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Abstract
The analysis of mRNA transcript abundance with RNA-
Seq is a central tool in molecular biology research, but of-
ten analyses fail to account for the uncertainty in these es-
timates, which can be significant, especially when trying to
disentangle isoforms or duplicated genes. Preserving un-
certainty necessitates a full probabilistic model of the all
the sequencing reads, which quickly becomes intractable,
as experiments can consist of billions of reads. To over-
come these limitations, we propose a new method of ap-
proximating the likelihood function of a sparse mixture
model, using a techniquewe call the Pólya tree transforma-
tion. We demonstrate that substituting this approximation
for the real thing achieves most of the benefits with a frac-
tion of the computational costs, leading to more accurate
detection of differential transcript expression.
Availability: The method is implemented in a Julia pack-
age available from https://github.com/dcjones/polee
Contact: dcjones@cs.washington.edu

1 Introduction
The past decade has seen RNA-Seq become a central tool
in molecular biology research. Along the way there have
been numerous methods developed to analyze this data.
We will propose an entirely new methodology based on
likelihood approximation, which enables inference on full
probabilistic models that would otherwise quickly grow

intractable. In preparation, we will first give a brief
overview of notable approaches toRNA-Seq transcript and
gene quantification, to give some sense of where this new
method fits in.

Gene/transcript quantification is not the only applica-
tion of RNA-seq. Most prominently, the technology has
been used to discover and annotate new transcripts, ei-
ther by de novo assembly [Robertson et al., 2010, Grab-
herr et al., 2011, Haas et al., 2013], or processing reads
aligned to a reference genome sequence [Trapnell et al.,
2010, Guttman et al., 2010, Pertea et al., 2015]. Other ap-
plications include detection of fusion transcripts [Kumar
et al., 2016] and RNA editing [Peng et al., 2012]. We will
largely ignore these uses of RNA-seq to focus squarely on
quantification. For the most part, we will assume that a
suitable reference genome sequence and transcript anno-
tations are available (or simply transcript sequences).

Because of alternative splicing, alternative transcription
start and termination sites, and paralogous genes, tran-
scripts often have a degree of sequence similarity that ren-
ders short reads ambiguous. Short read RNA sequenc-
ing in transcriptionally complex organisms thus produces
a mixed signal. A broad distinction that must be drawn
among quantificationmethods is between those that avoid
trying to deconvolute these mixed signals and those that
embrace deconvolution. A fundamental assumption of
most RNA-seq analyses is that transcript expression is
proportional in expectation to the number of reads ob-
served from that transcript (when sample specific effects
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are accounted for). As Mortazavi et al. [2008] notes, read
counts were observed to be “linear across a dynamic range
of five orders of magnitude in RNA concentration.” Yet
reads of ambiguous origin cannot be trivially assigned to
transcripts. Estimating transcript expression thus neces-
sitates either ignoring ambiguous reads, explicitly assign-
ing them to transcripts, or otherwise implicitly consider-
ing the space of possible assignments.

Transcript expression is not the only possible quan-
tity of interest, and many methods have found success in
posing alternative inference problems that avoid dealing
with read ambiguity and deconvolution altogether. These
methods are often simpler and more efficient than decon-
volution methods, so with good reason they remain pop-
ular, yet they are fundamentally limited in scope. DEXSeq
[Anders et al., 2012] approaches the problem by consider-
ing exon usage. JunctionSeq [Hartley and Mullikin, 2016]
and LeafCutter [Li et al., 2018] are both methods that
specifically focus on reads crossing splice junctions, with
the goal of detecting changes in usage.

Some count-based approaches to gene expression as-
sume that genes (however defined) are reasonably un-
ambiguous, so that the ambiguous reads that are present
are few and relatively inconsequential. However, many
methods do deal directly with the deconvolution prob-
lem, which will be our interest. Though there are
non-probabilistic approaches to this problem, including
methods using network flow for transcript quantification
[Montgomery et al., 2010] and assembly [Kannan et al.,
2016], and integer programming Lin et al. [2012], the
probabilistic approach has been by far the most common
and is the one we will focus on here.

The common probabilistic approach to the transcript
quantification problem is to treat transcripts as inducing
distinct probability distributions over reads (or read pairs).
The experiment as a whole can then be thought of as a
mixture model, in which the goal is to infer relative tran-
script expression (i.e., mixture coefficients). More explic-
itly, given a set r of m reads, and n annotated transcripts,
we define a probability function pj over possible reads, for
every transcript j. The likelihood for a relative expression
vector x ∈ ∆n−1 (here ∆n−1 is the open unit (n − 1)-
simplex, i.e., the set of all vectors of lengthn, with positive

entries summing to 1) is

P(r|x) =

m∏
i=1

n∑
j=1

xjpj(ri) (1)

There are many issues surrounding the question of
how best to model each transcript read distribution pj.
RNA-Seq protocols involve many steps like fragmenta-
tion, reverse transcription, amplification, and fragment
size-selection which each influence the observed distribu-
tion of reads. Assuming reads to be uniformly distributed
across a transcript, subject to some fragment length distri-
bution, is the most straightforward model, but some suc-
cess has been had in building more accurate models that
capture positional and sequence-specific biases (see for ex-
ample [Hansen et al., 2010, Li et al., 2010, Roberts et al.,
2011, Jones et al., 2012]). We will set these issues aside for
now and assume that we have some agreed upon model.

Relative transcript expression for an individual RNA-
Seq sample is not typically interesting on its own. RNA-
Seq experiments are nearly always concerned with de-
tecting transcriptional changes between groups of sam-
ples. From a Bayesian perspective, we would like to
build a model of transcriptional changes among k sam-
ples consisting of sets of reads r(1), . . . , r(k), with model
parameters θ (e.g. effect sizes, pooled means, or latent
space encodings), then consider the posterior distribution
P(θ|r(1), . . . , r(k)) ∝ P(r(1), . . . , r(k)|θ)P(θ).

If we adopt the likelihood function in Equation 1, then
r(i) is independent of all other variables when conditioned
on x(i). In typical models expression vectors x(i) will also
be mutually independent when conditioned on the model
parameters θ, so we canwrite this posterior distribution in
terms of the latent expression vectors x(1), . . . , x(k), treat-
ing them as nuisance parameters.

P(θ|r(1), . . . , r(k))

∝
∫
x

P(r(1), . . . , r(k)|x(1), . . . , x(k))

P(x(1), . . . , x(k)|θ)P(θ)dx

=

∫
x

k∏
s=1

P(r(s)|x(s))P(x(s)|θ)P(θ)dx (2)

This is all very straightforward but presents some prac-
tical problems. To evaluate the likelihood functions, some
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information about each unique read must be stored (typi-
cally in a sparse matrix where entry i, j corresponds to the
probability assigned to the ith read by the jth transcript
distribution). This translates to hundreds of megabytes to
several gigabytes per sample. Estimating the posterior for
moderately large experiments requires either a great deal
of memory or cycling read data in and out of memory, as
is done in stochastic gradient methods.

In practice, this kind of textbook model is often short-
circuited. Point estimates are made for transcript expres-
sion vectors x, usually by maximum likelihood

x(i)∗ = argmax
x(i)

P(r(i)|x(i))

Then these are plugged into the full model, forming an al-
ternative posterior distribution

P(θ|x(1)∗, . . . , x(k)∗)

This model adopts the (false) assumption that these ex-
pression values are observed, substituting them for what
is actually observed: the reads. Non-Bayesianmodels have
the same issues, and often resort to the same two-step ap-
proach. When estimates are treated as observations, the
uncertainty of these estimates is flushed from the analy-
sis, artificially inflating the certainty of the end result. This
two-step approach can be thought of as an approximation
of the desiredmodel, but one that captures none of the un-
certainty of read assignments.

A better two-step approach has been implemented by
Pimentel et al. [2017] in their work on sleuth. Sleuth uses
bootstrap samples to estimate uncertainty in maximum
likelihood estimates. Incorporating these variance esti-
mates into regression models, they show substantial im-
provements in accuracy when calling differential expres-
sion, particularly at the transcript level. Bootstrap meth-
ods do have limitations, though. Estimates of variance are
guaranteed to converge asymptotically to the true value
with enough reads, but this leaves lightly sequenced loci
with potentially unreliable estimates.

Are there better approximations? A similar approach to
sleuth could be taken butwithMCMC samples. Unlike the
bootstrap,MCMCestimates of variance would not be con-
tingent on sufficiently deep sequencing of a locus, so may
bemore reliablewhen capturing uncertainty of low expres-
sion isoforms. But samples have limited usefulness. For

example, powerful probabilistic programming languages
have become an increasingly popular way to implement
models, but efficient inference usually relies on variational
inference or some form of Hamiltonian Monte Carlo. To
make use of these tools, we would want a compact approx-
imation of the likelihood function that can be efficiently
evaluated and differentiated. In the next section we pro-
pose such a solution.

2 Approximate likelihood
In this section we develop a novel approximation for the
RNA-Seq likelihood function. Because the likelihood
function for a full experiment factors into per-sample like-
lihood functions (as in Equation 2), this approximation
can be built one sample at a time. Once fit, evaluating and
sampling from the approximation is orders of magnitude
faster than using the likelihood function. Substituting this
approximation for the real thing can make inference on
full probabilistic models, with billions of reads, tractable
on even modest computers.

There has not been much work exploring the idea of
approximating the RNA-Seq likelihood function, but one
notable exception is Zakeri et al. [2017], who developed
an approach in which reads that have similar values as-
signed by pj(·) for every transcript j are treated as equiv-
alent and combined in Equation 1. This can significantly
improve efficiency of the likelihood function with only a
moderate decrease in fidelity. What we propose goes fur-
ther, reducing the likelihood function into an exceedingly
efficient constant time and space function, with only slight
reductions in accuracy.

2.1 Approximating likelihood with varia-
tional inference

Variational inference is usually presented as a means of es-
timating an otherwise intractable posterior distribution.
Given a distribution function p, and a family of distribu-
tions q(·;ϕ) parameterized byϕ, we fit q to p, given some
data y, by choosing ϕ to minimize the Kullback-Leibler
(KL) divergence,

argmin
ϕ

DKL(q(θ;ϕ)||p(θ|y))
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Figure 1: Three contrived RNA-Seq examples are shown on the left. On the right, in blue, contours of the their like-
lihood functions are plotted, and in orange, various approximations made by minimizing KL divergence. The approx-
imation we propose, based on what we call the Pólya tree transformation, is shown in the second and third columns.
This transformation is defined in terms of a tree. Choosing the right tree plays a large role in how well the approxima-
tion fits. In example A, every read can be unambiguously attributed to a single transcript. In this easy case, a Dirichlet
distribution is perfectly proportional, and the approximation, regardless of the tree, is a near perfect fit. In examples B
and C, reads cannot by unambiguously assigned. Here, the proposed approximation remains a good fit, provided the
right tree is selected. Using the approximation in place of the exact likelihood function can enable dramatically more
efficient inference.
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A key feature of this method of inference is that q does
not depend directly on y, so that once ϕ is optimized, the
approximate probability can be evaluatedwithout the data,
only retaining the typicallymuch smaller parameter vector
ϕ.

This suggests a solution to the issue of building large
joint models. Instead of using variational inference to ap-
proximate a posterior distribution, we can use it to sepa-
rately approximate the likelihood of each sample. By sub-
stituting an approximation q(x;ϕ) for each sample’s like-
lihood function P(r|x), we can capture the likelihood with
some fidelity without having to keep the RNA-Seq reads in
memory. This would allow us to build a very large model,
encompassing hundreds or thousands of samples, that can
be run on laptops or meager servers.

Of course, the likelihood is not a distribution over ex-
pression vectors x but over reads r, so the KL divergence
is not well-defined here. But in models making use of the
likelihood function, multiplicative constants are generally
irrelevant, so our approximation only has to be propor-
tional to the likelihood. To bring the machinery of vari-
ational inference to bear, instead of approximating like-
lihood directly, we approximate a normalized likelihood
function, mathematically equivalent to a posterior distri-
bution under a uniform prior. We will denote withP(x|r)
this normalized likelihood function, defined simply as

P(x|r) :=
P(r|x)∫

x∈∆n−1 P(r|x)
(3)

In Figure 1, some illustrative examples of the approach
we develop in the following sections are shown. We can
see that capturing the dependence structure of P requires
careful selection of the distribution family being used, but
it often possible to do so very accurately. In simple cases
lacking any read ambiguity, the likelihood is proportional
to a Dirichlet distribution, but this model is inadequate
for cases where reads are compatible with multiple tran-
scripts. The model we propose can perfectly capture the
cases of zero read ambiguity (see Appendix B.2), but is
strictly more expressive, and able to capture more com-
plex dependence structures while being similarly efficient
(i.e. linear time and space in the number of transcripts).

2.1.1 Practical benefits to likelihood approximation

Our approach to approximation is unusual: factoring the
likelihood, then fitting a proportional approximation to
each factor. Though it could be used in other settings, it
is particularly well suited for RNA-Seq, compared to other
possible approaches.

The obvious alternative for tractable inference is simply
to use variational inference on the posteriorwe are actually
interested in. That is, if we have a model of, say, differen-
tial expression, with parametersθ, wewant to approximate
the intractable posterior P(θ|r). For a large experiment,
all of the reads rwill not fit in memory, but this problem is
amenable to stochastic variational inference, or SVI [Hoff-
man et al., 2013]. In SVI, batches of data are subsampled
to update estimates of “local” latent parameters (transcript
expression estimates x(i) for each sample i), before updat-
ing “global” latent parameters (θ).

Because SVI algorithms must cycle many gigabytes of
sequencing data in and out of memory to repeatedly com-
pute stochastic gradients, they are likelymuch less efficient
than likelihood approximation. Two additional consider-
ations further increase the latter’s desirability.

First is reusability. Large RNA-Seq experiments can be
rich with insight, and lend themselves to multiple analy-
ses. Differential expression, differential splicing, cluster-
ing, and dimensionality reduction are separate tasks that
might be carried out on the same data, each with its own
model, each representing a separate inference task. For
these tasks, likelihood approximations must be made only
once, after which they can be reused over an over. Amor-
tized over every iteration of every analysis typically run
on a dataset, likelihood approximation is far more efficient
than other approaches to tractable inference.

Second, likelihood approximation can obviate some of
the cumbersome data transfer and storage issues with
RNA-Seq. High throughput sequencing produces huge
datasets, which must be stored and transferred to collab-
orators, which can mean waiting on long downloads or
exchanging hard drives. Our approach to approximated
likelihood, on the other hand, summarizes all expression
information for a sample using only a few megabytes per
sample. The 1461 brain samples produced by the GTEx
project [GTEx Consortium, 2013], are reduced to 7.8GB
of likelihood approximation data. The most compact ex-
act representation of the likelihood function for this ex-
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periment would be about 1.5TB, often a prohibitively large
amount of data to keep in memory.

2.2 Designing an approximation
Because RNA-Seq data is compositional, our approximat-
ing family of distributions q(x;ϕ) must be defined over a
simplex ∆n−1. Without going into the mathematical de-
tails (see Appendix B.3), the common approach to opti-
mizing the KL-divergence additionally requires a distri-
bution that can be expressed as a deterministic bijection
of a random variable drawn from some fixed distribution
(a technique termed the “reparameterization trick” [Sali-
mans and Knowles, 2013, Kingma and Ba, 2014]).

The Dirichlet distribution tends to be the default sim-
plical distribution, but besides being insufficiently expres-
sive for our goals (see Figure 1), it is not efficiently com-
putable in terms of reparameterization. Instead, we con-
sider transformations of other distribution families onto
the simplex. For this to work we need a bijection T :
Rn−1 → ∆n−1 (or perhaps T : (0, 1)n−1 → ∆n−1),
with an efficiency computable Jacobian determinant.

2.2.1 Compositional data analysis transformations

The compositional data analysis literature has tradition-
ally been concerned with how best to transform data to
and from the simplex. A number of ∆n−1 → Rn−1

transformations have been proposed, some with inverses.
When used to transform a normal distribution, for exam-
ple, these can induce useful simplex distribution families.
Three such bijective transformations are explored here as
possible candidates to define a suitable distribution.

The first common approach is the additive log-ratio
transformation.

alr(x) =
(
log

xi

xn
; i = 1, . . . , n− 1

)
for x ∈ ∆n−1 (4)

The alr is typically defined, as it is here, with the divi-
sor xn, but the vector can be permuted to make any ele-
ment the divisor. In some settings itmakes sense to choose
a particular element as the reference for interpretability;
for example we might choose xn to be the expression of a

housekeeping gene. When searching for the best fitting
approximation, there is not an obvious choice. If y ∼

Normal(µ, Σ), then the distribution induced by alr−1(y)
is sometimes referred to as amultivariate logit-normal dis-
tribution.

The second useful transformation defined by Aitchison
is the multiplicative log-ratio transformation

mlr(x) =

(
log

xi

1−
∑i

j=1 xj
; i = 1, . . . , n− 1

)
for x ∈ ∆n−1 (5)

This transformation can be best understood using a se-
quential stick-breaking metaphor. If a stick is broken into
n pieces, and x1, . . . , xn give the size of each piece, in pro-
portion to the whole, then mlr(x) gives the log-ratio be-
tween each piece and the remaining length of the stick, if
the stick were broken one piece at a time. We will return
to this stick-breaking metaphor shortly.

The probabilistic programming language Stan [Carpen-
ter et al., 2016] implements essentially this transformation
as a general purpose variational approximation to distri-
butions on the simplex as part of its Automatic Differen-
tiation Variational Inference approach [Kucukelbir et al.,
2017].

The third and most modern approach from composi-
tional data analysis is the isometric log-ratio transforma-
tion [Egozcue et al., 2003]. The mathematical details of
this are too involved to go into here, but it has a number
of desirable features. Most significantly it is, as the name
implies, an isometry, or distance preserving transforma-
tion. So the Euclidean distance between two transformed
points ‖ilr(x)−ilr(y)‖ = da(x, y), whereda is theAitchi-
son distance, whose definition will also be omitted here.
That geometry is preserved by ilr ends up making certain
statistical procedures interpretable on the simplex where
they might otherwise not be.

Figure 2 gives some intuition for how these transforma-
tions operate.

2.2.2 The Pólya tree transformation

To revisit the stick-breaking metaphor, it is often easiest to
consider generating a vector x ∈ ∆n−1 by starting with a
stick of length 1 and breaking it n− 1 times in sequence.
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Multiplicative Log�Ratio

Isometric Log�Ratio

Additive Log�Ratio

� = (1.5, -1), � = (1, 4)� = (0.5, -1), � = (1, 2)� = (0, 0), � = (1, 1)

Multiplicative Log�Ratio

Isometric Log�Ratio

Additive Log�Ratio

Figure 2: On the left, Cartesian grid lines are transformed onto∆2 using three classes of transformations: additive log-
ratio, isometric log-ratio, andmultiplicative log-ratio. Grid lines are spaced evenly at a distance of 0.5 in Euclidean space
and the point (0, 0) is marked with a circle. Each transformation has variations shown in the columns. The variations
are formed by choosing a different denominator, basis, or permutation for alr, ilr, and stick breaking, respectively. On
the right, various parameterizations of a 2-dimensional multivariate normal distribution, with a diagonal covariance
matrix, are mapped onto the simplex with alr, ilr, and mlr (for each, the furthest right of the three variants shown on
the left). The choice of transformation has a dramatic effect on the resulting distribution.
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Let yi ∈ (0, 1) represent the proportion of the remain-
ing stick to break off on the ith break. Then x ∈ ∆n−1 can
be produced from y ∈ (0, 1)n−1 with

xi = yi

i−1∏
k=1

(1− yk) = yi

(
1−

i−1∑
k=1

xk

)
∀ 1 ≤ i < n

(6)

xn =

n−1∏
k=1

(1− yi) = 1−

n−1∑
k=1

xk

The equivalence between the product and sum form
shown here may not be immediately obvious, but is easy
to show by induction [Halmos, 1944], or by considering
that 1−

∑i−1
k=1 xk is the length of the stick remaining after

i− 1 breaks.
Stick-breaking metaphors like the one used to describe

the mlr transformation have a long history. In an early
example, Halmos [1944] explores a stick breaking distri-
bution in which each yi is uniformly distributed in (0, 1)
using the motivation of distributing a pile of gold dust
to n beggars in sequence. The possibility of yi being
drawn independently from arbitrary distributions is also
briefly considered. In recent literature, stick breaking oc-
curs most commonly in descriptions of the Dirichlet pro-
cess, which can be formulated as an infinite stick break-
ing procedure in which the breaks yi are Beta distributed
variables [Sethuraman, 1994]. The resulting stick sizes are
then used to weight draws from a base distribution. When
n → ∞ in Equation 6, and each yi is i.i.d. Beta(1, θ)
distributed, for some θ, the resulting distribution family is
commonly denoted GEM(θ), after Griffiths, Engen, and
McCloskey (see Pitman [2002]). This notion of a stick
breaking prior was generalized by Ishwaran and James
[2001] to, among other things, include finite stick breaking
distributions.

Khan et al. [2012] brings up an issue often ignored in
these sequential stick-breaking procedures. They point
out that the model represents a kind of decision bound-
ary between every category i and the n− i categories that
follow it in the process, so a particular ordering may fit the
data poorly if no such boundary naturally exists. Zhang
and Zhou [2017] take up this issue in a more serious way,
demonstrating classification problems with as few as three
categories that show dramatic differences in performance
depending the permutation of those categories in the stick

breaking process. They go on to propose models in which
category permutations are inferred along with regression
coefficients when performing multinomial logistic regres-
sion.

The second key insight that is sometimes neglected is
that there are other ways of breaking a stick. Rather than
breaking pieces off the stick and setting them aside, we
might keep and recursively break both of the resulting
pieces. This can be thought of as hierarchical stick breaking,
as opposed to common sequential stick breaking. To define
a transformation onto ∆n−1, we must always end up with
n pieces, so n − 1 total breaks must still be made. Under
these restrictions, breaks in a hierarchical stick-breaking
scheme must occur according to a full binary tree with n

leaves (i.e., where every node is either a leaf or has two
children).

With these two insights, we have a space of possible
stick-breaking transformations along the lines of Aitchi-
son’s mlr, but considering not just the n! permutations
of the stick breaking process, but also the Cn−1 =
1
n

(
2(n−1)
n−1

)
(the (n−1)st Catalan number) possible full bi-

nary trees withn leaves, resulting in a family ofCn−1n! =
(2n−2)!
(n−1)! possible transformations.
This notion of hierarchical stick-breaking bears some

resemblance to the hierarchical softmax transformation
[Goodman, 2001], a technique used in some natural lan-
guagemodels, but differs critically in that hierarchical soft-
max is not bijective and is used purely as a means of accel-
erating inference. More closely related are Pólya tree dis-
tributions

[Lavine, 1992, 1994, Mauldin et al., 1992], which are
also defined in terms of a (not necessarily finite) binary
tree, in which each split or break is drawn from a Beta
distribution. Due to this similarity, and apparently lack-
ing any existing terminology, we refer to this family of
hierarchical stick-breaking transformations as Pólya tree
transformations. The software we implement to apply this
method we call Polee (a portmanteau of “Pólya tree”).

2.2.3 Tree topology heuristics

Though Zhang and Zhou [2017] were able to effectively
optimize over stick-breaking topologies, at most 11 labels
were used, and only permutations were considered. We
would have a much harder time sampling over the possi-
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ble configurations of a Pólya tree transformation. To avoid
an exhaustive exploration of the space of trees we must
either find an adequate heuristic with which to choose a
tree, prior to optimizing parameters, or pursue optimiza-
tion metaheuristics (e.g., simulated annealing or genetic
programming) that could explore a subset of the space in
a guided way. The latter may be possible, but each topol-
ogy is accompanied with an entirely new set of parameters
that must be optimized. Optimizing both concurrently is
unlikely to be practical.

Fortunately, there are reasonable approaches we may
take to choosing a topology ahead of optimization. RNA-
Seq is typically a sparse mixture model. Most reads are
compatible with only a small number of annotated tran-
scripts. Because of this, the problem displays subcompo-
sitional independence: knowing the mixture of isoforms
expressed in one gene tells us nothing about themixture of
isoforms expressed in another, if the genes share no reads.
This suggests that the transformation might be oriented in
a way to try to capture this structure.

Aitchison [1986] discusses the concept of subcomposi-
tional independence, as well as several other notions of
independence on the simplex. There, tests for indepen-
dence are proposed, but they necessitate estimating the full
covariance matrix, an intractable task for a large n. In-
stead we pursue the idea of capturing a similar subcompo-
sitional independence structure by using hierarchical clus-
tering as a heuristic. Each transcript is represented by its
set of compatible reads. We then cluster greedily choosing
the maximum Jaccard index (i.e. the size of the intersec-
tion divided by the size of the union) at each step. Tran-
scripts, or sets of transcripts, that share a large proportion
of their compatible reads have a have a higher Jaccard in-
dex, and thus their common ancestor is placed lower in
the tree. In an ideal scenario, this constructs a tree that
encodes a distribution family that has a similar indepen-
dence structure to that of the real likelihood function.

In cases of complete subcompositional independence,
where no reads are shared between transcripts, the likeli-
hood function in Equation 1 is proportional to a Dirichlet
distribution. In Appendix B.2 we show that any Pólya tree
transformation can exactly fit any Dirichlet distribution of
the same dimensionality, if applied to appropriately cho-
sen Beta distributed random variables.

2.2.4 Choosing a base distribution

Given a transformation onto the simplex, we now need
to choose the distribution that will be transformed. The
Pólya tree transform has been described described here as
a (0, 1)n−1 → ∆n−1 transformation. Most of the com-
positional data analysis transforms take the formRn−1 →
∆n−1. We can always use the logit function (or its inverse)
to move between the two so this distinction is insignifi-
cant. We would like then to find a distribution overRn−1

or (0, 1)n−1. To minimize the parameter space, each el-
ement will be considered independent (a common ap-
proach refereed to as “mean field variational inference”).

We are limited to distributions that lend themselves to
the reparameterization trick. The two distributions we
will consider are the normal (or logit-normal) distribution
and the Kumaraswamy distribution [Jones, 2009], which is
qualitatively similar to the Beta distribution but, unlike the
Beta distribution, can be easily expressed as a transform of
a uniform distribution.

Lastlywe explore a further transformation of the normal
distribution using a parameterized sinh-arcsinh transfor-
mation of the following form

U(Z;α) = sinh(α+ arcsinh(Z))

This technique, explored by Jones andPewsey [2009] along
with a two-parameter version, provides an analytically
convenient way to add a parameter controlling skewness
to a distribution. Where Z ∼ Normal(0, 1), we use

Y = µ+ σU(Z;α)

as our fully reparameterized distribution. We will refer to
the resulting distribution as a skew-normal distribution,
though other distribution families also go by this name
[Azzalini, 1985, Hosking and Wallis, 2005].

3 Results
To demonstrate the usefulness of this approach, we under-
took four analyses. In the first two subsections we show
that the approximation is a good fit to the likelihood func-
tion of actual RNA-Seq datasets, and that it can be effi-
ciently fit and evaluated. Then we focus on demonstrating
that it can improve the detection of differentially expressed
transcripts, using an existing simulation benchmark, and
then separately using real data from the GTEx project.
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3.1 The Pólya tree transform improves the
goodness of fit to likelihood marginals

To assess the fit of our likelihood approximation, in com-
parison to various alternatives, we evaluated the fit of
transcript marginal densities using Wilcoxon signed-rank
tests. For every transcript in a set of annotations, 1000
samples were drawn from a Gibbs sampler (representing
the exact likelihood function) and the same number of
samples were drawn from the approximated likelihood.
The signed-rank test was run, for each transcript, produc-
ing a p-value.

The Gibbs sampler used 8 randomly initialized chains.
Each was burned-in for 2000 iterations, then 25,000 sam-
ples were generated and every 25th was saved for analysis,
producing a total of 1000 samples. We found these settings
sufficient for marginal distributions to have converged for
a vastmajority of transcripts, where convergencewasmea-
sured by comparingwithin-chain and between-chain vari-
ance according to the procedure described by Gelman and
Rubin [1992].

Sampling from the approximated likelihood is much
simpler: random vectors are drawn from a Normal(0, I)
distribution, then transformed using each of the transfor-
mations discussed, specifically the sinh-asinh transforma-
tion, shifting and scaling, the logistic transformation, and
finally the Pólya tree transformation.

If an approximation is a perfect fit, we would expect to
see a uniform distribution of p-values. Imperfect approx-
imations will yield p-value distributions that are increas-
ingly skewed towards smaller numbers. The greater the
tendency towards small p-values, the worse the overall fit.
Figure 3 shows the results of this test using a mouse brain
sample taken from Li et al. [2017] (accession number PR-
JNA375882), and 138,930 transcripts from the Ensembl 95
annotations [Ensembl, 2018]. To provide some intuition
of the correspondence between p-value and fit, a number
of examples with low p-values are plotted in Figure 4.

We see that the approximating distribution family mat-
ters a great deal. Distributions based on the Pólya tree
transformation offer a dramatically better fit than the tra-
ditional compositional data analysis transforms alr and ilr,
and we see that the heuristic tree construction is a sharp
improvement over a random tree topology. The common
sequential stick-breaking approach (equivalent to the mlr
transformation) is seen to be the worst approach to stick-
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Figure 3: Distributions of p-values evaluating the agree-
ment between 1000 samples from the Gibbs sampler and
1000 samples drawn directly from various approxima-
tions of the likelihood function for a mouse brain sample
from Li et al. [2017]. P-values were computed using the
Wilcoxon signed-rank test. Here, “PTT” is the Pólya tree
transform, which was tried with several distribution fam-
ilies and tree building rules (“sequential”, “random”, and
hierarchical clustering, labeled “heuristic”). The ilr and alr
transformations are defined in Section 2.2.1, and “approxi-
mate factorization” is the approximation scheme proposed
by [Zakeri et al., 2017]. Boxplots are drawn with upper
and lower whiskers corresponding to the 99th and 1st per-
centile, respectively.
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Approximate Marginal DensityTrue Marginal Density

p < 10-9 p � 10-9 p � 10-8 p � 10-7 p � 10-6 p � 10-5 p � 10-4 p � 10-3

Figure 4: Kernel density plots of exact and approxi-
mate marginal densities for examples with small p-values.
Columns correspond to p-values of decreasing powers of
10, while rows are randomly selected examples with ap-
proximately that p-value, giving a sense of how p-value
corresponds to goodness of fit. It can be seen that a
very small p-value does not necessarily correspond to
a catastrophic failure of the approximation. The plots
shown were generated from a mouse liver sample from Li
et al. [2017] with approximate densities using logit-skew-
normal Pólya tree transform distribution, using the hier-
archical clustering heuristic to choose the tree topology.
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Figure 5: A comparison of the space and time needed to
evaluate the likelihood function and its approximations.
A GTEx sample (SRR1340508) was subsampled to, and its
likelihood evaluated for, increasing numbers of reads. The
upper plot shows the memory in megabytes necessary to
evaluate the function, the lower plot, the time in seconds
necessary to evaluate the function once.
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breaking, perhaps in part because such a long chain of de-
pendent breaks is numerically less stable and thus more
difficult to fit to the target likelihood. As no attempt was
made to optimize over permutations, it is also possible se-
quential stick breaking could be improved with the right
permutation heuristic.

On this test, the approximate factorization approach
proposed by Zakeri et al. [2017] also performs very well,
offering a slight median improvement over the Pólya tree
transformation. In Figure 5 we see that this comes at some
cost. Though far more efficient in time and space that the
un-approximated likelihood function, it does not match
the low constant time and space of the Pólya tree transfor-
mation. Exact factorization (labeled “Factorization” in the
figure), has a negligible effect, as few read pairs, even with
100 million reads, are completely identical.

This results holds across the other samples from Li et al.
[2017] (AppendixA), but to ensure that the approximation
is broadly effective andnot somehow tuned to these partic-
ular datasets, we also evaluated logit-skew-normal Pólya
tree transform distribution with heuristic tree topologies
on a variety of of other RNA-Seq datasets, spanning a
number of species with varying transcriptional complex-
ity. We see that likelihood approximation has remark-
ably consistent performance across these samples (Table
1). Curiously though, the approximation appears to fit
moderately better with a larger number of transcripts. The
median p-value for both the human and mouse samples is
approximately 0.4, and for the yeast sample, 0.28. Likely
this is due to a smaller proportion of the transcripts being
expressed in species with extensive alternative splicing.

3.2 Estimating and sampling from approxi-
mated likelihood can be faster than boot-
strap sampling

The procedure for sampling expression vectors from an
approximated likelihood function is to simply generate a
random vector from a Normal(0, I) distribution, and ap-
ply the transform, which is O(n) where n is the number
of annotated transcripts. Because samples are so cheap
to generate, for a sufficiently large numbers of samples, it
outperforms not only MCMC approaches, but also the ex-
tremely fast bootstrap approach implemented in kallisto
[Bray et al., 2016].

Species Num. Transcripts Med. p-value
S. Cerevisiae 7126 0.28
D. Melanogaster 34749 0.37
C. Elegans 58941 0.35
M. Musculus 131195 0.40
H. Sapiens 200310 0.40

Table 1: Auxiliary datasets used to evaluate the con-
sistency of likelihood approximation performance, as
was done in Figure 3. Median p-values are all for the
proposed approximation (labeled “Logit-Skew-Normal
PTT|Heuristic” in Figure 3). Numbers of transcripts listed
are those annotated in version 90 of Ensembl. Acces-
sion numbers for these samples, from top to bottom, are:
SRR453566, SRR030231, SRR065719, SRR023546, and
SRR896663.

To locate the break even point, we recorded the over-
all time needed to generate increasingly large numbers of
samples with both methods. In both approaches these
times include the necessary initialization time. Kallisto
uses its ownpseudoalignment algorithm, while polee takes
as input existing alignments. To compare on equal ground,
we exported alignments generated by kallisto and used
them as input into polee. Added to the polee timings is the
time kallisto took to generate these alignments, the time it
took to approximate the likelihood function, and to gen-
erated the requested number of samples. Both methods
were run on 8 cpu cores.

From the results shown in Figure 6, we see that past
about 100 samples (where each sample is a vector of tran-
script expression estimates), the amortized cost of sam-
pling becomes less for polee than kallisto. Approximate
likelihood functions can be evaluated directly, so there is
not necessarily a need to sample, but sampling is useful
in some applications. For example, polee can be used as
a drop-in replacement for kallisto when using sleuth [Pi-
mentel et al., 2017] to call differential expression. Speed
will be similar or faster, and this sampling technique is
not subject to the limitations of bootstrap sampling, which
can yield imprecise results for transcripts with a very small
number of reads.

12

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290411doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290411
http://creativecommons.org/licenses/by-nd/4.0/


Number of Samples

0 50 100 150

kallisto

polee

Method

0

100

200

300

400

500

E
la

p
se

d
 S

e
co

n
d

s

Figure 6: Overall run time to generate samples using
kallisto (bootstrap) or polee (approximate the likelihood
and sample directly from the approximation). Polee re-
quires additional run-time up front to approximate the
likelihood function, but once computed, generating sam-
ples is exceedingly efficient, with the time only increasing
by about 0.69 seconds between 1 sample and 150.

3.3 Approximate likelihood models outper-
form other models in identifying differ-
entially expressed transcripts

We expanded an analysis performed in Pimentel et al.
[2017], which demonstrated superior performance when
using sleuth to call differential expression, especially at the
transcript level, using simulated data. We include the like-
lihood approximationmethod described here in twoways.
First we developed a Bayesian regression model (see Ap-
pendix C) in TensorFlow [Abadi et al., 2016] that makes
use of approximated likelihood functions directly, which is
labeled “polee” in the results. Second, we generated sam-
ples from the approximated likelihood tomimic the output
of kallisto, and used this as input to sleuth. This approach
is labeled polee/sleuth.

The three simulations, labeled “gfr”, “isoform”, and
“gcd” correspond to three sets of assumptions. The gfr
simulationmatches simulated effect sizes to those detected
by Cufflinks [Trapnell et al., 2012] in a reference dataset.
The “gcd” simulation adopts the assumption that gene
expression is perturbed while holding isoform mixtures
fixed, and the “isoform” simulation assumes the expres-
sion values of transcripts are perturbed independently of
each other. Results from these simulations are show in
Figure 7.

On the column to the right, we see that differential tran-
script expression tests show both polee and polee/sleuth
with significantly improved performance over othermeth-
ods (i.e., greatly increased recall at the same fdr levels).
These results suggest that samples drawn in proportion to
the likelihood are more informative than bootstrap sam-
ples for this task, and that most informative of all is ac-
tually including the likelihood function, or its approxima-
tion, in the model. When detecting gene-level differential
expression, polee very slightly trails sleuth, which exceeds
the performance of all the other methods. Oddly, using
likelihood approximation samples with gene-level sleuth
analysis (labeled “polee/sleuth” in Figure 7) does not yield
similar performance. This may be due to sleuth’s filter-
ing heuristics being poorly calibrated for samples from the
posterior, rather that bootstrap samples.
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Figure 7: Plots of false discovery rate (i.e., the proportion
of differential expression call which are incorrect) versus
recall (i.e., proportion of differentially expressed features
identified) when calling differential gene or isoform ex-
pression on three simulations (gfr, isoform, and gcd, ex-
plained in the text), with a variety of methods. Each line
represents the aggregate FDR-recall curve across 20 repli-
cates of the simulation, each consisting of six samples split
across two conditions.

3.4 Differential expression calls made with
approximate likelihood are more inter-
nally consistent

Evaluating the accuracy of differential expression calls is
fraught by a lack of any agreed upon ground truth. Simula-
tions are one way around that issue, but assume the model
of expression and sequencing used to generate the simu-
lated reads is a good approximation of reality. Here we ex-
plore another option: calling differential expression with a
large number of samples, then testing the ability to recover
the same calls with a small number of samples. This avoids
putting our faith in the verisimilitude of a simulation, but
to be a reasonable proxy for accuracy it instead assumes the
model converges to the correct result with enough repli-
cates. Models can of course be both perfectly internally
consistent and totally wrong, but taken together with Sec-
tion 3.3 makes a case for the accuracy.

Using brain tissue data from GTEx [GTEx Consor-
tium, 2013], we compared the same regression model us-
ing four different approaches to transcript quantification:
maximum likelihood estimates, maximum likelihoodwith
bootstrap variance estimates, posterior mean estimates
generated from the likelihood approximations, and the full
approximated likelihood. In addition to running regres-
sion with all 13 brain tissues, we also evaluated pairwise
differential expression between a transcriptionally similar
pair of tissues (hippocampus and amygdala), and a tran-
scriptionally divergent pair (cortex and cerebellum).

Each run was compared to the same regression model
run with a larger number of replicates (96 for the pair-
wise tests, and 1403 with all tissues). These tests were run
with 10 different random subsets to draw the aggregate
FDR/recall curves in Figure 8.

The results show broadly that the full approximate like-
lihood model outperforms point estimates and bootstrap
estimates. Posterior mean estimates offer an improvement
over maximum likelihood estimates, and appear to begin
to catch up to the approximate likelihood approach when
a large enough number of samples is used. An important
caveat is that producing posteriormean point estimates ei-
ther involves MCMC, or a variational inference, so in gen-
erating the estimates, there is little or no performance ad-
vantage to using posterior mean estimates instead of ap-
proximate likelihood. In the pairwise tests, bootstrap es-
timates perform similarly to using posterior mean point
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Figure 8: FDR/recall curves for subsets of the GTEx data,
using the variants of the same regression model, with ex-
pression modeled as either maximum likelihood or pos-
terior mean point estimates, bootstrap estimates of vari-
ance, or approximate likelihood. Note the x-axis has been
adjusted for each column to show the details of the curve.

estimates, while underperforming when using all samples.
The amygdala versus hippocampus test shows very poor

performance for all the involved methods, as the differ-
ences that do exist between these tissues are small or in-
consistent, so they are only reliably detectable with a large
number of samples. Nonetheless, approximate likelihood
does make better use of the limited data, showing a clear
improvement.

4 Approximate likelihood improves
estimates of pairwise correlation

Large amounts of available sequencing data have led to an
increasing emphasis on deciphering the functional rela-
tionships between genes. Co-expression networks are of-
ten a preliminary step towards inferring regulatory net-
works [Markowetz and Spang, 2007]. Constructing co-
expression networks necessitates estimating pairwise cor-
relation or covariance between genes or transcripts across
samples. There are many pairs, but relatively few that are
highly correlated or highly anticorrelated, so results can

easily be contaminated by false positives, a particular risk
with low expression genes, and pairs of similar isoforms.

Co-expression in the the GTEx data was examined by
Saha et al. [2017]. To control false-positives, aggressive
ad hoc filtering was done on the feature set. In addition
to including only isoforms with relatively high expression
(“isoforms with at least 10 samples with ≥1 TPM and ≥6
reads”), additional filters were applied for isoform vari-
ability, mappability, and many features were simply re-
moved to maintain computational tractability. This left
only 6000 genes and 9000 isoforms (for comparison, En-
sembl annotates nearly 200 thousand transcripts). After
filtering, a precision matrix was estimated using a graphi-
cal lasso model.

This filtering procedure reduces false-positives, but at
the cost of potentially introducing false-negatives. A
model affording a more principled accounting of estima-
tion uncertainty would obviate the need for much of this
ad hoc filtering.

To explore this idea, we used a more simplistic analy-
sis of co-expression, computing pairwise Spearman cor-
relation matrices across all annotated transcripts, with no
filtering whatsoever. To see how the choice of estimate ef-
fected the results, we did this with maximum likelihood,
posterior mean, bootstrap, and approximate likelihood.
To avoid division by zero, and to otherwise slightly mod-
erate the effects of zeros, we added a pseudocount of 0.1
tpm all estimates in the maximum likelihood and boot-
strap samples. The uncertainty information provided by
bootstrap and approximate likelihood was incorporated
by computing the average Spearman correlation across 20
samples.

As with differential expression, there are no plausible
gold standard estimates to compare to, so we resorted to
using consistency as a proxy for accuracy. We selected one
tissue from the GTEx data, cortex, consisting of 118 sam-
ples, and computed the correlation matrices. Treating this
as ground truth for each respective estimate, we recom-
puted the matrices using random subsamples of 12 of the
118 samples, andmeasured the difference between each el-
ement in the matrix. This was repeated 10 times for differ-
ent random subsamples. The aggregate results are plotted
in Figure 9.

Looking first at transcript expression (Figure 9, upper
plots), we see that point estimates tend to produce moder-
ately unreliable estimates of positive correlation, and ex-
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Figure 9: Consistency of Spearman correlation estimated using maximum likelihood and posterior mean point esti-
mates, as well as averages across bootstrap samples, and samples from the approximate likelihood. In the upper plots,
transcript expression was used, and in the lower, isoform usage (transcript expression divided by the overall expression
of its gene). Error here measures the difference between estimates made using all 118 cortex samples, and estimates us-
ing a random subset of 12 samples (i.e., “true” correlation minus predicted correlation). These plots show the aggregate
error across ten random subsets. Boxplots are drawn with upper and lower whiskers corresponding to the 99th and 1st
percentile, respectively.
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tremely unreliable estimates of negative correlation. In
large part, this is remedied by using either bootstrap es-
timates or approximate likelihood, with the latter offering
a slight improvement. When considering isoform usage
(Figure 9, lower plots), point estimates are highly unreli-
able when measuring either positive or negative correla-
tion. Bootstrap estimates improve this, but approximate
likelihood estimates are clearly the most reliable here.

5 Conclusion
Here we have described how a full likelihood model of
RNA-Seq transcript expression can be made tractable by
approximating the likelihood function. Because includ-
ing the likelihood, rather than relying on point estimates,
better accounts for estimation uncertainty, differential ex-
pression calls are more reliable. Themethod we developed
to do so, the Pólya tree transformation, is a general pur-
pose approach to approximating sparse mixture models.
Though we have confined our analysis here to showing
its benefits when detecting transcript differential expres-
sion with bulk RNA-Seq, there are other possible applica-
tions. Other RNA-Seq analyses, like classification, dimen-
sionality reduction, and coexpression could benefit from
the same approach. It also presents an opportunity of per-
forming isoform level analysis of single-cell RNA-Seq, ac-
counting for the high estimation uncertainty where there
are relatively few reads per cell.

Gelman [2016] describes the way in which statistics is
sometimes used, either deliberately or otherwise, to trans-
mute randomness into certainty as “uncertainty launder-
ing.” The two-step process often used in RNA-Seq of first
estimating, then separatelymodeling transcript expression
can be considered a form of uncertainty laundering, but
a form undertaken often out of practical necessity. We
believe the method described here, a general approach to
reducing the the computational demands of probabilistic
RNA-Seq models, is a significant push in the direction of
honest accounting of uncertainty.
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A Goodness of fit evaluated on more
samples

In Section 3.1, goodness of fit of the approximation was
measured by looking at distributions of p-values in null-
hypothesis tests against samples from a Gibbs sampler. In
that section we choose one sample to focus on arbitrarily
from a mouse body map study [Li et al., 2017], but these
distributions of p-values are remarkably consistent across
every sample from that experiment, whichwe show in Fig-
ure 10.
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Figure 10: The likelihood function for every sample from
[Li et al., 2017] was approximated. 1000 samples were
drawn with probability proportional to the approximated
likelihood, and 1000 samples were drawn using a Gibbs
sampler. A Wilcoxon signed-rank test was performed for
each annotated transcript, and the distribution plotted in
a boxplot, drawn with upper and lower whiskers corre-
sponding to the 99th and 1st percentile, respectively. An
ideal fit would have a uniform distribution of p-values.

B Some mathematical details of the
Pólya tree transformation

In the body of the paper the Pólya tree transformation
was described as a stick breaking transformation between
(0, 1)n−1 and ∆n−1. Here we give a more formal defini-
tion, and generalize it somewhat by not assuming the com-
position sums to 1, allowing the stick being broken to be
of arbitrary length.

We can then think of the transformation as between
(R+, (0, 1)

n−1) and Rn
+, where R+ is the set of positive

real numbers. This can be thought of as mapping an ini-
tial stick length, and n − 1 break points to n stick pieces
of positive length.

B.1 Definition of the Pólya tree transforma-
tion

The Pólya tree transformation is best represented as a full
binary tree, with 2n − 1 nodes, n of which are leaves.
To simplify notation somewhat, assume these are assigned
indices so that the root node is labeled 1, internal nodes
1, . . . , n − 1, and leaf nodes n, . . . , 2n − 1. Addition-
ally, we assume internal nodes are numbered so that no
node has a smaller index that any of its ancestors, for ex-
ample, according to a pre-order traversal. Intuitively, we
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can think of the ith node as representing the ith break in
a stick-breaking process.

The tree can then be defined by functions giving an in-
ternal node’s left and right children respectively.

left(i): index of node i’s left child
right(i): index of node i’s right child

The transformation T from (u1, y) ∈ (R+, (0, 1)
n−1)

to x ∈ Rn
+ is defined in terms of intermediate values

u1, . . . , u2n−1 for each node, which have the following
relation,

uleft(i) = yiui (7)
uright(i) = (1− yi)ui (8)

The result of the transformation is then simply the in-
termediate values from the leaf nodes:

xi = ui+n−1, for i = 1, . . . , n (9)

Often we are operating on the unit simplex, in which
case u1 = 1. In these instances we will leave the u1 = 1

implicit and write the transformation as T : (0, 1)n−1 7→
∆n−1.

When implemented,ui values are computed by travers-
ing the tree with any top-down traversal from the root. In
the stick-breaking metaphor, intermediate values can be
thought of as sizes of intermediate sticks after some num-
ber of breaks are performed. The inverse transformation
can be computed by traversing the tree up from its leaves,
as is done in a post-order traversal.

B.2 Some properties of the transformation
Lemma B.1. If leaves(i) is the set of indexes of leaf nodes
in i’s subtree, then

ui =
∑

j∈leaves(i)

uj =
∑

j∈leaves(i)

xj−n+1

Proof. This simply says that each intermediate stick piece
is the same length as the sum of the parts it is ultimately
broken into, and is easy to see through induction.

Let i be the index of a leaf node. The subtree’s only leaf
is i, so the theorem is trivially true,

ui = xi−n+1 =
∑

j∈leaves(i)

xj−n+1

Next consider any internal node i where the theorem is
true of its children. That is, where

uleft(i) =
∑

j∈leaves(left(i))

xj−n+1

uright(i) =
∑

j∈leaves(right(i))

xj−n+1

Then,

ui = yiui + (1− yi)ui

= uleft(i) + uright(i)

=
∑

j∈leaves(left(i))

xj−n+1 +
∑

j∈leaves(right(i))

xj−n+1

=
∑

j∈leaves(i)

xj−n+1

By mathematical induction, the theorem is true of all i =
1, . . . , 2n− 1.

Theorem B.2. T : (R+, (0, 1)
n−1) 7→ Rn

+ is a bijection.

Proof. For any u1, u
′
1 ∈ R+, and y, y ′ ∈ (0, 1)n−1,

where (u1, y) 6= (u ′
1, y

′), let x = T((u1, y)) and x ′ =
T((u ′

1, y
′)).

Suppose u1 6= u ′
1, then by Lemma B.1

n∑
j=1

xj = u1 6= u ′
1 =

n∑
j=1

x ′
j

and therefore x 6= x ′.
Suppose u1 = u ′

1, and let i be the index of the first
yi 6= y ′

i. Since nodes are numbered so that ancestors have
smaller indices than their children, for every ancestor j of
i, yj = y ′

j, therefore ui = u ′
i. All intermediate values are

positive (this follows from u1 being positive and elements
of y residing on an open (0, 1) interval), therefore

uleft(i) = yiui 6= y ′
iui = y ′

iu
′
i = u ′

left(i)
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And by Lemma B.1∑
j∈leaves(left(i))

xj−n+1 6=
∑

j∈leaves(left(i))

x ′
j−n+1

so x 6= x ′.
As x 6= x ′ in either case, T is injective.
To show that T is surjective as well, consider any x ∈

Rn
+.
Equations 7 and 8 can be rewritten as

ui = uleft(i) + uright(i) (10)

yi =
uleft(i)

uleft(i) + uright(i)
(11)

First, following Equation 9, let ui+n−1 = xi for i =
1, . . . , n, thus defining leaf node intermediate values. The
remaining intermediate values ui, for i = 1, . . . , n − 1

are then defined according to Equation 10, and yi for i =
1, . . . , n according to Equation 11.

Importantly, since elements of x are positive, it follows
that all intermediate values are positive, so the denomina-
tor of Equation 11 is never zero and yi ∈ (0, 1).

As Equations 7, 8 are satisfied if Equations 10, 11
are, and u1, y are defined by the latter, it follows that
T((u1, y)) = x and T is surjective, and thus bijective.

Corollary B.3. If u1 = 1 is fixed, then the resulting trans-
formation is a bijection between (0, 1)n−1 and ∆n−1 =
{x ∈ Rn

+|
∑n

i=1 xi = 1}.

Proof. A restriction of a bijection remains a bijection sowe
need only show that the image is∆n−1. It follows directly
from Lemma B.1 that the codomain of the restriction is
∆n−1. Furthermore, any x ∈ ∆n−1 has a (u1, y) where
T((u1, y)) = x, and again by Lemma B.1, u1 = 1, so
(u1, y) is in the restricted domain, and thus the image is
∆n−1.

For the purposes of approximating the RNA-Seq likeli-
hood function, we only care about this special case map-
ping onto the simplex.

For the approximation to be useful for computing prob-
ability densities of transformed variables, the determinant
of the Jacobian must also be efficiently computable, which
we show here.

Theorem B.4. Let (u1, y) ∈ (R+, (0, 1)
n−1), and JT

be the Jacobian matrix of T((u1, y)). Further, let ui for
i = 2, . . . , 2n − 1 be the intermediate values as defined in
Equations 7 and 8. Then

| det(JT )| =
n−1∏
i=1

ui

Or in words, the absolute value of the Jacobian determinant
is simply the product of the internal node intermediate val-
ues.

Proof. One way to derive the determinant for JT is to
separate the transformation T into the composition of a
number of simpler transformations. The stick breaking
metaphor suggests as natural decomposition: each break
can be treated as its own transformation. If T is thought of
as a sequence of n− 1 breaks, it can be represented as

T = Tn−1 ◦ · · · ◦ T1

where Ti is the ith break and has the associated break pro-
portion yi. This would let us write

| det(JT )| =
n−1∏
i=1

| det JTi
|

where JTi
is the Jacobian matrix for Ti.

The single break transformation

Ti : (Ri
+, (0, 1)

n−i) 7→ (Ri+1
+ , (0, 1)n−i−1)

can be thought of as taking i sticks lengths, and n − i

remaining breaking proportions, and breaking one of the
sticks according to the first remaining proportion. Equiva-
lently, Ti reflects taking one step in the tree traversal, com-
puting uleft(i), uright(i) from ui, yi, and then discarding
these latter two values.

Incidentally, because only two values are replaced, it is
not hard to see that each of these transformations is also a
bijection between different n dimensional spaces.

To give a concrete example of T being decomposed
into single break transformations, consider a balanced tree
with n = 4 leaves, and the input u1 = 100, y =
(0.2, 0.6, 0.9). In the following table, each row gives the
input to Ti, and the subsequent row its output. The final
result is a vector in Rn

+.
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i Ri
+ (0, 1)n−i

1 100 0.2, 0.6, 0.9

2 20, 80 0.6, 0.9

3 12, 8, 80 0.9

12, 8, 72, 8

Because Ti only replacesui, yi withuleft(i), uright(i), the
Jacobian matrix is the n by n identity matrix except for a
2 by 2 submatrix so that,

| det(JTi
)| =

∣∣∣∣∣
∣∣∣∣∣

∂uleft(i)
∂ui

∂uleft(i)
∂yi

∂uright(i)
∂ui

∂uright(i)
∂yi

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣∣∣∣ yi ui

1− yi −ui

∣∣∣∣∣∣∣∣
= |− yiui + yiui − ui|

= ui

And therefore

| det(JT )| =
n−1∏
i=1

| det JTi
| =

n−1∏
i=1

ui

A Dirichlet process is a special case of a Pólya tree dis-
tribution [Ferguson, 1974]. Here we show a variation of
this fact, that a Dirichlet distribution can be represented
using any Pólya tree transformation, regardless of topol-
ogy, if appropriately applied to Beta distributed random
variables.

This is important to RNA-Seq because a multinomial
distribution is often assumed when there is thought to
be no read ambiguity. A multinomial distribution renor-
malized to form a distribution over probability vectors
is a Dirichlet distribution. So this theorem says that if
Pólya tree transformed Beta random variables are fit to the
multinomial likelihood, nothing is lost except for a con-
stant of proportionality. If the underlying distributions
can reasonably mimic Beta distributions, then we can ex-
pect the fit to the multinomial to be very good.

Definition B.5 (Hierarchical Beta distribution family).
For n > 1, let T : (0, 1)n−1 7→ ∆n−1 be a Pólya tree
transformation and α ∈ Rn

+.

For i ∈ {1, . . . , n− 1}, let

ai =
∑

j∈leaves(i)

αj−n+1

where leaves corresponds to T ’s tree topology. Put in words,
if we associate αj with the jth leaf node (which is node j +
n− 1 in our numbering scheme), ai is the sum of α entries
corresponding to the leaf node descendents of internal node
i.

A random variable X is HierarchicalBeta(T, α) dis-
tributed iff X ∼ T(Y), where Y = (Y1, . . . , Yn−1) are inde-
pendent random variables with

Yi ∼ Beta(aleft(i), aright(i))

Hierarchical Beta is simply the family of distributions
induced by applying a Pólya tree transformation to Beta
distributed stick breaking proportions with a specifically
chosen parameterization scheme. Recall that a Pólya tree
distribution is a (potentially infinite) hierarchical stick
breaking process [Lavine, 1992, 1994,Mauldin et al., 1992]
with Beta distributed breaks. Hierarchical Beta distribu-
tions are thus a specific subset of Pólya tree distributions.

Definition B.6. A terminal stick break transformation

Bijk : (Rn−1
+ , (0, 1)) 7→ Rn

+

for 1 ≤ i ≤ n− 1 and 1 ≤ j < k ≤ n is defined by

x ′ = Bijk(x, y)

where x ′ is formed from x by removing xi and inserting yxi
and (1− y)xi such that they are x ′

j and x ′
k, respectively.

This is a bijection, and the inverse B−1
ijk, we call an initial

stick mend. It removes x ′
j and x ′

k and inserts xi = x ′
j+x ′

k,
and additionally yields y =

x ′
j

x ′
j
+x ′

k

.

In the proof of Theorem B.4 we described how a Pólya
tree transformation can be thought of as a series of sin-
gle stick break transformations, which we used to derive
the Jacobian determinant. In most trees there is a choice
in the order of single stick breaks, equivalent to choosing
one of multiple possible pre-order traversals of the tree,
each of which results in a different representation of the
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same Pólya tree transformation. Regardless of the order-
ing, there is always some final break, and this break is a
terminal stick break Bijk for some i, j, k.

Some notationwill be useful to decompose and build up
Pólya tree distributions.

Definition B.7. If

Ti : (Rj
+, (0, 1)

k) 7→ (Rj+1
+ , (0, 1)k−1)

is a single stick break transformation, as described in the
proof forTheorem B.4, which produces onemore stick length
by using the first breaking proportion, and if k > 1, we
can drop the last unused breaking proportion to form a new
transformation we denote

T−
i : (Rj

+, (0, 1)
k−1) 7→ (Rj+1

+ , (0, 1)k−2)

Similarly, we can add another unused breaking propor-
tion if k ≥ 0, which we’ll write as

T+
i : (Rj

+, (0, 1)
k+1) 7→ (Rj+1

+ , (0, 1)k)

This notation lets us peel off the final break of a Pólya
tree transformation. As we saw, the last break is a terminal
stick break Bijk for some i, j, k. So any Pólya tree trans-
fomation T with n > 2 can be written as Bijk ◦ S, for a
transformation

S : (R+, (0, 1)
n−1) 7→ (Rn−1

+ , (0, 1))

If we dispense with S’s unused breaking proportion, we
have

S− : (R+, (0, 1)
n−2) 7→ Rn−1

+

which is itself a Pólya tree transformation. Similarly, we
can add another breaking proportionwith the T+ notation
to extend a Pólya tree transformation.

Lemma B.8 (Hierarchical Beta breaking). Let X ∼

HierarchicalBeta(T, α), where T is a Pólya tree transforma-
tion. Let α ∈ Rn

+, and Z ∼ Beta(a, b) where a + b = αi

for some 1 ≤ i ≤ n, and let Bijk be a terminal stick break,
then

Bijk(X,Z) ∼ HierarchicalBeta(Bijk ◦ T+, α ′)

where α ′ is formed by removing αi from α and inserting a
and b such that α ′

j = a and α ′
k = b.

Proof. The original Hierarchical Beta distribution is de-
fined by the Pólya tree transformation T applied to n − 1

Beta distributed random variables Y1, . . . , Yn−1, parame-
terized with α as they are in Definition B.5.

Applying the terminal stick break Bijk simply does one
more break according to one more Beta distributed ran-
dom variable Z. So the resulting distribution is defined
by the the Pólya tree transformation Bijk ◦ T+ applied to
Beta random variables Y ′ = (Y1, . . . , Yn−1, Z). It only
remains to be seen that Y ′ follows the Hierarchical Beta
parameterizations with α ′.

Z is defined to trivially obey these rules, and restrict-
ing a + b = αi and inserting a, b into α to form α ′

preserves the parameterization of the rest of the distribu-
tion, so we can say Bijk(X,Z) ∼ HierarchicalBeta(Bijk ◦
T+, α ′).

Lemma B.9 (Dirichlet mending). If X ∼ Dirichlet(α) and
B−1
ijk is an initial stick mend, then

B−1
ijk(X) ∼ (Dirichlet(α ′),Beta(αj, αk))

where α ′ is formed from α by removing αj and αk and in-
serting their sum so that α ′

i = αj + αk.

Proof. This follows from two properties of the Dirichlet
distribution: subcompositional invariance and amalga-
mation invariance (see, for example, Pawlowsky-Glahn
et al. [2015] p. 121). If x ∼ Dirichlet(α), the former
property says, in the narrow case needed here, that for any
1 ≤ k1 < k2 ≤ n,(

xk1

xk1
+ xk2

,
xk2

xk1
+ xk2

)
∼ Dirichlet(αk1

, αk2
)

or, equivalently,
xk1

xk1
+ xk2

∼ Beta(αk1
, αk2

)

The latter property says that if {1, . . . , n} is partitioned into
k > 1 nonempty sets I1, . . . , Ik, then(∑

i∈I1

xi, . . . ,
∑
i∈Ik

xi

)
∼

Dirichlet

(∑
i∈I1

αi, . . . ,
∑
i∈Ik

αi

)
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For any X ∼ Dirichlet(α), and initial stick mend B−1
ijk,

let (X ′, Y) = B−1
ijk(X).

From the definition of an initial stick mend, Y =
Xj

Xj+Xk
. The subcompositional invariance property then

gives us
Y ∼ Beta(αj, αk)

Since α ′ is formed by by summing two elements of α,
by the amalgamation invariance property,

X ′ ∼ Dirichlet(α ′)

Theorem B.10. For any Pólya tree transformation T :
(0, 1)n−1 7→ ∆n−1 where n ≥ 2 and any α ∈ Rn

+

Dirichlet(α) = HierarchicalBeta(T, α)

In other words, theDirichlet distribution family and the
Hierarchical Beta distribution family are exactly the same,
regardless of the tree topology used for the Hierarchical
Beta.

Proof. The proof will proceed by induction over n.
(Base case) Let n = 2. For any α ∈ R2

+ let Y ∼

Beta(α1, α2). Note that, because Dirichlet generalizes
Beta, (Y, (1− Y)) ∼ Dirichlet(α).

There is only one Pólya tree transformation T : (0, 1) 7→
∆1, which takes the form T(Y) = (Y, 1 − Y) and by Defi-
nition B.6, T(Y) = (Y, 1−Y) ∼ HierarchicalBeta(T, α), so
we have

Dirichlet(α) = HierarchicalBeta(T, α)

(Inductive step) Now assume the proposition is true for
some n ≥ 2.

For any α ∈ Rn+1
+ and any Pólya tree transformation

T : (0, 1)n 7→ ∆n, we can decompose T as T = Bijk ◦ S
for transformations S and Bijk where Bijk is a terminal
stick break for some indexes i, j, k.

By Lemma B.9, if X ∼ Dirichlet(α) then

(X ′, Y) = B−1
ijk(X) ∼ (Dirichlet(α ′),Beta(αi, αj))

where α ′ is defined as it is in Lemma B.9.

By the inductive hypothesis,X ′ is alsoHierarchical Beta
distributed for any Pólya tree transformation onto ∆n−1,
and since S− is a Pólya tree transformation onto ∆n−1,

Dirichlet(α ′) = HierarchicalBeta(S−, α ′)

Because Bijk and B−1
ijk are inverses,

Bijk(X
′, Y) ∼ Dirichlet(α)

and by Lemma B.8,

Bijk(X
′, Y) ∼ HierarchicalBeta(T, α)

and so we have

Dirichlet(α) = HierarchicalBeta(T, α)

And by induction, this equality holds for all such α, T

and any n ≥ 2.

This result can be strengthened to say that not only can
any Dirichlet distribution be constructed using any Pólya
tree transformation of the same dimensionality, but the
Hierarchical Beta construction is the only way to do so.
First, we need a simple result about random variables un-
der bijections.

LemmaB.11. For any randomvariablesY = (Y1, . . . , Yn)
and Y ′ = (Y ′

1, . . . , Y
′
n), and bijection T , if T(Y) and T(Y ′)

are identically distributed, Y and Y ′ must also be identically
distributed.

Proof. To show the contrapositive, suppose T(Y) and
T(Y ′) are not identically distributed. There is then some
y where P(T(Y) = y) 6= P(T(Y ′) = y). Since

P(T(Y) = y) = | det JT |P(Y = T−1(y))

and

P(T(Y ′) = y) = | det JT |P(Y ′ = T−1(y))

where JT is the Jacobian matrix for T , it follows that

| det JT |P(Y = T−1(y)) 6= | det JT |P(Y ′ = T−1(y))

P(Y = T−1(y)) 6= P(Y ′ = T−1(y))

Therefore Y and Y ′ are not identically distributed either.
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Next, we can strengthen Theorem B.10.

Corollary B.12. For any Pólya tree transformation T , α ∈
Rn

+, and random variables Y = (Y1, . . . , Yn−1). If

T(Y) ∼ Dirichlet(α)

then
Yi ∼ Beta(aleft(i), aright(i))

for i ∈ {1, . . . , n−1}wherea is defined as it is in Definition
B.5.

Proof. For any Pólya tree transformation T and α ∈ Rn,
we know from Theorem B.10, that if Y = (Y1, . . . , Yn) are
Beta distributed with the Hierarchical Beta parameteriza-
tion, then

T(Y) ∼ Dirichlet(α)

From Lemma B.11, any other random variables Y ′ =
(Y ′

1, . . . , Y
′
n) where T(Y ′) ∼ Dirichlet(α) must be identi-

cally distributed to Y, and so must also be Beta distributed
with the same parameterization.

To summarize these results: any Dirichlet distribution
can be constructed using any Pólya tree transformation of
the same dimensionality, and furthermore this construc-
tion is unique.

B.3 Minimizing KL-divergence
Minimizing the KL-divergence between the approxima-
tion q and the normalized likelihood function P(r|·) (de-
fined in Equation 3), with a set of observed reads r, uses
a standard variational inference procedure, which we will
briefly recapitulate here.

Recall that the approximation q can be represented
as a parameterized transformation S applied to a non-
parameterized distribution (i.e., the reparameterization
trick). In our case, the non-parameterized distribution
is simply a standard n − 1 dimensional Normal distribu-
tionN(0, I). The transformationS includes the sinh-asinh
transformation, shifting and scaling, the logistic transfor-
mation, and the Pólya tree transformation T , whichwe col-
lapse into a single function here for simplicity.

Explicitly, the combined transformation, for y ∈ Rn−1

is

Sµ,σ,α(y) = T(logistic(µ+ σ� sinh(asinh(y) + α)))

where µ, σ, α is the parameterization, � is the element-
wise product, and the logistic, sinh, and asinh functions
are also applied element-wise. The logistic function has
the standard definition logistic(x) = (1 + exp(−x))−1,
and T is a Pólya tree transformation. Note that T is not
parameterized, since it is chosen prior to optimization, as
discussed in Section 2.2.3. To simplify notation, we will
combine parameter vectors as ϕ = (µ, σ, α) and use Sϕ
to denote the parameterized transformation.

The approximate normalized likelihoodqϕ is defined as
the transformation Sϕ applied to a multivariate standard-
normal z ∼ Normal(0, I). If p is the density function
for this Normal distribution, the approximation’s density
function is then

qϕ(x) = p(S−1
ϕ (x))| det JS−1

ϕ
|

where JS−1
ϕ

is the Jacobianmatrix for the inverse Sϕ trans-
formation.

With this set up in mind, the objective function can be
rewritten in a form amenable to stochastic gradient de-
scent.

argmin
ϕ

KL(qϕ||P)

= argmin
ϕ

Ex∼qϕ
[logqϕ(x) − logP(r|x)]

= argmax
ϕ

Ex∼qϕ
[logP(r|x) − logqϕ(x)]

= argmax
ϕ

Ex∼qϕ[
logP(r|x) − logp(S−1

ϕ (x)) − log | det JS−1
ϕ

|
]

= argmax
ϕ

Ez∼N(0,I)[
logP(r|Sϕ(z)) − logp(z) + log | det JSϕ

|
]

= argmax
ϕ

Ez∼N(0,I)

[
logP(r|Sϕ(z)) + log | det JSϕ

|
]

= argmax
ϕ

Ez∼N(0,I)

[
logP(r|Sϕ(z)) + log | det JSϕ

|
]

The penultimate step follows because Ez[− logp(z)] is
a constant (specifically, the entropy of a multivariate stan-
dard Normal distribution), and in the final step we replace
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the normalized likelihood P(·) with the actual likelihood
P(r|·), since the constant of proportionality becomes an
irrelevant additive constant here.

Intuitively, the objective is choosing an approximation
that maximizes the expected log-likelihood, with a Jaco-
bian term accounting for the transformation. What we
are left with is an expectation than can be easily optimized
through stochastic gradient descent. Each iteration of the
optimization algorithm draws from N(0, I), transforms
the vector, evaluates the RNA-Seq log-likelihood function,
and adds to that the log of the Jacobian determinant of the
transformation, computing the gradients with respect to
ϕ. In practice we use Adam [Kingma and Ba, 2014] to up-
date ϕ estimates each iteration, and 500 iterations, with
each iteration estimating gradients using 6 Monte Carlo
samples of z.

C Regression Model
Differential expression is determined throughout the pa-
per using a probabilistic linear regression model on log-
expression, but with the additional layer of approximate
likelihood.

In defining themodelwewill use the following notation:
m number of samples in the experiment
n number of transcripts
k number of factors/columns in the design matrix
X m by n matrix of log-expression values
A m by k design matrix
W k by n matrix of regression coefficients
µ length n log-expression bias vector
σ length n transcript standard deviation vector
r some representation of the RNA-Seq reads
1 ones vector (length m in all uses below)

The basic regression model is defined by,

X|µ, σ,W ∼ Normal(1µT +AW, 1σT )

r|X ∼ ApproximateLikelihood(softmax(X))

The softmax functions transforms the log-expression to
relative expression. There are some subtleties of this move
noted below. The bias vector µ has a Normal prior with a
large variance.

Apart from the inclusion of the extra layer r|X, treat-
ing the reads as observed and expression values as unob-
served, this is a fairly standard log-linear model of gene

expression, similar to the one described by Smyth [2004],
for example.

Prior on regression coefficients
Operating under the prior expectation that most tran-
scripts are not differentially expressed, W is given a spar-
sity inducing prior. Elements of Wij have the prior given
by,

Wij|λij ∼ Normal(0, λij)
λij|ηij ∼ HalfCauchy(0, ηij)

ηij ∼ HalfCauchy(0, 1)

This is a version of what Bhadra et al. [2017] describe as
the “Horseshoe+” prior.

Modeling variance
Transcript expression standard deviation σ is shrunk to-
wards standard deviation estimates of transcripts with
similar expression.

To do this we choose h = 15 “knots” at expression val-
ues, equally spaced between theminimum andmaximum,
and compute weights ujℓ between every transcript j and
knot ℓ, using the squared difference between the knot’s
expression value and the transcript expression averaged
across samples. Theseweights are pre-computed using ini-
tial approximate posterior mean expression estimates, ob-
tained by applying the approximation’s transformation to
a zero vector. Each knot has associated parameters αℓ, βℓ.

αℓ ∼ HalfCauchy(0, 1)
βℓ ∼ HalfCauchy(0, 1)

Per-transcript standard deviation is Inverse-Gamma
distributed with parameters computed as weighted sums
of these.

σj ∼ InverseGamma

(
h∑

ℓ=1

ujℓαℓ,

h∑
ℓ=1

ujℓβℓ

)
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Scale penalization
Because RNA-Seq measures relative expression, detect-
ing changes is absolute expression involves additional as-
sumptions. Various normalization schemes have been
proposed to overcome this [Bullard et al., 2010]. Other
methods avoid the problem by looking for compositional
changes [McGee et al., 2019]. Similar to the normaliza-
tion schemes, our model attempts to find changes in ab-
solute expression by assuming most transcripts or genes
aremaintaining relatively constant expression (or constant
lack of expression).

Because of the the softmax transformation, log-
expression values are not on a fixed scale, which is to say
for a given sample i,

∑n
j=1 exp(xij) is not constrained to

sum to any particular number. How relative scales be-
tween samples are inferred determines how changes in
transcript composition are interpreted as changes in ex-
pression.

Because of the sparsity inducing prior, higher proba-
bility is achieved when fewer transcripts are differentially
expressed. If this assumption is reasonable relative scal-
ing will be arrived at automatically so as to minimize
differences between samples. Of course, there are cir-
cumstances when this assumption fails, particularly in the
presence of large changes in the overall quantity of RNA
between groups of cells.

In practice we found it helpful for inference to addition-
ally penalize these exponent sums from straying too far. To
find reasonable values, we use initial posterior mean esti-
mates to estimate relative scales that minimize differential
expression of highly expressed transcripts, then include an
additional Normal prior in the model on these exponent
sums, centered on the scale estimates. This is simply one
approach to putting an informative prior on relative scale.

Inference
The model is fit using variational inference implemented
in TensorFlow. Computing the Pólya tree transforma-
tion efficiently, particularly many different transforma-
tions with different tree topologies, using tensor opera-
tions is not straightforward. To avoid this issue, we im-
plemented a custom TensorFlow operation in C++ which
computes transformations in parallel on CPUs. Currently,
there is no GPU version of this operation, so while run-

ning inference on GPUs greatly speeds it up (for example,
running a regression on 96 samples took 44 minutes with
a GPU, and 168 minutes without), computing the Pólya
tree transformation remains the bottleneck, and an obvi-
ous target for further improvements in efficiency.

When calling differential expression with this model,
effect size is always considered explicitly. Because the
model is continuous, the posterior probability of no
change in expression is zero. We instead look for tran-
scripts or genes with a sufficiently large posterior proba-
bility of the effect size being above some threshold. Unlike
most null-hypothesis test models which typically (though,
not necessarily) adopt a null hypothesis of zero change,
there is an extra threshold that must be chosen: the mini-
mum effect size. This is a slight complication, but has the
advantage of being up front about what is considered a po-
tentially interesting effect.
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