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Abstract

While the average cell-cycle length in a cell population can be derived from pulse-chase ex-
periments, proliferative heterogeneity has been difficult to quantify. Here we describe CYCLE-
FLOW, a broadly applicable method that applies Bayesian inference to combined measure-
ments of EdU incorporation and DNA content. CYCLEFLOW accurately quantifies the fraction
of proliferating versus quiescent cells and the durations of cell-cycle phases of the proliferat-
ing cells in vitro and in vivo.

Main

Owing to advances in live-cell microscopy, we are gaining deep understanding of how eu-
karyotic cells transition between quiescence and proliferation and control the length of their
division cycle 1–10. These studies rely on direct observation of cell cycles in vitro. Similar quan-
tification of cell cycles and quiescence during development, tissue renewal and tumor growth
in the intact organism has not been possible by imaging, and existing proliferation assays in
vivo only partially address the key questions. In particular, the rule of thumb that high S and
G2/M fractions indicate rapid cell proliferation (as measured by DNA staining or single-cell
RNA-sequencing (scRNA-Seq) data) can mislead, as we will see below. To quantify cell pro-
liferation, pulse-chase experiments with thymidine analogs or other labels have been widely
employed 11 and, recently, improved by using sophisticated double-labeling techniques 12,13.
However, the quiescent fraction is not resolved in these experiments, which also confounds
the estimation of cell-cycle duration. Quiescent cells are often distinguished from cycling
cells by (negative) staining for Ki67, but the protein continues to be expressed after cells have
stopped cycling, complicating the interpretation of the results 14. An alternative assay for qui-
escence, long-term retention of a diluting label, also has limitations, as initially quiescent cells
will not be labeled when using thymidine analogs, and dilution of fluorescent histone variants
is difficult to distinguish from degradation 15. Also, there is no generic gene-expression signa-
ture for quiescence that could be detected in scRNA-Seq data. Thus, quiescence has largely
remained a qualitative rather than quantitative concept despite its key role in stem cell dif-
ferentiation and therapy resistance.

Here we describe CYCLEFLOW, a time-efficient method that jointly quantifies the quies-
cent fraction in a cell population and the duration of the cell-cycle phases in the proliferat-
ing cells, both in vitro and in vivo. CYCLEFLOW combines two readily applicable experimental
techniques — pulse-chase with a thymidine analog (e.g., 5-ethynyl-2’-deoxyuridine, EdU) and
total DNA staining 16 — with Bayesian parameter inference. The key idea is to label a cohort of
S phase cells with a brief pulse of tymidine analog and then use the DNA content as a coordi-
nate to follow the labeled cells through the cell cycle, eventually observing re-entry of divided
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cells into the cell cycle or transition into a quiescent state (Fig. 1a). We model label dynamics
during cell-cycle progression mathematically and, confronting the model with a time series of
flow-cytometry snapshots, infer the fractions of proliferating versus quiescent (G0) cells and
the time the former spend in the G1, S and G2/M phases of the cell cycle.

We first applied CYCLEFLOW to the MYC-driven proliferation of a cancer cell line, TET21N,
in culture. This system provides a ground truth for evaluating the performance of CYCLE-
FLOW, as cell-cycle duration and absence of quiescence have been established by time-lapse
imaging 10. We grew TET21N cells in the exponential phase, added EdU to the culture medium
and washed after one hour; cells were collected at six time points over the course of 18 hours,
and analyzed by flow cytometry for DNA and EdU content (Fig. 1b). As expected for an expo-
nentially growing population, the proportions of the cell-cycle phases (Fig. 1c) stayed approx-
imately constant; for brevity, we denote the corresponding gates by G01 (2n DNA content),
S (DNA content intermediate between 2n and 4n) and G2M (4n DNA content). Three hours
after EdU application, all cells in S were EdU-positive (Fig. 1d). At 5 hours, cells in the initial
stages of S were not EdU-labeled, implying that EdU was no longer available for de novo la-
beling. This allowed us to follow the progression of the cohort of initially EdU-labeled cells
around the cell cycle; at 5 hours, these cells were predominantly in late S and G2M. The la-
beled cohort returned to G01 (14 hours), remaining clearly distinguishable from EdU-negative
cells. From G01, labeled cells re-entered into the cell cycle and progressively appeared again
in S (14 and 18 hours). Thus, EdU pulse labeling allows following a cohort of cells over one
cycle.

However, there are several difficulties in interpreting these data in a straightforward man-
ner. First, the cells within the EdU-labeled cohort do not transit synchronously to G2, which
could be due to variable starting points in S phase at the time of labeling or cell-to-cell varia-
tions in the speed of progress. Second, cells within G01 may be either in G0 or G1. Third, the
precise time course of EdU availability is not measured. Finally, the assignment of cell-cycle
phases based on DNA content has limited resolution: Note that, at 3 hours, some cells at the
right-hand edge of G01 were EdU-positive, implying that these had already entered S phase
but were not identified as such by DNA staining (Fig. 1d). Likewise, it is possible that some
labeled cells in G2M were still in late S phase. To address these difficulties, CYCLEFLOW bases
the interpretation of the experimental data on a mathematical model of cell-cycle progres-
sion and EdU labeling that takes into account all relevant features (Fig. 1e,f; Supplementary
Table 1; Online Methods). Specifically, the model describes the progression of a cell through
the cycle as a Markov process, dividing each cycle phase (G1, S and G2/M) into subphases in
order to account for phase length variability 8 (Fig. 1e). Upon division, cells may continue to
cycle or enter quiescence (G0). Release from G0 may occur but can be neglected on the short
timescale of the experiment. Cells may also be lost from any cycle phase or G0, e.g., due to
cell death or differentiation. As long as EdU is present in the medium (as estimated from the
data), cells in S phase can incorporate it and become labeled (Fig. 1f). Finally, the model ex-
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ploits the joint information on DNA content and EdU labeling available for each cell, rather
than DNA-content-based gates only, to assign cells to the cycle phases.

Using Bayesian inference, we estimated the model parameters from the data by Monte-
Carlo sampling from the posterior distribution. The model accurately fitted the experimental
data within measurement error (Fig. 1g,h), inferring a cycle length of 18.4 (16.7, 21.1) hours
(posterior median and (5%, 95%) quantiles) and phase lengths for G1, S and G2/M of 6.5 (5.5,
8) hours, 6.8 (5.5, 9) hours and 5 (4.3, 5.6) hours, respectively (Fig. 1i). Using direct observa-
tion by time-lapse microscopy of TET21N cells expressing the FUCCI Cdt1 degron 10, reliable
values were obtained for total cycle and G1 phase lengths, and these matched the results of
CYCLEFLOW (Fig. 1j). Moreover, CYCLEFLOW inferred the fraction of G0 cells to be negligible
(Fig. 1k), as observed 10. Taken together, these findings validate CYCLEFLOW.

Next, we applied CYCLEFLOW to a developmental process in vivo, where the extent of qui-
escence has been controversial—the differentiation of T cells in the thymus. We focused on
the CD4+ CD8+ double-positive (DP) thymocytes, the development of which is accompanied
by a transition from proliferation to quiescence 17. Varying estimates of the quiescent fraction
(30-90%) have been put forward but direct quantification has been lacking 18. To address this
question, we injected a single intra-peritoneal dose of EdU into young adult mice and per-
formed EdU and DNA staining at consecutive time points (Fig. 2a). Gating by DNA content
showed >90% of DP thymocyte in G01 (Fig. 2b). We observed rapid termination of EdU la-
beling (Fig. 2c, 3 hours) and, as before, return of the labeled cohort to G01 (Fig. 2c, 3 and 5
hours) followed by re-entry into S and G2M (Fig. 2c, 14 hours). Of note, a large fraction of cells
remained unlabeled. All these features were captured by the mathematical model, which re-
produced both the steady-state cell-cycle distribution (Fig. 2d) and the dynamics of labeled
cells (Fig. 2e).

Interestingly, although the fraction of labeled cells in S and G2M plateaued at low values
already after a few hours, the labeled fraction in G01 kept increasing for the duration of the ex-
periment (18 hrs), raising the question of which process fuels the continuing label accumula-
tion. G01 contains cells in G1 and G0; the model separates these contributions and shows that,
upon exit from mitosis, nearly equal fractions of cells enter quiescence and continue cycling
(Fig. 2f). While the fraction of labeled cycling cells quickly plateaus (similar to the TET21N
cells, Supplementary Fig. 1), the labeled quiescent cells continue to accumulate. Thus, in DP
thymocytes proliferation precedes quiescence, which is consistent with the known develop-
mental progression 18.

Comparing the experimental data and the inferred cell-cycle parameters for TET21N cells
and DP thymocytes illustrates how the simple rule of thumb of judging proliferation rate by
S and G2/M fractions can fail. The cell-cycle phase distributions show much higher S and
G2M fractions for TET21N cells (compare Figs 1c and 2b), which would indicate a higher pro-
liferation rate in this population compared to the DP thymocytes. However, the proliferating
DP thymocytes actually cycle faster than TET21N cells, but this is masked by the high frac-
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Fig. 1 | Outline of CycleFlow and application to cancer cell proliferation in vitro. a, Schematic of Cy-
cleFlow: The progression of EdU labeled cells through the cell cycle is tracked over time, the mathematical
model is fitted to the data, and cell-cycle parameters are estimated via Bayesian inference. b, EdU pulse-chase
experiment for cells in culture. c, Distribution of cells in the G01, S, and G2M gates as determined by DNA
content for TET21N (averaged over all time points). Error bars indicate standard error of the mean (SEM);
n = 25. d, Progression of EdU labeled TET21N cells through the cell cycle, as defined by DNA content. Four
representative flow-cytometry snapshots are shown; mean fractions of cell subpopulations (with SEM) over all
experimental repeats at the corresponding times are indicated in h. e, Schematic of mathematical model for
cell-cycle progression; cell-cycle phases are divided into sub-phases. Parameters: _, ` and a , progression rates
through subphases of G1, S and G2/M, respectively, with : , 9 and <, denoting subphase numbers; 0 , probability
of cell cycle arrest. f, Mathematical Model of EdU incorporation during cell progression in S phase. U + V, total
EdU incorporation rate; V + W = `, progression rate. g, Model fit (left diagram) versus experimental data (right
diagram, same as c) for the distribution of cells in the G01, S, and G2M gates. Error bars indicate 90% credible
intervals (left diagram). h, Time courses of EdU-labeled TET21N cells in G01, S, and G2M gates compared
between experimental data (error bars, pooled SEM; n = 3 to 6 per time point) and model fit. Population sizes
are given as fractions of total cells. i, Duration of total cell cycle, G1, S and G2/M phases of TET21N cells inferred
by CycleFlow. White dots, median values; black bars, interquartile ranges. j, Mean duration of cell-cycle and
G1 phase of TET21N, expressing the Cdt1 FUCCI degron, measured with time lapse microscopy (data taken from
Ref.10). k, Quiescent fraction of TET21N cells inferred by CycleFlow.
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tion of quiescent thymocytes. CYCLEFLOW allows us to see beyond population averages and
disentangle cell-cycle heterogeneity by inferring the underlying cell-cycle phase distribution
(Fig. 2g), rather than observing gated fractions. Specifically, TET21N cells proliferate uniformly
(quiescent fraction 3 (0, 9) %), with 18.4 (16.7, 21.1) hours average cycle length (cf. Fig. 1i,k). By
contrast, the large G01 fraction in DP thymocytes consists mainly of quiescent cells, which
constitute 85 (84, 86) % of all cells (Fig. 2h), corroborating the existence of a large quiescent
fraction 18. The remaining 15 (14, 16) % of cells cycle extremely rapidly, with a cycle length of
10 (9.4, 10.9) hours (Fig. 2i). We note that, whereas Chao et al. (Ref 8) found that cycle length
of different cell types was primarily set by the duration of G1, all phases appear to be short-
ened in DP thymocytes (Fig. 2i), with a particularly swift passage through G2/M. This finding
indicates that proliferation rate can be regulated at all stages of the cell cycle 19.

To conclude, the main advance of CYCLEFLOW is that it disentangles quiescent (G0) from
cycling (G1) cells with 2< DNA content. In turn, this enables determination of the true cell-
cycle phase durations of the proliferating cells. In so doing, our mathematical framework
overcomes salient problems of previous approaches, including the imperfect overlap between
cell-cycle phases and DNA content gates and the gradual removal of EdU.CYCLEFLOW is equally
applicable for steady-state (e.g., thymocytes) and expanding (e.g., TET21N cells) cells, both in
vivo and in vitro. Application to other cell types is straightforward: the measurements should
extend over roughly one cell cycle with several (typically 4-8) loosely distributed time points.
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Fig. 2 | Application of CycleFlow to determine quiescence and proliferation rate of DP thymocytes in
vivo. a, Schematic of the EdU pulse-chase experiment. b, Distribution of cells in the G01, S, and G2M gates as
determined by DNA content for DP (averaged over all time points). Errors bars indicate standard error of the
mean (SEM); n = 31. c, Progression of EdU-labeled DP thymocytes through the cell cycle, as defined by DNA
content. Four representative flow-cytometry snapshots are shown; mean fractions of cell subpopulations (with
SEM) over all experimental repeats at the corresponding times are indicated in e. d, Model fit of the distribution
of cells in the G01, S, and G2M gates, error bars indicate 90% credible interval (left bar) and corresponding data
(right bar; same as b). e, Time courses of EdU-labeled DP cells in G01, S, and G2M gates compared between
experimental data (error bars, pooled SEM; n = 3 to 6 per time point) and model fit. Population sizes are given as
fractions of total cells. f, Inferred fractions of EdU-labeled G0 and G1 cells in the G01 gate. g, Inferred distribution
of cell-cycle phases including G0 (median values). Left bar, TET21N cells; right bar, DP thymocytes. h, Inferred
fraction of quiescent cells in TET21N cells (left) and DP thymocytes (right). White dots, median values; black
bars, interquartile ranges. i, Duration of G1, S and G2/M phases of DP thymocytes (blue) compared to TET21N
cells (red) inferred by CycleFlow. White dots, median values; black bars, interquartile ranges.
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Methods

Experimental

Labeling and analysis of TET21N cells in vitro

SH-EP TET21/N (TET21/N) cells were grown in RPMI 1640 medium supplemented with 10%
Fetal Calf Serum (FCS) at 37°C, 5% CO2 and 88% humidity. For each sample, 1.5 × 106 cells
were seeded on 15 cm Petri dishes one day before EdU treatment and then treated with EdU
(Invitrogen) at a final concentration of 10 μM in the culture medium. Cells were then har-
vested and fixed in 4% paraformaldehyde solution in PBS and kept in 90% methanol 10% PBS
solution at −20°C. For flow cytometry analysis, cells were washed in washing buffer (1% Bovine
Serum Albumin(BSA), 0.1% TritonX in PBS) and resuspended in PBS supplemented with 1%
BSA. Cells were then permeabilized and the Click-it reaction was performed using the Click-
iT Plus EdU Alexa Fluor 488 flow cytometry Kit (Invitrogen) according to the manufacturer’s
protocol. For total DNA staining, cells were resuspended in FxCycle™ Violet (Thermofisher
Scientific) solution (1:1000 in Click-it Permeabilization buffer) prior to flow cytometry mea-
surement. Data were acquired on a MACSQuant VYB (Miltenyi Biotec) and cell populations
were analyzed with FlowJo 10.

Mice

C57BL/6J mice were used, both female and male. Mice were kept in individually ventilated
cages under specific pathogen-free conditions in the animal facility at the German Cancer
Research Center (DKFZ, Heidelberg). All animal experiments were performed in accordance
with institutional and governmental regulations, and were approved by the Regierungsprä-
sidium (Karlsruhe, Germany).

Labeling of thymocytes in vivo and analysis

Mice of ages between eleven and sixteen weeks were injected intraperitoneally with 1 mg EdU
(Invitrogen) diluted in sterile PBS. At several time points after injection mice were sacrificed
and thymi harvested. Thymi were mashed in a 40 μm filter with the plunger of a syringe. To
identify dead cells, cells were incubated in Zombie Red™ Fixable Viability dye (Biolegend)
solution (1:1000 in PBS). Fc receptors were blocked by incubating cells in PBS supplemented
with 5% FCS with 250 μ g.ml−1 purified mouse IgG ( Jackson ImmunoResearch Laboratories).
Antibody stainings were performed in PBS/5% FCS on ice for 30 minutes with optimal dilu-
tions of commercially-prepared antibodies. The following antibodies were used: CD8a allo-
phycocyanin (APC) (53-6.7), TCR gd BV421 (GL3) from eBioscience ; CD4 phycoerythrin (PE)
(H129.19), Ter119 BV421 (Ter119) from BD Pharmingen; CD11b BV421 (M1/70), CD19 BV421 (6D5),
NK1.1 BV421 (PK136), Gr-1 BV421 (RB6-8C5) from Biolegend. The lineage cocktail was com-
posed of CD11b, CD19, Ter119, NK1.1, Gr-1 and TCR gd. After antibody staining, cells were
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fixed, permeabilized and the Click-it reaction was performed using the Click-iT Plus EdU
Alexa Fluor 488 flow cytometry kit (Invitrogen). For total DNA staining, cells were resuspended
in FxCycle™ Violet solution (1:1000 in Click-it Permeabilization buffer) prior to flow cytome-
try measurement. Data was acquired on a BD LSRFortessa™ cell analyzer (Becton Dickinson)
and cell populations were analyzed with FlowJo 10. Double-positive thymocytes were defined
as lineage− CD4+CD8+.

Mathematical inference

Model for cell-cycle progression

Within a growing cell population, each cell progresses through the cycle phases G1, S and G2

(Fig. 1e). Each phase requires a stochastic time to complete. We capture this variability by
dividing the cycle phases into subphases: G1,1 through G1,: , S1 through S; and G2,1 through
G2,< , respectively. Each subphase corresponds to an approximate progress within the respec-
tive cycle phase but has no further biological meaning. We then model the transitions from
one subphase to the next (and from the last subphase of a cycle phase to the first subphase
of the next) as rate processes with rates _, ` or a , for G1, S and G2, respectively. In this model,
the times to complete each of the cycle phases are Erlang-distributed random variables, with
means gG1 = :/_, gS = ;/`, and gG2 = </a , and coefficients of variation (CVs), 1/

√
: , 1/√;

and 1/√<, respectively. At the end of the cycle, a cell divides to produce two daughters. A
daughter cell may then, with probability 0 , exit the cell cycle into the arrested state G0, or,
with probability 1 − 0 , restart the cycle in phase G1,. We consider entry into G0 to be irre-
versible on the time scale of the experiment, and therefore exclude any transition from G0

back into the cycle. Finally, cells may be lost from any cycle phase or G0 with rate X , due to
cell death or differentiation.

The dynamics of subpopulations is then described by a linear system of ordinary differ-
ential equations. Written in matrix form,

3
3BT = TT − XT , (1)

where the vector of cell numbers in the various cycle subphases is defined as

T = [G1,1(B ), . . . ,G1,: (B ), S1(B ), . . . , S; (B ),G2,1(B ), . . . ,G2,< (B ),G0(B )]T, (2)
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and the rate matrix

T =



−_ 2(1 − 0)a 0

_
. . .

...
. . . −_

_ −`
`

. . .

. . . −`
` −a

a
. . .

. . .

a −a ...

20a 0



. (3)

In a cell population deep in the exponential growth phase, the total cell number # (B )
increases exponentially, while the proportions of cells in the various subphases are constant;
we call this regime steady growth. At steady growth,

T (B ) = # (B )n = # (0)4 (^−X )B × [g1,1, . . . , g1,: , s1, . . . , s; , g2,1, . . . , g2,< , g0]. (4)

Here, we have denoted the population growth rate by (^ − X ). The proportions of cells in
the subphases are given by the steady-growth distribution n ; denoting the constant vector of
ones by 1 = [1, . . . , 1]T, the normalization of n reads 1Tn = 1. Eq. 1 then yields

3
3BT (B ) = # (B ) (^ − X ) × n = # (B ) [Tn − Xn], which implies ^n = Tn . (5)

Thus ^ is the dominant eigenvalue of the matrix T, and n is the associated normalized eigen-
vector. The eigenvalue ^ can be interpreted as the population growth rate in the absence of
loss.

Steady-growth distribution

To find n , we start by normalizing Eq. 5:

^ = 1TTn = [0, . . . , 0,a, 0]Tn = ag2,< . (6a)

Eq. 6a implies that the total rate of production of new cells ^# equals the population in the
final subphase G2,< times its rate of completion. Now consider steady growth with production
of new cells, where G2,< , ^ > 0. Starting from Eq. 6a and backsubstituting using Eq. 5, we
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compute the remainder of the cycle subphase distribution in steady growth as a function of^ :

g0 = g2,<20a/^ = 20 (6b)

g2,<−8 = g2,<
(^ + a) 8
a 8

=
^

a

(^ + a
a

) 8
0 < 8 < < (6c)

s; = g2,1
^ + a
`

=
^

`

(^ + a
a

)<
(6d)

s;−8 = s;
(^ + `) 8
`8

=
^

`

(^ + a
a

)< (^ + `
`

) 8
0 < 8 < ; (6e)

g1,: = s1
^ + `
_

=
^

_

(^ + a
a

)< (^ + `
`

);
(6f)

g1,:−8 = g1,:
(^ + _) 8
_8

=
^

_

(^ + a
a

)< (^ + `
`

); (^ + _
_

) 8
0 < 8 < : (6g)

To complete the calculation, the dominant eigenvalue ^ can be found numerically by solv-
ing Eq. 5 for given transition rates and subphase numbers. For steady growth to be possible,
0 ≤ 1/2 is required, since otherwise each cell has less than one proliferating daughter cell on
average.

Steady-state distribution

To capture cell populations that are maintained at a fixed size within the model Eq. 1, we
consider the loss rate X to be subject to an implicit homeostatic regulation. This regulation
maintains X ≡ ^ , so that proliferation and loss balance, and no net growth occurs. In this
way, homeostasis is treated as a marginal case of steady growth, Eq. 4 with vanishing effective
growth rate, so that the subphase populations T = #n are constant in time. In particular,
we can compute the steady-state distribution n by Eqs. 4 with the replacement ^ → X every-
where. If desired, one also obtains the homeostatic set point of X , by solving the eigenvalue
problem Eq. 5, with ^ → X .

Kinetics of labeling

In order to relate the cycling model Eq. 1 to experimental data, we include the dynamics of la-
bel incorporation and inheritance. As long as EdU label is available, unlabeled cells in S phase
incorporate it, thereby transitioning into a labeled state. The labeled states (denoted S∗,G∗2,9
etc.) are defined operationally: Those cells that are gated above the background fluorescence
level in the EdU fluorescence channel are considered labeled. In practice we then find that
transition to the labeled state requires only a small part of S phase, in other words, the rate of
label acquisition n > `/;. However it’s unclear if label acquisition is also faster than progress
from one S subphases to the next, n ≷ `. Therefore, we consider S phase progress and la-
beling to be parallel processes, see Fig. 1f. In this scheme, the three new rates U, V and W are
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constrained by
n = U + V (7)

setting the total rate of labeling to be n, and

` = V +W , (8)

which states that the total progress rate of unlabeled cells through S phase is undisturbed by
label incorporation. We impose a third constraint for convenience,

U/V = V/W , (9)

which then uniquely determines the three rates for given n:

U =
n2

n + ` ; V =
n`

n + ` ; W =
`2

n + ` . (10)

Since the chase phase of the experiment remains shorter than two cell cycles, we do not
observe nor include in the model any delabeling by dilution of EdU.

Labeled population dynamics

Finally, we collect the previous expressions into a system of linear ODEs for the dynamics of
all, labeled and unlabeled subpopulations. The vector of average labeled cell numbers is

T ∗ = [G∗1,1(B ), . . . ,G∗2,< (B ),G∗0(B )]T;

unlabeled cell numbers are denoted by T ◦. They add up to the total cell numbers T = T ◦+T ∗.
We require that steady growth or steady state has been attained before labeling begins.

Thus up to the label application at B = 0, T ◦ = T follows Eq. 4, with steady-growth distribution
n satisfying Eq. 5. Labeling transfers cells into the labeled populations, so that at times B > 0,
Eq. 1 holds for T but not for T ◦ nor T ∗.

To describe the dynamics of the labeled population T ∗, we encode the labeling kinetics
in matrix form:

(L)7 ,8 =

UX7 ,8 + VX7 ,8+1 if : < 8 ≤ : +;
0 otherwise

. (11)

The labeling matrix L has the same dimensions as T; its nonzero entries are U on the diagonal
for all subphases of S, and V below any U. Here, U and V are given by Eqs. 10. It can be verified
straightforwardly that LT ◦ is the flux from unlabeled to labeled compartments as shown in
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Fig. 1f. Using this notation,

3
3BT

∗ = (T − X )T ∗ + LT ◦ (12a)
= (T − X )T ∗ + L(T − T ∗)
= (T − L − X )T ∗ +# (B )Ln . (12b)

In Eq. 12a, we have used the fact that already-labeled cells follow the undisturbed cycle pro-
gression (T − X ); in Eq. 12b, we have inserted the undisturbed steady-growth expansion of
the total population. Finally, we rewrite this system in terms of the dynamics of the (time-
dependent, non-normalized) labeled fractions, n∗ = [g∗1,1, . . . , g∗0] = T ∗/# . From Eq. 12b and
using exponential growth of # (B ), we obtain

3
3B n

∗ = (T − L − ^)n∗ + Ln . (13)

Importantly, in experiments EdU supply is stopped at the end of an initial labeling pulse,
and thereafter, the availability of free EdU decreases gradually as it is consumed by cells or
otherwise degraded. We model this decrease by an exponential decrease of the total labeling
rate

n = n (B ) = n04
−B /g� , (14)

where g� is an adjustable parameter. In this way U, V (Eq. 10) and therefore L (Eq. 11) become
time-dependent.

Parameter estimation

Experimentally, cycle phase is assigned by DNA content. Thus, cells in G0 or G1 fall into a
single experimental gate, G01. Although most DNA-replicating cells are correctly counted in
the corresponding S gate, the gating procedure inevitably assigns some cells that have started
DNA replication to the G01 gate, and some cells that have completed replication to the S gate
rather than the G2M gate. When deriving model predictions, we account for this crosstalk by
assigning the first ;01 subphases of S phase to G01, and the last ;2 subphases to G2M, so
that only the innermost ; −;01 −;2 subphases S7 are assigned to the gate S, as shown in
Eq. 15.

G0; G1,1· · ·G1,: S1 · · · S;01S;01+1 · · · S;−;2 S;−;2+1 · · · S;G2,1· · ·G2,<

G01 S G2M (15)

In order to compute model predictions, we first solve Eq. 5 for the steady-growth distribu-
tion n . From n we obtain the time-independent total cell fractions in each experimental gate,
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e.g.

g2pred =

;∑
7=;−;2+1

s7 +
<∑
7=1

g2,7 .

We then solve system Eq. 13 numerically, for the initial condition n∗(0) = 0. From n∗(B ), we
obtain predictions for the time-dependent labeled fractions, e.g.

g01∗pred(B ) = g∗0(B ) +
:∑
7=1

g∗1,7 (B ) +
;01∑
7=1

s∗7 (B ).

In order to then compare model predictions with experiments, we evaluate the negative
log-likelihood function in a standard way, as

j2 =
1
2

∑
g=g01,g2

(
gpred − gobs

)2
f2
g

+ 12
∑
7=1...�

∑
g∗=g01∗,s∗,g2∗

(
g∗pred(B7 ) − g∗obs(B7 )

)2
f2
g∗

. (16)

Here, the first sum collects time independent terms; the experimental observations gobs are
averages over all time-points and experimental repeats, and the associated uncertainties fg
are standard errors of these averages. Only two gates are included, since normalization fixes
the third. The second sum runs over the � experimental time points and is not constrained by
normalization. The corresponding uncertainties are estimated as standard errors over exper-
imental repeats of the mean labeled gate fractions; for robustness, we pool these errors and
assign the same fg∗ for all time points.

Based on the log-likelihood Eq. 16, we then perform Markov Chain Monte Carlo sampling
to evaluate the posterior distribution over model parameters. The full set of model param-
eters and the allowed ranges of their uniform prior distributions are given in Supplemen-
tary Table 2. The credible intervals resulting from sampled posterior distributions for DP and
TET21N are shown in Supplementary Table 3.

Implementation and Software

The model was simulated using the Python programming language with the package Scipy
v.0.13.0 and Monte Carlo Markov Chain (MCMC) sampling was performed with the package
Emcee v.3.02 with default settings. In accordance with the program’s documentation, a chain
was deemed to have converged when the autocorrelation times for every parameters exceeded
50 times the length of the chain. Results of the MCMC sampling were then processed with
Matlab R2013B (MathWorks) and R to produce graphical representations.
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