequently, an event was defined every 

time the signal crossed a threshold (1 SD) from below. 

Seed-based Pearson correlation analysis: Seed-based correlation analysis was performed 265 

between individual voxels and a seed selected in the precuneus cortex (PCC). The seed time course 

consisted of the averaged signal from all voxels within a ball of radius 10 mm, centered at the MNI 

voxel co-ordinates X = 48, Y = 37, Z = 56. The data were down-sampled using down-sampling 

factors of 8, 10, 12, and 14 points. These values were defined based on the 25th and 75th percentile 

of the boxplot of voxel-wise mean PPA sampling interval values obtained for each subject, which 270 

are shown in Figure 3b. A random down-sampling was also performed, where the sampling 

interval between any two consecutive samples was determined based on a uniform distribution. 

The minimum and maximum values of the distribution were defined based on the 25th and 75th 

percentile of the boxplots shown in Figure 3b. BOLD signal correlations between down-sampled 

time-series from individual voxels and the seed were obtained using the Pearson correlation 275 

coefficient, which is given by  

ρs,i =
∑ s(n)yi(n)N

n=0

√∑ s2 (n)N
n=0 √ ∑ yi

2(n)N
n=0

,                                                     (1) 

where s(n) denotes the time-series of the seed, and yi(n) the BOLD time-series of voxel i, at time 

n. Correlation scores were converted to z-scores using the Fisher z-transform, given by   

zs,i = 0.5 ∗ ln (
1 + ρs,i

1 − ρs,i
).                                                              (2) 280 

Individual correlation maps were warped to the 2 mm3 MNI template and fed into the second-level 

analyses with a voxel-wise one-sample t-test to compare functional connectivity between 

individual voxels and the seed. Group-level t-maps are shown in Figure 4. In each case, p-values 

were converted into a False Discovery Rate (FDR), and the statistical maps were thresholded at 

pFDR < 0.005. 285 
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Residual analysis of PPA events: To investigate the co-activation patterns of lower 

amplitude peaks in the resting-state BOLD we proceeded as follows: 

First, large amplitude BOLD signal peaks were detected using PPA, and subsequently 

regressed out from the original BOLD time-series to obtain the residual time-series. Specifically, 

a  BOLD prediction ŷ(n) was obtained at each voxel as  290 

ŷ(n) =  ∑ h(τ)x𝑘(n − τ)
M

τ=0
+ ε(n),                                              (3)  

where xk(n − τ) is a k-lagged version of the PPA events defined on the original BOLD time-

series, and h(τ) an estimate of the resting-state HRF, which was obtained using a blind 

deconvolution method proposed by (G.-R. Wu et al., 2013). Then, the residual time-series at each 

voxel were calculated as  

E(n) = y(n) − ŷ(n),                                                                (4) 

where y(n) denotes the original BOLD time-series.  295 

Subsequently, PPA analysis was applied on the residual time-series E(n), and a conditional 

rate map between individual voxels and a seed (PCC) was constructed (see Conditional rate maps 

below). 300 

This procedure was repeated four times: the first time, PPA events were defined based on 

the original resting-state BOLD-fMRI data. The other three times, PPA events were defined based 

on the residual data obtained in the previous iteration. The conditional rate maps obtained in each 

case are shown in Figure 5. 

Conditional rate maps (Tagliazucchi et al., 2012):  PPA events were defined for both the 305 

seed and individual voxels in the brain (targets). Every time a PPA event at a target voxel was 

defined up to 2-time steps later than in the seed, the rate at the target was increased by one unit. 

Lastly, this rate was normalized by the number of points in the seed.  

2.6.2. Convolutional sparse coding (CSC) analysis 

To define transient events in the EEG data we employed a multivariate CSC with rank-1 310 

constraint (Jas et al., 2017; La Tour et al., 2018), which is described by 

min
u,v,z

∑
1

2
{‖Xn − ∑(ukvk

T) ∗ zk
n

K

k=1

‖

2

2

}

N

n=0

+ λ ∑‖zk
n‖1

K

k=1

                                    (5) 

                                             subject to    zk
n ≥ 0, ‖uk‖2

2 ≤ 1, ‖vk‖2
2 ≤ 1 
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where Xn ∈ ℝP×N denotes the EEG timeseries measured from P sensors at time n = 0, … , N, λ >

0 the regularization parameter, uk ∈ ℝP the k-th spatial pattern, vk
𝑛 ∈ ℝJ; n = 0, … , J the k-th 315 

temporal waveform, and  zk
n ∈ ℝN; n = 0, … , N the sparse vector of EEG events associated with 

the k-th temporal waveform. The rank-1 constraint is consistent with Maxwell’s equations and the 

electromagnetic properties of the brain waves, which propagate instantaneously inside the head 

volume and add up linearly at the level of EEG sensors (Hari and Puce, 2017). 

We hypothesized that the duration of the temporal waveforms is 1 s. Therefore, J was set 320 

equal to 150, and 100 for dataset 1, and 2, respectively. The regularization parameter  λ > 0 

controls the sparsity of zk
n induced by the 𝑙1-norm: the higher the regularization parameter λ, the 

higher the sparsity. In this work, λ was set equal to 0.08 for dataset 1, and 0.1 for dataset 2. These 

values were determined empirically for each dataset, as they were found to balance between 

sparsity and BOLD prediction accuracy. The optimization problem described by equation (5) was 325 

solved efficiently using a locally greedy coordinate descent algorithm (Moreau et al., 2018), as 

well as precomputation steps for faster gradient computations as described in (La Tour et al., 2018). 

The number of rank-1 atoms that can be obtained from a given EEG dataset using CSC 

analysis is equal to the total number of the EEG sensors. However, the rank of the data may have 

been decreased during preprocessing due to application of ICA and removal of noise-related ICA 330 

components. To account for this reduction in the dimensionality of the data the maximum number 

of CSC atoms that was estimated for each subject was equal to the number of ICA components 

that were retained in the data (Prokopiou and Mitsis, 2019). Moreover, some of the CSC atoms 

exhibited spatial patterns of typical EEG artifacts observed during EEG-fMRI experiments, such 

as gradient, BCG, and eye-blink artefacts (Figure 6). These patterns were isolated and 335 

subsequently removed from any subsequent analysis. 

To obtain a total event time-series from the K̃ selected CSC spatiotemporal atoms (Figure 

2), each special pattern uk ∈ ℝPwas initially multiplied with its associated event time-series 𝑧𝑘
𝑛 ∈

ℝN, k = 1, … , K̃. This yielded a set of K̃ rank-1 matrices of event time-series {Dk}k=1
K̃ ; Dk =

uk(zk
n)T ∈ ℝP×N, n = 0, … , N, k = 1, … , K̃, which were projected to the EEG sensor level by 340 

taking the sum over all selected atoms  

S(n) =  ∑ Dk

K̃

k=1

;    S(n) ∈ ℝP×N.                                                       (6) 
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A unique event time-series  s̅(n) was obtained for each subject as the mean of the reconstructed 

events at the sensor level, given by 

s̅(n) =  
1

P
∑ Sp(n)

P

p=1

,                                                                 (7) 345 

where P denotes the total number of EEG sensors. 

2.6.3. Voxel-wise analysis 

Dataset 1: We initially employed dataset 1 along with CSC analysis to define events 

associated with the visual target detection task. Subsequently, we used the mean CSC event time-

series s̅(n) to obtain BOLD predictions in a voxel-wise fashion using a standard event-related 350 

fMRI analysis. BOLD predictions were also obtained using the subjects’ behavioral response time 

(RT) events. 

CSC and RT events were convolved with the canonical, double gamma HRF, which is 

implemented in SPM (https://www.fil.ion.ucl.ac.uk/spm/) to generate one regressor for each event 

Figure 2 Construction of a total CSC event time-series from the individual CSC atoms. (a) 

The event time-series zk
n of the k-th CSC atom is multiplied with its associated spatial 

pattern uk, k = 1, … , K̃. This results into a rank-1 matrix Dk = uk(zk
n)T ∈ ℝP×N of event 

time-series, which is associated with the k-th CSC atom. The individual event time-series 

are projected at the EEG sensor level by taking the sum of all the K̃ rank-1 matrices Dk. (b) 

A total event time-series is obtained as the mean of the projected CSC events across all 

EEG sensors.  

Average event timeseries across sensors (b) 

⋮ + 

× 

× 
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type. Subsequently, a mixed-effects approach was used to model activation across subjects using 355 

FEAT (Woolrich et al., 2004a, 2001). The search for activation was contained within gray matter. 

This analysis was performed for each regressor independently. The resultant activation maps 

obtained in each case were qualitatively compared between them in order to assess the extend and 

region specificity of the activation patterns induced by each event type (Figure 7a). 

Dataset 2: We employed the EEG-fMRI data collected during the hand-grip task (Figure 360 

1b) along with CSC analysis to define sparse events in the EEG. Our aim was to investigate the 

dynamic interactions between these events and the BOLD signal at individual voxels using FIR 

model analysis.  

The FIR model describes the output of a linear and time-invariant system as a weighted 

sum of past input values, where the weighting coefficients are given by the impulse response 365 

function. The FIR model is given by  

y(n) =  ∑ h(m)s̅(m − n)

M

m=0

                                                          (8) 

where y(n) denotes the output (i.e. the BOLD signal), and s̅(n) the input (i.e. the mean event time-

series of the reconstructed CSC events at the sensor level) of the system. h(n) denotes the unknown 

impulse response (i.e. the HRF), and M the system memory. 370 

For the estimation of the unknown HRF, we employed a function expansion technique 

along with a set of orthonormal basis functions (Marmarelis, 1993) 

h(n) =  ∑ cjbj(n),

L

j=0

                                                                  (9) 

where {bj(n); j = 0, … , L − 1} is a set of  L basis functions, and cj the unknown expansion 

coefficients. Substitution of (9) in (8) yields  375 

y(n) =   ∑ cjϕj(n)

L

j=0

                                                               (10) 

where ϕj(n) = bj(n) ∗ s̅(n). Equation (10) can be rewritten in a compact matrix form as 

𝐘 = 𝐜𝚽                                                                          (11) 

∴ 𝐜 = [𝚽𝐓𝚽]−1𝚽𝐓𝐘.                                                            

The unknown expansion coefficients 𝐜 can be obtained using ordinary least squares regression. 380 
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An important step in the application of the function expansion technique is the selection of 

a proper basis set, as it influences the obtained estimates. The choice of a basis set depends on the 

dynamic behavior of the system to be modelled. One basis set that has been extensively used in 

the literature, particularly in the case of physiological systems is the Laguerre basis. The Laguerre 

functions are orthonormal and exponentially decaying curves, which constitute a basis for the 385 

space of square integrable functions L2[0, ∞]. These properties of the Laguerre functions makes 

them suitable for modeling causal systems with finite memory (Marmarelis, 1993).  

In the present work we employed the spherical Laguerre basis set (Leistedt and McEwen, 

2012). The spherical Laguerre basis is a smoother variant of the Laguerre basis, which allowed us 

to obtain robust HRF estimates even during resting conditions, where the signal-to-noise ratio 390 

(SNR) is low. The j-th spherical Laguerre function bj(n);  j = 0, … , L − 1;  n = 0, … , M is given 

by   

bj(n) = √
j!

(j + 2)!

e
n

2α

√α3
∙ Kj(n/α)                                              (12) 395 

where α ∈ ℝ+ is a parameter that determines the rate of exponential decay of bj(n), and Kj(n) is 

the j-th generalized Laguerre polynomial of order two, defined as 

Kj(n) = ∑ (
l + 2
l − r

)
(−n)r

r!

j

r=0

.                                                         (13) 

To prevent overfitting, the range for the total number L of basis functions and the range for the 

parameter α was selected to be 2 < L ≤ 4 and 0.5 < α < 1. Model performance was evaluated in 

terms of the mean-squared prediction error (MSE), which is given by   

mse =
1

N
∑(y(n) − ŷ(n))

2
N

n=0

                                                       (14) 400 

where y(n) denotes the measured BOLD, and ŷ(n) the predicted BOLD time-series obtained using 

equation (8). The optimal value for the structural Laguerre parameters L and α was determined in 

terms of the minimum MSE using a grid search.  

Performing grid search to determine optimal values for the Laguerre parameters at each 

voxel incurs a heavy computational burden. To reduce the computational complexity for the 405 

estimation of voxel-specific HRFs, we initially obtained HRF estimates in large structurally 
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defined ROIs for each subject, according to the Harvard-Oxford cortical atlas2. Subsequently, we 

applied singular value decomposition (SVD) on the set of ROI-specific HRFs corresponding to 

each subject in order to obtain a reduced set of orthonormal functions that account for the major 

fraction of the variability in this set. This procedure yielded a set of two singular vectors 410 

representative of the ROI-specific HRF shapes obtained from each subject, as it was found that the 

two absolutely largest singular values accounted for more than 80% of variability of the original 

set of HRFs. For all subsequent analyses, the HRF curve estimates were obtained using equations 

(8)–(11) along with the set of two orthonormal functions obtained for each subject. 

To investigate the functional relevance of the detected CSC events, the mean event time-415 

series s̅(n) was convolved with each basis function, and a BOLD prediction was obtained at each 

voxel. Then, the F-score was calculated  

F =
(SSER − SSEF) (DFER − DFEF)⁄

SSEF DFEF⁄
                                               (15) 

where SSEF and  SSER are respectively the residual sum of squares of the full and null model. 

DFEF and DFER denote the number of degrees of freedom for the full and null model, respectively. 

The statistic F follows a  F(DFER−DFEF,DFEF) distribution. A large value of  F indicates that the 420 

detected CSC events significantly contribute to BOLD signal variance. Finally, random field 

theory (Worsley et al., 1996) was employed to compute the significance level corrected for 

multiple comparisons, where search for activation was contained within gray matter.  

3. Results 425 

3.1. High amplitude peaks in the BOLD correspond to sub-Nyquist sampling intervals 

The upper panel in Figure 3 shows the average PSD obtained across all subjects from the 

resting-state fMRI data of dataset 2. The PSD has a peak around 0.013 Hz. According to the 

Nyquist sampling theorem, sampling with a sampling frequency higher than 0.026 Hz, or 

equivalently with a sampling interval smaller than approximately 38 s is sufficient to describe the 430 

slow dynamics of the BOLD observed during the resting-state. The bottom panel in Figure 3 shows 

 

5 The Harvard-Oxford cortical atlas is included in the FSL library 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). 
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boxplots of the mean interval between high amplitude peaks in the BOLD signal at each voxel 

obtained using PPA, for each subject.  The voxel-wise mean sampling intervals were found to be 

Figure 3 Top panel: average power spectral density (PSD) across subjects obtained from 

resting-state BOLD-fMRI data. The curve shows a peak around 0.013 Hz. Sampling the 

BOLD signal with a sampling interval smaller than approximately 38 s, or equivalently with 

a sampling rate higher than 0.026 Hz, preserves the slow dynamics of the BOLD signal 

during resting-state (Nyquist sampling theorem). Bottom panel: boxplots of mean irregular 

sampling intervals obtained at each voxel, for all subjects during resting-state. For most of 

the subjects, the voxel-wise mean sampling interval is smaller than the Nyquist sampling 

interval limit of 38 s (shown with a dashed line). 

0.013 Hz 

Nyquist sampling 

interval 
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Figure 4 (a) Group-level analysis of seed-based correlations between individual voxels and 

a seed selected in the precuneus cortex (PCC). Correlations were calculated after regular 

down-sampling by various fixed down-sampling factors were performed. The values of 

the down-sampling factors were selected based on the 25th and 75th percentile of the 

boxplots shown in Figure 3. In all cases, the default mode network (DMN) was revealed. 

(b) Similar results as in (a) but this time down-sampling was performed using random 

irregular sampling intervals, which were obtained from a uniform distribution. The 

minimum and maximum values of the distribution were defined based on the 25th and 75th 

percentiles of the boxplots shown in Figure 3. In each case, the DMN was revealed from 

BOLD samples that did not necessarily coincide with large peaks in the BOLD time-series. 

(a) Down-sampling by a factor of 8 (b) Down-sampling by a factor of 10 

(c) Down-sampling by a factor of 12 (d) Down-sampling by a factor of 14 

20 3.1 t-score 20 3.1 t-score 

Full time-series Down-sampled time-series 

PFDR < 0.001 corrected for multiple comparisons 

t-score t-score 3.1 20 3.1 

PFDR < 0.001 corrected for multiple comparisons 

Full time-series 

(b) Random irregular down-sampling 

20 

Down-sampled time-series 

(a) Regular down-sampling 

t-score 
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 435 

smaller than the Nyquist sampling interval, which is shown with a dashed line, for most of the 

subjects. This suggests that using samples obtained from the BOLD signal with any regular or 

irregular sampling interval smaller than the Nyquist interval, which includes the interval between 

its high amplitude peaks, is sufficient to preserve the signal’s slow dynamics observed during the 

resting-state. Since the slow dynamics of the BOLD can be described by samples obtained using 440 

any sub-Nyquist sampling interval that may not necessarily coincide with its large amplitude 

peaks, this suggests that the relevant information related to the dynamics of the signal observed 

during resting-state is not condensed only at the timings of its high amplitude peaks. 

Figure 4a shows group level results of seed-based correlations between individual voxels 

and a seed selected in the precuneus cortex. The seed time-series was constructed for each subject 445 

using the mean of all voxels within a ball of radius 10 mm centered at the MNI voxel coordinates 

X = 48, Y = 37, Z = 56. Correlations were calculated using down-sampled time-series, where 

down-sampling was performed with a dawn-sampling factor of 8, 10, 12, and 14 points. These 

values were determined based on the 25th and 75th percentile of the voxel-wise mean sampling 

intervals shown in the boxplots in Figure 3. In each case, the seed-based correlations revealed 450 

connectivity in the DMN, although the extend of the network is decreased at larger sampling 

intervals 

Figure 4b shows the same result, but in this case down-sampling was performed using 

random irregular sampling intervals between consecutive BOLD samples. Random sampling 

intervals were determined based on a uniform distribution. The minimum and maximum values of 455 

the distribution were defined based on the 25th and 75th percentiles of the boxplots shown in Figure 

3. The result suggests that samples obtained from the BOLD signal, which may not coincide with 

large amplitude peaks, comprise relevant information that is sufficient to describe its slow 

dynamics observed during resting-state conditions. 

Figure 5 shows conditional rate maps obtained using the residual time-series that resulted 460 

after regressing out the events corresponding to high amplitude peaks in the original BOLD time-

series. They suggest that the spatial and temporal distribution of events defined at lower amplitude 

peaks in the BOLD is similar to the spatial and temporal distribution of events defined at higher 

amplitude peaks. This also confirms that important information to describe the slower dynamics  

of resting-state activity is not concentrated only in the higher amplitude peaks of the BOLD signal.  465 
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Figure 5 Group average conditional rate maps obtained across subjects using PPA events 

defined at the timing of lower amplitude peaks in the BOLD. The lower amplitude peaks 

were detected on the residual time-series after regressing out the higher amplitude peaks 

from the data.  This procedure was repeated for four times: the first time PPA events were 

defined based on the original BOLD measurements. The other three times, PPA events 

were defined based on the residual time-series obtained in the previous iteration. In each 

case, the average conditional rate maps across subjects obtained from the residual time-

series resembled the DMN. This suggested that even lower amplitude peaks of the BOLD 

signal convey important information regarding resting-state brain activity. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290296
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.2. Convolutional sparse coding analysis 

Figure 6 illustrates representative examples of CSC atoms obtained from the analysis of 470 

dataset 1.  Figure 6a shows atoms that were classified as artifacts, which remained in the data after 

preprocessing. The assessment of the components as artifactual was based on evaluation of both 

the spatial patterns as well as signal morphology (temporal waveform). Starting from the left, the 

first atom was evaluated as a gradient artifact due to the high frequency peaks in its temporal 

pattern that possibly resulted from the fMRI gradient switchings. The second and third atoms 475 

correspond to ballisto-cardiogram and eye-blink artifact topographies that are typically observed 

in EEG-fMRI data. 

Figure 6b shows atoms corresponding to brain activation associated with the visual target 

detection task (dataset 1). The CSC topographies show frontoparietal and parietal spatial patterns. 

These atoms are consistent with activation of the visual and cortical attention, which are engaged 480 

during the execution of the task. Atoms corresponding to brain activation associated with resting-

state and motor task execution (dataset 2) are shown in Figure S1 and Figure S2 in the Appendix. 

Figure S1 shows the temporal waveform of a representative CSC atom as it appears in a segment 

of the original EEG sensor time-series. Figure S2 shows the spatial pattern, temporal waveform, 

as well as the power spectral density of the same prototypical CSC atoms shown in Figure S1. 485 

During resting-state, the temporal waveform shows higher power in the alpha (8-12) band, whereas 

during the motor task, the temporal waveform shows higher power in the and alpha and beta (>15 

Hz) band. 
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Figure 6 (next page)  

(a) Representative examples of atoms corresponding to artifacts in the EEG data. 

Assessment was based on both spatial patterns (top row) as well as signal morphology 

(bottom row). Starting from the left, the first atom was evaluated as gradient artifact due to 

the high frequency peaks in its temporal pattern that result from the fMRI gradient 

switchings. The second and third atoms correspond to typical ballisto-cardiogram and eye-

blink EEG topographies. (b) Representative examples of atoms corresponding to brain 

activation during execution of the visual target detection task. Top row: CSC topographies 

showing fronto-parietal and parietal activation patterns. These patterns are consistent with 

activation of cortical attention and visual networks. Middle row: temporal pattern of each 

CSC atom. Bottom row:  representative 20 s of sparse event timeseries associated with 

onset timing and magnitude of the temporal pattern of each atom. 
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(a) 

(b) 

Figure 6 (see caption in the previous page) 
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3.3. Brain activation explained by CSC events 

Figure 7a shows the results of the voxel-wise analysis performed using dataset 1. 

Activation maps obtained using CSC events detected in the EEG data are shown in green. 495 

Activation maps obtained with the subjects’ behavioral response time (RT) events, which were 

indicated by a button press, are shown in red/yellow. The results revealed activation in the lingual 

gyrus, insular cortex, left pre-central gyrus, and cingulate gyrus for both event types. In addition, 

CSC events revealed activation in the paracingulate gyrus. Figure 7b show group level activation 

maps obtained for the motor task data (dataset 2). In this case, red/yellow corresponds to the 500 

activation obtained using the subjects’ hand grip strength. The results revealed strong activation 

in the left pre-central gyrus (M1) for both event types. For both tasks, although the extend of 

activation obtained using the subjects’ behavioral response to each task is more widespread as 

compared to using the CSC events, overall there is concordance in the activation maps obtained in 

each case, suggesting that CSC events can be used to detect events associated with each task.  505 

Group average HRF estimates obtained during the motor task, as well as under resting 

conditions are shown in Figure 8. These estimates correspond to large functionally defined ROIs 

in which CSC events explained a large fraction of the variance in the BOLD signal. The ROIs 

included the left pre-central and superior parietal lobule cortices, for both experimental conditions. 

The HRF estimates obtained in each case exhibited consistent shapes, for most of the subjects. 510 

Representative BOLD signal predictions obtained for the left superior parietal lobule cortex are 

also shown in the same figure, for each experimental condition. They suggest that CSC events can 

be used to describe the slow oscillations in the BOLD under both conditions with some exceptions 

when BOLD exhibits large amplitude peaks that are not predicted by the EEG, which are possibly 

related to physiology or head motion. 515 

Figure. 9 shows group level activation maps obtained using the resting-state data from 

dataset 2. Brain activation was evaluated using events defined in the EEG data with CSC along 

with event-related fMRI analysis. The results reveled widespread activation spanning multiple 

cortical areas. 

 520 
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Figure 7 (previous page) (a) Voxel-wise analysis showing brain activation at the group 

level during execution of a visual target detection task (dataset 1). Activated regions 

obtained from events detected in the EEG using CSC analysis are shown in green. 

Activated regions obtained using the subjects’ response time (RT) to the visual targets are 

shown in red/yellow. The maps show activation in the lingual gyrus, insular cortex, left 

pre-central gyrus (M1) and cingulate gyrus for both event types. CSC events also reveal 

activation in the paracingulate gyrus. (b) Group-level activation maps obtained during 

execution of a hand grip task (dataset 2). Activated regions obtained from events detected 

in the EEG using CSC analysis are shown in green. Activated regions obtained using the 

subjects’ hand grip strength are shown in red/yellow. The maps show strong activation in 

the left pre-central gyrus (M1) for both event types. In both conditions, although the 

subjects’ behavioral response to each task show more wide-spread activation, overall there 

is considerable overlap between the activation maps obtained with each method, suggesting 

that CSC is able to successfully detect neural events associated with each task.  
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Figure. 9 Voxel-wise analysis showing brain activation at the group level during resting-

state. Brain activation was evaluated using CSC events and event-related fMRI analysis. 

The results reveled widespread and spanning multiple regions across the cerebral cortex. 

Figure 8 (next page) (a) Group average HRF curve shapes obtained in the left pre-central 

and left superior parietal lobule ROIs during motor task. The red curve corresponds to the 

mean HRF curve across all subjects. The blue shaded area corresponds to the standard 

error.  The ROIs were functionally defined based on regions where EEG explained a large 

fraction of the variance in the BOLD signal (Figure 7b). Representative BOLD prediction 

in the left superior parietal lobule is shown in the lower panel. (b) Group average HRF 

curves obtained in the same ROIs under resting conditions. The ROIs were functionally 

defined based on regions where EEG explained a large fraction of the variance in the 

BOLD signal (Figure 7b). Representative BOLD prediction in the right occipital cortex 

obtained from the same subject as in (a) is shown in the lower panel. 
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4. Discussion 

4.1. General 545 

In this study, we investigated whether sparse, transient events detected in EEG data 

collected simultaneously with BOLD-fMRI can be used to describe the slow oscillations in the 

BOLD signal and to obtain reliable estimates of the HRF during task execution (visual target 

detection and a hand-grip task), as well as under resting-state conditions. This investigation was 

performed in light of the unfolding debate as to whether neural activity consists more of transient 550 

bursts of isolated events rather than rhythmically sustained oscillations (van Ede et al., 2018). To 

define events in the EEG we employed CSC analysis with rank-1 constraints (Jas et al., 2017; La 

Tour et al., 2018). We initially performed this analysis using the data collected during the two 

tasks, where events detected in the EEG were expected to explain higher BOLD signal variance in 

brain regions associated with each task.  To model the BOLD signal, we employed FIR system 555 

analysis. Our results revealed activation in the lingual gyrus, insular cortex, left pre-central gyrus, 

and cingulate gyrus for the visual target detection task, and extensive activation in the left pre-

central gyrus for the hand-grip task in accordance with previous studies in the literature (Sclocco 

et al., 2014; Walz et al., 2013; Xifra-Porxas et al., 2019). The same regions were also found to be 

activated using external measurements of the subjects’ behavioral response to each task. This 560 

suggested that CSC analysis can be used to detect reliable events in task-based EEG, which are 

associated with the task. It also suggested that sparse, transient events comprise relevant 

information that can be used to describe the slow fluctuations observed in the BOLD signal. 

Subsequently, we performed the same analysis using resting-state data. Our results 

revealed that events detected in the EEG can be also used to explain the slow oscillations in the 565 

BOLD signal observed during the resting-state, despite the lower SNR associated with the later 

condition. They also suggested that CSC events can be used to obtain reliable HRF estimates, 

which exhibited consistent shapes across subjects. This line of research has important implications 

for the study of effective connectivity (Gao et al., 2016; Iwabuchi et al., 2014; Palaniyappan et al., 

2018; G.-R. Wu et al., 2013; G. R. Wu et al., 2013) or functional connectivity (Gitelman et al., 570 

2003; McLaren et al., 2012; Rangaprakash et al., 2018; Yan et al., 2018), as resting state HRF 

estimates are important in order to account for the hemodynamic blurring in BOLD-fMRI data. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290296doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290296
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.2. Lower-amplitude co-fluctuations in BOLD-fMRI contribute to resting-state functional 

connectivity 

Recent studies in the literature employed events defined at the timing of the large amplitude 575 

BOLD peaks to retrieve the HRF from resting-state fMRI data, which was subsequently used for 

hemodynamic deblurring (Abe et al., 2015; G.-R. Wu et al., 2013). A key hypothesis of this blind 

deconvolution approach was that relevant information of resting-state neural dynamics is encoded 

into the high amplitude peaks of the signal, which can be unveiled by PPA (Tagliazucchi et al., 

2012). Along these lines, other studies  proposed using sparse promoting deconvolution to define 580 

events, such as parameter free mapping (PFM) (Caballero Gaudes et al., 2013) or total activation 

(TA) analysis (Karahanoğlu et al., 2013). Moreover, similar studies proposed using related 

information associated to these events for the study of the spatial and temporal dynamics of resting-

state brain activity.  Such information included activation maps obtained using PFM event-related 

fMRI analysis (Petridou et al., 2013), clusters of fMRI frames obtained at the timing of PPA events 585 

(Liu et al., 2013; Liu and Duyn, 2013), or average frames obtained at the timing of high amplitude 

BOLD co-fluctuation (Betzel et al., 2019). While these works provided evidence that excluding 

these events results into a decrease in functional connectivity, they didn’t show that the structure 

of the resting-state functional networks also changes. The latter is an important index of coherent 

resting-state brain activity, which has been extensively used in the literature for quality control of 590 

resting-state fMRI preprocessing pipelines (Bright and Murphy, 2015).   

In this work, using Pearson’s seed-based correlations with a seed selected in the PCC, we 

showed that voxels in the DMN co-fluctuate with the seed even when regular, or random, irregular 

down-sampling of the BOLD signal has been performed. In this case, samples obtained from the 

BOLD did not necessarily coincide with the high amplitude peaks of the signal, and yet the co-595 

fluctuations of these samples between different voxels were found to preserve the spatial 

specificity of the network (Figure 4). This suggested that the relevant information of resting-state 

brain dynamics may not be condensed only in the high amplitude BOLD peaks, and that important 

information is also distributed in lower amplitude peaks. To investigate this further, we initially 

regressed the high amplitude peaks out from the original BOLD time-series in order to bring the 600 

lower amplitude peaks of the signal to the foreground. Subsequently, we applied PPA on the 

residual data and constructed seed-based conditional rate maps with a seed selected in the PCC. 

The results revealed that the derived conditional rate maps resembled the DMN (Figure 5), which 
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confirmed that important information for resting-state brain dynamics is also concentrated in lower 

amplitude BOLD peaks. 605 

These findings have important implications for the study of functional/effective 

connectivity using BOLD-fMRI, as well as for the study of HRF variability using events defined 

in the BOLD signal. They suggest that lower amplitude peaks convey important information about 

resting-state brain dynamics that should not be disregarded. Moreover, recent studies in the fMRI 

literature investigated a large number of fMRI preprocessing pipelines and pointed out that no pre-610 

processing pipeline offers a perfect noise free signal (Parkes et al., 2018). Also, other studies 

showed that the network structure elicited by non-neural sources of BOLD signal variability is 

conformable to the structure of previously reported resting-state networks (Bright and Murphy, 

2015; Chen et al., 2019; Nalci et al., 2019). On account of these considerations, we believe that 

the contribution proportion of neural versus non-neural sources in the high amplitude peaks of the 615 

BOLD cannot be easily elucidated. Hence, HRF or activity-inducing signal estimates obtained 

using blind deconvolution of the BOLD signal could be, to some extent, biased towards physiology 

processes or motion, and physiological interpretation of these estimates in terms of the underlying 

neural dynamics should be performed with caution.  

4.3. HRF estimation using simultaneous EEG-fMRI data 620 

In this work, we employed simultaneous EEG-fMRI data and CSC analysis with rank-1 

constraints (Jas et al., 2017; La Tour et al., 2018) to define sparse events in the EEG that can be 

used to describe the slow fluctuations in the BOLD signal, as well as to obtain estimates of the 

unknown HRF. We believe that using EEG data acquired simultaneously with BOLD-fMRI is a 

more reliable approach to define neural-related events and brain states that can be used to describe 625 

the BOLD signal as (i) it provides more direct information with regards to neuronal activity, and 

(ii) this information is provided with a higher temporal resolution.  

CSC analysis with rank-1 constraints is a recently developed dictionary learning technique 

for multi-channel EEG or magnetoencephalography (MEG) data decomposition into 

spatiotemporal atoms3. As it is illustrated by Figure 6, Figure S1, and Figure S2, this 630 

 

3 Open source code for convolutional sparse coding analysis of multivariate EEG/MEG data can 

be found at https://alphacsc.github.io/models.html. 
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decomposition provides information with regards to accurate timing of events detected in the EEG, 

which is particularly important in event-related fMRI analysis. It also provides information with 

regards to the spatial pattern of brain activity, which can be used to descriminate between sources 

of brain activity for sources of non-neural origins in EEG data. Lastly, it also provides valuable 

information with regards to the morphology of the signals under consideration, which is important 635 

to better understant brain function under both health and desease (Cole and Voytek, 2019; Jones, 

2016; Mazaheri and Jensen, 2008). 

In general, CSC analysis assumes that neuronal activity detected with the EEG comes in 

packets or “bursts”, which only last for a few cycles. The waveform of these busts is considered 

to be time-invariant. This, however, is only an approxiation as the morphology of EEG signals is 640 

known to change over time (Amir and Gath, 1989; Li et al., 2011). This analysis generally offers 

better EEG signal approximations since the event waveforms are not constrained in narrow 

frequency bands (La Tour et al., 2018). In the present study, the selected CSC events revealed 

strong activations in parietal, occipital, and frontoparietal areas during both tasks. Moreover, most 

of the power of the oscillations of the waveforms associated with the selected atoms was found to 645 

be destributed in the alpha (8-12 Hz) and beta (15-30 Hz) bands, which is consistent with parietal 

and occipital activation due to visual stimulation employed in both tasks. In a recent work by (La 

Tour et al., 2018) CSC analysis was used for the analysis of MEG data collected during median 

nerve stimulation. The results revealed atoms characterized by waveforms oscilating in the mu 

band (~ 9 Hz) and localized activation in the primary somatosensory cortex. Overall, the results in 650 

the present study as well as in (La Tour et al., 2018) suggest that CSC analysis can be used to 

define events that are strongest in brain regions associated with the task.  

Lastly, we note that even though CSC analysis revealed atoms with spatial patterns and 

temporal waveforms associated with known sources of noise (Figure 6a) it is likely that some noise 

(eg. BCG, head motion) has not been completely removed from the data during pre-processing 655 

and is still present in atoms deemed associated with neuronal activity. However, we believe that 

this has not affected our results (Figure 7Figure. 9), which revealed CSC atoms with high 

correlation with BOLD-fMRI in brain areas associated with the task.  
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4.4. Study limitations 

The sparsity of the CSC event time-series zk
n in equation (5) was controlled by the 660 

regularization parameter  λ > 0. The value of this parameter was empirically defined for each 

dataset, aiming to balance between sparsity and BOLD prediction accuracy. We note that the 

selected value for this parameter is of the same order as the value selected for the analysis of the 

MNE somatosensory dataset (Gramfort et al., 2014, 2013) presented in (La Tour et al., 2018). 

Future work consists of extending the CSC algorithm employed herein to include an automated 665 

selection procedure for the parameter λ. This would make this technique more easily applicate to 

any dataset. Homotopy continuation procedures for sparse regression can be useful for that purpose 

(Efron et al., 2004; Osborne et al., 2000). 

The present study was set out to investigate the underlying link between sparse neural 

events detected in the EEG with the contemporaneous changes in the BOLD signal. To this end, 670 

we employed EEG data, which were collected simultaneously with BOLD fMRI. Although this 

technique combines the excellent temporal resolution of the EEG with hemodynamic changes 

detected in high spatial resolution with BOLD-fMRI, it generally suffers from technical limitations 

associated with the EEG data acquisition inside the high magnetic field environment. Future work 

performed using optical imaging techniques, such as simultaneous EEG-FNIRS would help 675 

overcome these limitations. 

Conclusion 

In this study, we initially employed seed-based correlations to show that samples obtained 

from the BOLD signal using various regular, as well as random sub-Nyquist sampling intervals, 

which did not necessarily coincide with large amplitude BOLD peaks, yield patterns of large scale 680 

resting-state neural dynamics observed with fMRI, such as the DMN. Subsequently, we performed 

a similar analysis using conditional rate mapping analysis. The results revealed that, in addition to 

the larger amplitude BOLD peaks, the spatial and temporal distribution of events defined at smaller 

amplitude BOLD peaks also resembles patterns of resting-state neural dynamics observed with 

fMRI. This suggested that using only events defined at the timing of the large BOLD amplitude 685 

peaks for HRF estimation, may yield biased estimates, which should be interpreted with caution.  

To define more reliable neural events, we employed simultaneous EEG-fMRI data, along 

with CSC analysis. Our results suggested that the detected CSC events yield reliable activation 
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maps obtained using event-related fMRI analysis. Our results also suggested that the events 

detected in the EEG yield consistent HRF estimates across subjects, even during resting-state 690 

conditions, where SNR is lower. 
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Appendix  
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(a) Resting-state (b) Motor task 

Original EEG timeseries Original EEG timeseries 

CSC event timing CSC event timing 

Sensor-space waveform 

reconstruction 

Sensor-space waveform 

reconstruction 

Figure S1. Representative CSC events corresponding to one atom detected in the EEG data of one 

subject during resting-state (left column) and motor task execution (right column). The topography 

and waveform of the detected atom are shown in Figure S2. Top row: original EEG time-series of 

5 representative sensors. Middle row: CSC events. Bottom row:  Waveform of the detected atom 

reconstructed at the sensor level.  
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(a) Resting-state (b) Motor task 

Figure S1. Representative CSC atoms detected in the EEG data of one subject during resting-state 

(left column) and motor task execution (right column) corresponding to the CSC events shown in 

Figure S1. Top row: Spatial patterns of brain activity associated with fronto-parietal activation. 

Middle low: Power spectrum density of the atom waveform showing high power in the alpha (8-

12) band during resting state, and alpha and beta (>15 Hz) band during motor task execution. 

Bottom row: Prototypical CSC waveforms associated with the detected events shown in Figure S1. 
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