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Abstract

With Hebbian learning ‘who fires together wires together’, well-known problems arise. On the one hand,
plasticity can lead to unstable network dynamics, manifesting as run-away activity or silence. On the other
hand, plasticity can erase or overwrite stored memories. Unstable dynamics can partly be addressed with
homeostatic plasticity mechanisms. Unfortunately, the time constants of homeostatic mechanisms required in
network models are much shorter than what has been measured experimentally.

Here, we propose that homeostatic time constants can be slow if plasticity is gated. We investigate how
the gating of plasticity influences the stability of network activity and stored memories. We use plastic
balanced spiking neural networks consisting of excitatory neurons with a somatic and a dendritic compartment
(which resemble cortical pyramidal cells in their firing properties), and inhibitory neurons targeting those
compartments. We compare how different factors such as excitability, learning rate, and inhibition can lift
the requirements for the critical time constant of homeostatic plasticity. We specifically investigate how
gating of dendritic versus somatic plasticity allows for different amounts of weight changes in networks with
the same critical homeostatic time constant. We suggest that the striking compartmentalisation of pyramidal
cells and their inhibitory inputs enable large synaptic changes at the dendrite while maintaining network
stability. We additionally show that spatially restricted plasticity in a subpopulation of the network improves
stability. Finally, we compare how the different gates affect the stability of memories in the network.
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1 Introduction
Hebbian plasticity is considered to be the neural hallmark for learning and memory. It enables the formation of cell
assemblies as it strengthens connections between cells with correlated activity. On the downside, correlations between
cells are increased even further with Hebbian plasticity. Theoretically, such a positive feedback loop leads to undesired
unstable runaway activity (Abbott and Nelson, 2000). Cortical cells, however, fire at low rates in an asynchronous
irregular manner. It is therefore unclear how neural activity in the functioning brain remains stable despite Hebbian
plasticity. To resolve this dilemma, it has been suggested that homeostatic processes keep the network activity stable
(Turrigiano and Nelson, 2004). Homeostatic processes, such as homeostatic scaling (Turrigiano et al., 1998; Turrigiano,
2017; Desai et al., 2002; Goel and Lee, 2007; Keck et al., 2013; Maffei and Turrigiano, 2008) or inhibitory plasticity
(Woodin and Maffei, 2010; Goel and Lee, 2007; Kuhlman et al., 2013; Keck et al., 2011; Chen et al., 2011; Vogels et al.,
2011; van Versendaal and Levelt, 2016; Li et al., 2014), counteract increases in the network activity, but it has been
proposed that they might be insufficient to keep the network activity stable for the following reason: these processes
operate on a timescale of hours or days (Keck et al., 2017; Kaneko et al., 2008a; Greenhill et al., 2015; Kaneko et al.,
2008b; Watt and Desai, 2010), but theoretical models require homeostatic mechanisms that act on the same timescale
as Hebbian plasticity or faster (Zenke et al., 2013, 2017; Toyoizumi et al., 2014; Litwin-Kumar et al., 2016; Miller and
MacKay, 1994; van Rossum et al., 2000). Zenke et al. (2017), therefore, proposed that there must be a fast compensatory
mechanism. Such a mechanism could modulate plasticity itself (Naumann and Sprekeler, 2020). Models requiring fast
mechanisms typically assume that plasticity is continuously happening (e.g. Litwin-Kumar et al., 2016; Zenke et al., 2013).
In contrast, in the brain plasticity is highly regulated by different neuromodulators (Couey et al., 2007; Bissière et al.,
2003; Lin et al., 2003; Pawlak et al., 2010; Seol et al., 2007; Zhang et al., 2009; Brzosko et al., 2015), astrocytes (Valtcheva
and Venance, 2016), and inhibitory interneurons (Artinian and Lacaille, 2018; Kuhlman et al., 2013; Letzkus et al., 2011).
These different regulators of plasticity can slow down, speed up, gate, or flip plasticity. They differ in their temporal and
spatial precision and hence enable rigorous plasticity control. We, therefore, explore how different regulators or gates
affect plasticity and stability. Specifically, we study using computational modelling whether gating of plasticity can lower
the requirements for time constants of homeostatic plasticity to values that are more in line with experimentally observed
homeostatic processes without strongly impairing plasticity of synaptic connections.
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Figure 1: a: The network consisted of 1000 recurrently connected 2-compartment pyramidal cells (triangle and
stick), and 250 recurrently connected inhibitory cells (circle). b: Somatic (black) and dendritic (red) voltage
traces from one example pyramidal cell. c: Raster plot of excitatory cell activity in the network. d: Example
currents from one example pyramidal cell. It receives large E (magenta) and I (cyan) currents which cancel
on average (black). e: Distribution of excitatory firing rates. f: distribution of excitatory interspike intervals.
g: Distribution of coefficient of variation (CV) of the interspike intervals. e-g indicate that the network is in
a balanced state. h: Raster plots of excitatory network activity in a network without plasticity (left), with
plasticity and a homeostatic time constant τ =30ms, and with plasticity and a homeostatic time constant
τ =10ms.
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Figure 2: Gating plasticity loosens the requirements for fast homeostatic processes. a-d: Explosion
factor as a function of homeostatic time constant τ and the respective gate. a: learning rate, b: excitability, c:
intrinsic excitability (spiking threshold), d: inhibition. e: comparison of the critical homeostatic time constant
τcrit for different gates, plotted as a function of baseline dendritic weight change to allow for comparison. f-g:
Illustration of the explosion factor. The star indicates the maximum firing rate of each simulation that was taken
for the measurement of the explosion factor. The grey area denotes the reference firing rate at the beginning of
the simulation, which was taken to calculate the explosion factor. f: Example network simulation, where the
firing rate does not explode (with explosion factor 1.05). g: Example network simulation, where the firing rate
explodes (with explosion factor 3.16). h: Distribution of explosion factors. Inset: zoom into the x-axis.

2 Results

2.1 Balanced spiking neural network with 2-compartment pyramidal cells.
To study how different modulators of plasticity affect stability and plasticity, we built a balanced recurrent network of
1000 excitatory pyramidal cells (E) and 250 inhibitory cells (I, Fig. 1). To explore somatic and dendritic gating separately,
we modelled the pyramidal cells with two compartments, one for the soma and one for the dendrite (Fig. 1a,b, Naud and
Sprekeler, 2018). Before implementing plasticity in our model, we made sure that the network is in the asynchronous
irregular regime (Fig. 1 c,e,f,g), due to a balance between excitation and inhibition. That is, strong excitatory recurrent
inputs were balanced by strong inhibitory feedback (inhibition-stabilized regime, Tsodyks et al., 1997). On the single-cell
level, this is reflected in large excitatory and inhibitory currents, which cancel each other on average (Fig. 1d).

To test the effect of plasticity in our network, we added a standard triplet STDP rule (Pfister and Gerstner, 2006;
Clopath et al., 2010; Bono et al., 2017) to the excitatory connections. As this form of plasticity is Hebbian, it can lead to
an explosion of activity in recurrent networks (Keck et al., 2017; Abbott and Nelson, 2000). To keep the activity of the
network in the balanced state despite ongoing plasticity, we included homeostatic plasticity (Keck et al., 2017; Abbott
and Nelson, 2000). Following previous work (Bienenstock et al., 1982; Pfister and Gerstner, 2006; Clopath et al., 2010;
Zenke et al., 2013), the homeostatic process in our network monitored the postsynaptic firing rate and adjusted long-term
depression (LTD) to keep the neurons at their target firing rate. The time constant τ of this homeostatic process is
critical for stability as it determines how quickly the homeostatic process reacts to changes in firing rate. If τ is too large,
the homeostatic plasticity cannot compensate for the correlation-based weight changes and the network activity explodes
(Fig. 1h middle). When τ is sufficiently small, the homeostatic plasticity maintains stability (Fig. 1h right). The time
constants required for stability in models are orders of magnitude smaller than those of homeostatic processes in the
brain. Therefore, we explored in our model whether gating plasticity can allow for larger homeostatic time constants, to
reconcile stability constraints with experimental data (Zenke et al., 2017; Turrigiano et al., 1998).
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2.2 Gating plasticity loosens the requirements for fast homeostatic processes.
We next explored how different forms of plasticity modulation affect the required homeostatic time constant in our model.
The first gate we explored was the excitability of individual neurons to model the fact that neuromodulation can change
the size or the duration of excitatory postsynaptic potentials (EPSPs) (Rasmusson, 2000). In our two-compartment
leaky-integrate-and-fire neuron model, we modelled excitability as a factor γ multiplied to the excitatory synaptic currents
(Eq. 1,2, the superscript d indicates the dendritic variable). The second gate was inhibition. We modelled its modulation
by changing the inhibitory conductance gI (Eq. 12). The somatic and dendritic voltage (Vs and Vd respectively) was
therefore modelled as

Cs
dVs
dt

= −gl(Vs − El)− γgEVs − gI(Vs − EI) + λ(gs
1

1 + exp(−Vd−Ed
Dd

)
+ ωs) (1)

Cd
dVd
dt

= −(Vd − El)− γdgdEVd − gdI (Vd − EI) + gd
1

1 + exp(−Vd−Ed
Dd

)
+ cdK(t) + ωd (2)

where Cs/d is the somatic/dendritic capacitance, gI/E is the inhibitory/excitatory conductance (index d indicates the
dendritic variables), El is the reversal potential, gs is the coupling from the dendrite to the soma, 1

1+exp(−Vd−Ed
dd

)
is a

nonlinear term for the dendritic calcium dynamics (see Methods), ωad/s is the somatic/dendritic adaptation variable, K
the kernel for the back-propagating action potential current with amplitude cd (Naud and Sprekeler, 2018). λ ensures that
the somato-dendritic coupling and adaptation are the same as in the model of Naud and Sprekeler (2018) (see Methods).

The third gate we explored was intrinsic excitability, which we modelled by a change in the spiking threshold vθ.
These three gates modulate plasticity indirectly by modulating the activity of the network. Finally, the last gate was
learning rate, which modulates the synaptic weight changes directly, and was modelled as a factor η in the weight update.
Formally, the somatic synaptic weight wij and dendritic synaptic weight wdij from neuron j to neuron i changed as:

dwij
dt

=ηw0A
+z+j (t)zslowi (t− ε)Si(t) (3)

− ηw0A
−
i (t)z−i (t)Sj(t) (4)

dwdij
dt

=ηdw0A
+z+j (t)zslowi (t− ε)Si(t) (5)

− (ηdw0(A−
i (t)z−i (t) +ACa(vd > θCa))− α)Sj(t) (6)

where w0 is the initial weight, A+/− is the amount of potentiation/depression constants for the triplet rule, ACa is the
potentiation constant for the Ca2+ spike-dependent potentiation, Si/j is the post-/presynaptic spike train, z+j is the
presynaptic trace, z−i is the postsynaptic trace, zslowi is the postsynaptic trace with slow time constant. t− ε denotes
that the value of the trace is taken before the action potential, which happened at time t. vd is the dendritic membrane
potential. θCa is the threshold for Ca2+ spike-dependent plasticity (the term vd > θCa takes values 1 or 0 depending on
whether vd is above the threshold θCa) and α is transmitter-induced depression.

To quantify how gating affects stability, we first defined the explosion factor measure to quantify whether the network
is stable (explosion factor close to 1, Fig. 2f) or explodes (explosion factor > 1.5, Fig. 2g). The threshold of 1.5 for a
network to be defined as exploding was based on the bimodal distribution of explosion factors (Fig. 2h).

We started by varying learning rate in both the somatic and the dendritic compartment (Fig. 2a). Expectedly, we
found that with a low learning rate and a large homeostatic time constant τ , the network was stable (the black region
in Fig. 2a). For higher learning rates, the network activity exploded already at low values of τ . This is expected as a
higher learning rate increases the rate of synaptic change, which compromises the stability of the network. We defined
the largest τ at which the network was still stable as the critical homeostatic time constant τcrit (Fig. 2a). A decrease in
learning rate increased this critical time constant τcrit. Similarly, a decrease in excitability also increased the τcrit (Fig.
2b, c). This is because increasing excitability increases the overall activity in the network, which in turn increases the
amount of plasticity. An increase in inhibition on the contrary had the opposite effect on the critical time constant τcrit
(Fig. 2d). Increasing inhibitory inputs decreases firing rates in the network which improves network stability. Therefore,
homeostatic mechanisms for network stability can be slower when excitability and learning rate are downregulated or
when inhibition is upregulated.

Although these effects were to be expected, qualitatively, our computational model allowed us to compare them
quantitatively. We next characterised the different gates by comparing their effects on τcrit. To compare gates despite
their different scales, we defined a common variable. That is, we plotted τcrit as a function of the total dendritic weight
change happening in a stable network (with a τ of 5 ms, see Methods, Fig. 2d). This analysis revealed that excitability
and learning rate affect the critical time constant τcrit in a different way than inhibition. τcrit increases supralinearly as a
function of the total dendritic weight change for the excitability and learning rate gates, whereas it increases sublinearly for
the inhibition gate. To conclude, all gates can improve network stability and lower the requirements for the time constant
of homeostatic mechanisms. However, excitability and learning rate have a larger modulating gain than inhibition.

2.3 Learning in dendrites facilitates synaptic changes while maintaining network
stability.

The increase in the critical time constant by gating comes at the cost of the lack of plasticity (measured as the total
dendritic weight change, Fig. 2e). However, pyramidal neurons consist of a soma and a complex ramified structure of
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Figure 3: Learning in dendrites helps mitigate the plasticity-stability dilemma. a: Distribution of
critical homeostatic time constants for a two-fold increase in learning rate in the dendrite (red) and in the soma
(black). b: Distribution of dendritic weight changes for a two-fold increase in learning rate in the dendrite (red)
and in the soma (black). c: Distribution of critical homeostatic time constants for a 15% increase in excitability
in the dendrite (red) and in the soma (black). d: Distrbution of dendritic weight changes for a 15% increase
in excitability in the dendrite (red) and in the soma (black). p-values were obtained by using the two-sample
student’s t-test.

dendrites. Interestingly, the majority of excitatory synapses are located on dendrites, electrotonically distant from the
soma. Inspired by these observations, we hypothesised that the anatomy of pyramidal cells could enable both plasticity
of dendritic synapses and stable somatic activity at the same time. We, therefore, increased the learning rate and the
excitability separately for the soma and the dendrite and compared their impact on τcrit.

We found that increasing plasticity (by increasing learning rate or excitability) in the dendrite compromised the
critical time constant τcrit less than in the soma (Fig. 3). τcrit was significantly larger for a two-fold increase in learning
rate in the dendrite than for the same increase in learning rate in the soma (Fig. 3a). Moreover, modulating learning rate
only in the dendrite allowed for significantly higher dendritic weight changes at a larger critical time constant (Fig. 3b).
Increasing excitability by 15% in the dendrite led to a significantly larger τcrit than increasing excitability by 15% in the
soma, while there was no difference in dendritic plasticity between the two conditions. Note that we chose a two-fold
increase in learning rate and a 15% increase in excitability as these changes lower τcrit by more than 50% (maximum
explored values in Fig. 2e). In summary, by opening the gates for plasticity exclusively in the dendrite, the network can
afford slower homeostatic mechanisms, higher network stability, while allowing the same or a higher amount of plasticity
as when the gate is open at the soma.

2.4 Spatially precise neuromodulation enables learning while keeping network ac-
tivity stable.

Neuromodulators were typically thought of as global and diffuse (Schwarz et al., 2015). However, neuromodulatory
projections could in principle precisely target specific cell types and subpopulations, depending on their projective field
and the receptor channels expressed in their targets. Specific neuromodulation (Totah et al., 2018) could enable plasticity
locally when learning requires synaptic adjustments only in a subset of neurons. To test how local neuromodulation affects
the critical time constant τcrit, we opened the gate for plasticity in only a subpopulation (one-fourth of the neurons) in
the network and compared it to opening plasticity in the entire network.

We found that spatially confined plasticity had a much lower impact on the critical time constant than global plasticity.
Both an increase in learning rate and an increase in excitability lowered the critical time constant substantially (Fig. 4 c,d
black). Opening these gates in only one-fourth of the neurons lowered the time constant significantly less than opening the
gates in the entire network. Therefore, spatially confined neuromodulation has advantages for network stability beyond
enabling precise control.

2.5 Protection of memories by gating plasticity.
In addition to the impact on the stability of network activity, plasticity interferes with the stability of memories. In a
plastic network, neural activity patterns lead to synaptic changes, which could overwrite memories that were previously
stored in the synaptic connections. Especially when resources are limited, forming new memories can come at the expense
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Figure 4: Spatially precise neuromodulation enables learning while keeping network activity stable.
a: Distribution of critical homeostatic time constants for a two-fold increase in learning rate in a subpopulation of
excitatory cells (green) and in the entire network (black). b: Distribution of critical homeostatic time constants
for a 15% increase in excitability in a subpopulation of excitatory cells (green) and in the entire network (black).
p-values were obtained by using the two-sample student’s t-test.

of old ones. By gating plasticity, memories can in principle be protected. For example, trivially, by switching off plasticity,
old memories are protected. Interestingly, the gates we considered here are not simple all-or-nothing gates but can be
continuously modulated. We, therefore, investigated how their modulation affects the maintenance and encoding of
memories.

Before gating plasticity, we first tested how a memory interferes with a previously stored memory in a plastic network.
We added inhibitory plasticity to ensure network stability during memory formation and heterosynaptic depression to
introduce synaptic competition (see Methods). First, we showed pattern P1 to the network (Fig. 5a). Afterwards, neurons
activated by P1 formed a neural ensemble E1 by increasing their connectivity (Fig. 5a top left). Then, we showed a
pattern P2 to the network. P2 is similar to P1 and hence activated a group of neurons E2 that overlapped with the
previously formed ensemble. Neurons activated by P2 increased their connectivity. Because the patterns overlapped,
synapses were increased at the expense of connections from the old memory (Fig. 5a bottom). Therefore, the new memory
interfered with the old memory (Fig. 5 top right). We defined the difference between the mean connection strength of
the P1 neurons after memory formation of P1 and the mean connection strength of the P1 neurons at the end of the
simulation - after P2 has been learned - as the breakdown of the memory.

To test the effect of gating on the protection of memories, we applied the different gates after the first memory is
formed. Reducing learning rate to 0 after the first memory is formed trivially protects the memory from being overwritten
by the second pattern (Fig. 5b), as this blocked further weight changes. It is less clear how a change in excitability or
inhibition affect the storage of the memory. Unlike the learning rate, we cannot modulate excitability or inhibition to their
extremes without silencing neural activity. On the one hand, because they decrease neural firing rates, these gates could
protect memories by reducing weight changes. On the other hand, by decreasing firing rates, they could also increase
LTD as experimentally, low firing rates promote more LTD than LTP (Dudek and Bear, 1992; Sjöström et al., 2001).

We found that a reduction in excitability could indeed protect the memory (Fig. 5c) without permanently silencing
the network (Fig. A.1c). With a lower excitability, the stimulated neural ensemble, E2, fired at a lower rate (compare E2
in Fig. A.1g and Fig. A.1e), and weights within E2, including those projecting to the overlapping ensemble, O, potentiated
less (compare Fig. 5c bottom with Fig. 5a bottom). The new ensemble, E2, hence competed to a lesser extent with the
old memory, leading to less memory decay due to heterosynaptic depression.

Similar to reduced excitability, increased inhibition could also protect the memory (Fig. 5c) as it reduced firing rates in
the network (Fig. A.1d,h). Notably, the inhibitory plasticity in the network additionally protected the previously formed
memory, as it led to increased inhibition of the old memory ensemble E1 (Fig. A.1i). This further reduced potentiation of
synapses from the new ensemble, E2, to the overlapping ensemble, O.

Because decreased excitability and increased inhibition lower the firing rate of the network, we asked whether this low
firing rate induces LTD and hence counteracts the protection of the old memory ensemble. We found that there was no
increased LTD within the old memory ensemble due to low firing rates. First, the non-overlapping population of the
old ensemble fired at a very low rate (E1-O in Fig. A.1g,h). There was hence little depression from the non-overlapping
population to the overlapping one, as depression happens upon presynaptic spiking. Second, the memory breakdown was
weaker at lower excitability and higher inhibition, i.e. at lower firing rates (Fig. 5f,g). The old memory was hence mostly
at risk due to heterosynaptic depression. In line with this, the memory breakdown correlated with the maximum mean
strength of synaptic connections to the overlapping ensemble O during pattern P2 (Fig. A.1j-l).

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.291120doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.291120
http://creativecommons.org/licenses/by-nc-nd/4.0/


presynaptic

breakdown

no gating learning rate = 0

excitability x 0.5 inhibition x 2.0

P2P1

0

2

4

6

8

10

sy
n
a
p
ti

c 
w

e
ig

h
t 

[n
S

]

P2P1

P2P1 P2P1

a b

c d

0.6 0.8 1.0

0.0

0.1

0.2

f

1.0 1.5 2.0

inhibition

0.00

0.05

0.10

0.15

b
re

a
k
d

o
w

n
 [

n
o
rm

]
b

re
a
k
d

o
w

n
 [

n
o
rm

]

excitability

g

b
re

a
k
d

o
w

n
 [

n
o
rm

]

0 5 10 15 20 25 30

time [s]

0

2

4

6

8

10

sy
n
a
p

ti
c 

st
re

n
g

th
 [

n
S

]

sy
n
a
p

ti
c 

st
re

n
g

th
 [

n
S

]

time [s]

time [s] time [s]

0 5 10 15 20 25 30
0

2

4

6

8

10

0 5 10 15 20 25 30
0

2

4

6

8

10

0 5 10 15 20 25 30
0

2

4

6

8

10

0

2

4

6

8

10

sy
n
a
p
ti

c 
w

e
ig

h
t 

[n
S

]

p
o
st

sy
n
a
p

ti
c

e

0.0 0.5 1.0

0.00

0.05

0.10

0.15

E1
E2

overlapping
overlapping

E2

OE1

learning rate

#

# *

#* *

# #* *

# *

# * # *

Figure 5: Protection of memories by gating plasticity. a-d: After 10 seconds, we show pattern 1 (P1, grey)
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learned, the learning rate is set to 0 (denoted by blue flag). c: after P2 is learned, excitability is reduced by 50%.
d: after P2 is learned, inhibition is doubled. e-g: breakdown of the memory (see a) as a function of learning rate
(e), excitability (f), and inhibition (g).
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When we continuously modulated the gates, we found that the breakdown of the memory increased nonlinearly with
both increasing excitability (Fig. 5f) and decreasing inhibition (Fig. 5g), and increased linearly with learning rate (Fig.
5e).

To conclude, all gates can protect memories. Learning rate can be modulated independent of network activity and
hence act as a switch for plasticity. Although excitability and inhibition do not modulate plasticity separately, they can
both protect memories by reducing activity and weight changes without silencing network activity.

3 Discussion
We explored the effect of different gating mechanisms on the stability of neural networks. Using a balanced spiking
neural network with 2-compartment pyramidal cells, we showed how gating of plasticity loosens the requirements for
fast homeostatic processes. We found that excitability, learning rate, and inhibition affect the critical time constant in
different ways. Interestingly, the network was more tolerant towards weight changes, when plasticity gates were opened in
the dendrite versus the soma. Plasticity in dendrites thereby could facilitate learning without compromising the stability
of the network. . We also showed that spatially precise neuromodulation lifts the critical time constant and thereby could
locally enable learning while keeping network activity stable. Finally, gating plasticity can protect memories from being
overwritten in addition to keeping the network activity stable.

Examples for the different modulators
Plasticity is highly modulated and gated (Bear and Singer, 1986; Pedrosa and Clopath, 2017; Couey et al., 2007; Bissière
et al., 2003; Lin et al., 2003; Pawlak et al., 2010; Seol et al., 2007; Zhang et al., 2009; Brzosko et al., 2015). In this
paper, we explored different such modulations of plasticity. First, inhibitory cell types, which target soma and dendrites
of excitatory cells, can modulate plasticity. It has been shown that disinhibition - the inhibition of inhibitory cells -
promotes learning (Letzkus et al., 2011; Kuhlman et al., 2013; Clopath et al., 2016). Dendritic inhibition can influence
plasticity directly by affecting depolarizing events in the dendrite, such as back-propagating action potentials and calcium
spikes (Larkum et al., 1999; Wilmes et al., 2016). Somatic inhibition can modulate plasticity indirectly by decreasing
the firing rate of the neuron, as synaptic weight changes depend on neural activity. The modulation of plasticity via
inhibition can be both 1) fast, because interneurons can be switched on and off quickly, and 2) local, because they can be
precisely targeted by cholinergic (Woody and Gruen, 1987; Metherate et al., 1992; Xiang et al., 1998; Froemke et al.,
2007, 2013) and noradrenergic neuromodulation (Kuo and Trussell, 2011; Martins and Froemke, 2015).

In addition, neuromodulators influence plasticity by regulating neural excitability (acetylcholine and noradrenaline
(Xiang et al., 1998; Rasmusson, 2000; Joshi et al., 2016)). For example, acetylcholine binds to muscarinic receptors, which
activate a cascade that leads to a decreased permeability of potassium channels (Rasmusson, 2000). This prolongs the
duration of EPSPs and thereby increases excitability.

A similar form of neuromodulation is achieved by presynaptic inhibition. A recent theoretical study showed that
presynaptic inhibition can act as a fast modulator of plasticity to stabilize network activity (Naumann and Sprekeler,
2020). They showed that presynaptic inhibition is an attractive control mechanism as it depends on network activity and
therefore provides a gain control loop. Similar to excitability in our model, the analysis in Naumann and Sprekeler (2020)
shows a supralinear relationship between presynaptic inhibition strength and the critical homeostatic time constant (Fig.
2).

Finally, because many forms of plasticity are NMDAR-dependent (Dudek and Bear, 1992), a modulation of NMDA
channels could affect plasticity directly. NMDA channel permeability can be modulated by D-serine, the origin of which
is debated (Wolosker et al., 2016), although it was initially thought to be synthesised by astrocytes (Wolosker et al., 2016;
Henneberger et al., 2010). Such a direct modulation of plasticity would correspond to modulation of learning rate in our
model. A different form of learning rate modulation could be achieved by dendritic inhibition, which is precisely timed to
not affect the integration of EPSPs from the dendrite to the soma (Wilmes et al., 2016).

Hence, plasticity is highly gated and modulated. Depending on the form of neuromodulation, the effect on plasticity
can be precisely timed and spatially confined.

Predictions from the model
We showed that larger synaptic changes are tolerated in dendrites than in the soma for the same critical time constant
(Fig. 3). Therefore, our model predicts that more weight changes should be seen in dendrites. The weaker the dendrite
and the soma are coupled, the larger becomes the advantage of the separate dendritic compartment. Hence, we predict
that neurons with electrotonically more separate dendrites can undergo more dendritic plasticity.

If plasticity is gated in space and time, i.e. synaptic changes are only locally permitted in limited periods of time, then
we would observe that the total amount of synaptic change is not constant, but varies in time and space. The amount of
synaptic change averaged over longer periods of time may be constant. When taking averages over shorter periods, we
predict that the amount of synaptic change varies significantly over time.

Our model shows that the gates differ in their impact on the critical homeostatic time constant (Fig. 2e). We found
that, for inhibition, the critical time constant decreases sublinearly as a function of the resulting increased dendritic
weight change. For excitability and learning rate, however, the critical time constant decreases supralinearly. Our model,
therefore, predicts that gating plasticity with inhibition allows for a larger critical time constant than gating plasticity
with excitability or learning rate. We predict that when inhibition and excitability are separately modulated in an
experiment, that the network will lose stability earlier with a change in excitability than with a change in inhibition.
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We found that the gates also differ in their ability to protect memories (Fig. 5e-g). Learning rate is the only gate,
which can completely switch off plasticity to protect the memory. The memory breakdown increased supralinearly with a
change in inhibition or excitability, whereas it increased linearly with a change in learning rate. Our model hence predicts
that memories break down earlier when inhibition or excitability are modulated than with modulation of learning rate.

Limitations
Our model provides a comparison between different gating mechanisms. We simulated a balanced spiking network
undergoing spontaneous activity to allow for the comparison of the different plasticity gates. A network, which is
externally stimulated may have additional requirements for the homeostatic time constant.

In our model, we used one form of homeostatic plasticity, which adjusts LTD based on the postsynaptic firing rate.
There are, however, different forms of homeostatic plasticity such as inhibitory plasticity (Woodin and Maffei, 2010) and
synaptic scaling (Turrigiano et al., 1998). Inhibitory plasticity also requires fast homeostatic mechanisms when plasticity
is not gated (Zenke et al., 2017; Litwin-Kumar et al., 2016). We expect that the gates studied here will similarly lift the
requirements for the time scale of inhibitory plasticity. It will be interesting to explore the effects of the inhibitory gate
on a homeostatic mechanism, which depends on inhibitory plasticity.

Conclusion
In summary, our study using balanced spiking neural networks with 2-compartment pyramidal cells shows how different
forms of gating plasticity increase the stability of neural networks in the presence of plasticity. Our results suggest
an important role for dendrites as they can undergo synaptic plasticity with minor effects on network stability. Our
results also imply that gating via neuromodulation should be locally restricted, supporting the recent finding that
neuromodulation may be more specific than initially thought (Totah et al., 2018). Finally, diverse gating mechanisms can
protect memories, even if they affect network activity, such as excitability or inhibition.

4 Materials and Methods

Balanced network
We built a recurrent neural network model with NE =1000 excitatory (E) and NI =250 inhibitory (I) cells. Both E and I
cells received excitatory inputs from a pool of 1000 Poisson processes with a firing rate of 2 Hz and with a connection
probability of p=10%. All neurons were randomly connected. Excitatory cells receive excitatory and inhibitory synapses
on both their soma and their dendrite. The connection probability is 10% for all connections except from excitatory cells
to excitatory cell’s somata. The connection probability for those connections is 9% to account for the fact that the cells
also receive inputs on their dendrites in the two-compartment model. The connection strength of the synapses is chosen
such that the network is balanced (see Table 4).

2-compartment pyramidal cell model
For the excitatory population, we used a 2-compartment integrate and fire pyramidal cell model with spike-triggered
adaptation, adapted from the model by Naud and Sprekeler (2018) which was originally fitted to data from layer 5
pyramidal cells. It has two coupled membrane equations, one for the soma (Vs, Eq. 1), one for the dendrite (Vd, Eq. 2),
modelled as (for clarity we repeat the equations from the main text):

Cs
dVs
dt

= −gl(Vs − El)− γgEVs − gI(Vs − EI) + λ(gs
1

1 + exp(−Vd−Ed
Dd

)
+ ωs) (1)

Cd
dVd
dt

= −(Vd − El)− γdgdEVd − gdI (Vd − EI) + gd
1

1 + exp(−Vd−Ed
Dd

)
+ cdK(t) + ωd (2)

where Cs/d is the somatic/dendritic capacitance, gI/E is the inhibitory/excitatory conductance (index d indicates the
dendritic variables), El is the reversal potential, γ is excitability, ωd/s is the somatic/dendritic adaptation variable. When
the soma spikes, the dendrite receives a back-propagating action potential after a delay of 0.5 ms, which is modelled as a
2 ms long current pulse (defined by rectangular kernel K(t)) with amplitude cd = 2600pA. With t̂s as the time of the last
somatic spike, K(t) is defined as

K(t) =
{

1 if t̂s + 0.5ms ≤ t ≤ t̂+ 2.5ms
0 otherwise.

The dendrite has a nonlinear (sigmoidal) term 1

1+exp(−Vd−Ed
dd

)
corresponding to the activation of dendritic calcium

channels. Ed determines the voltage at which the threshold will be reached and Dd determines the slope of the nonlinear
function. The nonlinear dynamics are controlled locally by gd and are also transmitted to the soma with a coupling factor
gs, such that the soma bursts. The factor λ ensures that the somato-dendritic coupling and adaptation are the same as in
the model of Naud and Sprekeler (2018), where the somatic capacitance was 370 pF (we used Cs=200pF). The somatic
adaptation variable is modelled as

dωs

dt
= −ωs/τsω + bsωSi(t) (7)
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where bsω is the strength of spike-triggered adaptation and τsω is the recovery time scale. The dendritic adaptation variable
is written as

τdω
dωd

dt
= −ωd + adω(Vd − El) (8)

where adω is the strength of subthreshold adaptation and τdω is the recovery time scale.
For the inhibitory population, we used a single-compartment leaky integrate-and-fire neuron model, which membrane

potential V evolves according to:

Cs
dV

dt
= −gl(V − El)− gEV · −gI(V − EI) (9)

For all neurons, excitatory and inhibitory conductances, gE and gI respectively, are increased by the synaptic weight
wiE/wiI , depending on their type i upon a spike event in a presynaptic excitatory or inhibitory neuron with spike train
Sj(t), and decay exponentially with time constants τE and τI , respectively:

dgE
dt

= −gE
τE

+
∑
k

wijSj(t) (10)

dgI
dt

= −gI
τI

+
∑
k

wijSj(t). (11)

Both excitatory and inhibitory neurons had a refractory period of 8.3 ms (chosen according to the network model from
Zenke et al. (2013). Initial membrane potentials for Vs and V were sampled from a Gaussian distribution with µ = -70mV
and σ = 10mV to prevent that all neurons spike at the same time at the beginning of a simulation. Vd was set to -70mV
initially.

Plasticity
Synapses from neuron j targeting the somatic compartment of neuron i change their synaptic weight wij according to the
triplet rule (Pfister and Gerstner, 2006). For clarity we repeat the same equation as in the main text:

dwij
dt

=ηw0A
+z+j (t)zslowi (t− ε)Si(t)

− ηw0A
−
i (t)z−i (t)Sj(t) (3)

where w0 is the initial weight, A+/− is the amplitude of potentiation/depression (the depression one is time dependent,
see below), Si/j is the post-/presynaptic spike train, z+j is the presynaptic trace, z−i is the postsynaptic trace, zslowi is the
postsynaptic trace with a slower time constant. ε denotes a small fraction of time such that t− ε indicates that the value
of the trace is taken before the time point of the action potential t. Parameters were chosen as in (Zenke et al., 2013).

Synapses from neuron j to neuron i targeting the dendritic compartment change their synaptic weight wdij according
to the same triplet rule with the back-propagating action potential (bAP) as the postsynaptic spike and an additional
Ca-spike-dependent potentiation at the time of a presynaptic spike.

dwdij
dt

=ηdw0A
+z+j (t)zslowi (t− ε)SbAP

i (t)

− (ηdw0(A−
i (t)z−i (t) +ACa(vd > θCa))− α)Sj(t) (5)

Here, the timing of the back-propagating action potential in the dendrite is used to update the post-synaptic traces
z−i and zslowi and SbAP

i (t) is the postsynaptic train of back-propagating action potentials. A back-propagating action
potential is detected if three conditions are met: (1) the dendritic membrane potential vd exceeds a threshold of -50 mV,
and (2) there was a somatic spike within the last 3 ms, and (3) there was no backpropagating action potential within
the last 5.8 ms (to account for the refractory period). Synapses are potentiated by a constant amount ACa when the
presynaptic cell fires and the postsynaptic dendritic membrane potential vd exceeds a threshold θCa of -40mV. The term
vd > θCa takes a value of 1 when the threshold is crossed and is 0 otherwise. Synapses are depressed by a constant
amount α for each presynaptic spike (transmitter-induced plasticity).

The pre- and postsynaptic traces are defined as:

dz+j
dt

= −
z+j
τ+

+ Sj(t) (12)

dz−i
dt

= − z
−
i

τ−
+ Si(t) (13)

dzslow
i

dt
= − z

slow
i

τ slow + Si(t) (14)

where τ+, τ−, and τ slow are the time constants with which the traces decay. Both somatic and dendritic excitatory
synapses are limited by a maximum synaptic weight wmax = 10 nS.
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Homeostatic Plasticity

The depression amplitude A−
i for all synapses onto neuron i is a function of a moving average of neuron i’s activity s̄i:

A−
i (t) =

A+τ+τ slow

τ−κ
s̄2i (15)

where κ is the target firing rate, A+, τ+, τ− and τ slow are variables from the triplet STDP rule and s̄i is the low-pass
filtered spike train:

τ
ds̄i
dt

= −s̄i + Si(t) (16)

with τ defining the time constant of the homeostatic plasticity.

Explosion factor
We quantify the stability with the explosion factor EF. We calculate it as follows:

EF =
rmax

rbaseline
(17)

where rmax is the maximum population firing rate within the duration of the simulation and rbaseline is the population
firing rate averaged over the first 50 ms of the simulation. Therefore, an explosion factor close to 1 indicates that the
network activity is stable. The distribution of explosion factors was bimodal with a sharp peak close to 1 and a broader
distribution of larger EFs (Fig. 2h). We defined a threshold separating those two modes, which defines whether the
network is stable or explodes:

network is
{ stable if EF ≤ 1.5

unstable if EF > 1.5.

Critical time constant τcrit

For each value of the gate, we calculated the maximum τ for which the network was stable. It additionally had to be
smaller than the minimum τ for which the network was unstable.

Baseline dendritic weight change
For each gating value, we calculated the sum of all weight changes in the dendrite in a 200 s simulation with a τ of 5 ms.

Statistical analyses
To test for significance in Fig. 3 and Fig. 4, we used the two-sample student’s t-test.

Simulation
For Fig. 1, we simulated the network for 10s without plasticity. Simulations to calculate the explosion factor (for Figs.
2-4) were run for 200 seconds. We simulated an initial warm-up phase for 3 τ seconds without plasticity to calculate the
average population firing rate for the balanced network. We used the average population firing rate of the last 2 seconds
of the warm-up phase to set the target firing rate κ in our model. We then switch on plasticity. All simulations were run
at a timestep of 0.1 ms. For the plots in Figs. 1-3, each condition was simulated with 10 different seeds.

Memory network (Fig. 5)
We used the described network and added plasticity on inhibitory to excitatory synapses and a competition mechanism
for postsynaptic weights.

Inhibitory Plasticity Synapses from inhibitory neuron j to excitatory neuron i change their weight wIij according
to Vogels et al. (2011)

dwIij
dt

=ηIzIj (t)Si(t) (18)

+ (ηIzIi (t)− αI)Sj(t) (19)

where ηI is the inhibitory learning rate, zIj (t)/zIi (t) is the pre/post-synaptic trace, Sj(t)/Si(t) is the pre/post-synaptic
spike train, and αI = 2κτiSTDP determines the amount of transmitter-induced depression Vogels et al. (2013). Plastic
inhibitory weights are limited by a maximum weight wImax = 100nS. The pre/post-synaptic traces zIj (t)/zIi (t) are written
as

dzIj
dt

= −
zIj

τiSTDP
+ Sj(t) (20)

dzIi
dt

= − zIi
τiSTDP

+ Si(t). (21)

(22)
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Heterosynaptic depression If the sum of postsynaptic weights in the soma or the dendrite exceeds a maximum
1.5pNEw0 (hard bound), all somatic/dendritic synaptic weights are scaled down equally by the average synaptic weight
change of the postsynaptic compartment in the current time step, that is the total somatic/dendritic weight change
divided by the number of incoming somatic/dendritic synapses.

Stimulation protocol We first simulated the non-plastic network for 5 s to calculate the steady state population
firing rate. We then introduced plasticity with a target firing rate κ of the measured population firing rate and simulated
the network with plasticity for another 5 s. Then, we activated pattern P1 for 3 s by injecting current into neurons with
indices 400 to 499 (ensemble E1). Afterwards, we changed the gating variable under investigation (except in Fig. 5a,
where we did not apply any gating). After a stimulation pause of 7 s, we activated pattern P2 for 5 s by injecting current
into neurons with indices 450 to 549 (ensemble E2). We continued the simulation for further 10 s without stimulation.

Parameters

Table 1: Parameters of the network.
Parameter Value
NE 1000
NI 250
NPoisson 1000
λPoisson 2 Hz
p 0.1
wEP 1.6 nS
wIP 1.6 nS
wEE 1.8 nS
wd

EE 1.8 nS
wIE 4.0 nS
wII 6.0 nS
wEI 8.0 nS
wd

EI 4.0 nS

Table 2: Parameters of the neuron model.
Parameter Value
gl 10.0 nS
El(leak) -70 mV
EI(Inhibitory) -80 mV
vtheta -50.0 mV
vItheta -50 mV
τm 20 ms
τ Im 10 ms
Cs 200 pF
Cd 170 pF
cd 2600 pA
adω -13 nS
bsω -200 pA
τsω 100 ms
τdω 30 ms
τs 16 ms
τd 7 ms
gs 1300 pA
gd 1200 pA
Ed -38 mV
Dd 6 mV
λ 0.54
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Table 3: Parameters of the plasticity.
Parameter Value
A+ 6.5e-3
ACa 7.2e-2
α 1e-4
θbAP -50 mV
θCa -40 mV
τ+ 16.8 ms
τ− 33.7 ms
τslow 114 ms
wmax 10 nS
τiSTDP 20 ms
wI

max 100 nS
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A Figures

Figure A.1: a-d: Raster plots for the simulation without gating (a), with gated learning rate (b), with
gated excitability (c) and with gated inhibition (d) as in Fig. 5. e-h: Firing rates over time of different
subpopulations: E1: memory ensemble E1 (x ∈ E1), E2: memory ensemble E2 (x ∈ E1), O: overlapping
ensemble O (x ∈ (E1 ∩ E2), all: all excitatory neurons in the network, E1-O: ensemble E1 excluding the
overlapping ensemble O (x ∈ (E1 \O)), E2-O: ensemble 2 excluding the overlapping ensemble (x ∈ (E2 \O)). i:
Connection strengths over time from the inhibitory population to ensemble E1 (black) and from the inhibitory
population to all other cells in the ungated network. j-l: Memory breakdown as a function of the maximum
during pattern P2 of the mean strength of synaptic connections from all excitatory cells to the overlapping
ensemble O for a network with gated learning rate (j), gated excitability (k) and gated inhibition (l).
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