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Abstract

Early studies have shown that the localization of a sound source in the vertical plane
can be accomplished with only a single ear and thus assumed to be based on monaural
spectral cues. Such cues consists of notches and peaks in the perceived spectrum which
vary systematically with the elevation of sound sources. This poses several problems to
the auditory system like extracting relevant and direction-dependent cues among others.
Interestingly, at the stage of elevation estimate binaural information from both ears is
already available and it seems reasonable of the auditory system to take advantage of
this information. Especially, since such a binaural integration can improve the
localization performance dramatically as we demonstrate with a computational model of
binaural signal integration for sound source localization in the vertical plane. In line
with previous findings of vertical localization, modeling results show that the auditory
system can perform monaural as well as binaural sound source localization given a
single, learned map of binaural signals. Binaural localization is by far more accurate
than monaural localization, however, when prior information about the perceived sound
is integrated localization performance is restored. Thus, we propose that elevation
estimation of sound sources is facilitated by an early binaural signal integration and can
incorporate sound type specific prior information for higher accuracy.

Introduction 1

Audition is our only sensory system that let us perceive what is happening behind a 2

wall or around the corner. To do that, extensive neural computations are in place along 3

the auditory pathway that transform the oscillation of the eardrum, a tonotopic 4

representation of the stimulus to, for example, comprehensible speech (phonetic 5

representation [10,23]) or spatial information about the location of a sound source 6

(topographic representation [4, 8]). To transform tonotopic inputs of sounds to a 7

topographic representation of space, the auditory system extracts three major cues from 8

a sound signal created by the distance between the ears, their shape and the shadow of 9

the head. The distance between the ears creates an interaural time difference (ITD) 10

between the signal arriving time at the left and right ear [49]. Together with the 11

interaural level difference (ILD), created by the attenuation of sounds by the head [38], 12

these two cues provide a means for localization of sounds in the horizontal plane. 13

However, for sounds on the median plane or on the cone-of-confusion [42] these cues 14

provide ambiguous signals. To resolve this ambiguity and to accurately localize sounds 15
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in the vertical plane the auditory system exploits direction-dependent changes in the 16

perceived frequency spectrum induced by the shape of the ear (pinna) [20, 29]. These so 17

called spectral cues are characterized by direction-dependent Head Related Transfer 18

Functions (HRTFs) [3, 5, 12,27,39,47,50]. 19

Extracting such spectral cues from the sensory input is not straight forward. The 20

spectra of every day sounds are very different to each other which results in very 21

different spectra at the sensory input level after being filtered by the pinna. This poses 22

several problems for elevation estimation: At the level of the eardrum the perceived 23

sound spectrum has already been filtered with the elevation-dependent HRTF and, in 24

principle, the auditory system has no indication which of the spectral cues were induced 25

by the HRTF or were already present in the source spectrum. Thus, the estimation of 26

sound source elevation is a ill-posed problem [21,22]. This becomes apparent when 27

looking at the spectra of different sounds (see Fig. 1 B). It is difficult to identify the 28

fine structure imposed by the HRTFs and extracting spectral cues from such highly 29

variable input signals for learning is challenging. One would like to have a mechanism 30

that separates the sound type specific spectral content from the HRTF induced cues, 31

thus leaving only the HRTF dependent frequency modulations. Some computational 32

models tried to solve such a problem by assuming that the spectrum of the sound source 33

is known (a prior) [31], by assuming local constancy of sound spectrum [53] or by 34

assuming a broadband and sufficiently flat source spectrum [26]. 35

Figure 1. Head-Related Transfer Function A HRTFs for CIPIC subject no. 10
as a function over elevations. Different colors indicate the energy content. Direction
dependent changes in energy content is most prominent above 4kHz. B Elevation spectra
maps of six different natural sounds after being filtered with the HRTF of A.

Another issue in vertical sound source localization is the role of binaural integration. 36

Early localization experiments demonstrated that participants are able to localize 37

sounds with only one ear [44] and that the ability to localize sounds with one ear or two 38

ears is similar, thus concluding that vertical localization is not binaural [18]. However, 39

by using virtual sound sources provided over headphones Wightman et al. in a later 40

study [50] questioned the monaural localization paradigm applied in most previous 41

experiments including their own. Their findings demonstrate that localization is 42

effectively degraded under monaural listing conditions. A later study confirmed that 43

both ears contribute to the perception of elevation [28], thus supporting the hypothesis 44

of binaural integration. 45

When such an integration takes place is still unclear. Hofman et al. [19] first 46

described different schemes for elevation estimation. Based on their findings they 47

hypothesized that there needs to be an weighted integration step of the signal from the 48

left and right ear to get a single estimation of the elevation. Whether this integration 49

step already takes place before the spectral-mapping (binaural) or after (monaural) was 50

unclear. Later on, the authors tried to answer this question in another experiment [48] 51

but the results are ambiguous and the authors were not able to derive a conclusion. 52
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The difficulty of separating HRTFs from the source spectrum, the contradicting 53

results for monaural and binaural sound source localization [18,50], and the unclear 54

integration order of signals from the left and right ear [19] raise the question of how the 55

auditory system processes sound signals on a neural level to learn a representative 56

template of HRTFs in order to generate a stable and unique perception of elevation 57

estimates. 58

Here, we propose a computational model of sound source localization in the median 59

plane that extracts elevation specific cues by integrating signals from both ears and 60

learning a sound type specific prior. Binaural integration leads to a sound type 61

independent representation of HRTFs, thus solving the ill-posed problem of elevation 62

estimation. Based on such signals the model reliably localizes binaural sound sources 63

but struggles with monaural input signals. By integrating sound type specific prior 64

information for elevation estimation, the model becomes able to localize monaural 65

sound signals. Thereby suggesting that elevation estimation is a binaural process but 66

can deal with monaural inputs if the sound has previously been learned. 67

In the following simulation experiments we demonstrate that, based on a binaurally 68

learned map, the model is very well capable of localizing binaural sounds, but most 69

significantly remains localization performance for monaural sounds given there is 70

available prior information of this sound. In particular, results show that prior 71

information constantly improves localization performance. 72

Results 73

Brief Description of the model 74

The model consists of two layers of neurons in the processing pathway: a normalization 75

layer for ipsi and contralateral inputs (I), respectively, and a binaural integration layer 76

(II). A third layer averages over all input signals thus learning a map of elevation 77

spectra (III). Perceived signals are compared to this learned map via cross-correlation 78

(see [21] for details) in a fourth layer (IV) to estimate the elevation of the sound source 79

(see Fig. 2). The normalization layer of neurons receives a frequency signal of the sound 80

signal, provided by a gammatone-filter bank [36] of the ipsi- and contralateral input 81

signals, as an input and performs a divisive normalization with a Gaussian-filtered 82

version of it self. This normalization already provides signals with prominent spectral 83

cues (see Fig. 2 middle maps). Averaging these signals over elevations leads to a sound 84

type specific prior which is in some conditions used for map learning and to improve 85

localization of monaural and binaural sounds. In the binaural integration layer, the 86

normalized signals from the the ipsi- and contralateral side are integrated (by a division) 87

to provide a binaural signal. In the last layer of the model, a cross-correlation of the 88

perceived, filtered sound signal with a previously learned map is calculated and the 89

elevation with maximum correlation value is chosen as the elevation estimate (similar 90

to [21]). For more details on model implementation see Methods. 91

We found that this simple model of elevation perception can account for typical 92

behavioral of human auditory elevation perception and predicts that the underlying 93

localization process is fundamentally binaural with the ability to localize monaural 94

sounds under certain conditions. 95

To investigate the performance and validity of our model we used HRTFs of 45 96

subjects from the CIPIC database [1] and presented each with 20 different natural 97

sound types (signal-to-noise ratio 5 : 1), originating from 25 different elevations 98

([−45◦, 90◦] in 5.625◦ steps according to CIPIC database recording [1]). All presented 99

sound types are averaged for each participant to create a learned map of spectral 100

elevations. This map is used for the cross-correlation with a perceived probing signal. 101
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Figure 2. Model Architecture Each sound that is presented to the model is first
filtered by a subject’s HRTF of different elevations for the left (HRTFL(ε, f)) and
right ear HRTFR(ε, f), respectively. The resulting signals are filtered by a Gaussian
normalization step (I). Then, if available, prior information is integrated, separately
for the left and right ear. The binaural integration step (II) combines the signal form
the left and right ear. Each perceived signal of all presented sound types contributes to
build a learned map of elevation spectra (III) for later cross-correlation with a perceived
sound to computed an elevation estimate ε∗ (IV).

The resulting elevation estimate is plotted against the actual elevation of the presented 102

sound. Consequently, for each participant a linear regression analysis is performed on 103

this data which provides a response gain (accuracy), a response bias (spatial bias) and a 104

response precision (coefficient of determination). Different conditions are tested to 105

demonstrate the advantage of binaural signal integration and prior information on 106

localization performance. 107

A binaurally learned map can account for binaural as well as 108

monaural sound source localization 109

Experimental results demonstrate that humans can localize sounds with just a single 110

ear [18,44]. Based on these results, the common assumption for human vertical sound 111

source localization is that it is fundamentally monaural, that is, localization is 112

separately initialized for the left and right ear, respectively, and the two elevation 113

estimates are integrated for a single estimate [21]. We question this assumption by 114

providing simulation results that demonstrate that when a combined binaural map for 115

the left and right ear is learned, monaural sound source localization is still possible. 116

Here, we show that a binaurally learned map of elevation spectra can account for 117

sound source localization under binaural and monaural conditions, given prior 118

information for monaural sound signals is available. Thereby, such learned maps can 119

account for experimental results with binaural and monaural listing conditions. Four 120

different conditions are tested: In the monaural condition, the binaural integration layer 121

is skipped and pure, normalized monaural signals are presented to the model for 122

localization. These monaural signals are combined with the previously learned sound 123

type specific prior in the monaural-prior condition. In the binaural condition the 124

binaural integration layer remains active and the elevation estimation is calculated 125

based on the output of this layer. The last condition (binaural-prior) combines these 126

binaural signals with prior information before the cross-correlation with the learned 127

map is performed. 128

Simulation results for a single participant (CIPIC HRIR no.8) are shown in Fig. 3A 129

when a binaural map with integrated prior information is learned. Not surprisingly, 130

pure monaural sounds (ispilateral ear, left panel) are basically not localizable (gain: 131

0.35, bias: 4.97, score: 0.11). However, when such monaural sounds are combined with 132

a previously learned sound type specific prior (middle left panel), the localization 133
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quality increases dramatically (gain: 0.78, bias: 6.47, score: 0.60), thus localization 134

ability is restored. 135

Localization performance for sounds that are presented binaurally with (middle right 136

panel) and without (right panel) integrating prior information is almost perfect (gain: 137

0.84, bias: 0.09, score: 0.75 and gain: 0.94, bias: 1.21, score: 0.91, respectively). Such 138

good performance in these conditions is expected since the learned map is constructed 139

based on these binaural sounds integrating prior information. 140

When averaging localization quality over all participants (all 45 HRIRs from CIPCI 141

database) the initial trend remains Fig. 3B. That is, localization of monaural sounds is 142

basically non-existing (left panel, gain: 0.25, bias: 8.95, score: 0.06) but improves 143

tremendously when prior information is integrated (middle left panel, gain: 0.70, bias: 144

5.14, score: 0.51). Again, localization performance for binaural sounds and binaural 145

sounds integrating prior information remains stable (gain: 0.82, bias: 2.90, score: 0.69 146

and gain: 0.93, bias: 1.58, score: 0.89, respectively). 147

These results demonstrate that a binaural map of elevation spectra supports the 148

localization of monaural sounds integrating prior information but is unable to localize 149

pure monaural sounds, since their spectral information differs greatly from the learned 150

spectra (see supplementary Fig. S1). This is a strong indication for the existence of a 151

binaurally learned map. 152
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Figure 3. Elevation estimation results. Model estimates for all presented elevations
and all sound types. X-axis indicates the elevation of the presented sound. Y-axis is
the model elevation estimate for a sound. Pure monaural sounds are presented in left
panel. Middle-left panel shows model estimate for monaural sounds integrating prior
information. Pure binaural sounds are presented in middle-right panel. Right panel
depicts model estimate for binaural sounds integrating prior information. A Model
estimates for a single participant (no. 8 CIPIC). Each dot represents one sound source
elevation with color indicating sound type. . B Calculated regression lines for each
participant are shown (colored lines). Black lines are calculated by averaging over all
colored lines to achieve averaged estimation values. Regression values are shown in inset
box.
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Localization quality for differently learned maps 153

In the previous experiment a binaural map is learned to localize sounds signals of 154

various types. Hofman and colleagues [19] described different possibilities of how a 155

unique perception of elevation of signals from the two ears might be achieved. They 156

hypothesize two different schemes for elevation perception: the spatial weighting scheme 157

and the spectral weighting scheme (see [19] their Fig. 7). The spectral weighting scheme 158

is similar to our binaural integration model with a binaurally learned map, whereas the 159

spatial weighting scheme would correspond to our model when a monaural map is 160

learned. To test which scheme seems more plausible and to validate our results from the 161

previous experiment, we test the localization quality of participants when the learned 162

map is based on different signals (i.e. monaural, monaural-prior, binaural, 163

binaural-prior, see Fig. 4) and demonstrate that a binaural map with sound type 164

specific prior integration produces the best localization results (Fig. 4 last row). 165

When the learned map of elevation spectra is based of pure monaural input signals, 166

localization performance is best for monaural signals integrated with the sound type 167

specific prior (gain: 0.91, bias: 0.72, score: 0.87). Surprisingly, these sound signals are 168

even better to localize than pure monaural signals (the basis for the map, gain: 0.52, 169

bias: 12.76, score: 0.27). This demonstrates the benefit of the integration of a sound 170

type specific prior. This advantage of prior integration can be also seen in the binaural 171

sound conditions. For pure binaural sounds the localization performance is worse 172

compared to binaural signals integrating prior information (gain: 0.42, bias: 3.76, score: 173

0.24 and gain: 0.57, bias: 2.71, score: 0.42, respectively). Here, the binaural - prior 174

condition even outperforms the pure monaural condition, which is surprising since 175

binaural signals differ substantially from monaural signals (see supplementary Fig. S1). 176

Taken together, these simulation results demonstrate that a pure monaural map is 177

not sufficient to localize pure monaural sounds (first row). Prior information is required 178

to localize sounds in monaural and binaural conditions. Even if this prior information is 179

integrated in the learned map (second row), localization of sounds is difficult and again 180

prior information of the input signals is crucial. However, if the learned map is based on 181

binaural signals with or without the integration of prior information (third and fourth 182

row, respectively) localization performance for each condition except the pure monaural 183

condition is close to optimal. Thus, we hypothesize that elevation estimation is 184

essentially based on binaural signals but can deal with monaural signals when prior 185

information of these signals is available. Furthermore, these results demonstrate the 186

prior information of sounds consistently improves localization performance of sound 187

sources. 188

Neural network model 189

To demonstrate the biological plausibility of the model we present localization results of 190

a neural network model. This model uses first-order differential equations to describe 191

membrane potentials of neurons in different populations (see Methods for details). The 192

neuron populations are implemented and connected with each other according to the 193

different layers presented in the computational model. In the following experiments the 194

signal-to-noise ratio is set to 0. 195

The localization performance for all participants from the CIPIC database is 196

presented in Fig. 5. Even though different in the linear regression values the overall 197

trend of the localization quality in the different conditions is similar to the 198

computational model. Pure monaural sounds (ispilateral ear, left panel) are basically 199

not localizable (gain: 0.28, bias: 2.89, score: 0.09). When combined with prior 200

information such monaural sounds (middle left panel) the localization quality increases 201

(gain: 0.40, bias: 1.29, score: 0.19). For binaurally presented sounds the localization 202
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Figure 4. Estimation results over differently learned maps. Each column
depicts localization results of the model for the different conditions, similar to Fig. 3.
In each row the learned map which is used to compare perceived sounds to, is learned
based on different signals. In the first row, the map is based on pure monaural sounds.
Monaural sounds integrating prior information are used to build the learned map for
the second row. In the third row, the map is based on pure binaural sounds. Binaural
sounds integrating prior information are used to build the learned map for the fourth
row.

performance is again improved (gain: 0.67, bias: −1.82, score: 0.51) and for binaural 203

sounds integrating prior information the localization performance is close to the 204

computational model (gain: 0.87, bias: −0.76, score: 0.81). 205

Discussion 206

We propose that binaural signal integration can solve the ill-posed problem of vertical 207

sound source localization. Model results demonstrate that integrating signals form the 208

left and right ear improves localization of sounds without the need for prior information 209

about the spectrum. If only monaural signals are available, as tested in several 210

behavioural experiments [51], sound source localization remains difficult. However, 211

when sound type specific prior information is integrated, localization performance of 212

monaural sounds is restored. In addition to these experimental results, the structure of 213
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Figure 5. Neural Network Elevation Estimates. Model estimates for a single
participant (no. 8 CIPIC). Each dot represents one sound source elevation with color
indicating sound type X-axis indicates the elevation of the presented sound. Y-axis is
the model elevation estimate for a sound. Pure monaural sounds are presented in left
panel. Middle-left panel shows model estimate for monaural sounds integrating prior
information. Pure binaural sounds are presented in middle-right panel. Right panel
depicts model estimate for binaural sounds integrating prior information. Regression
values are shown in inset box.

the model also provides a hint on when the integration of the signals from the left and 214

right ear are integrated. Therefore, the proposed model for binaural integration 215

provides an excellent computational basis for understanding vertical sound source 216

localization and guides future behavioral and physiological experiments. 217

Implications on the current view of vertical sound source localization 218

Findings of Wightman and colleagues [51] questioned the results of several previous 219

experiments on monaural localization performance and demonstrated that when 220

participants are presented with a pure monaural signal over headphones, localization is 221

basically not possible. The authors suggested that in previous experiments with 222

contradicting results, the occlusion of one ear was not sufficient to block all informative 223

signals or that small head movements have been used to localize a sound, therefore This 224

is inline with our results from the first experiment which demonstrates that localization 225

is essentially eliminated for monaural sounds without integrating any further 226

information. 227

However, these findings are in contrast to the results of [18], in which they presented 228

participants with white noise and presumably unfamiliar filtered noise to test the 229

localization performance under monaural and binaural conditions for known and 230

unknown sounds, respectively. Their results indicate that, the additional binaural 231

information in the binaural condition does not improve localization performance and 232

that known and unknown sounds are localized equally well. Our results clearly indicate 233

that unknown sounds are basically impossible to localize under monaural conditions. 234

Thus, we believe that these behavioral results are misleading because of two major 235

factors: The method to occlude one ear might not be sufficient, as already pointed out 236

by [50], to ensure pure monaural information. The second factor is the choice of the 237

unknown sound, which is a filtered white noise stimuli, with random peaks and notches 238

similar the ones provided by the HRTF. However, this is not necessarily an unknown 239

sound but might merely lead to a confusion between sounds from different elevations. 240

Therefore, we are planning on implementing a new behavioral experiment that avoids 241

these two factors by providing virtual sounds over headphones and applying a stimuli 242

which is indeed unknown. If our model predictions hold true, unknown monaural sounds 243

will be very difficult to localize. Though, unknown binaural sounds should be localized 244

accurately and quickly. 245

Hofman and van Opstal [19] already suggested that the elevation estimation is 246

facilitated by a binaural interaction of the left and right ear. They introduced two 247
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conceptual schemes for this interaction. However, it is still unclear which of the scheme 248

is applied [48]. Our model architecture and results from the second experiment 249

demonstrate that binaural integration is most likely taking place before the 250

computation of an elevation estimate (spatial mapping stage), since it enables the 251

system to extract unique elevation dependent cues and remove unnecessary source 252

spectrum induced spectral information. 253

The process of binaural signal integration is an integral part of horizontal sound 254

source localization and provides major cues like interaural level or time difference. The 255

fundamental principals used for the computation of these cues are similar and are based 256

on the integration of excitatory and inhibitory input signal [6, 15, 16,52]. It is therefore 257

plausible that the process of binaural integration, as shown in our model, is adapted to 258

provide distinct cues for vertical sound sources. 259

Prior Information Another major finding of our model is that the integration of 260

sound type specific prior information facilitates monaural sound source localization as 261

well as it improves binaural localization performance. By learning sound type specific 262

prior information, which consists of the mean frequency components over elevations, 263

localization performances for all conditions are improved (see Fig. 4). In our model, we 264

assume that this prior information is learned in higher layers of auditory processing, 265

which are able to identify a sound or at least categorize it (as has been observed 266

in [2, 17]) and provided by feedback connections [25, 37, 41]. If this is the case one could 267

measure a difference in localization speed between monaural and binaural sounds, since 268

monaural sounds can be localized only after they have been categorized and a feedback 269

signal has been sent back. However, binaural signals can be localized immediately 270

without the use of prior information, the prior information just increases accuracy. 271

Neural implementation In a last experiment we introduced a neural 272

implementation of our computational model, that implements different neuron 273

populations and interactions of excitatory and inhibitory signals among them to 274

replicate computations of the computational model in a biologically plausible fashion. 275

In [30] the authors investigated typical neural responses of neurons in the dorsal 276

cochlear nucleus to stimuli with spectral notches and discovered they these neurons 277

already show a sensitivity to spectral notches. Our proposed model is similar to their 278

type II and type IV neurons in a sense that it receives excitatory inputs from the best 279

frequency of a neuron and inhibitory inputs from neighbouring frequency bands 280

(wide-band inhibition, see Fig. 6). Similar investigations of the inferior colliculus have 281

found neurons that specialized in processing directional dependent features of the 282

HRTF [9]. Our neural model follows these findings and additionally, assumes inhibitory 283

input to neurons in the inferior colliculus from the contralateral side to enable binaural 284

integration. Such connections have been shown to exist [41]. The fact that in the neural 285

model the same neuron parameters are used for all participants demonstrates on the one 286

hand the robustness of the model and on the other hand provides a possibility to 287

improve the performance for each participant by tuning the neuron parameters 288

specifically for each participant. 289

The presented experiments for monaural and binaural sounds challenges the view on 290

the fundamentals of vertical sound source localization. We propose that vertical sound 291

source localization takes advantage of binaural signal integration, which can be found 292

throughout the early auditory pathway, in every day situations but is capable of 293

localizing monaural signals providing they have been heard (learned) beforehand. 294
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Methods 295

Input data creation 296

Inputs Ssm,i to the model are generated by, first, convolving a mono sound signal xi(t) 297

of sound type i with recorded head-related impulse responses (HRIR), separately for the 298

ipsi- s = Ipsi and contralateral ear s = contra of listener m provided by the CIPIC 299

database [1] to model simulated sound signals arriving at the cochlea 300

Ism,i(ε, t) = HRIRsm(ε, t) ∗ xi(t) · (1− η) + η · (xi(t) + U(0, 1) · η)), (1)

where ∗ is the convolution of two signals, U(0, 1) the uniform distribution and η 301

describes the signal-to-noise ratio and is commonly set to 0.2. The input noise of the 302

data is modeled so that a part of the original, unfiltered signal (xi(t) in second term) is 303

perceived together with random noise (U(0, 1)). For the influence of the signal-to noise 304

ratio parameter on the localization ability see supplementary Fig. 2. 305

The cochlea response over frequencies for a perceived sound signal can be simulated 306

using gammatone-filter banks [36]. This transformation from time into frequency 307

domain is implemented by using a python implementation 308

(https://github.com/detly/gammatone) of the auditory toolbox [43] with 128 frequency 309

bands, window length of twin = 0.1s and step time thop = twin
2 . Thus, each signal Ism,i 310

at the eardrum is transformed to its frequency domain by 311

S̄sm,i(ε, f, t) = GBF (Ism,i(ε, t)), (2)

where GBF is the gammatone-filter bank as described in [43]. The resulting 312

spectrum is set to be in range [20, 20000]Hz to resemble the perceivable range of 313

humans [35]. After this filtering step, the log power of the signal is calculated by 314

Ssm,i(ε, f, t) = 20 · log10(S̄sm,i,t(ε, f) + 1). This power spectrogram is averaged over time 315

to for the final spectrum of the perceived sound 316

Ssm,i(ε, f) =
1

k

k∑
t=0

S̄sm,i(ε, f, t) (3)

with k the number of time steps calculated by the gammatone filter bank. 317

To provide signals with similar energy levels each spectrum is normalized over 318

frequencies: 319

Ssm,i(ε, f) =
Ssm,i(ε, f)∑128
i=0 S

s
m,i(ε, fi)

, (4)

These transformation steps are separately initiated for each listener (45 HRIR from 320

the CIPIC database), each sound type (in total 20 different sounds) and each elevation 321

(25 in total) ranging from [−45◦,+90◦] in 5.625◦ steps on the median plane. 322

Sounds 323

Sounds that are used for the presented experiments can be found under TODO 324

Model Description 325

Two different version of the binaural integration model were simulated: a computational 326

model that uses a sequence of mathematical operations and a neural model that is 327

based on different neuron populations implementing similar operations as the first 328

model. Response of each neuron in such populations is described by a first-order 329
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differential equation of its membrane potential. This model is provided to demonstrate 330

the biologically plausibility of our model. If not stated otherwise all presented results 331

are based on the computational model. 332

Computational Model The basic model consists of three consecutive processing 333

layers with an optional layer for the integration of prior information, which is used only 334

in ”prior” conditions or when a prior integrating map is learned. 335

The first layer in the model is a normalization layer that receives the frequency 336

signal Ssm,i(ε, f) as an input and normalizes it with a Gaussian-filtered version of it self 337

Ŝsm,i(ε, f) =
Ssm,i(ε, f)

Ssm,i(ε, f) ∗ Λ(f)
(5)

where Λ(f) is a Gaussian kernel with σ = 1 (see supplementary Fig. 3). This 338

normalization already provides signals with prominent spectral cues. 339

The optional prior integration step calculates a sound type specific prior by 340

averaging these filtered signals over elevations: 341

pi(Ŝ
s) =

1

n

n∑
j=0

Ŝsm,i(εj , f), (6)

Such prior information is used in the ”prior” conditions to effectively remove sound 342

type specific peculiarities in the perceived frequency spectrum. Thus, enabling 343

monaural localization. It is combined with the filtered sound signal by a simple division 344

(Ŝsm,i(ε, f)/pi(Ŝ
s)). Note, that this step is omitted for conditions in which no prior 345

information is considered. 346

These signals from the ipsi- and contralateral side are integrated (by a division) in 347

the integration layer to provide a binaural signal Sb(ε, f): 348

Sbm,i(ε, f) =
ŜIpsim,i (ε, f)

ŜContram,i (ε, f)
. (7)

This step effectively removes sound type specific information in the signal so that only 349

HRTF induced frequency modulations remain, making it simple for the model to 350

localize such signals. The resulting signal is normalized over frequencies to ensure values 351

in a feasible range Sbm,i(ε, f) =
Sb
m,i(ε,f)∑128

j=1 S
b
m,i(ε,fj)

. 352

Finally, the output layer performs a cross correlation of either Ŝsm,i for the monaural 353

(omitting the prior integration step) and monaural-prior conditions or Sbm,i for the 354

binaural (omitting the prior integration step) and binaural-prior conditions with a 355

previously learned map Mm(ε, f) to estimate the elevation ε∗ of the perceived sound 356

source 357

ε∗ = argmin
ε

[
xcorr

(
Sm,i(ε, f),Mm(ε, f)

)]
(8)

The learned map Mm(ε, f) for a participant is previously constructed by averaging 358

over all presented sound types 359

Mm(ε, f) =
1

n

n∑
j=0

Sj,m(ε, f), (9)

here, S again depends on which condition is tested. For the monaural and 360

monaural-prior conditions S = Ŝs and for the binaural and binaural-prio conditions 361

S = Sb. 362
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Neural Model The following neural model for elevation estimation is based on the
computational layers introduced with the computational model (see Fig.6). Each layer
is realized with one or two populations of N neurons selective to frequency band f
which are modeled by a first-order differential equation of the neuron’s membrane
potential. This membrane potential is transformed to a firing rate by an activation
function g(•) which is a simple linear rectified function

g(x) =


0, if x < 0,

1, if x > 1,

x, else,

(10)

with saturation level of 1. 363

ipsi-lateral input contra-lateral input

Prior
Information

Prior
Information

Figure 6. Neural Network Architecture. Blue filled circles indicate model neurons.
Blue empty circles represent model inputs. Blue arrow-headed connections are excitatory
and red bullet-headed connections are inhibitory connections from inputs to neurons
and from neurons to other neurons, respectively.

The core of the model is an integration population that receives excitatory input 364

from neurons of the ipsilateral side and inhibitory inputs from neurons of the 365

contralateral side, thus performs a binaural signal integration 366

τ ṙBinf = −αd · rBinf · g(rsin,f ) (11)

+ (βrBin − rBinf ) · g(rsin,f )− κrBin · rBinf · g(pContrasum,f ) (12)

here, parameter τ defines the membrane capacitance, αd is a default passive 367

membrane leak conductance, βrBin describes a saturation level of excitatory inputs and 368

κrBin define the divisive influence of the inhibitory input. A special feature of the 369

neuron is that the the input modulates the decay rate of the neuron so that higher 370

inputs lead to a faster decay which leads an alignment of signals with very different 371
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intensities. Such a generic neuron model has been previously demonstrated to resemble 372

typical neuronal response and to successfully solve a variety of tasks [24,32,33,45]. 373

Since such a model approach does not lead to specific voltage traces of neurons the 374

nomenclature differs from typical electrophysiological descriptions but is in line with 375

previous computational models [7, 14,34,40]. 376

The inhibitory input pContrasum,f is modeled by an intermediate inhibitory population of 377

the contralateral side 378

τ ṗssum,f = −αd · pssum,f + (βd − pssum,f ) ∗ g(rsprior,f ) (13)

The input rsprior,f to such neurons is provided by a population of so called prior 379

integration neurons and is modeled by 380

τ ṙsprior,f = −αd · rsprior,f + (βrprior − rsprior,f ) · g(rsin,f )− γrprior · g(w̄s,priorf,ε ) (14)

These neurons receive, presumably, cortical inhibitory input which is the mean over 381

elevations based on a previously learned, sound type specific signal ws,priorf,ε for the ipsi- 382

and contralateral side, respectively. 383

Similarly, the excitatory input g(rsin,f ) is modeled by neurons at side s 384

τ ṙsin,f = −αd · rsin,f · Insf + (βrin − rsin,f ) · Insf − κrin · rsin,f · g(psin,f ) (15)

This population of neurons in the neural model realizes the Gaussian normalization 385

layer of the computational model by integrating inhibitory inputs from an inhibitory 386

input population 387

τ ṗsin,f = −αd · psin,f + (βd − psin,f ) ·
128∑
f ′=1

Insf · Λf ′f (16)

The input kernel Λf ′f enables an integration of inputs over several frequency bands 388

f and is defined as Λf ′f = exp(− (f−f ′)2

2·σ2 ) with σ = 3. 389

To ensure valid input values to the neural model, the input Ssm,i(ε, f) over frequency 390

band f for a single participant m, elevation ε and a sound type i is normalized by 391

Insf =
Ssm,i(ε, f)∑128
j=0 S

s
m,i(ε, fj)

, (17)

again s ∈ {Ipsi, Contra} depending on the input side. 392

To estimate the elevation of a perceived sound source the final readout layer of the 393

network is defined as a set of 25 neurons qBinε , each tuned to a certain elevation ε 394

τ q̇Binε = −αd · qBinε + (βd − qBinε ) ·
128∑
f=1

rBinf · wfε (18)

It receives excitatory inputs form the binaural integration layer and integrates them 395

according to a previously learned weight kernel wfε. For an elevation estimate the index 396

ε∗ of the neuron with maximal activity is determined 397

ε∗ = argmax
ε

(qBinε ) (19)

All presented results of the neural network model are calculated from the network 398

responses readout at a single neuron level after keeping the input stimuli constant for at 399

least 3000 time steps. This duration is sufficient for the neuron to dynamically converge 400
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to its equilibrium membrane potential of numerical integration of the state equations. 401

For the numerical integration of the state equations we chose Euler’s method with a 402

step size of ∆t = 0.0001 (for details see [46]). 403

Learning The weight kernel wfε is learned using a supervised learning approach 404

similar to instar learning [13]. 405

∆wf,ε = η · (rBinf − wfε) · v (20)

where η = 0.00005 is the learning rate and v is a vector of 25 entries, one for each 406

elevation and is assumed to provide a visual guidance signal. That is, for a sound signal 407

arriving from elevation ε entry vε of the vector is set to 1 while all other entries remain 0. 408

The sound type specific prior is learned separately for the ipsi- and contralateral side 409

and is based on the activation of the prior integration neurons: 410

δws,priorf,ε = η · (rsprior,f − w
s,prior
f,ε ) · v (21)

here, the values of η and v are set as described above. 411

The learning phase consists of 15000 trials. In each trial a sound signal from a 412

randomly chosen elevations and sound type is presented to the model. After this 413

learning phase the weights are normalized over frequencies to ensure similar energy 414

content (wf,ε = wf,ε/
∑128
i=0 wfi,ε). Subsequently, localization performance is tested by 415

presenting all sound signals to the model and calculating the elevation response ε∗. For 416

this localization phase η is set to 0 to disable learning. 417

Table 1. Model parameters

General Parameters

N (# Neurons) 128
σKernel 3

τd 0.005 αd 1.0
βd 1.0

Excitatory Input Neuron rin

βrin 200.0 κrin 200.0

Prior Integration Neuron rprior

βrprior 2.0 γrprior 1.0

Integration Neuron rBin

βrBin 2.0 κrBin 1.0
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