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Abstract: Brain decoding can predict visual perception from non-invasive 

electrophysiological data by combining information across multiple channels. However, 

decoding methods typically confound together the multi-faceted and distributed neural 

processes underlying perception, so it is unclear what specific aspects of the neural 

computations involved in perception are reflected in this type of macroscale data. Using MEG 

data recorded while participants viewed a large number of naturalistic images, we analytically 

separated the brain signal into a slow 1/f drift (<5Hz) and a oscillatory response in the theta 

frequency band. Combined with a method for capturing between-trial variability in the way 

stimuli are processed, this analysis revealed that there are at least three dissociable components 

that contain distinct stimulus-specific information: a 1/f component, reflecting the temporally 

stable aspect of the stimulus representation; a global phase shift of the theta oscillation, related 

to differences in the speed of processing between the stimuli; and differential patterns of theta 

phase across channels, likely related to stimulus-specific computations. We demonstrate that 

common cognitive interpretations of decoding analysis can be flawed if the multicomponent 

nature of the signal is ignored, and suggest that, by acknowledging this fact, we can provide a 

more accurate interpretation of commonly observed phenomena in the study of perception. 
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Introduction 
 

In recent years, multivariate pattern analysis (MVPA) or decoding analysis has been 

successfully used in different cognitive domains to interrogate when and where in the brain 

information is processed (Norman et al., 2006; Haynes and Rees, 2006; Tong et al., 2012; 

Haxby et al., 2014; Grootswagers et al., 2017; Cichy et al., 2014; Kragel et al., 2018; Vidaurre 

et al., 2019). These approaches are typically designed with the objective of maximising the 

prediction of information, so that it is not always transparent what elements of the data are 

responsible for the significant predictions. In particular, electrophysiological data have diverse 

elements, including ongoing oscillations (with amplitude and phase modulations in different 

frequencies; Buzsaki and Draguhn, 2004), ultra-slow 1/f drifts of activity and slow cortical 

potentials (He, 2014), non-oscillatory transient changes in signal amplitude (Jones, 2016), 

cross-frequency coupling (Jensen and Colgin, 2007), and high-frequency burst events (Buzsaki 

and Lopez da Silva, 2004). Data-driven decoding methods can incorporate all or some of these 

elements in their prediction, but it is unclear which ones are relevant and how. Because these 

elements are thought to underpin distinct brain mechanisms, knowing which of them are 

important for prediction would directly provide important theoretical information about human 

brain function. 

 

Investigating MEG data recorded while participants viewed object images, we separated task 

evoked responses into an ultra-slow 1/f drift (<5Hz) and an oscillatory component in the theta 

frequency band. We then demonstrated their distinct contribution to the multivariate decoding 

accuracy of image prediction. In particular, isolating the oscillatory component allowed us to 

extract stimulus-locked phase information, revealing that the phase of the oscillatory 

component contains critical information about which image category is being processed by the 

brain. While event-related potentials/fields (ERP/F; Pfurtscheller and Lopes da Silva, 1999) 

represent stimulus-locked phase information on a single channel basis, here we show that the 

phase information necessary to decode the stimulus is multivariate across channels. Critically, 

we show that stimulus-locked phase information can be predictive of the stimulus in two 

different ways: through differences in the latency of the response that are common across 

channels; and through relative phase differences between channels, to which single-channel 
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analyses like ERP/F are blind. We argue that these two (coexisting) phase-related features 

potentially speak to different physiological mechanisms. 

 

In summary, we show that the dissociation of these components provides a more accurate 

interpretation of commonly observed phenomena in the analysis of perception, in particular 

with regards to how the stimulus representations generalise (or change) across time points. 

Further, we provide a better understanding on how multivariate phase information can encode 

different visual contents in electrophysiological data, and demonstrates how MVPA can be 

usefully extended to provide interpretable insights on how the brain encodes and processes 

mental representations.  

 

Results 
 

We used one of the magnetoencephalography (MEG) data sets presented in Cichy, Pantazis 

and Oliva (2016), where 118 different image categories were presented 30 times each to 15 

subjects. Presentation lasted 500ms, and trials were ~1s long. The multi-channel sensor-space 

data, epoched around the presentation of each visual stimulus, can be used to train a decoder 

to predict which visual image is being presented (Cichy et al, 2016). 

 

We reasoned that different aspects of decoding accuracy may separately emerge from different 

components of the evoked responses. Therefore, we analytically separated the data into two 

uncorrelated components: an oscillatory component with a dominant theta frequency (6-8Hz); 

and a slow 1/f component that cannot be considered oscillatory within the trial duration 

(although it could be related to very slow oscillations in the context of the entire recording); 

see Methods for details on the preprocessing and organisation of the data, as well as on the 

decoding methods. Fig 1A shows the original signal (low-pass filtered to 10Hz) and the two 

components for a single trial and channel. Fig 1B shows the spectral profile of these two 

components, averaged across channels and participants. The oscillatory component has a 

dominant theta frequency, at 6-8Hz. As mentioned, the 1/f component is very slow (in the delta 

frequency or slower), and not oscillatory at least when considered in 1s trial lengths, as it is 

suggested by the fact that the spectral profile has no peak. 
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Fig 1. Analytical separation of the signal 

into oscillatory and a 1/f component. A: 

One trial example. B: Power of the original 

signal and the two components. 

 

 

Oscillations can theoretically contain different types of stimulus-specific information 

 

When looking at the oscillatory component, both phase and amplitude modulations can cause 

differences that can in principle be used by MVPA. Focusing first on phase, we demonstrate 

schematically different ways by which an oscillatory component might contain stimulus-

specific information, either using single MEG channels at a time, or multivariately using 

multiple channels. This forms the theoretical basis for the subsequent analysis of the 

importance of phase for MVPA in empirical data. 

 

Fig 2A illustrates three ways in which differences in evoked responses could cause changes in 

decoding accuracy between experimental conditions (i.e., here object images) at the single-

channel level. The evoked responses (i.e. the ERP/F) for a single channel are depicted for two 

different stimuli in red and blue. These differences, examined at two time points that are 

marked as vertical lines (separated according to the period of the oscillation), and interpreted 

as differences in decoding regression coefficients (β), can either be a phase modulation or an 

amplitude modulation. When the difference is a phase modulation (top panel), the two stimuli 

can be distinguished as the blue stimulus evokes an earlier response. As shown in the panels, 

β would have opposite signs between the two time points, which, as we will discuss, is relevant 

in interpreting decoding accuracy. However, when the difference is an amplitude modulation, 

two different possibilities exist. The first possibility (middle panel) is a decrease in power, such 

that β would again have opposite signs between the two marked time points. The second 

possibility (bottom panel) is an additive shift in the signal, which does not cause a sign 

inversion between the two time points. Therefore, when considered univariately, both phase 

and amplitude can bring about decoding accuracy. 
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Fig 2. Different types of 

modulation can bring 

about decoding accuracy. 

This can occur either in 

phase or in amplitude; and 

either univariately (A) or 

multivariately (B). Focusing 

on phase at the multivariate 

level, these differences can 

be either global (consistent 

across channels) or 

local/relative (different, 

between channels). Arrows 

represent phase differences 

in phase-specific panels. 
 

 

Assuming for simplicity that all channels share the same kind of evoked response, Fig 2B 

illustrates two ways in which differences in evoked responses could cause changes in decoding 

accuracy at the multi-channel level. The horizontal arrows reflect the phase difference between 

the two stimuli. In one type, the latency of the response is different between the stimuli, such 

that the phase modulation occurs earlier for some stimuli than for others, but, critically, this 

delay is global, i.e. consistent across channels (Fig 2B, left panel – where all arrows have the 

same length and orientation). In the other type, it is the local, relative differences in phase 

between channels that discriminates between stimuli (Fig 2B, right panel – where arrows have 

different lengths and orientations), without there necessarily being a global temporal shift that 

is common to all channels; i.e. the arrows could sum up to zero across channels.  

 

Importantly, these two different multivariate patterns may afford very different physiological 

interpretations. The first type of multivariate phase modulations would speak to systematic 

differences in the timing of information processing; for example, if images of animate beings 

take less time to process in the brain, then the cascade of stimulus processing would progress 

faster and that would bring about a change in the time course of the decoding accuracy. The 

second type of multivariate phase modulations would instead refer to differential phasic 

patterns between the image categories above and beyond their speed of processing, which could 

be related to detectable differences in the neural coding of the images.  
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Decoding accuracy differentially emerges from dissociable 1/f and oscillatory components 

 

We next show empirically that the oscillatory and the 1/f components contain complementary 

information underlying discriminability in MVPA of electrophysiological data. Furthermore, 

we show how some of the most prominent phenomena commonly observed in decoding 

analysis can parsimoniously be explained by accounting for the separate contributions of these 

two components. We undertake this in the context of the temporal generalisation matrix (TGM; 

see Methods), which extends conventional temporally-defined decoding to describe, not just 

the decodability of the stimulus time point by time point, but also how these neural 

representations change (or persist) across time points (King and Dehaene, 2014). 

 

Fig 3A shows for one representative subject the TGM for the original signal, the 1/f component, 

the oscillatory component, and the power envelope of the oscillatory component (i.e. with no 

phase information). For reference, Fig SI-1 shows the time-resolved decoding accuracy (i.e. 

the diagonal of the TGM) for one subject and averaged across subjects. The original signal’s 

decoding accuracy reflects a mixture from the decoding accuracy of the 1/f and the oscillatory 

components: a linear regression model (done separately for each subject) can predict the 

original signal’s TGM from the 1/f and the oscillatory components’ TGMs with 67% of 

explained variance on average across subjects. When using only the 1/f, the explained variance 

was 9%; and when using only the oscillatory component, it was 59%. This suggests that both 

components are relevant for decoding in a complementary manner. Importantly, a model 

including the 1/f component’s, the oscillatory component’s and the power’s TGMs explains on 

average 7% more variance of the original signal’s TGM than a model that only includes 1/f 

and power (permutation testing returns p<0.001 for all subject tests), which is a percentage 

decrement of 12%. This result highlights the importance of phase in decoding analysis. 

Expanding on this, in Supplementary Results we provide empirical evidence on the stimulus-

specificity of phase-locking. 

 

Fig 3B shows that the contribution to time-resolved decoding accuracy (i.e. the TGM diagonal) 

is higher for the oscillatory component, which does not generalise well over time; on the 

contrary, the 1/f component does generalise well over time, contributing more strongly (p-

value<0.001; permutation testing) to what is sometimes interpreted as the continuity in time of 

the neural representation. More specifically, the top panel highlights that the time points of 

high instantaneous prediction accuracy (i.e. the diagonal of the TGM) are supported by both 
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1/f and oscillations, but there is a larger contribution of the oscillatory component. The bottom 

panel suggests that cross-generalising decoding accuracy (i.e. the accuracy that emerges away 

from the diagonal) is higher for the 1/f component (p-value=0.0182; permutation testing). 

Thus, this analysis indicates that the 1/f and the oscillatory component contribute to the overall 

TGM pattern in a complementary way.  

 

 
Fig 3. Both 1/f fluctuations and oscillatory activity contribute to MVPA. A: TGMs for the original signal, for 

the 1/f component, for the oscillatory component, and for the power of the oscillatory component. B: TGM’s 

diagonal and TGM’s off-diagonal decoding accuracies of the 1/f component vs oscillatory component. The 

oscillatory component dominates the diagonal and the 1/f component dominates the off-diagonal of the TGM, 

indicating that the cross-generalisation decoding accuracy is fundamentally based on the 1/f component, whereas 

time point by time point decoding accuracy (i.e. the diagonal) is a mixture of both the 1/f and the oscillatory 

components, but with a larger contribution from the oscillatory component. 

 

 

Other features of the TGM can be explained by considering the 1/f and the oscillatory 

component separately. For example, a common pattern observed in decoding analysis is a 

worse-than-average rebound in decoding accuracy as we get away from the diagonal of the 

TGM (King and Dehaene, 2014). Fig 4A depicts the oscillation-based TGM within the 0.04s 

to 0.4s interval (left) for one example subject. The right panel represents a section of the matrix 

at a time point of approximately 200ms and orthogonal to the timeline. Accuracy peaks at the 

diagonal and suffers a steep decrement below baseline at time points 25-75ms away from the 

peak. This is consistent with the time occupied by half a cycle of a theta oscillation. We argue 

that this phenomenon may come about from the oscillatory  component  with no  contribution 
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from the 1/f component. As demonstrated above schematically (top two panels of Fig 2A), a 

rebound in decoding accuracy can come about through either a phase and/or an amplitude 

modulation causing a sign inversion in the differences in decoding regression coefficients 

between two time points. Therefore, certain patterns in the oscillatory component, but not in 

the 1/f, can cause worse than baseline accuracy in the decoding.  

 
 

Fig 4. Interpretation of the 

TGM based on the 

separation between the 

oscillatory and 1/f 

components.  
A: The worse-than-average 

rebound relates to the 

oscillatory component. On 

the left, zoomed-in version of 

the oscillation-based TGM, 

within the 40ms to 400ms 

interval; on the right, a 

section of the TGM at 

~200ms. Result shown for 

one exemplary subject.  

B. The stronger 

generalisation at t=150ms is 

due to the combined effect of the 1/f and oscillatory components (see main text). Result shown at the group level. 

 

 

Another common pattern observed in decoding analysis is a stronger generalisation in regions 

of the TGM that stem, vertically and horizontally after brief period of depression, from the 

time points of maximum accuracy in the diagonal – as indicated (at the group level) as rounded 

boxes in the top left panel of Fig 4B. This phenomenon is sometimes interpreted as reactivation 

of a neuronal representation (King and Dehaene, 2014). Here, we demonstrate that this 

phenomenon can be explained as an artefact of the manner in which the decoding accuracy 

provided by the 1/f component and the oscillatory-based phenomenon described in Fig 4A 

combine to bring about the overall decoding accuracy. In particular, we observe that (i) the 

initial depression of accuracy is caused by the peaks and troughs of the oscillatory component 

(Fig 4A); and that (ii) once such depression is passed, the reactivation is caused by the fact that 
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the 1/f component’s accuracy takes longer to decay than it takes the oscillatory component’s 

accuracy to come back to baseline. This is shown quantitatively by regressing the 1/f and 

oscillatory components’ accuracies onto the original signal’s accuracy, the prediction of which 

is shown as a dotted line in the right panels of Fig 4B (explained variance is 96.5% and 97.7%, 

respectively). Note that the 1/f component’s generalised accuracy has its maximum later than 

150ms (i.e. it does better in subsequent time points than at the time point when it was trained); 

this is only due to the fact that this component’s relevance in the decoding occurs altogether 

later in the trial. Further note that this reactivation does not manifest in the 1/f and oscillatory 

components alone (Fig 3A), since it is the interaction of both which brings about this effect. 

 

In summary, the key features of the TGM can be parsimoniously explained to a large extent 

when considering the 1/f and the oscillatory components separately, which should be taken into 

account when interpreting MVPA results. 

 

Between-stimuli phase differences are high-dimensional 

 

An assumption often implicitly made when applying MVPA on electrophysiological data is 

that the relevant information is encoded in multivariate patterns across sensors, rather than in 

univariate differences, for which single-channel-based analysis would suffice. Here we 

explicitly test this assumption and ask to what extent there is improved discrimination between 

the different stimuli when using multivariate (i.e. multi-channel) versus single-channel 

information (as in ERF/P analysis). That is, given the signal spread in MEG sensor space, 

would a reduced set of channels be enough to achieve a comparable decoding accuracy? 

 

We know that the signal must be rich in information (either temporally or spatially or both) in 

order to effectively distinguish between many different stimuli. Also, considering previous 

work at the level of individual neurons (Stringer et al. 2019) and at the macroscale level in 

MEG (Nasiotis et al. 2017; Cichy et al., 2015), we hypothesised that the evoked, stimulus-

specific activity would be high-dimensional. More specifically, we hypothesised that the 

stimulus-specific information cannot be encoded in cross-channel averages or other coarse 

patterns of variation across sensors (such as the first principal component of activity); instead, 

the information must be encoded in subtle modulations in the multidimensional channel 

activation patterns. 
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In order to verify this hypothesis, we conducted a PCA decomposition on the original signal, 

as well as separately on the 1/f- and oscillation-based components. We kept the first 120 

principal components (PC) in each of the three PCA decompositions, which explained around 

99% of the variance from the 306 MEG channels. We then computed t-statistics for each PC 

and pair of stimuli, representing the amount of information each PC carries in isolation about 

the separation between the two stimuli. Fig 5 shows, for one exemplary subject, the resulting 

t-statistics averaged across pairs of stimuli. The fact that the highest t-statistics distribute almost 

evenly until quite lower PCs (i.e. appearing lower in the matrix and explaining a small amount 

of variance), highlights the limitations of univariate, ERP/ERF analyses. This is because the 

information contained in these PCs relates to subtle differences between channels, instead of 

the main trends of the signal that are shared across channels and could be identified by 

univariate analyses; such large trends, instead, are contained in the higher PCs.  

 

In summary, this analysis shows that the information relevant to stimulus discrimination is 

high-dimensional, and therefore not solely encoded in the main patterns of covariation of the 

signal (i.e. the first PCs). This was the case for all aspects of the signal, including the oscillatory 

component, for which phase is a critical feature. This result has important implications for 

traditional ERP- and oscillation-based analysis, which are typically based on single channels 

or averages of channels, highlighting the importance of multivariate analyses. 

 

 
Fig 5. The stimulus-specific information, both for the 1/f and the oscillatory, is high-dimensional. After 

conducting PCA across channels on the original signal, t-statistics (averaged across pairs of stimuli) express 

how well each PC distinguish the stimuli for the original signal, the 1/f, and the oscillatory component. 
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Relative vs global phase differences between stimuli: is it just processing speed? 

 

Having demonstrated the importance of the oscillatory component’s high-dimensional phase, 

we now ask what is the specific nature of the multivariate phase modulation that allows an 

effective discrimination between stimuli. As discussed above, two non-exclusive possibilities 

exist. One is that the global latency of the response (i.e. common over all sensors) is different 

between experimental conditions (here stimuli), such that phase-locking occurs a bit earlier for 

some stimuli than for others and the delay is approximately consistent across channels (Case 

1, as in Fig 2B, left). The other is that the relative phase between channels is discriminant 

between experimental conditions (Case 2, as in Fig 2B, right), without there necessarily being 

a global all-channel temporal shift. 

 

To differentiate between these cases, we used the Temporally Unconstrained Decoding 

Analysis (TUDA) approach presented in Vidaurre et al. (2019) on the oscillatory component 

of the signal. In brief, TUDA is a Bayesian generative model consisting of a number of 

decoding models (either classifiers or regressors) together with a data-driven estimation of 

when each decoding model is active at each trial, i.e. the time courses of each decoding model. 

The critical feature of TUDA is that the temporal activation of each decoder can be different 

between trials. Hence, unlike standard decoding, TUDA can effectively accommodate 

between-trial temporal differences in the stimulus processing cascade. Crucially, these 

differences are global by definition. By modelling such global differences in the timing of the 

responses explicitly, TUDA can be used here to separate global from relative differences. 

 

For simplicity and computational efficiency, we trained the model on two supra-level 

categories into which the stimulus set could be grouped: the size of the stimulus (Size: small, 

medium, or large), and whether the image corresponds to an animate being (Animacy: yes or 

no). This way, we could estimate the parameters of the model using all the data for the 118 

images and avoided the computational burden of inferring the model parameters for image pair. 

We set TUDA to use 8 different decoders. Fig 6A shows the progression over the time within 

each trial of the decoders for Size and Animacy, where, for clarity, the trials were ordered 

according to the first principal component of the decoders activation time courses. To verify 

the ability of TUDA and standard decoding to fit the data, we conducted permutation testing 

to assess when TUDA and standard decoding reached a significant prediction, by simply 

permuting the label of the stimulus and rerunning the models. As shown in Fig 6B for one 
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subject (see Fig SI-3 for all subjects), both TUDA and standard decoding exhibited significant 

accuracy, even though TUDA had only 8 decoders as opposed to the 250 for standard decoding 

(i.e. one per time point). This means that we can capture the temporal dynamics of stimulus 

processing with a relatively low number of parameters, as far as we account for the temporal 

differences in the data (Vidaurre et al., 2019). 

 

By construction, any global (common to all sensors) delays in phase-locking that discriminate 

between stimuli (Case 1 – Fig 2B, left) will be captured in the TUDA model by the trial-specific 

(and therefore image-category specific) time courses of each decoding model (Fig 6A). On 

these grounds, we used permutation testing to see if differences in the decoders time courses 

are predictive of Size and Animacy (hypotheses HI and HIII), yielding one p-value per subject, 

decoder and pair of image categories. As shown in Fig 6C, the majority of tests were significant 

with a larger effect for Animacy – confirming the existence of global phasic differences 

between the image categories (Case 1); see Methods for details.  

 

Once the global delays are explained out, all that remains are the relative phase differences 

between image-categories (Case 2 - Fig 2B, left). Therefore, the fact that the decoding models 

are able to discriminate successfully is evidence of the existence of relative phase differences.  

To confirm the existence of relative differences, we also asked if phase is more consistent 

within image categories than it is across image categories during the time that each decoder is 

active. For example, for the time points when, e.g., Decoder 2 is active, we ask if phase-locking 

is significantly higher within category than between category. If the answer is positive, this 

would confirm the existence of differential phase patterns between the image categories above 

and beyond their speed of processing. To quantify phase locking, we used the Phase Locking 

Factor (PLF; Lachaux et al., 1999), which measures, for any given time point, how similar for 

each channel are the values of the phase across trials within a certain frequency band (see 

Methods). We then used permutation testing to assess, for each decoder (i.e. for the time points 

where each decoder is active), whether PLF was higher within than between image categories. 

Hypotheses HII and HIV correspond respectively to Size and Animacy, with one test per subject, 

decoder and pair of image categories. Fig 6C shows that there is a majority of significant p-

values, especially for Animacy. Overall, the distributions of p-values are strongly skewed 

towards significance.  
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In summary, these results suggest the existence of significant phase differences between stimuli 

at two different levels: global shifts in phase, attributed to the stimuli having diverse processing 

latencies (Vidaurre et al., 2019); and relative phase differences, attributed to the existence of 

stimulus-specific, multivariate phase configurations. As mentioned earlier, these two cases 

may afford very different physiological interpretations. 

 

 

 
Fig 6. Phasic differences between stimuli in the oscillatory component can be due to global differences in 

how fast the information is processed for each category, and relative local, phasic differences between 

channels. A: Temporally unconstrained decoding analysis (TUDA) reveals between-trial temporal differences in 

stimulus processing; the matrices reflect the temporal occupancy of each decoding model for the two considered 

decoding problems. B: Both TUDA and standard decoding exhibit significant decoding accuracy in discriminating 

animacy and size; statistical significance is given when the accuracy curve is higher than the permutations, 

represented in lighter colours. C: Manhattan plot showing p-values for the hypotheses of whether absolute latency 

is different between stimuli (size, HI; animacy, HIII), and whether relative latency is different between image 

categories (size, HII; animacy, HIV); each dot corresponds to one statistical test for one subject, decoder and pair 

of category values (e.g. small vs large); the horizontal bars represent the mean of the p-values, and the coloured 

boxes represents the area containing 90%, 75% and 50% (light, dark, darker, respectively) of the p-values. 

 

Discussion 
 

In recent years, the application of MVPA on electrophysiological recordings has made progress 

in understanding how the brain implements stimulus processing. However, this progress is 

hampered by our lack of comprehension of which aspects of the signal drive successful 

decoding. Because electrophysiological signals are complex and receive influence from 
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multiple brain mechanisms, we argue that we will only be able to further advance our 

understanding of stimulus processing by breaking down the signals into their underlying 

constituents and analysing their contribution to decoding both separately and in combination. 

In this paper, we followed this principle by analysing the separate contributions of the 

oscillatory (5-10Hz) and the 1/f  (<5Hz) components of the signal. We found that the patterns 

of decoding accuracy commonly observed in the literature can be well-explained from the 

distinct contributions of these two components, showing that the interpretation of these patterns 

can be misleading if we do not account for the separability of such contributions. This asks for 

a reconsideration of the way these patterns are read in the field. For example, certain patterns 

observed in the TGM are often interpreted as reactivation of mental representations, with no 

consideration of the fact that these patterns might arise from basic properties of the signal. 

While the cognitive interpretation is not necessarily incorrect, our statement is that more robust 

interpretations will emerge from embracing the complexity of the signal and breaking down 

how these fundamental properties relate to cognition. 

 

Here, we paid special attention to the oscillatory component, analysing how the multivariate 

phase of electrophysiological recordings contain information about the specific stimulus being 

processed by the brain. Our analyses stressed the importance of multivariate over purely 

univariate analyses, supporting the claim that the former are better able to account for systemic 

nature of the nervous system (Varela et al., 2001; Kragel et al., 2018). Critically, we showed 

that two dissociable phase-related mechanisms can bring about decoding accuracy: differences 

in the latency of processing (e.g. some images are processed quicker than others), and 

differential patterns of phase across channels, which can be attributed to the specifics of each 

neural representation (Cichy et al., 2015). These two types of effects speak to distinct neural 

phenomena affording very different cognitive interpretations. Furthermore, their relative 

influence can determine how MVPA can be used in different scientific contexts. For example, 

when the timing of the response is uncertain as it is in the case of imagery (given the lack of 

an external trigger), MVPA needs to rely on relative phase differences given that absolute 

phase differences are difficult to control for. The fact that decoding has been applied in this 

setting successfully (Xie et al., 2020; Dijkstra et al. 2020) brings additional evidence on the 

existence of relative phase differences in visual processing as measured by MEG. In cases 

where the spatial resolution of MEG might be insufficient to capture fine-grained relative 

differences, the absolute differences could be the only driver of a successful prediction. This 

could be the case of pain processing, for instance, where a large part of the relevant signal 
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originates from deep regions that are harder to access by non-invasive electrophysiological 

modalities (Tracey and Mantyh, 2007). 

 

We note that the analysis performed here was by no means intended to be exhaustive in 

accounting for all the different features contained in the data. For simplicity, we removed all 

information content above 10Hz, thereby disregarding higher frequencies such as those in the 

gamma band, which has purportedly a critical role in cognition (Herrmann et al, 2004). Nor 

did we look at the how the interactions between the 1/f component and the oscillations is 

predictive of the perceived stimulus. Future investigations will be needed to understand the 

role of these other components. We note also that, as opposed to Fig. 2, in real data the channels 

will likely not share the same kind of evoked response, and some channels will show no 

relevant response at all. This however results in no loss of generality for the above arguments.   

 

An important open question about the mechanistic underpinnings of stimulus processing is 

whether the stimulus-specific evoked activity is caused by a reorganisation of the ongoing 

phasic trajectories (i.e. through phase resetting) or is otherwise generated independently of the 

ongoing phase. Whereas we showed here that there is information contained in the patterns of 

phase-locking across trials, this does not necessarily imply the existence of phase-resetting 

(Shah et al. 2004; Mazaheri and Jensen, 2006; Mäkinen et al., 2005). Distinguishing between 

these two cases is not obvious in non-invasive electrophysiological data (Sauseng et al., 2007), 

and, at the bare minimum, requires a sufficient baseline period that we lack here. We however 

speculate that, most likely, the observed effects will not be purely caused by neither phase-

resetting nor a separate event-related activation, but instead be some mixture of both, with 

proportions that depend on the brain region and the type of stimulus (Fell et al., 2004). It is 

also possible that phase-resetting occurs, but studies focused on univariate analysis could not 

find it, simply because the effect relies on subtle differences across channels that can only be 

identified using a multivariate approach. 

 

More broadly, there is the more general question of how the whole-brain ongoing (pre-

stimulus) phase configuration of the brain in slow frequencies influences stimulus processing 

at higher frequencies. Previously, we showed that there exist reliable whole-brain patterns of 

phase coherence in theta and alpha at rest (Vidaurre et al., 2018), and that these configurations 

hold some relation to gamma frequency stimulus responses (Hirschmann et al., 2019). 

Considering these and other many studies about the influence of the low frequency ranges on 
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diverse aspects of cognition (Baria et al, 2017; Monto et al., 2008; He, 2014; Nobre and van 

Ede, 2018) and the different ways that ongoing brain states modulate neural responses 

(Podvalny et al., 2019; McCormick et al., 2020), it is clear that part of the large variability 

observed in the neural responses could be explained by the ongoing, large-scale network 

activity and concurrent phase trajectories, and that accounting by these factors could arguably 

improve the capacity of MVPA to produce successful predictions.  

 

In summary, we propose that macroscale brain signals contain stimulus-specific information 

at various different levels, and that dissociating them and understanding their potential 

hierarchical organisation is likely to be the route to eventually breaking down the multifaceted 

aspects of information processing in the brain. 

 

Materials and Methods 
 

Basic theoretical background 

 

Conventional MVPA and event-related potentials/fields (ERPs/ERFs), which represent the 

average pattern of the signal locked to the presentation of the stimulus (Pfurtscheller and Lopes 

da Silva, 1999), are both based on assuming consistent timing (or phase) over trials. This is 

because conventional MVPA uses the same decoder over all trials at the same time-point within 

each trial, and ERP/ERF approaches average over trials at the same time-point within each 

trial. The most fundamental differences between these two approaches relies on MVPA being 

prediction-based (i.e. decoding-based) and, critically, multivariate over channels – while 

ERP/ERF analysis is univariate over channels and encoding-based (Weichwald et al., 2015).  

 

We examined MVPA in the context of the temporal generalisation matrix (TGM) approach 

(King and Dehaene, 2014), which extends conventional time-resolved decoding analysis. The 

TGM, as estimated from magnetoencephalography (MEG) in MVPA approaches, is widely 

used to assess the dynamics of neural representations, is a T by T matrix of decoding accuracies 

(where T is the number of time points in the trial), such that one decoding model is trained per 

time point and tested on each one of the time points of the trial in a cross-validation fashion. 

The diagonal of the TGM reflects how well can we decode information time point by time 

point, indicating the emerging and waning of the different stages of stimulus processing. The 
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off-diagonal of the TGM shows how decoding models generalise to different data points of 

those where they were trained, and, therefore, is argued to reflect the stability of the neural 

code for the neural representation under study. Thus, the off-diagonal elements of the TGM 

can be interpreted as related to memory in the most basic definition of the term; that is, the 

persistency of information and meaning in the brain for longer than an instant. Because it is 

data-driven, however, the construction of the TGM is not explicitly concerned by the 

idiosyncrasies of electrophysiological data. The TGM is for example uninformed of how 

oscillations relate to decoding accuracy. This is in contrast with the extensive body of research 

on the importance of oscillations in cognition and information representation (Buzsaki and 

Draguhn, 2004).  

 

Signal processing  

 

Data were downsampled to 250Hz, and low-pass filtered under 10Hz in order to narrow down 

the analysis on alpha and lower frequencies. We discarded higher frequencies for simplicity, 

without any loss of generality in the conclusions.  

 

For each trial and channel, we analytically separated the signal into two uncorrelated 

components. The first component was computed by applying local regression using weighted 

linear least squares and a 1st degree polynomial model (parametrised to use 100 points, i.e. 10% 

of the trial). This yielded a slow component or trend, which we referred to as 1/f. Note that this 

component is not oscillatory when considered in 1s trials, but it could contain traces of 

ultraslow oscillations in the context of the entire recording. We then regressed out this 

component onto the original signal. The residual is a detrended oscillation, which we referred 

to as the oscillatory component. We used this approach to avoid the sinusoidal assumption of 

Fourier analysis and the limitations of filtering, which might not be appropriate for the 

frequencies considered here and the length of the trials (1s).  

 

Methods for standard decoding analysis 

 

We used cross-validation to assess the accuracy and cross-generalisation accuracy (King and 

Dehaene, 2014) of the decoding for each pair of stimuli. Given a set of trials or repetitions of 

the experiment, a decoder (regressor or classifier) contains information about how the stimulus 

is represented in the brain at the time that the decoder was estimated. Mathematically it can be 
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represented as a function 𝑓(𝑥! , 𝑦!), which predicts the stimulus 𝑦! from the data 𝑥! at time 

point t. As a base decoder we used L2-penalised linear regression, usually referred to as ridge 

regression (Friedman et al, 2001s), where the predicted variable was encoded as -1 or +1, and 

we selected the regularization parameter using a nested cross-validation loop. Although logistic 

regression is more adequate to deal with binary classification, we opted for L2-penalised 

regression because its lower computational cost, which is relevant here due to the high number 

of stimuli pairs. Note also that standard linear regression, which is intimately related to L2-

penalised linear regression (since they both minimise the sum-of-squared errors), is equivalent 

to linear discriminant analysis insofar as the proportions of the classes are equal, as occurs here 

(Friedman et al, 2001). 

 

Temporally-unconstrained decoding analysis 

 

Let us assume that we can represent how the brain encodes information using a set of K 

decoders, i.e. functions 𝑓" 	that can predict with certain accuracy the value of the perceived 

stimuli given the brain data. We will also assume that at any given time point of the experiment, 

there is only one “active” decoder; or, in other words, that every time point was used to train 

one and only one decoder 𝑓". For convenience, let us define an indicator variable 𝛾!#", such 

that  𝛾!#" = 1 if the k-th decoder is active at time point t and trial n, and  𝛾!#" = 0 otherwise.  

 

For standard decoding, the basic premise is that 𝛾!#" has the same value (either 0 or 1) for all 

trials 𝑛 = 1…𝑁. Also, typically, there is a different decoder for each time point 𝑡 = 1…𝑇, 

where 𝑇 is number of time points in each trial. Hence, there are 𝐾 = 𝑇 decoders for standard 

decoding in total.  

 

In the Temporal Unconstrained Decoding Analysis (TUDA) approach, the key idea is to relax 

the assumption that 𝛾!#" has the same value for all trials. In exchange, the number of decoders 

is considerably lower than with standard decoding (i.e. 𝐾 is much lower than 𝑇), so that we are 

trading temporal flexibility for spatial parameters. While the estimations of the decoders in 

standard decoding are decoupled from each other, TUDA is a unitary Bayesian (generative) 

model that includes the regression parameters of the 𝐾 decoders, the parameters 𝛾!#", and a 

transition probability matrix 𝑀 containing the probabilities of transitioning from one decoder 

to another within the trials. Similarly to the standard decoding approach described above, the 
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base decoder used for TUDA is a regularised regression model, which makes the results 

comparable between the two approaches. All the elements of the TUDA model are estimated 

using variational Bayesian inference (Vidaurre et al. 2016; Vidaurre et al, 2018b). 

 

Although this model was already presented previously (Vidaurre et al, 2019), here we applied 

three modification to improve performance and avoid overfitting. Indeed, overfitting can be a 

problem of this model if some decoders specialise too much in certain stimulus values. For 

example, in the hypothetical case that there is an overall shift in the signal when face stimuli 

are presented as opposed to inanimate objects, there would be the risk that a subset of the 

decoders takes all time points for “face” trials (by having overall higher regressor parameters), 

while a separate subset of the decoders takes the other trials (by having overall lower regressor 

parameters). This degenerate solution is of course not useful to interrogate the cascade of 

stimulus processing. The improvements we have introduced in this paper are: 

 

- The decoders are forced to activate in sequence, so that every trial starts with the first 

decoder (𝑘 = 1) and finishes with the last decoder (𝑘 = 𝐾).   

- The decoders are forbidden to reach out too far in the trial from their mean activation 

point (𝑘 𝑇⁄ ). In particular, when the decoders are allowed to be active is given by the 

matrix shown in Fig SI-7. 

- To avoid the aforementioned effect, we constrained the estimation of the decoder 

parameters so that for all decoders the regression parameters sum up to the same value.  

 

Because the inference of this model can take a bit longer than a standard decoder, we applied 

TUDA on image “supra”-categories: to whether the image is an animate being, and the size of 

the represented object. This way, we could also use all trials in the estimation.  

 

Testing the latency of processing and the relative phase between image categories 

 

We used permutation testing for both tests. To test the latency of processing, we took the 

decoding time courses 𝛾 , which is a matrix of dimension 𝑇 x 𝑁 x 𝐾 (where 𝑁 is the number 

of trials), and reorganised it into a matrix 𝑁 x 𝑇𝐾, such that each row corresponds to one trial, 

and contains (for that trial) the time course of activation of each decoder. Note that if we did 

this for standard decoding, all rows would be equal. We then used permutation testing to assess 
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whether we can predict the stimulus using this matrix. If this is the case, then that points at 

different speeds of processing for each image category.  

 

Now, to test if there are cross-channel differences in the relative phase between image 

categories, we need to factor out the differences in absolute latency (which were assessed in 

the previous test). Only then, we will be able to test if the nature of the phase trajectories (i.e. 

the relative phase between channels at each time point) is distinct across image categories 

above and beyond how fast these trajectories traverse. We do this by using the temporal 

realignment provided by the activation times of the decoders, defined by 𝛾!#"; these were used 

as data-driven time windows containing quasi-stationary stages of processing, i.e. with a quasi-

stable differential phase pattern. Now, for each of the decoders (i.e. within the decoder-specific 

time windows), we tested whether the within-class PLF was stronger than the between-classes 

PLF. We tested this using permutation testing, aggregating the PLF values across channels. If 

phase locking was found to be more consistent within image categories than in general, that 

would suggest distinct relative phasic patterns across channels for each stimulus condition.  

 

Quantifying phase-locking 

 

Given that the distribution of phase across trials in the absence of stimuli is random, we can 

describe phase-resetting, for each time point after stimulus presentation, as how concentrated 

is the across-trials distribution of phases at a specific angle. This is commonly measured in 

practice using the Phase Locking Factor (PLF): 

 

𝑃𝐿𝐹!$ =
%
&
8∑ 𝑒'	)!"#&

#*% 8, 

 

where 𝜑!#$ is the instantaneous phase of trial n at time point t for channel j (Lachaux et al., 

1999).  

 

Code availability 

 

The custom code to reproduce the analysis can be found in the first authors Github personal 

site. The code for running TUDA can be found in https://github.com/OHBA-analysis/HMM-

MAR . 
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Supplementary Results 
 

Phase-locking is stimulus-specific 

 

We have shown that phase of the oscillatory component contains relevant information about 

the stimuli, and that MVPA can leverage this information to discriminate between the different 

image classes. We here provide further evidence that this is the case by showing that, not only 

that there (obviously) must exist at least a certain amount phase-locking for decoding analysis 

to succeed, but also that the nature of such phase-locking is stimulus-specific and thus is 

important to decoding.  

 

Phase-locking is necessary because if the phases were completely random across trials, then 

trials with a negative field would cancel trials with a positive field, with the result that phase-

based decoding would be impossible. Phase locking between trials at each time point can be 

quantified using the Phase Locking Factor (PLF; Lachaux et al., 1999), which measures, for 

any given time point, how similar for each channel are the values of the phase across trials 

within a certain frequency band (see Methods). To confirm this, Fig SI-2A shows, for one 

representative subject, the PLF per time point (averaged across channels) together with the 

time-resolved decoding accuracy (i.e. the diagonal of the TGM); the correlation of these two 

metrics is 0.94 (0.935 on average across subjects), highlighting the importance of phase-

locking for MVPA. Furthermore, we computed a t-statistic 𝑏=!$
+   representing how important a 

given channel j is for the discrimination of stimulus g at time point t (see Methods). More 

precisely, the “decoding weights” in the figure are univariate t-statistics instead of multivariate 

regression coefficients, because univariate statistics are more representative of the relevance 

of a feature than multivariate regression coefficients (Haufe et al 2014).  Focusing on the peak 

of the phase-locking for an exemplary subject (t=200ms), Fig SI-2B confirms that the channels 

exhibiting a higher degree of phase coupling are also those that contribute more strongly to the 

decoding estimation; the scatter plot shows this relationship such that each point corresponds 

to a particular channel and stimulus. The histogram in Fig SI-2C shows the distribution of 

correlations between the PLF values and the decoding weights across channels, pooled across 

stimuli and subjects. The correlations are significantly higher than 0.0 (p<0.001, permutation 

testing) for all subjects.  
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Having shown that phase-locking is necessary, we further demonstrate that it is also stimulus-

specific. Using permutation testing and focusing on t=0.2s, we tested whether there is more 

phase-locking between trials that correspond to the same stimulus than between trials that 

correspond to different stimuli (see Methods). Fig SI-2C presents the p-values across 

subjects and pairs of stimuli, showing that the timing and nature of such phase-locking is 

highly stimulus-specific (i.e. most p-values are significant). 

 

Supplementary Methods 

 

Measuring channel relevance for decoding 

 

In order to get an estimation of how important is a channel for the decoding, we can compute, 

for each channel j, time point t and pair of stimuli g and h, an unsigned t-statistic representing 

how important is that channel for the decoding at t: 

 

𝑏!$
(+-) = 𝑐	 ? /!$#0	/!%#

12!$#
& 32!$#

& 	
?, 

 

where 𝜇!+$ and 𝑠!+$4  are, respectively, the mean and the variance of channel j at time point t for 

stimulus j, and c is a constant. We then aggregated these for each stimulus, with respect to all 

the other stimuli, such as: 

 

𝑏=!$
+ = %

50%
	∑ 𝑏!$

(+-),-6+      where p is the number of stimuli.  

 

These 𝑏=!$
+  values represent how relevant is channel j at time t to discriminate stimulus g. These 

were used instead of multivariate decoding weights because of their higher interpretability 

(Haufe et al, 2014). 
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Supplementary Figures 
 

 

 

 

 

 
Fig SI-1. Time-resolved 

decoding accuracy for one 

subject and at the group 

level.  

 

 

 

 
Fig SI-2. Oscillation-based 

accuracy necessitates phase-

coupling across trials. A: The 

phase-locking factor (PLF; 

averaged across channels) and 

oscillation-based decoding 

accuracy are highly correlated 

across time points. B: Focusing 

on time point t=0.2s, scatter 

plots of PLF vs decoding 

weights for one subject. C: 

Histogram of correlations 

between the two measures 

across channels, stimuli and 

subjects (correlations are highly 

significant, p<0.001). D: Distribution of p-values for the hypothesis that phase-locking is stronger within trials 

belonging to the same stimulus than between different stimulus at t=0.2s, indicating that phase-resetting is highly 

stimulus specific; each dot represents one p-value, the vertical blue bar represents the mean of the p-values, and 

the coloured boxes represents the area containing 90%, 75% and 50% (light, dark, darker, respectively) of the p-

values. 
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Fig SI-3. Subject by subject cross-validated decoding of size (top) and animacy (bottom). 
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