A visual pathway for skylight polarization processing in *Drosophila*

Ben J. Hardcastle^{1*}, Jaison J. Omoto², Pratyush Kandimalla², Bao-Chau M. Nguyen², Mehmet F. Keleş¹, Natalie K. Boyd², Volker Hartenstein², Mark A. Frye¹

¹Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA ²Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA *hardcastle@ucla.edu

SUMMARY

² Many insects use patterns of polarized light in the sky to ³ orient and navigate. Here we functionally characterize neural ⁴ circuitry in the fruit fly, Drosophila melanogaster, that ⁵ conveys polarized light signals from the eye to the central ⁶ complex, a brain region essential for the fly's sense of ⁷ direction. Neurons tuned to the angle of polarization of ^a ultraviolet light are found throughout the anterior visual ⁹ pathway, connecting the optic lobes with the central complex ¹⁰ via the anterior optic tubercle and bulb, in a homologous " organization to the 'sky compass' pathways described in ¹² other insects. We detail how a consistent, map-like ¹³ organization of neural tunings in the peripheral visual system ¹⁴ is transformed into a reduced representation suited to flexible ¹⁵ processing in the central brain. This study identifies ¹⁶ computational motifs of the transformation, enabling ¹⁷ mechanistic comparisons of multisensory integration and ¹⁰ central processing for navigation in the brains of insects.

INTRODUCTION

²⁰ A critical challenge of active locomotion is knowing the right way to ²¹ go. Sensorimotor reflexes can influence momentary changes in 22 direction to hold a course or to avoid looming threats, but ²³ goal-directed behaviors, such as returning to a previous location ²⁴ from unfamiliar surroundings, require additional information and ²⁵ processing (Braitenberg, 1986; Gomez-Marin et al., 2010). ²⁶ External sensory cues must be transformed into an internal ²⁷ representation of position and orientation within the environment, ²⁸ which can also be modified by past experience (Collett and Collett, ²⁹ 2002). In Dipteran flies, as in other invertebrates, a collection of ³⁰ neuropils known as the central complex (CX) is believed to ³¹ coordinate such behaviors and plays a role in spatial memory, ³² object memory, and action selection (Giraldo et al., 2018; Neuser ³³ et al., 2008; Ofstad et al., 2011; Strausfeld and Hirth, 2013), in ³⁴ addition to homeostatic processes including hunger and sleep ³⁵ (Donlea et al., 2014; Dus et al., 2013; Liu et al., 2016).

Recent studies in *Drosophila* have revealed that activity in a ³⁷ network of CX neurons encodes and maintains a representation of ³⁸ the animal's angular heading relative to its environment (Kim et al., ³⁹ 2017; Seelig and Jayaraman, 2015), with similarity to ⁴⁰ head-direction cells in vertebrates (Taube et al., 1990). This neural ⁴¹ representation of heading can be updated by internal, ⁴² proprioceptive estimates of self-motion during locomotion, and by ⁴³ external cues, such as moving visual patterns and directional ⁴⁴ airflow (Fisher et al., 2019; Green et al., 2017; Kim et al., 2019; ⁴⁵ Okubo et al., 2020; Shiozaki et al., 2020). In other insects, ⁴⁶ including locusts, crickets, bees, butterflies, and beetles, the ⁴⁷ functional organization of the CX has frequently been studied in 48 the context of navigation via celestial cues, particularly polarized ⁴⁹ light (Heinze, 2014). The nearly ever-present pattern of ⁵⁰ polarization in the sky, formed by scattering of light in the ⁵¹ atmosphere, offers an indicator of orientation to organisms able to ⁵² detect and interpret it, and may be more stable than terrestrial ⁵³ landmarks (Cronin and Marshall, 2011; Dacke et al., 2003; v. ⁵⁴ Frisch, 1949; Horváth and Varju, 2004; Mappes and Homberg, 55 2004; Wehner and Müller, 2006). In these non-Dipteran insects, a ⁵⁶ multimodal neural circuit transmits polarization signals from the ⁵⁷ eyes to the central complex (Heinze, 2013; Heinze and Reppert, ³⁸ 2011: Homberg et al., 2011: el Jundi et al., 2014, 2015: Pfeiffer et ⁵⁹ al., 2005). This circuit is known as the 'sky compass' pathway for ⁶⁰ its proposed role in processing skylight polarization patterns and ⁶¹ information about the position of the sun to bestow an animal with ⁶² a sense of direction. In Drosophila, the anterior visual pathway ⁶³ (AVP), which comprises neurons connecting the medulla, anterior 64 optic tubercle, bulb, and ellipsoid body, has been postulated to ⁶⁵ represent the homologue of the sky compass pathway (Omoto et 66 al., 2017; Timaeus et al., 2017; Warren et al., 2019). Visual 67 processing in the AVP appears to be segregated into three ⁶⁸ topographically-organized, parallel streams, of which two have 69 been shown to encode distinct small-field, unpolarized stimuli ⁷⁰ (Omoto et al., 2017; Seelig and Jayaraman, 2013; Shiozaki and 71 Kazama, 2017; Sun et al., 2017). The neurons involved in ⁷² polarization processing in Drosophila have not been identified 73 beyond peripheral circuits of the dorsal rim area, a specialized 74 region of the eye for detecting skylight polarization (Fortini and ⁷⁵ Rubin, 1991; Wada, 1974; Weir and Dickinson, 2015; Weir et al., ⁷⁶ 2016; Wernet et al., 2012; Wolf et al., 1980).

A detailed mapping of the relevant polarization-sensitive ⁷⁸ neurons would allow the exquisite genetic tools and connectomic ⁷⁹ studies available in Drosophila (Scheffer et al., 2020) to be ¹⁰ leveraged to understand the workings of the CX and its integration at of multiple sensory modalities. Behavioral experiments have ²² demonstrated that Drosophila orient relative to polarization ⁸³ patterns while walking and in tethered-flight (Mathejczyk and ⁸⁴ Wernet, 2019; Stephens et al., 1953; Warren et al., 2018; Weir and 85 Dickinson, 2011; Wernet et al., 2012; Wolf et al., 1980). A 86 comparative approach would therefore provide insight into the 87 processing strategies employed across taxa as well as ⁸⁸ species-specific adaptations (Honkanen et al., 2019). Furthermore, ²⁰ it may be possible to reconcile the existing evidence of a common, ⁹⁰ fixed representation of polarization patterns in the CX of ⁹¹ non-Dipteran insects (Heinze and Homberg, 2007; Heinze and ²² Reppert, 2011; Stone et al., 2017) with the emerging model of a ⁹³ flexible representation of both visual information and heading ⁹⁴ direction in the Drosophila CX (Fisher et al., 2019; Kim et al., 2017, 95 2019; Seelig and Jayaraman, 2015; Turner-Evans et al., 2020). ⁹⁶ Alternatively, fundamental differences in the organization and ⁹⁷ processing of polarized light signals between species may reflect specialized navigational requirements.

Here, we set out to test the hypothesis that the anterior visual ¹⁰⁰ pathway conveys polarized light signals from the eye to the central ¹⁰¹ complex in *Drosophila*. We used neurogenetic tracing techniques ¹⁰² and in vivo calcium imaging to characterize the organization of the ¹⁰³ neurons at each stage and their coding and transformation of 104 visual features. We show that parallel circuitry in the medulla ¹⁰⁵ conducts polarization signals from photoreceptors in the dorsal rim ¹⁰⁶ area to a stereotyped domain of the anterior optic tubercle. From ¹⁰⁷ there, a postsynaptic population of neurons projecting to the 108 anterior bulb relays polarization signals to ring neurons of the 109 ellipsoid body, and in turn, the 'compass neurons' of the central ¹¹⁰ complex. The superior bulb multiplexes polarized and unpolarized 111 light signals, while the inferior bulb does not appear to be involved ¹¹² in polarization processing. Finally, we examine population ¹¹³ responses in the central complex and find hallmarks of a flexible ¹¹⁴ encoding of a single angle of polarization which could be used to ¹¹⁵ direct motor output for navigation behavior.

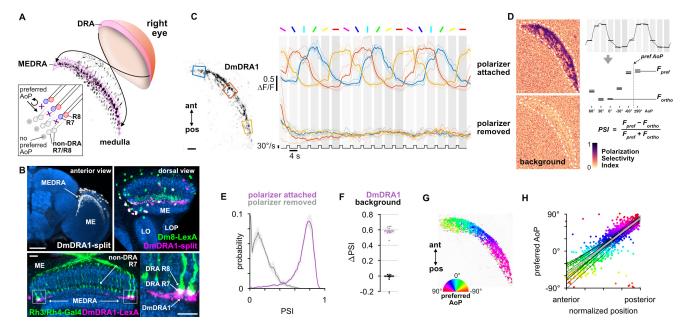
116 RESULTS

¹¹⁷ In flies, the pair of inner photoreceptors in each ommatidium, 118 R7/R8, are involved in the detection of color and linear polarization ¹¹⁹ of light (Hardie, 1984). Within a narrow strip of skyward-facing 120 ommatidia in each eye, known as the dorsal rim area (DRA), each 121 R7/R8 pair is sensitive to a different angle of polarization (AoP, 122 also referred to as the e-vector orientation), organized in a ¹²³ 'polarotopic' fashion (Fig. 1A). This specialized array of polarization ¹²⁴ detectors covers the complete 180° range of orientations and, with 125 a peak spectral sensitivity to UV light, is well-suited to sensing the ¹²⁶ patterns of polarized light in the sky (Feiler et al., 1992; Salcedo et 127 al., 1999; Sharkey et al., 2020; Weir et al., 2016). A previous 128 characterization of DRA R7/R8 in Drosophila established the ¹²⁹ spatial organization of their tunings, and their visual response ¹³⁰ properties (Weir et al., 2016). Here, we followed the pathway for ¹³¹ skylight polarization signals from the eye and investigated direct ¹³² downstream targets of DRA R7/R8s at their axon terminals in the ¹³³ second optic neuropil, the medulla (ME).

¹³⁴ Polarized light processing in the medulla dorsal rim area

¹³⁵ First, we concentrated on distinct morphological forms of distal ¹³⁶ medulla (Dm) interneurons which are localized to the medulla ¹³⁷ dorsal rim area (MEDRA). Two types of these interneurons have ¹³⁸ been anatomically characterized, DmDRA1 and DmDRA2. ¹³⁹ Individual DmDRA1 neurons span approximately ten MEDRA 140 columns and receive input exclusively from DRA R7 ¹⁴¹ photoreceptors while avoiding input from non-DRA columns ¹⁴² (Sancer et al., 2019). DmDRA2 receives exclusive input from DRA 143 R8 photoreceptors. Due to their contact with polarization-sensitive ¹⁴⁴ photoreceptors, both DmDRA subtypes are thought likely to ¹⁴⁵ respond to polarized light (Sancer et al., 2019). To test this, we ¹⁴⁶ generated a split-Gal4 driver (R13E04-AD, VT059781-DBD) for a ¹⁴⁷ population of DmDRA neurons (Fig. 1B, top left) (Courgeon and ¹⁴⁸ Desplan, 2019; Jenett et al., 2012). To identify which subtype ¹⁴⁹ expressed this driver, we co-labeled it with an established Dm8 ¹⁵⁰ driver (R24F06-LexA) which is known to be expressed in DmDRA1 ¹⁵¹ and not DmDRA2 (Sancer et al., 2019). We found highly ¹⁵² overlapping expression between these drivers (Fig. 1B, top right), 153 indicating that the split-Gal4 is predominantly expressed in ¹⁵⁴ DmDRA1. We confirmed that DmDRA neurons in the split-Gal4 155 were also in close proximity to photoreceptor terminals in the ¹⁵⁶ MEDRA, and found clear overlap with the proximal tip of each

¹⁵⁷ DRA R7/R8 pair, providing further evidence of exclusive contact
 ¹⁵⁸ with DRA R7 (Fig. 1B, bottom). Hereafter, we refer to this driver as
 ¹⁵⁹ the DmDRA1-split.


After validating a polarized light stimulus by confirming the ¹⁶¹ previously characterized response properties of DRA R7/R8 (Weir 162 et al., 2016) (Fig. S1), we recorded presynaptic calcium signals in ¹⁶³ the DmDRA1-split using GCaMP6s localized to synapses (Cohn et ¹⁶⁴ al., 2015) while presenting different angles of polarization (AoP) to 165 the dorsal rim (Fig. 1C, Fig. S1). We found that the activity of ¹⁶⁶ DmDRA1 neurons varied with the AoP presented and followed a ¹⁶⁷ sinusoidal response profile typical of polarization-sensitive neurons (Heinze, 2013). To quantify the extent to which the neurons were ¹⁶⁹ modulated by the AoP, we calculated a polarization-selectivity ¹⁷⁰ index (PSI) by comparing the peak response with the response at ¹⁷¹ orthogonal angles (Fig. 1D). PSI values had a minimum possible ¹⁷² value of 0, indicating equal responses to all angles presented, and ¹⁷³ a maximum of possible value of 1, indicating maximum response 174 to two diametrically opposite angles with zero activity at their two 175 respective orthogonal angles. Amongst DmDRA1 neurons, we ¹⁷⁶ found high PSI values throughout with an average of 0.74, while 177 background regions in each recording contained an average PSI of ¹⁷⁸ 0.20 (Fig. 1D,E). When we repeated the experiment with the linear 179 polarizer removed from the stimulus device, all neurons were ¹⁸⁰ suppressed at the initial onset of unpolarized UV light and were no ¹⁸¹ longer modulated by the rotation of the device (Fig. 1C). The PSI ¹⁸² values of the neurons then reflected this lack of modulation, falling ¹⁸³ by approximately 80%, whereas the PSI values in the background ¹⁸⁴ showed no change (Fig. 1D.F).

185 Within the population of DmDRA1 neurons, we observed ¹⁸⁶ preferential responses to different angles of polarized light ¹⁸⁷ depending on their position in the MEDRA (Fig. 1C,G). The ¹⁰⁸ preferred AoP showed a linear relationship with position, which we ¹⁸⁹ refer to as polarotopy (Fig. 1H). Moving anterior to posterior in the ¹⁹⁰ right optic lobe, the preferred AoP shifted counter-clockwise (Fig. ¹⁹¹ 1G,H). This polarotopy was mirrored in the left optic lobe, with a ¹⁹² similar range of preferred AoPs represented in the opposite ¹⁹³ posterior-anterior direction (Fig. S1I). Throughout the MEDRA, the ¹⁹⁴ preferred AoPs of DmDRA1 neurons closely matched those of R8 ¹⁹⁵ photoreceptors at similar positions (Fig. 1H, Fig. S1E). Since ¹⁹⁶ R7/R8 are likely inhibitory (Davis et al., 2020; Gao et al., 2008), we ¹⁹⁷ expected that the preferred AoP of a neuron postsynaptic to either 198 R7 or R8 would be shifted by 90°. We therefore posit that it is R7 ¹⁹⁹ signals that are responsible for the predominant response ²⁰⁰ characteristics of DmDRA1 neurons, supporting our anatomical ²⁰¹ data (Fig. 1B) and the connectivity of the DmDRA1 subtype ²⁰² (Sancer et al., 2019).

We then asked whether DmDRA1 neurons are inhibited by ²⁰⁴ anti-preferred angles, which would likely require antagonistic ²⁰⁵ processing of local, orthogonally-tuned R7 and R8 signals in the ²⁰⁶ MEDRA. Although DmDRA1 does not contact R8, inhibitory 207 interactions between R7/R8 in each column suggest that direct ²⁰⁸ input may not be necessary (Schnaitmann et al., 2018; Weir et al., ²⁰⁹ 2016). We first identified anterior regions in the MEDRA where the ²¹⁰ preferred AoP of DmDRA1 was found to be around 0° in the ²¹¹ previous tuning experiment (Fig. 1G) and generated ROIs around ²¹² similarly tuned pixels (Fig. S2A,B). We then measured the ²¹³ responses of each ROI to flashes of UV light with 0° and 90° AoP ²¹⁴ (Fig. S2C). The preferred AoP of 0° caused an increase in activity ²¹⁵ while flashes at 90° caused inhibition of greater magnitude, ²¹⁶ followed by a slight rebound above baseline after the offset of the ²¹⁷ flash (Fig. S2C). For light flashes with the polarizer removed we ²¹⁸ observed inhibition of DmDRA1 at all regions, regardless of

²¹⁹ position in the DRA (Fig. S2C'). Taken together, these results²²⁰ support a model of polarization-opponent processing, whereby

²²¹ DmDRA1 neurons are excited and inhibited by orthogonal angles ²²² of polarized light, and inhibited by unpolarized light.

²²³ Figure 1: Polarized light processing in the medulla dorsal rim area

A: Schematic of the dorsal rim area (DRA) of the right eye and the projection of DRA R7/R8 photoreceptors to corresponding columns in the medulla dorsal rim area (MEDRA). Inset: R7 and R8 in an individual column are tuned to orthogonal angles of polarization (AoP), and their tunings change linearly across the MEDRA.

228 B: Top, left: Confocal projection (anterior view) of DmDRA1 expression pattern in the MEDRA (DmDRA1-split>GFP). Scale bar denotes 50 µm. Top, right: Dual-labeling of Dm8 and

²²⁷ DmDRA1 neurons (dorsal view) (R24F06-LexA>GFP, green; DmDRA1-split>RFP, magenta) (mean cell bodies per brain hemisphere, DmDRA: 23.13, SEM 1.16; Dm8∩DmDRA: 21.25,
 ²²⁸ SEM 0.49, N = 8 animals). Bottom, left: Dorsal view of the medulla showing DRA R7/R8 photoreceptors (Rh3/Rh4-Gal4, green) and their proximity to DmDRA1 neurons (R13E04-LexA,
 ²²⁹ magenta). Scale bar denotes 10 µm. Bottom, right: Enlargement of medulla dorsal rim area (MEDRA).

220 C: Left: Example time-averaged maximum-intensity projection showing dorso-posterior two-photon imaging view of GCaMP activity in DmDRA1 neurons (DmDRA1-split>sytGCaMP6s).

²³¹ Three ROIs were manually drawn in anterior (blue), dorsal (red), and posterior (yellow) MEDRA in each recording. Scale bar denotes 10 µm. Right: Time-series of normalized mean

232 intensity values for ROIs in equivalent positions in three animals (thin traces) and their mean (thick trace), with the polarizing filter (polarizer) attached (top) and removed (bottom).

233 Shaded patches denote periods that the polarizer remained at a fixed orientation.

234 D: Example spatial maps of polarization-selectivity index (PSI) for the example recordings in C with the polarizer attached (top) and removed (bottom).

E: Probability distributions of PSI values in DmDRA1 neurons with the polarizer attached (average PSI DmDRA: 0.74, CI 0.06, N = 10 animals) and removed (average PSI DmDRA1
 ²³⁶ control: 0.16, CI 0.07, N = 7 animals). Mean ± CI.

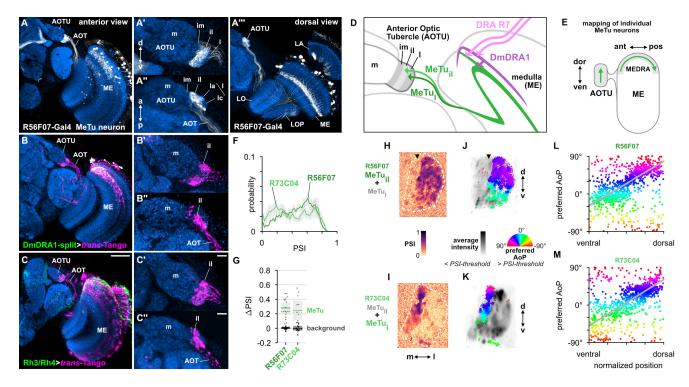
227 F: Effect of polarizer on median PSI values versus controls with polarizer removed, within DmDRA1 neurons (light dots) and background regions (dark dots) in individual animals

²³⁸ (DmDRA, pink line: mean ΔPSI = 0.59, Cl 0.06, N = 10, p < 10⁻⁶ t-test; background, black line: mean ΔPSI = -0.002, Cl 0.02, N = 10, p = 0.82, t-test).

²³⁹ G: Example polarization tuning map for DmDRA1. Preferred angles of polarization are shown for each pixel with an above-threshold PSI value using the color map shown. Pixels with a ²⁴⁰ below-threshold PSI value, or falling outside an ROI drawn around the DmDRA1 population, show average intensity in grayscale. Data shown are from maximum-selectivity projections ²⁴¹ through the MEDRA.

242 H: Scatter plot showing the common polarotopic organization of DmDRA1 neurons. Individual points represent pixels recorded from DmDRA1 neurons, showing their normalized

²⁴³ horizontal position in the MEDRA and their preferred angle of polarization (AoP). Thin lines show linear-circular fits for data from individual animals with significant correlations (mean ρ = ²⁴⁴ 0.89, SEM 0.06, N = 10 animals), thick line shows fit for all pooled data (ρ = 0.85, N = 10 recordings, p < 10⁻⁶ permutation test).


²⁴⁵ Medulla projection neurons convey polarized light signals to ²⁴⁶ the AOTU

²⁴⁷ In other insect species, polarization-sensitive photoreceptors in the ²⁴⁸ dorsal rim are thought to provide input to transmedulla neurons ²⁴⁹ (also referred to as line-tangential neurons) which project from the ²⁵⁰ optic lobe to the anterior optic tubercle (AOTU) (Homberg et al., ²⁵¹ 2003; Immonen et al., 2017; el Jundi et al., 2011; Pfeiffer and ²⁵² Kinoshita, 2012; Zeller et al., 2015). In all species investigated, it is ²⁵³ the small subunit of the AOTU (often called the lower-unit, LU) ²⁵⁴ which is involved in processing polarized light signals (Heinze, ²⁵⁵ 2013), although to our knowledge these signals have not been ²⁵⁶ explored in transmedulla neurons themselves. In Drosophila, ²⁵⁷ corresponding medullo-tubercular (MeTu) neurons have been ²⁵⁸ described (Fig. 2A), some of which have been shown to play a role ²⁵⁹ in color vision-dependent behaviors (Omoto et al., 2017; Otsuna et ²⁶⁰ al., 2014). The dendrites of individual MeTu neurons typically ²⁶¹ innervate 10–15 columns of the medulla in layers M6–7 (Omoto et ²⁶² al., 2017) (Fig. S3) and, as an ensemble, tile larger areas of the ²⁶³ medulla (Fig. 2A). We predicted that MeTu neurons with dendrites ²⁶⁴ in the MEDRA would be postsynaptic to DmDRA1 neurons and/or ²⁰⁵ DRA R7/R8, and would therefore similarly respond to polarized ²⁰⁶ light.

267 We used the anterograde circuit tracing technique trans-Tango ²⁶⁸ (Talay et al., 2017) to identify putative postsynaptic partners of the ²⁶⁹ DmDRA1 neurons and R7/R8 photoreceptors (Fig. 2B,C). We ²⁷⁰ found that DmDRA1-split driving *trans*-Tango labeled a population ²⁷¹ of neurons in the dorsal medulla, along with innervation of the ²⁷² small, lateral subunit of the AOTU via a fiber bundle in the anterior ²⁷³ optic tract (AOT) (Fig. 2B), which matched the anatomy of MeTu 274 neurons (Fig. 2A). We then used a Gal4 driver which targets ²⁷⁵ neurons expressing the UV-sensitive rhodopsins Rh3 and Rh4 ²⁷⁶ (pan-R7-Gal4, which we refer to as Rh3/Rh4-Gal4), which includes 277 DRA R7/R8, and again found trans-Tango labeling of the small ²⁷⁸ subunit of the AOTU (Fig. 2C). However, since the Rh3/Rh4 driver ²⁷⁹ is also expressed in non-DRA R7 photoreceptors (Fig. 2C), the ²⁸⁰ labeling of MeTu neurons we observed could have been due to ²⁸¹ synaptic contacts exclusively outside of the MEDRA. To evaluate ²⁸² this possibility, we co-labeled a population of MeTu neurons and all ²⁸³ photoreceptors using the antibody mAb24B10 (Fujita et al., 1982) ²⁸⁴ (Fig. S3A). Throughout layer M6 in the dorsal medulla, MeTu ²⁸⁵ dendrites were in close proximity to R7/R8 terminals and we found

²⁰⁶ clear overlap with R7 terminals in the MEDRA (Fig. S3A). In short,
 ²⁰⁷ these putative connections suggest a parallel pathway for
 ²⁰⁸ polarization signals in the MEDRA: DRA R7→DmDRA1,
 ²⁰⁹ DmDRA1→MeTu, DRA R7→MeTu.

Several discrete populations of MeTu neurons have been ²⁹¹ characterized, based on the distinct domains of the small subunit ²⁹² of the AOTU that their terminals occupy: intermediate-medial (im), ²⁹³ intermediate-lateral (il), and lateral (I), which is further divided into ²⁹⁴ anterior (la), central (lc), and posterior (lp) domains (Fig. 2A',A", ²⁹⁵ Fig. S3B). The larger subunit comprising the medial domain (m) is ²⁹⁶ not innervated by MeTu neurons and corresponds to the ²⁹⁷ polarization-insensitive upper-unit (UU) of other species (Omoto et ²⁹⁸ al., 2017; Timaeus et al., 2017). We examined the domains of the ²⁹⁹ AOTU targeted by the putatively polarization-sensitive MeTu ³⁰⁰ neurons which were labeled by *trans*-Tango (Fig. 2B'-C'). Both the ³⁰¹ DmDRA1 and Rh3/Rh4 trans-Tango experiments predominantly 302 labeled the intermediate-lateral domain (AOTU_{il}), with ³⁰³ encroachment on the lateral domain (AOTU,) (Fig. 2B"-C"). We 304 found no detectable intermediate-medial (AOTU_{im}) or medial 305 (AOTU_m) labeling in either (Fig. 2B'-C'). We next identified two Gal4 drivers for populations of MeTu neurons arborizing in the and AOTU, and AOTU, one with dendrites predominantly tiling the 308 dorsal medulla (R56F07-Gal4) (Fig. 2A) and one with dendrites ³⁰⁹ throughout the medulla (R73C04-Gal4) (Fig. 3G) (Omoto et al., ³¹⁰ 2017). From confocal images of single-cell MCFO (MultiColor ³¹¹ FlpOut) clones (Nern et al., 2015), we determined a consistent ³¹² relationship between the anterior→posterior position of MeTu ³¹³ dendrites in the MEDRA and the ventral→dorsal position of MeTu ³¹⁴ axon terminals in the AOTU (Fig. 2E, Fig. S3). For MeTu neurons ³¹⁵ with dendrites outside of the MEDRA, we found no clear ³¹⁶ relationship between ventrodorsal position in the medulla and ³¹⁷ mediolateral position in the AOTU, confirming a previous study 318 (Timaeus et al., 2017).

³¹⁹ Figure 2: Medulla projection neurons convey polarized light signals to the AOTU

A: Confocal projection (anterior view) of R56F07-Gal4 driving a population of MeTu neurons with dendrites in the dorsal medulla (ME) and projections to anterior optic tubercle (AOTU) via the anterior optic tract (AOT). High magnification anterior (A') and dorsal (A") views. A'': Dorsal view.

³²² B: Confocal projection (anterior view) of *trans*-Tango signal (magenta) labeling putative postsynaptic partners from DmDRA-Gal4 (green). High magnification anterior (B') and dorsal (B'') ³²³ view.

²²⁴ **C**: Confocal projection (anterior view) of *trans*-Tango signal (magenta) labeling putative postsynaptic partners from Rh3/Rh4-Gal4 (green), which labels DRA R7/R8 + non-DRA R7. Scale ³²⁵ bar denotes 50 µm. High magnification anterior (**C**') and dorsal (**C**'') views (scale bars denote 10 µm).

226 D: Schematic of proposed parallel connectivity in the medulla dorsal rim area (MEDRA) and regions of the AOTU targeted by polarization-sensitive MeTu neurons.

²²⁷ E: Schematic of proposed one-dimensional mapping of MEDRA position to AOTU based on single-cell clones (see Fig. S3).

²³⁸ F: Probability distributions of PSI values in MeTu neurons (average PSI R56F07: 0.48, CI 0.14, N = 17 animals; R73C04: 0.42, CI 0.20, N = 11 animals). Mean ± CI.

²²⁹ **G**: Effect of polarizer on median PSI values versus controls with polarizer removed, within MeTu neurons (light dots) and background regions (dark dots) in individual animals (R56F07 ³³⁰ MeTu, green line: mean ΔPSI = 0.28, C1 0.14, N = 17, p < 10⁶ Ltest; R56F07 background, black line: mean ΔPSI = 0.001, C1 0.02, N = 17, p = 0.84, t-test; R73C04 MeTu, green line:

³³¹ mean ΔPSI = 0.25, CI 0.20, N = 11, p = 0.03 t-test; R73C04 background, black line: mean ΔPSI = 0.001, CI 0.05, N = 11, p = 0.96, t-test)

H: Example spatial map of polarization-selectivity index (PSI) in MeTu terminals in the AOTU (R56F07-Gal4>sytGCaMP6s; predominantly MeTu_{ii} neurons innervating intermediate-lateral (ii) domain, with smaller proportion of MeTu_{ia} innervating lateral-anterior (la) domain, see **A**''). Arrowhead indicates medial region of population with low PSI values cf. average activity in J.

335 I: Example spatial map of PSI in MeTu terminals in the AOTU for an alternative driver (R73C04-Gal4>sytGCaMP6s; predominantly MeTu₁ neurons innervating lateral (I) domains, with

336 smaller proportion of MeTu_{il} innervating intermediate-lateral (il) domain, see Fig. 3G').

337 J: Example polarization tuning map for above-threshold pixels in R56F07 MeTu neurons from the example recording in H.

 ${}^{\scriptscriptstyle 338}$ K: As in J, for R73C04 MeTu neurons from the example recording in I.

390 L: Scatter plot showing the predominant polarotopic organization of R56F07 MeTu neurons. Individual points represent pixels recorded in MeTu neurons, showing their normalized

³⁴⁰ vertical position in the MEDRA and their preferred angle of polarization (AoP). Line shows fit for all pooled data (ρ = 0.68, N = 7 animals, p < 10⁻⁶ permutation test). ³⁴¹ **M**: As in **L**, for R73C04 MeTu neurons (ρ = 0.58, N = 10 animals, p < 10⁻⁶ permutation test).

³⁴² We recorded presynaptic calcium signals in the AOTU for the two

³⁴³ MeTu drivers in response to rotations of the polarizer, as in Fig. 1.

³⁴⁴ In both MeTu populations, we found broader PSI distributions (Fig.

³⁴⁵ 2F) than in the DmDRA1 neurons recorded in the MEDRA (Fig.
 ³⁴⁶ 1E). Nonetheless, compared to control experiments with the
 ³⁴⁷ polarizer removed, the polarizer caused a statistically significant

³⁴⁸ increase in average PSI values in both MeTu distributions (Fig. ³⁴⁹ 2G). We observed that the highest PSI values were spatially ³⁵⁰ restricted to a vertical band within the AOTU (Fig. 2H,I), indicating ³⁵¹ that MeTu terminals which were strongly modulated by the ³⁵² polarization stimulus occupied a common region, while adjacent ³⁵³ regions contained terminals which were generally modulated less. ³⁵⁴ We surmise that these regions of differing polarization-sensitivity ³⁵⁵ result from each population containing a combination of MeTu ³⁵⁶ neurons with dendrites contacting the MEDRA, which constitutes ³⁵⁷ only around 5% of medulla columns (Weir et al., 2016), and ³⁵⁸ neurons with dendrites outside the MEDRA. We also note the ³⁵⁹ proportion of PSI values below 0.5 was slightly lower in the ³⁶⁰ population containing neurons with dendrites in the dorsal medulla ³⁶¹ only (R56F07) compared to the ventral and dorsal population ³⁶² (R73C04) (Fig. 2F,H,I). In R56F07, the most responsive MeTu ³⁶³ terminals were found within the most lateral regions of the ³⁶⁴ population in the AOTU (Fig. 2H, Fig. S3E). In R73C04, the most ³⁶⁵ responsive terminals tended to be clustered in a narrow medial ³⁶⁶ band of the population (Fig. 2I, Fig. S3F), likely corresponding to ³⁶⁷ the anterior region of AOTU, and possibly AOTU,

Based on the polarotopic organization of R7/R8 and DmDRA1 ³⁶⁹ in the MEDRA, as well as the mapping of MEDRA to AOTU by ³⁷⁰ MeTu neurons (Fig. 2E), we predicted that polarization-sensitive ³⁷¹ MeTu neurons would exhibit a counter-clockwise shift in their ³⁷² preferred AoP from ventral to dorsal in the right AOTU. To assess ³⁷³ this, we examined pixels with above-threshold PSI values (>1 SD ³⁷⁴ greater than the mean background value, see Methods), which ³⁷⁵ limited the analysis to polarization-sensitive MeTu terminals (Fig. ³⁷⁶ 2J,K). Across animals, both populations showed a predominant 377 polarotopic organization which matched our prediction: from ³⁷⁸ ventral to dorsal in the right AOTU, the preferred AoP shifted ³⁷⁹ counter-clockwise (Fig. 2L,M). This polarotopy is consistent with ³⁸⁰ MeTu neurons receiving polarized light responses from either ³⁸¹ DmDRA1 or DRA R7 in the MEDRA and conveying them to the ³⁸² AOTU with the positional mapping we identified (Fig. 2D,E). ³⁸³ Consistent with this mapping, we observed no clear relationship ³⁸⁴ between preferred AoP and horizontal position (Fig. S3E,F). ³⁸⁵ However, we observed vertical organizations of responses which ³⁸⁶ deviated from the norm in approximately 20% of recordings across ³⁸⁷ both drivers. The most common of these resembled an inverted ³⁸⁸ form of the predominant polarotopy (from ventral to dorsal in the ³⁸⁹ right AOTU, the preferred AoP rotated clockwise) and also typically 390 contained tunings to a different range of AoPs than the ³⁹¹ predominant organization (Fig. S3I,I'). Although we could not ³⁹² determine why one organization was observed over another, this ³⁹³ finding suggests that a further transformation of MeTu responses ³⁹⁴ may take place. However, a reversed mapping of responses could ³⁹⁵ be achieved by combining signals originating from the contralateral ³⁹⁶ eye (Fig. S1G,H), which we explore below.

³⁹⁷ Visual features encoded in the AOTU and bilateral ³⁹⁸ interactions

³⁹⁹ We wondered whether functional divisions of MeTu responses ⁴⁰⁰ exist within the AOTU, which might contain different polarotopic ⁴⁰¹ organizations or spatially segregated responses to unpolarized ⁴⁰² visual features not mediated by the MEDRA. We first examined the ⁴⁰³ spatial organization of polarized light responses in regions which ⁴⁰⁴ contained low or below-threshold PSI values in the previous ⁴⁰⁵ experiment (Fig. 2I,K). Within lateral MeTu terminals in R73C04 ⁴⁰⁶ likely occupying the ventral AOTU_{Ic} domain (green ROIs, Fig. 3A), ⁴⁰⁷ we found moderate modulation of activity during the rotation of the ⁴⁰⁸ polarizer (Fig. 3B). Similar to the terminals with above-threshold 409 PSI values (Fig. 2K), we observed a vertical polarotopic ⁴¹⁰ organization consistent with the anatomical mapping of MeTu 411 neurons (Fig. S3B-D): in a dorsal direction, the AoP rotated ⁴¹² counter-clockwise in the right AOTU and clockwise in the left ⁴¹³ AOTU (Fig. 3C). We then recorded MeTu responses to ⁴¹⁴ unpolarized, small-field vertical bar stimuli at different positions in ⁴¹⁵ the visual field (Fig. 3D). Within an intermediate band of MeTu 416 terminals likely corresponding to AOTU_{In} (blue ROIs, Fig. 3A), we ⁴¹⁷ observed clear responses to bars in ipsilateral-frontal and frontal ⁴¹⁸ positions, with the more frontal position represented dorsally in the ⁴¹⁹ AOTU on both sides of the brain (Fig. 3D). In the ventral AOTU, 420 we found responses to bars presented in the contralateral-lateral ⁴²¹ visual field (± 90° azimuth), outside the field of view of the ⁴²² ipsilateral eye (Fig. 3D,E). Together, these results suggest that the 423 AOTU contains retinotopic representations of visual space and ⁴²⁴ angles of polarization within different regions (Fig. 3C,E). ⁴²⁵ Furthermore, these regions do not appear to be mutually 426 exclusive, as we occasionally observed responses to both 427 polarized and unpolarized stimuli at the same location (green ⁴²⁸ trace, Fig. 3D'). For example, MeTu terminals in regions which 429 were modulated by the polarizer (green ROIs, Fig. 3A) also 430 responded to a wide-field optic-flow pattern presented at different ⁴³¹ locations (Fig. 3F), further highlighting the range of visual features ⁴³² represented in a particular region of the AOTU.

433 Evidence from other insects suggested that we might find 434 bilateral, inter-tubercle neurons which, if in contact with MeTu ⁴³⁵ neurons, could be conveying the responses we observed in the ⁴³⁶ AOTU to contralateral stimuli (Heinze et al., 2013: Pfeiffer and 437 Kinoshita, 2012; Pfeiffer et al., 2005). We used the MeTu driver 438 R73C04-Gal4 to drive trans-Tango and reveal putative 439 postsynaptic neurons in the AOTU (Fig. 3G). We found clear ⁴⁴⁰ labeling of a population of neurons projecting to the bulb which 441 resembled the tubercular-bulbar (TuBu) neurons (Omoto et al., 442 2017) (Fig. 3G'), in addition to labeling of the inter-tubercle tract 443 (ITT) (Strausfeld, 1976) (Fig. 3G"), suggesting inter-hemispheric 444 signalling postsynaptic to MeTu neurons in the AOTU. We then 445 identified a Gal4 driver (R17F12-Gal4) that is expressed in a 446 population of two tubercular-tubercle (TuTu) neurons per brain ⁴⁴⁷ hemisphere, with axonal projections to the contralateral AOTU via 448 the ITT (Fig. 3H). Within the AOTU, these TuTu neurons 449 predominantly innervate the intermediate-lateral domain (AOTU;) (Fig. 3H'). We recorded presynaptic calcium activity in the ⁴⁵¹ terminals of contralateral TuTu neurons in the AOTU (Fig. 3I,J). 452 Unexpectedly, we did not find responses to the unpolarized bar 453 stimuli at any of the positions tested (Fig. 3I), indicating that these 454 TuTu neurons likely do not mediate the contralateral responses we ⁴⁵⁵ observed in the MeTu neurons (Fig. 3D). Rather, we found that the ⁴⁵⁶ TuTu neurons were polarization-sensitive with PSI values similar to ⁴⁵⁷ those of the MeTu neurons (Fig. 3K,L), and tunings to a limited 458 range of polarization angles (~30°) centered around a ⁴⁵⁹ near-horizontal orientation (Fig. 3L,M). Therefore, the anatomy, ⁴⁶⁰ polarization-sensitivity, and number of TuTu neurons suggests that ⁴⁶¹ they may correspond to the TuTu1 neurons described in locusts, ⁴⁶² although their preferred AoPs differ (Pfeiffer et al., 2005). TuTu1 463 neurons in the locust have also been shown to respond to 464 unpolarized visual stimuli, however their responses were also 465 selective for both spatial position and color, and the unpolarized 466 stimuli presented here are not directly comparable (Pfeiffer and ⁴⁶⁷ Homberg, 2007). The specificity of TuTu1 responses is thought to 468 reflect their role in time-compensated processing of polarized light 469 signals and the integration of information about the position of the ⁴⁷⁰ sun and spectral content of the sky.

⁴⁷¹ Figure 3: Visual features encoded in the AOTU and bilateral interactions

⁴⁷² A: Example time-averaged maximum-intensity projection showing GCaMP activity in R73C04 MeTu neurons in the AOTU and examples of lateral ROIs (green) and medial ROIs (blue) ⁴⁷³ (R73C04-Gal4>sytGCaMP6s).

474 **B**: GCaMP activity in lateral MeTu neurons showing responses to different angles of polarization. Each trace shows the mean of ROIs at equivalent positions in three different animals 475 (one ROI per animal).

⁴⁷⁶ C: Normalized tuning curves for responses shown in B. Mean ± SEM.

477 D: Responses of MeTu neurons in medial positions to an unpolarized blue bar oscillating in five positions in the frontal visual field. Traces of the same color are from ROIs in equivalent

⁴⁷⁸ positions in the AOTU in three different animals, thick traces show their mean. Bar positions 1 and 5 correspond to ± 90° azimuth in the contralateral visual field for recordings in the right
⁴⁷⁹ (**D**') and left (**D**) AOTU, respectively. Arrowhead in D' indicates the response of an ROI in a lateral position (green) with similar responses to the bar stimulus.

⁴⁸⁰ **E**: Proposed mapping of azimuthal position in visual field to vertical position in AOTU, based on **D**.

⁴⁸¹ **F**: Responses of MeTu neurons in lateral positions to a sparse dot-field expansion pattern presented in three regions of the frontal visual field. Traces of the same color are from ROIs in ⁴⁸² equivalent positions in the AOTU in three animals, thick traces show their mean.

⁴⁸³ G: Confocal projection (anterior view) of *trans*-Tango signal (magenta) labeling putative postsynaptic partners of R73C04-Gal4 MeTu neurons (green). G': High magnification dorsal view ⁴⁸⁴ highlighting TuBu neurons projecting from AOTU to bulb (BU). G'': High magnification anterior view highlighting projections to contralateral AOTU. G''': Dorsal view. Scale bar denotes

⁴⁸⁶ H: Confocal projection (anterior view) of TuTu neuron expression pattern (R17F12-Gal4>GFP). High magnification anterior (H') and dorsal (H") views. Scale bars denote 10 μm.

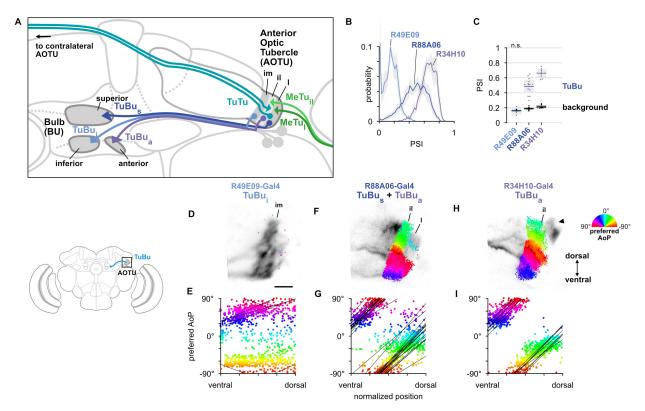
488 J: Probability distribution of PSI values in TuTu neurons (average PSI TuTu: 0.48, Cl 0.12, N = 5 animals). Mean ± Cl.

⁴⁸⁹ **K**: Effect of polarizer on median PSI values versus controls with polarizer removed, within TuTu neurons (light dots) and background regions (dark dots) in individual animals (TuTu, blue ⁴⁹⁰ line: mean ΔPSI = 0.34, CI 0.12, N = 5, p = 0.02 t-test; background, black line: mean ΔPSI = -0.045, CI 0.05, N = 5, p < 10⁴ t-test).

491 L: Example polarization tuning map for above-threshold pixels in the terminals of R17F12 TuTu neurons in a single imaging plane (R17F12-Gal4>sytGCaMP6s).

⁴⁹² **M**: Scatter plot showing the predominant polarotopic organization of R17F12 TuTu neurons. Thin lines show linear-circular fits for data from individual animals with significant correlations ⁴⁹³ (mean $\rho = 0.65$, SEM 0.06, N = 5 animals), thick line shows fit for all pooled data ($\rho = 0.56$, N = 5 recordings, p < 10⁶ permutation test).

⁴⁹⁴ A population of TuBu neurons receives polarized light signals ⁴⁹⁵ in the AOTU


⁴⁹⁶ Next, we focused on the TuBu neurons and asked whether they polarization ⁴⁹⁷ receive signals in the lateral (I) and 498 intermediate-lateral (il) domains of the anterior optic tubercle 499 (AOTU), as suggested by *trans*-Tango labeling from ⁵⁰⁰ polarization-sensitive MeTu neurons (Fig. 3G). We examined three ⁵⁰¹ populations of TuBu neurons, grouped according to the region of ⁵⁰² the bulb (BU) they project to: superior (TuBu_s), inferior (TuBu_i), and ⁵⁰³ anterior (TuBu₂) (Fig. 4A). The dendrites of TuBu neurons in each ⁵⁰⁴ population have also been shown to predominantly innervate

⁵⁰⁵ stereotypical domains of the AOTU (Omoto et al., 2017) (Fig. 4A).
⁵⁰⁶ We recorded calcium activity using Gal4 drivers for each
⁵⁰⁷ population, noting that the driver for superior bulb-projecting TuBu_s
⁵⁰⁸ neurons (R88A06-Gal4) is also expressed in TuBu_a neurons.
⁵⁰⁹ Among the dendrites of TuBu neurons recorded in the AOTU, we
⁵¹⁰ found that the populations innervating the AOTU₁ and AOTU₁
⁵¹¹ domains (TuBu_s and TuBu_a, respectively) contained high PSI
⁵¹² values that indicated strong modulation by the polarizer (Fig. 4B),
⁵¹³ with average values significantly higher than the background
⁵¹⁴ regions of recordings (Fig. 4C). In contrast, dendrites innervating
⁵¹⁵ the AOTU_{im} domain (TuBu_i) contained PSI values not greater than

⁵¹⁶ 0.5 (Fig. 4B) and, on average, were indistinguishable from ⁵¹⁷ background regions (Fig. 4C). We typically found very few pixels ⁵¹⁸ with above-threshold PSI values in recordings of TuBu_i dendrites ⁵¹⁹ (Fig. 4D) and across all recordings we did not find a common ⁵²⁰ relationship between the preferred angle of polarization (AoP) of ⁵²¹ TuBu_i neurons and their ventral-dorsal position within AOTU_{im} (Fig. ⁵²² 4E).

Within the joint population of TuBu_s and TuBu_a neurons (R88A06-Gal4), the lateral domain (AOTU₁) containing TuBu_s dendrites typically exhibited a mixture of below-threshold PSI values and a smaller proportion of above-threshold values (Fig. 4F), whereas the more-medial AOTU₁₁ domain containing TuBu_a dendrites consistently showed above-threshold PSI values (Fig. P). Pooling data from both domains, the preferred AoP covered a range of angles from -90° to +90° and we found a common relationship between preferred AoP and ventral-dorsal position within the AOTU (Fig. 4G). Correspondingly, dendritic regions ⁵³³ specifically within the population of TuBu_a neurons (R34H10-Gal4)
 ⁵³⁴ contained entirely above-threshold PSI values (Fig. 4H) and
 ⁵³⁵ obeyed the same polarotopic organization (Fig. 4I).

For the dendrites of TuBu_a and TuBu_s neurons, we found that the direction of polarotopy in the AOTU (a counter-clockwise rotation of preferred AoP from ventral to dorsal) matched the polarotopy in the putatively presynaptic MeTu neurons. However, the relative positions of tunings along the ventrodorsal axis of the AOTU do not correspond directly. For example, in the dorsal half of the AOTU the preferred AoPs of MeTu terminals were in the range o° to +90° (Fig. 2L,M), whereas for TuBu_a dendrites in the dorsal half of the AOTU preferred AoPs were in the range -90° to 0° (Fig. 41). If MeTu neurons are indeed presynaptic to TuBu neurons in the AOTU, this result suggests either inhibitory input from MeTu roeurons, which would effectively shift the preferred AoP by 90°, or the integration of additional inputs from unidentified polarization-sensitive elements at TuBu dendrites.

550 Figure 4: A population of TuBu neurons receives polarized light signals in the AOTU

⁵⁵¹ **A**: Schematic of TuBu neuron types projecting to the bulb (BU) and connectivity in the AOTU.

552 B: Probability distribution of PSI values in TuBu neurons recorded in the AOTU. Mean ± CI. Summarized in C.

sss C: Average PSI values within TuBu neurons (light dots) and background regions (dark dots) in individual animals (TuBu, neurons: 0.15, Cl 0.04, background: 0.16, Cl 0.14, N = 5

animals, p = 0.76 t-test; **TuBu**, + **TuBu**, neurons: 0.49, CI 0.12, background: 0.19, CI 0.02, N = 11 animals, p < 10⁻⁴ t-test; **TuBu**, neurons: 0.67, CI 0.06, background: 0.21, CI 0.02, N = 5 animals, p < 10⁻⁶ t-test). Shaded box denotes Bonferroni corrected 95% confidence interval.

⁵⁵⁶ **D**: Example polarization tuning map for above-threshold pixels in the dendrites of TuBu neurons in a single imaging plane (R49E09-Gal4>GCaMP6s). Below-threshold pixels display ⁵⁵⁷ average intensity in grayscale. Scale bar denotes 5 μm.

avoide microsoft in grayounce could be an echologic print. Set E: Scatter plot showing the lack of polarotopic organization in TuBu, neurons. Individual points represent pixels recorded from TuBu neurons, showing their normalized vertical position in

⁵³⁹ the AOTU and their preferred angle of polarization (AoP). Thin lines show linear-circular fits for data from individual animals with significant correlations (mean individual ρ = 0.28, SEM ⁵⁴⁰ 0.29, N = 4 animals; pooled data ρ = 0.19, N = 5 recordings, p < 10⁻⁶ permutation test).

 $_{561}$ F: As in **D**, for a population containing TuBu_s and TuBu_s neurons (R88A06-Gal4>GCaMP6s).

⁵⁶² **G**: As in **E**, for the common polarotopic organization in TuBu_s and TuBu_a neurons (mean individual ρ = 0.63, SEM 0.21, N = 11 animals; pooled data ρ = 0.09, N = 11 recordings, p < 10⁻⁶

564 H: As in D, for TuBu_a neurons (R34H10-Gal4>GCaMP6s). Arrowhead indicates cell bodies excluded from analysis.

⁵⁶⁵ I: As in **E**, for the common polarotopic organization in TuBu_a neurons (mean individual ρ = 0.51, SEM 0.32, N = 8 animals; pooled data ρ = 0.64, N = 8 recordings, p < 10⁻⁶ permutation ⁵⁶⁶ test).

⁵⁶⁷ The anterior bulb is an entry point for polarized light signals

⁵⁶⁸ into the central complex

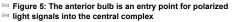
⁵⁶⁹ We next asked how responses of TuBu neurons are organized in

⁵⁷⁰ the bulb (BU). As in other insects, the BU features giant synapses

⁵⁷¹ ('micro-glomeruli') formed by TuBu endings and their targets, the

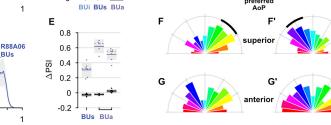
⁵⁷² ring neurons. In *Drosophila*, the BU consists of three anatomical
 ⁵⁷³ regions: superior (BUs), inferior (BUi), and anterior (BUa) (Fig. 4A).
 ⁵⁷⁴ We recorded presynaptic calcium activity in the micro-glomerular
 ⁵⁷⁵ terminals of TuBu neuron populations that target each region. We
 ⁵⁷⁶ first examined the prevalence of polarization-modulated activity,

BU


⁵⁷⁷ indicated by the polarization-selectivity index (PSI). Spatial maps

⁵⁷⁸ of PSI values revealed that the majority of TuBu_s neurons recorded ⁵⁷⁹ in micro-glomeruli in the BUs contained low PSI values, and ⁵⁸⁰ interspersed among them were micro-glomeruli with high PSI ⁵⁸¹ values (Fig. 5A). The mixture of polarization-sensitive and ⁵⁸² insensitive micro-glomeruli is conveyed by the broad distribution,

⁵⁰³ skewed towards zero, of PSI values found across all pixels ⁵⁰⁴ recorded in the BUs (Fig. 5B). In contrast, the narrow distribution ⁵⁹⁵ of PSI values close to zero in BUi micro-glomeruli demonstrates
 ⁵⁹⁶ the absence of polarization-sensitive TuBu_i neurons (Fig. 5B).
 ⁵⁹⁷ Finally, we found that all TuBu_a neurons recorded exhibited high
 ⁵⁹⁸ PSI values in the BUa (Fig. 5A,B), in two Gal4 drivers. Average
 ⁵⁹⁹ PSI values in the BUa were greater than 0.5 in both drivers (Fig.
 ⁵⁹⁰ 5C), while in the BUi and BUs, the average PSI values were not
 ⁵⁹¹ significantly different from the average in background regions of
 ⁵⁹² recordings, typically around 0.2 (Fig. 5C).


left bulb

right bulb

- ⁵⁹⁵ **A**: Example spatial maps of polarization-selectivity index (PSI, ⁵⁹⁶ top) and tuning (bottom) in TuBu neuron output
- ⁵⁹⁶ top) and tuning (bottom) in TuBu neuron output
 ⁵⁹⁷ micro-glomeruli in the superior and anterior regions of the left
- ⁵⁹⁸ (A) and right (A') bulbs in an individual fly
- ⁵⁹⁹ (R88A06-Gal4>sytGCaMP6s). Scale bar denotes 5 µm.
- B: Probability distribution of PSI values in all pixels recorded
 in TuBu neurons in the three regions of the bulb (BU). Mean ±
- 602 CI. Summarized in C.
- ⁶⁰¹ C. Average PSI values within TuBu neurons in the BU (light
 ⁶⁰⁴ dots) and background regions (dark dots) in individual animals
 ⁶⁰⁵ (BUi: 0.09, CI 0.04, background: 0.09, CI 0.08, N = 12
 ⁶⁰⁶ animals, p = 0.68 t-test; BUs: 0.25, CI 0.04, background: 0.21,
 ⁶⁰⁷ CI 0.02, N = 6 animals, p = 0.18 t-test; BUa (R88A06): 0.59
 ⁶⁰⁸ CI 0.10, background: 0.21, CI 0.01, N = 5 animals, p = 0.0002
 ⁶⁰⁹ t-test; BUa (R34H10): 0.58, CI 0.09, background: 0.20, CI
- 610 0.02, N = 7 animals, p < 10⁻⁴ t-test). Shaded box denotes
- 611 Bonferroni corrected 95% confidence interval.
- ⁶¹² **D**: Probability distribution of PSI values in 10% brightest pixels ⁶¹³ recorded in TuBu_s neurons in BUs. Mean ± CI. Summarized ⁶¹⁴ in **E**.
- In E.
 E: Effect of polarizer on median PSI values versus controls
- ⁶¹⁶ with polarizer removed, within TuBu neurons (light dots) and ⁶¹⁶ with polarizer removed, within TuBu neurons (light dots) and ⁶¹⁷ background regions (dark dots) in individual animals (mean
- Δ PSI **TuBu**_s neurons: 0.31, Cl 0.09, N = 6, p = 0.0005 t-test, ⁶¹⁹ background: -0.03, Cl 0.02, N = 6, p = 0.02, t-test; **TuBu**_s
- 600 neurons (R88A06): 0.62, CI 0.09, N = 5, p < 10⁴ t-test, background: -0.022, CI 0.09, N = 5, p = 0.18, t-test; **TuBu** reurons (R34H10): 0.51, CI 0.08, N = 7, p < 10⁵ t-test,
- $^{\rm 623}$ background: -0.023, CI 0.02, N = 7, p = 0.19, t-test). Shaded
- 624 box denotes Bonferroni corrected 95% confidence interval.

в С all TuBu R49E09 n.s. n.s 0.1 1 BUi pixels 0.8 R88A06 probability R88A06 BUa 0.6 BUs PSI R34H10 0.4 BUa 0.2 0 0 preferred AoP BUi BUs BUa 0 PS D Е brightest 0.8 0.1 TuBu pixels . ŝ. R88A06 0.6

PSI

es F: Polar histogram of preferred angles of polarization in TuBu_s neurons recorded in the left (F) and right (F') superior bulb. Normalized probabilities in each bin are displayed as area of es wedge; radial lengths of wedges not directly comparable. Arc denotes mean resultant angle ± 95% confidence interval (**TuBu_s** left: 0.36 -42.4° Cl 16.6°, N = 4, p = 0.002 Rayleigh

probability

0

0

PSI

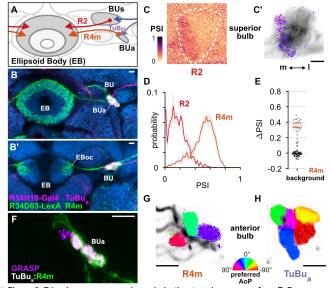
⁶²⁷ uniformity test; **TuBu**, right: 0.31 30.3° Cl 15.1°, N = 5, p = 0.0006 Rayleigh uniformity test).
 ⁶²⁸ G: As in **F**, for TuBu, neurons recorded in the anterior bulb (R34H10) (**TuBu**, left: 0.08 -60.6° Cl N/A, N = 6, p = 0.62 Rayleigh uniformity test; **TuBu**, right: 0.14 -66.0° Cl N/A, N = 6, p =

629 0.22 Rayleigh uniformity test).

⁶³⁰ We further explored the PSI values in the BUs by isolating the 631 brightest pixels in TuBu, neurons in each recording, which were ⁶³² likely to represent active neurons (Fig. 5D). We found that the 633 distribution of PSI values among the brightest pixels was shifted 634 towards one and was qualitatively different to the distribution ⁶³⁵ across all pixels (Fig. 5B,D). We then compared the average PSI value of the brightest pixels in the BUs with their average value in 637 control experiments with the polarizer removed, and repeated this ⁶³⁸ procedure with the brightest pixels in the BUa as a reference. ⁶³⁹ Among active pixels in both the BUs and BUa we found a ⁶⁴⁰ significant effect of the polarizer on PSI values versus controls, with the effect size larger in the latter (Fig. 5E). In sum, we found ⁶⁴² polarized light responses in TuBu neuron output micro-glomeruli in ⁶⁴³ both the superior and anterior bulb, and no appreciable responses ⁶⁴⁴ to polarized light in TuBu neuron outputs in the inferior bulb. We ⁶⁴⁵ interpret these findings as being consistent with the corresponding ⁶⁴⁶ dendritic responses of TuBu neurons in the AOTU (Fig. 4B).

We then asked whether the information about polarized light available in the BUs and BUa differed in some way, for example by encoding different ranges of angles. We observed that a cluster of micro-glomeruli towards the medial edge of the superior bulb tended to show preferential responses to similar angles of polarization (AoP) (Fig. 5A, bottom). When we examined the distribution of preferred AoPs in the BUs we found a non-uniform distribution with the highest frequency of preferred AoPs around -45° in the left bulb (Fig. 5F) and +45° in the right bulb (Fig. 5F'). In the anterior bulb (BUa) on both sides, we found an approximately ⁶⁵⁷ uniform representation of preferred AoPs in TuBu_a neurons (Fig.
⁶⁵⁸ 5G, G'). We expected that a uniform representation of the full
⁶⁵⁹ range of polarization space would be necessary for decoding
⁶⁶⁰ heading direction from skylight polarization patterns. The
⁶⁷¹ over-representation of certain AoPs in BUs micro-glomeruli
⁶⁷² resembles a detector for a particular feature, such as horizontally
⁶⁶³ polarized reflections from the surface of water, rather than the
⁶⁶⁴ main input to a system for polarized light-based navigation. Upon
⁶⁶⁵ inspection, we did not see a clear linear organization of preferred
⁶⁶⁶ AoPs in either the BUs or the BUa, a marked contrast to the
⁶⁶⁷ consistent organization in TuBu dendrites in the AOTU (Fig. 4H,I).
⁶⁶⁸ Circular organizations of TuBu neurons in the bulb have been
⁶⁶⁹ proposed (Timaeus et al., 2017) and we explore these in the BUa
⁶⁷⁰ in the next section (Fig. S5).

TuBu neurons have previously been shown to respond to uppolarized visual stimuli presented to regions of the eye outside the DRA (Omoto et al., 2017; Shiozaki and Kazama, 2017; Sun et al., 2017). To compare the responses of the three groups of TuBu neurons, we presented a wide-field flash of unpolarized blue light and recorded responses in each population in the AOTU and BU (Fig. S4A). TuBu_s and TuBu_i neuron populations showed responses to the flash in the AOTU and, more strongly, in the BU, while TuBu_a neurons recorded in either neuropil were inhibited by the unpolarized light stimulus (Fig. S4). We note that prior work appeared to show excitation of BUa micro-glomeruli in response to unpolarized small-field stimuli presented in the contralateral visual field and inhibition in response to ipsilateral stimuli (Shiozaki and


Kazama, 2017). These results may reflect excitatory and inhibitory

⁶⁰⁵ receptive fields of TuBu_s neurons, while our recordings indicate ⁶⁰⁶ that inhibition dominates the response of the population to

⁶⁰⁷ wide-field visual stimuli.

R4m ring neurons receive polarization-tuned responses from TuBu neurons

590 Taken together, our recordings of TuBu neurons indicate that ⁶⁹¹ polarized light signals are potentially delivered to the central ⁶⁹² complex via two parallel pathways: one through the superior bulb 693 (BUs), containing a limited representation of polarization space in ⁶⁹⁴ addition to other visual information, and a second channel through 695 the anterior bulb (BUa). In the bulb, TuBu neuron presynaptic 696 terminals innervate the globular dendrites of ring neurons in a 697 largely one-to-one fashion, forming individual micro-glomeruli. Ring ⁶⁹⁸ neurons project medially to the ellipsoid body (EB) (Fig. 6A), where 699 their arborizations have a circular form and are both dendritic and ⁷⁰⁰ axonal (Fig. 6B) (Hanesch et al., 1989; Omoto et al., 2018). We ⁷⁰¹ recorded calcium activity in the dendrites of two populations of ring ⁷⁰² neurons in the bulb, one innervating the medial two-thirds of the ⁷⁰³ BUs (R2; R19C08-Gal4) and one innervating the BUa (R4m; ⁷⁰⁴ R34H10-Gal4) (Fig. 6A). Both R2 and R4m ring neuron 705 populations target the outer central domain of the EB, albeit ⁷⁰⁶ following different trajectories (Fig. 6A,B) (Omoto et al., 2017, 2018).

⁷⁰⁸ Figure 6: R4m ring neurons receive polarization-tuned responses from TuBu ⁷⁰⁹ neurons

⁷¹⁰ A: Schematic of TuBu and ring neuron connectivity in the bulb (BU).

T1 B: Confocal projection (anterior view) of dual-labeled TuBu_a neurons
 T12 (R34H10-Gal4>RFP, magenta) and R4m neurons (R34D03-Gal4>GFP, green). B':
 T13 Dorsal view. Scale bars denote 5 μm.

⁷¹⁴ C: Example spatial maps of polarization-selectivity index (PSI) and tuning (C') for R2
 ⁷¹⁵ dendrites recorded in the superior bulb (R19C08-Gal4>GCaMP6s). Scale bar denotes
 ⁷¹⁶ 5 um.

 ⁷¹ D: Probability distributions of PSI values in ring neurons recorded in the bulb (average ⁷¹⁸ PSI R2 neurons: 0.17, CI 0.05, background: 0.20, CI 0.03, N = 4 animals, p = 0.29 t-test;
 ⁷¹⁹ R4m neurons: 0.51, CI 0.11, background: 0.22, CI 0.05, N = 25 animals, p < 10⁵ t-test).

⁷²⁰ Mean ± Cl.
 ⁷²¹ E: Effect of polarizer on median PSI values versus controls with polarizer removed, within

 $^{\rm 722}$ R4m neurons (light dots) and background regions (dark dots) in individual animals (mean $^{\rm 723}$ Δ PSI R4m neurons: 0.34, Cl 0.11, N = 25, p < 10⁶ t-test, background: -0.05, Cl 0.05, N =

⁷²⁴ 25, p = 0.58, t-test).

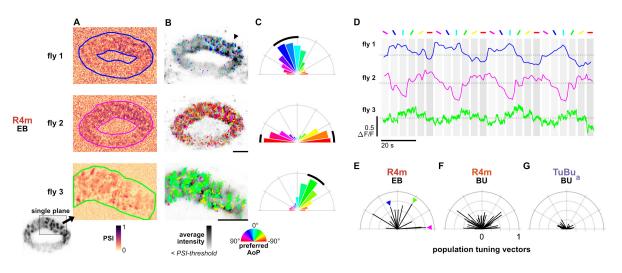
- 725 F: Confocal projection (anterior view) of activity-dependent synaptic GRASP (GFP $_{726}$ reconstitution across synaptic partners) signal between presynaptic TuBu_a and
- 727 postsynaptic R4m neurons in the anterior bulb (BUa) (Macpherson et al., 2015). Scale 728 bar denotes 5 $\mu m.$
- ⁷²⁹ G: Example polarization tuning map in R4m dendrites in BUa ⁷³⁰ (R34D03-Gal4>GCaMP6s). Pixels falling outside an ROI drawn around the neurons of
- 731 interest, show average intensity in grayscale. Individual axons projecting medially to the

 $^{_{732}}$ EB are visible leaving the left side of the image. Scale bar denotes 5 $\mu m.$

733 H: As in G, for TuBu_a output micro-glomeruli at an approximately corresponding location 734 in BUa (R34H10-Gal4>sytGCaMP6s). 735 As with TuBu, micro-glomerular outputs, we found that only a ⁷³⁶ subset of R2 neurons in the BUs were modulated by polarized ⁷⁸⁷ light, with above-threshold PSI values typically in a medial cluster ⁷³⁸ with a preferred angle of polarization (AoP) around 45° (Fig. 6C). ⁷³⁹ Low PSI values were common throughout the R2 population and ⁷⁴⁰ average values were not significantly different from average values ⁷⁴¹ in background regions (Fig. 6D). By contrast, in R4m neurons in ⁷⁴² the BUa, average PSI values were greater than 0.5 and the overall ⁷⁴³ distribution of values in the population was similar in shape to the ⁷⁴⁴ distribution in TuBu, neurons (Fig. 4B, Fig. 5B, Fig. 6D). We found 745 that the polarizer had a significant effect on PSI values of R4m ⁷⁴⁶ neurons versus controls with the polarizer removed (Fig. 6E). 747 Furthermore, we found that the dendrites of individual R4m 748 neurons exhibited distinct preferences for AoP in each recording 749 (Fig. 6G). Since R4m neurons appear to receive monosynaptic ⁷⁵⁰ input from TuBu neurons, we conclude that they almost certainly 751 acquire their polarization-tuned responses from the presynaptic ⁷⁵² TuBu, neurons in the BUa (Fig. 6A,B,F). We note that the average 753 PSI value decreased from TuBu, neurons to R4m neurons (Fig. ⁷⁵⁴ S5) and we further explore the transformation of their signals in the ⁷⁵⁵ next section. Although the BUs appears to contain ⁷⁵⁶ polarization-sensitive elements, they are pervasive neither in the ⁷⁵⁷ populations of R2 neurons nor their putative presynaptic partners, ⁷⁵⁸ TuBu, neurons, and hereafter we focus on polarization processing 759 in the BUa.

760 In contrast to the linear polarotopic organization of tunings ⁷⁶¹ observed in the AOTU, which was consistent across animals (Fig. ⁷⁶² 4F,H), the spatial organization of polarization tunings in the BUa 763 was less clear (Fig. 6G,H). We tested whether there was a ⁷⁶⁴ common relationship between the horizontal (medial-lateral), 765 vertical (ventral-dorsal), or angular position of micro-glomeruli ⁷⁶⁶ within the BUa and their preferred AoP, for both TuBu, and R4m 767 neurons (Fig. S5). We also considered whether there was a ⁷⁶⁸ relationship within a population of neurons in an individual animal 769 which was not common across animals. We found no indication of 770 a relationship between position and preferred AoP except in 771 recordings of TuBu, neurons in the left BUa, which showed a 772 common vertically organized polarotopy (Fig. S5B) and circularly 773 organized polarotopies in individual animals (Fig. S5C). However, 774 we found no significant polarotopy in the corresponding TuBu, 775 neurons in the right BUa, or in postsynaptic R4m neurons. Hence 776 we cannot firmly conclude that either a vertical or circular 777 organization of tunings exists in the anterior bulb. Furthermore, our 778 assessment of circular organization is only valid for the ⁷⁷⁹ dorso-posterior imaging plane used here, and we cannot exclude 780 the possibility of a circular organization around a different axis of the bulb.

Populations of R4m ring neurons exhibit a preferred angle of polarization


⁷⁸⁴ We next wanted to understand how polarized light signals are
⁷⁸⁵ represented in the ellipsoid body (EB), where the tangential ring
⁷⁸⁶ neurons supply visual information around its circular structure.
⁷⁸⁷ Ring neurons interact bidirectionally with columnar neurons
⁷⁸⁸ (Omoto et al., 2018), which have been shown to flexibly encode
⁷⁸⁹ heading direction relative to visual landmarks (Fisher et al., 2019;
⁷⁸⁰ Kim et al., 2019; Seelig and Jayaraman, 2015). We recorded the
⁷⁹¹ synaptic terminals of the population of R4m neurons in the EB
⁷⁹² (approximately ten neurons, five per brain hemisphere,
⁷⁹³ R34H10-Gal4). As expected from recordings in the dendritic
⁷⁹⁴ regions of R4m in the anterior bulb (BUa), we observed modulation
⁷⁹⁵ of their activity with rotations of the polarizer, indicated by their

⁷⁹⁶ polarization-selectivity index (PSI) (Fig. 7A). Individual terminals ⁷⁹⁷ were found to exhibit distinct tunings, and a range of tunings could ⁷⁹⁸ be found intermingled at any given position in the EB (Fig. 7B). We 799 noted here that in some recordings, above-threshold PSI values ⁸⁰⁰ were spatially localized to approximately one quadrant of the EB ⁸⁰¹ (Fig. 7A,B, top, arrowhead). Additionally, we found that in many ⁸⁰² recordings the preferred angles of polarization (AoPs) of terminals ⁸⁰³ were similar to each other within a recording, and the range of ⁸⁰⁴ AoPs varied across animals (Fig. 7B). Therefore, the frequency of ⁸⁰⁵ preferred AoPs was a unimodal distribution centered on a different ⁸⁰⁶ angle in each recording (Fig. 7C). We verified that the non-uniform ⁸⁰⁷ distribution of AoPs was not an artifact of our image projection ⁸⁰⁸ across multiple planes and that a predominant preferred AoP was ⁸⁰⁹ also observed from a single imaging plane through a section of the ^{\$10} EB (Fig. 7A–C, bottom). As a result of these non-uniform tuning ⁸¹¹ distributions, it followed that the average activity of the entire R4m ⁸¹² population in the EB exhibited modulation induced by the polarizer and a single preferred AoP could effectively be identified for the ⁸¹⁴ population (Fig. 7D).

To compare the distribution of tunings across animals, we 816 calculated the mean resultant vector of the tunings of all pixels ⁸¹⁷ within the EB, weighted by their individual PSI values (Fig. 7E). ⁸¹⁸ The length of the vector gives an indication of the distribution of ⁸¹⁹ polarization tunings in a single recording, with a value of 1 ⁸²⁰ indicating an identical preferred AoP in all pixels and a value of ⁸²¹ zero indicating a uniform distribution of preferred AoPs. For R4m 822 terminals in the EB we found population tuning vectors with

⁸²³ lengths exceeding 0.74 and an average length of 0.51 across ⁸²⁴ animals (Fig. 7E), while for R4m dendrites recorded in either the 825 left or right BUa individually we found an average length of 0.39 826 (Fig. 7F). For TuBu, populations recorded in either bulb we found ⁸²⁷ that the vector lengths did not exceed 0.3 and the average length *28 was 0.18 across animals (Fig. 7G). Since uneven sizes or ⁸²⁹ guantities of neurons could affect these results, we repeated the ⁸³⁰ analysis with ROIs drawn on individual micro-glomeruli in the bulb. ⁸³¹ We found a comparable number of micro-glomeruli in recordings of ⁸⁰² TuBu, and R4m neurons in the BUa, and the ROI- and pixel-based approaches both yielded a qualitatively similar result (Fig. 7F,G).

These findings suggest that there is not an exact correlation 835 between polarized light responses in the populations of merces presynaptic TuBu, neurons and postsynaptic R4m neurons in an 837 individual animal. In R4m dendrites, the average strength of modulation is reduced compared to TuBu, neurons (Fig. S5) and 839 the distribution of tunings is less uniform (Fig. 7F,G). In R4m ⁸⁴⁰ terminals in the EB, the distribution of tunings is less uniform still, ⁸⁴¹ hinting at subcellular processes which may impact R4m signalling 842 locally in the EB, a computational motif for which there is ⁸⁴³ precedence both in the CX and in visual neurons generally ⁸⁴⁴ (Franconville et al., 2018; Turner-Evans et al., 2020; Yang et al., ⁸⁴⁵ 2016). As a consequence, it appears that the ensemble activity of 846 R4m synapses could convey a preferential response for a ⁸⁴⁷ particular angle of polarization to columnar neurons at any location ⁸⁴⁸ in the EB.

⁸⁴⁹ Figure 7: Populations of R4m ring neurons exhibit a preferred angle of polarization

🕬 A: Example spatial maps of polarization-selectivity index (PSI) in R4m synapses recorded in the ellipsoid body (EB) (R34D03-Gal4>sytGCaMP6s). Data shown are from

⁸⁵¹ maximum-selectivity projections through the EB (top, middle) or a single plane (bottom).

822 B: Example polarization tuning maps corresponding to recordings in A. Pixels with a below-threshold PSI value, or falling outside an ROI drawn around the R4m population, show 853 average intensity in grayscale. Scale bars denote 10 µm.

854 C: Polar histograms of preferred angles of polarization in all pixels within the ROIs in A. Normalized probabilities in each bin are displayed as area of wedge; radial lengths of wedges not

⁸⁵⁵ directly comparable. Arc denotes mean resultant angle ± 95% confidence interval (**fly 1**: 0.57 18.7° CI 16.6 °, N = 4, p = 0.002 Rayleigh uniformity test; **fly 2**: 0.72 -87.3° CI 15.0°, p =

⁸⁵⁶ 0.001 Rayleigh uniformity test; fly 3: 0.71 -31.6° CI 15.4°, p = 0.001 Rayleigh uniformity test).

857 D: Average GCaMP activity in the ROIs in A in response to different angles of polarization. 818 E: Resultant tuning vectors for the population of all recorded R4m synapses in the EB of individual animals (mean length, pixel-based: 0.51, Cl 0.44, N = 7, p < 10⁶ t-test). Arrowheads

859 indicate data for examples in A-D. 800 F: Resultant tuning vectors for the population of all recorded R4m neurons recorded in the left or right BU of individual animals (mean length, pixel-based: 0.39, Cl 0.32, N = 25, p < 10-6

861 tailed t-test; ROI-based: 0.36, CI 0.46, N = 25, p = 0.005 tailed t-test, 134 ROIs, > 3 ROIs per BU).

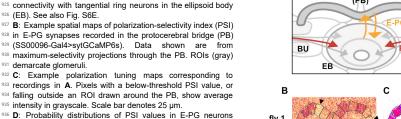
sec G: Resultant tuning vectors for the population of all recorded TuBu, neurons recorded in the left or right BU of individual animals (mean length, pixel-based; 0.18, Cl 0.13, N = 7, p < 10.6 tailed t-test; ROI-based: 0.14, CI 0.15, N = 7, p = 0.0002 tailed t-test, 101 ROIs, > 3 ROIs per BU).

864 E-PG neurons respond to polarized light with flexible tuning

⁸⁶⁵ and no fixed polarotopic map

- ⁸⁶⁶ We then asked whether columnar E-PG neurons (also referred to
- ⁸⁶⁷ as 'compass' neurons) respond to polarized light cues. E-PG

⁸⁶⁸ neurons are key elements in a network which maintains a neural


⁸⁶⁹ representation of heading direction as a locus of activity, or 'bump', ⁸⁷⁰ which changes position within the CX as the animal turns, like the ⁸⁷¹ needle of a compass (Green et al., 2017; Seelig and Jayaraman, ⁸⁷² 2015). In the previous literature, this activity bump has been ⁸⁷³ observed in the ellipsoid body (EB), protocerebral bridge (PB), and

874 fan-shaped body (FB), typically during walking or flight in 875 restrained animals (Giraldo et al., 2018; Shiozaki et al., 2020). It 876 has not been demonstrated in fully immobilized animals, hence we ⁸⁷⁷ did not expect to see it here. Nevertheless, we hypothesized that ⁸⁷⁸ E-PG activity could be modulated by a varying angle of polarized 879 light since the same has been demonstrated in numerous ⁸⁰⁰ columnar central complex neurons in other insects (Heinze and ⁸⁸¹ Homberg, 2007; Honkanen et al., 2019). Moreover, the responses ⁸⁸² we observed in R4m ring neurons (Fig. 7D) suggested that the *** E-PG population should also exhibit tunings to a limited range of angles. Ring neurons provide inhibitory input to E-PG neurons in **5 the EB (Fig. 8A), where interactions between ring and E-PG ⁸⁸⁶ neurons are thought to be reciprocal (Fisher et al., 2019; Kim et 887 al., 2019; Omoto et al., 2018). Using activity-dependent GRASP ⁸⁸⁸ (Macpherson et al., 2015), we found labeling of synapses between ⁸⁹⁹ presynaptic E-PG neurons and postsynaptic R4m neurons in the 800 EB (Fig. S6B), confirming the reciprocal connectivity between the ⁸⁹¹ neurons in the respective drivers (R4m: R34D03-LexA, Fig. 6B; 892 E-PG: SS00096-Gal4, Fig. S6A).

We then recorded calcium signals in the presynaptic terminals ⁸⁹⁴ of E-PG neurons in the PB, where they form 16 distinct glomeruli ⁸⁹⁵ (Fig. 8A), each innervated by at least two E-PG neurons (Fig. S6) ⁸⁹⁶ (Wolff et al., 2015). Due to their neighboring positions in the EB ⁸⁹⁷ and connectivity with other neurons, the activity of E-PG neurons

922 Figure 8: E-PG neurons respond to polarized light with 923 flexible tuning and no fixed polarotopic map 924 A: Schematic of E-PG columnar neuron projections and ⁸⁹⁹ coordinated with those in the 8 glomeruli in the right half (Fig. 900 S6E), and on either side of the PB the ends are effectively ⁹⁰¹ wrapped (1L is continuous with 8L, 1R is continuous with 8R) 902 (Giraldo et al., 2018; Green et al., 2017). We found that E-PG ⁹⁰³ activity in the PB was modulated as the polarizer was rotated. We ⁹⁰⁴ assigned PSI values to the pixels in each recording as an indicator 905 of modulation (Fig. 8B) and calculated their preferred angle of ⁹⁰⁶ polarization (AoP) (Fig. 8C). As expected, the PSI values and ⁹⁰⁷ preferred AoPs showed a bilateral coupling, with the right half of ⁹⁰⁸ the PB (1R to 8R) resembling the left half (8L to 1L) (Fig. 8B,C). In 909 different animals, the preferred AoP varied in glomeruli at ⁹¹⁰ corresponding positions in the PB (Fig. 8C). We also observed that ⁹¹¹ the distribution of PSI values was not homogenous across the PB, ⁹¹² and high values typically clustered across a contiguous subset of 913 2-4 glomeruli, while low PSI values occurred throughout the ⁹¹⁴ remaining glomeruli (Fig. 8B). Across the glomeruli in each cluster, ⁹¹⁵ the preferred AoP was similar in a given animal (Fig. 8C). It should 916 be noted that these clusters of high PSI values correspond to the ⁹¹⁷ regions of highest modulation over a period of minutes, not an 918 instantaneous locus of intensity which moved across the PB ⁹¹⁹ (activity bump) (Giraldo et al., 2018; Green et al., 2017). Indeed, 920 glomeruli with high average intensities often exhibited low PSI ⁹²¹ values (arrowhead, Fig. 8B,C).

⁸⁹⁸ innervating the 8 glomeruli in the left half of the PB is known to be

РВ

Α

Protocerebral Bridge

937 recorded in the PB and R4m neurons recorded in the EB 938 (average PSI E-PG neurons: 0.14, CI 0.05, background: 0.19, 939 CI 0.01, N = 22 animals, p = 0.0001 t-test; R4m neurons: 940 0.34, CI 0.11, background: 0.21, CI 0.03, N = 7 animals, p =

941 0.02 t-test). Mean ± Cl.

931

942 E: Effect of polarizer on median PSI values versus controls

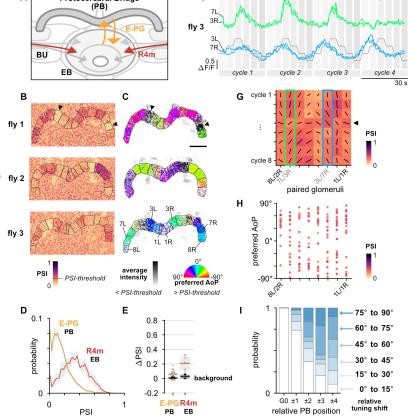
⁹⁴³ with polarizer removed, within E-PG and R4m neurons (light

944 dots) and background regions (dark dots) in individual animals 945 (mean ΔPSI E-PG neurons: 0.06, CI 0.05, N = 22, p < 10-4

946 t-test, background: 0.01, CI 0.01, N = 22, p = 0.0007, t-test, 947 R4m neurons: 0.21, CI 0.11, N = 7, p = 0.002 t-test, 948 background: 0.03, CI 0.03, N = 7, p = 0.04, t-test).

949 F: Activity in two pairs of L/R ROIs in C (fly 3) in response to 950 different angles of polarization. Arrowhead indicates position 951 of expected peak.

952 G: Cycle-by-cycle characterization of E-PG responses across


953 the PB in a single recording (fly 3, C). Vector orientation 954 represents preferred AoP, length represents PSI (grid spacing

955 equal to 1). Highlighted boxes indicate extended data for pairs $^{\rm 956}$ shown in $\mathbf{F}.$ Arrowhead indicates the same cycle as the 957 arrowhead in F.

- 958 H: Scatter plot showing position of paired E-PG glomeruli in 959 the PB and preferred angle of polarization (AoP) (pooled data $_{\rm 960}$ ρ = 0.23, N = 19 animals, p = 0.006 permutation test, 152 961 ROIs, mean ROI PSI 0.34 ± 0.06; 5 significant individual
- $_{962}$ circular-circular correlations, mean ρ = 0.46, SEM 0.45).
- 963 I: Normalized probability of tuning shift magnitude with
- 964 distance from the glomerulus with the highest PSI value
- 965 (mean shift between positions 2 to 3, p = 0.21; 3 to 4, p =

966 0.65; 2 to 4, p = 0.08; all other pairs p < 10⁻³, N = 19 animals, 967 152 ROIs). See also Fig. S6G.

900 Overall, we found substantially lower PSI values in E-PG neurons ⁹⁶⁹ than in R4m neurons (Fig. 8D). We found a statistically significant 970 effect of the polarizer on PSI values versus controls in both ⁹⁷¹ populations (Fig. 8E), yet in E-PG neurons the effect size was ⁹⁷² small and the average PSI value was generally lower than in ⁹⁷³ background regions of recordings (Fig. S6C). To explore this

974 discrepancy, we examined the responses of individual glomeruli in ⁹⁷⁵ the PB in response to cycles of the polarizer (Fig. 8F). Here, in the 976 PB, we observed characteristics which distinguished the 977 responses from those of all other polarization-sensitive elements ⁹⁷⁸ that we recorded in the upstream pathway. First, the amplitude of ⁹⁷⁹ responses was often found to be inconsistent over multiple rotation

⁹⁸⁰ cycles of the polarizer (Fig. 8F, top). Second, the peak response ⁹⁸¹ was often found to occur at different positions of the polarizer over ⁹⁸² multiple cycles (Fig. 8F, bottom). For both of these response ⁹⁸³ characteristics, variations were synchronized across the left and ⁹⁸⁴ right PB glomerulus pair (Fig. 8F). When we analyzed responses 985 to individual cycles of the polarizer separately, these ⁹⁸⁶ characteristics manifested as PSI values and preferred AoPs ⁹⁸⁷ which varied over time (Fig. 8G). To obtain a measure of ⁹⁸⁸ synchronicity between E-PG modulation and the polarizer ⁹⁸⁹ stimulus, we examined the auto-correlation function of all individual 900 glomerular responses, and compared them with those of R4m and m TuBu, neurons recorded in the anterior bulb (BUa). For E-PG 992 neurons, we found that less than half of all glomeruli recorded ⁹⁹³ exhibited a periodicity which matched the stimulus, while almost all ⁹⁹⁴ R4m and TuBu, neurons matched the stimulus (E-PG: 43.3%, 995 R4m: 98.4%, TuBu,: 100%) (Fig. S6D). Therefore, although 996 periodic, when observed over multiple cycles the majority of E-PG 997 responses were found to be no more synchronized with the 998 rotation of the stimulus than the fluctuations in their activity ⁹⁹⁹ recorded with the polarizer removed (Fig. S6D). This finding is of 1000 reminiscent the observation of 'conditional' ¹⁰⁰¹ polarization-sensitivity in some columnar neuron types in the locust ¹⁰⁰² central complex (Heinze and Homberg, 2009). While we did not ¹⁰⁰³ specifically test the stability of R4m responses recorded in the EB 1004 as we could not distinguish individual neurons, it should also be ¹⁰⁰⁵ noted that the E-PG activity analyzed also potentially represents ¹⁰⁰⁶ multiple neurons per glomerulus which could have been ¹⁰⁰⁷ differentially active. Nevertheless, their activity profiles (Fig. 7D. ¹⁰⁰⁸ Fig. 8F) and the difference in their average PSI values (Fig. 8D,E) ¹⁰⁰⁹ indicate that, if E-PG polarization-sensitivity does indeed result ¹⁰¹⁰ from R4m input, an additional transformation of signals occurs ¹⁰¹¹ between these neurons.

1012 We next sought to address the organization of preferential ¹⁰¹³ responses to polarized light in the PB, acknowledging that neither ¹⁰¹⁴ the preferred angles of polarization nor the PSI values calculated ¹⁰¹⁵ for E-PG neurons were necessarily stable over time (Fig. 8G). We 1016 therefore limited our analysis to individual cycles of the stimulus, ¹⁰¹⁷ and we pooled the coordinated responses of glomeruli from the left 1018 and right sides of the PB. To evaluate the most appropriate ¹⁰¹⁹ pooling, we cross-correlated the activity recorded from pairs of left ¹⁰²⁰ and right glomeruli under different pairing schemes and found the ¹⁰²¹ normalized coefficient as an indication of their similarity (Fig. S6E). ¹⁰²² The pairing scheme following the logic 1L/1R, 8L/2R, 7L/3R, etc. ¹⁰²³ (Fig. S6E) yielded the highest mean similarity across all glomeruli, ¹⁰²⁴ which decreased with a sinusoidal profile as the distance between ¹⁰²⁵ pairs increased (Fig. S6F). This pairing confirms a scheme ¹⁰²⁶ proposed based on anatomical connectivity (Wolff et al., 2015), but ¹⁰²⁷ differs by one position from the proposed connectivity in the locust, ¹⁰²⁸ where a pairing scheme corresponding to 1L/8R, 8L/1R, 7L/2R, 1029 etc. (Fig. S6E) has previously been used to pool data (Heinze and ¹⁰³⁰ Homberg, 2009).

¹⁰³¹ Across animals, we found no common relationship between ¹⁰³² glomerulus position in the PB and the preferred angle of ¹⁰³³ polarization (AoP) of E-PG neurons (Fig. 8H), matching the ¹⁰³⁴ findings for the homologous CL1a neurons in locusts (Heinze and ¹⁰³⁵ Homberg, 2009; Pegel et al., 2019). We then asked whether, on ¹⁰³⁶ the timescale of a single stimulus cycle (30 s), there was any ¹⁰³⁷ relationship between PB position and preferred AoP in an ¹⁰³⁸ individual animal. In each recording, we picked at random a single ¹⁰³⁹ response cycle in which the average PSI value across all ¹⁰⁴⁰ glomerulus pairs exceeded a threshold (mean + 1 SD of PSI ¹⁰⁴¹ values in background regions of all E-PG recordings). We then ¹⁰⁴² identified the glomerulus pair with the maximum average PSI ¹⁰⁴³ value, which we refer to as G0, and expressed all preferred AoPs, ¹⁰⁴⁴ PSI values and positions in the PB relative to G0 (Fig. S6G). ¹⁰⁴⁵ Smooth transitions in preferred AoP across glomeruli were ¹⁰⁴⁶ observed infrequently, and in 6 out of 19 animals this resulted in a ¹⁰⁴⁷ weak relationship between PB position and preferred angle of ¹⁰⁴⁸ polarization (asterisks, Fig. S6G).

1049 More generally, we found that glomeruli neighboring G0, at ± 1 ¹⁰⁵⁰ PB position, were likely to exhibit a similar preferred AoP to G0, to ¹⁰⁵¹ within 15° (Fig. 8I, Fig. S6G). At ± 2–4 PB positions from G0, we ¹⁰⁵² found preferred AoPs generally shifted towards orthogonal angles ¹⁰⁵³ (Fig. 8I, Fig. S6G) and among these positions there was again a ¹⁰⁵⁴ similarity between neighboring glomeruli (Fig. S6H). These data ¹⁰⁵⁵ support our initial observation of clusters of glomeruli with similar 1056 tunings and PSI values (Fig. 8B,C), contrasting with the ¹⁰⁵⁷ polarotopic organization of tunings across the PB found for CPU1 ¹⁰⁵⁸ neurons in locusts (likely homologous to P-F-R neurons in flies) ¹⁰⁵⁹ (Heinze and Homberg, 2007; Honkanen et al., 2019; Pegel et al., 1060 2019). A limited representation of two orthogonal angles of ¹⁰⁶¹ polarization in columnar neurons would also be congruent with a ¹⁰⁶² single predominant tuning being conveyed by the R4m population ¹⁰⁶³ (Fig. 7D), since rectification of a sinusoidal tuning function would 1064 directly lead to two signals with peak responses at orthogonal 1065 angles.

1066 DISCUSSION

1067 In this study we have demonstrated that each section of the 1068 Drosophila anterior visual pathway (AVP) contains ¹⁰⁶⁹ polarization-tuned neurons. Together, they provide a circuit to ¹⁰⁷⁰ convey polarized light signals from the specialized dorsal rim area ¹⁰⁷¹ of the eye to the compass neurons of the central complex, via the ¹⁰⁷² anterior optic tubercle and bulb. This pathway also conveys ¹⁰⁷³ information about unpolarized visual features, as shown here and ¹⁰⁷⁴ in previous studies. The encoding of multiple visual modalities, the ¹⁰⁷⁵ similarities in the constituent neurons, and the organization of the ¹⁰⁷⁶ neuropils which accommodate them (Omoto et al., 2017), support 1077 the view that the AVP in Drosophila is homologous to the sky 1078 compass pathway described in locusts, bees, butterflies, and 1079 beetles, among other insects (Honkanen et al., 2019; Warren et ¹⁰⁸⁰ al., 2019).

Our approach to investigating the neural processing of ¹⁰⁸² polarization vision offered a number of advantages over traditional ¹⁰⁸³ intracellular electrophysiology. Firstly, it allowed us to 1084 simultaneously record from whole populations of neurons, which 1085 would otherwise be technically challenging. Here, we exploited this 1086 to investigate the spatial organization of polarization responses in ¹⁰⁸⁷ an individual animal. This may be key in understanding the central 1088 complex, where dynamic responses reflect circuit plasticity and 1089 depend on numerous factors, such as proprioceptive inputs, ¹⁰⁹⁰ internal states and goal-direction. Next, targeted expression of ¹⁰⁹¹ calcium indicators allowed us to isolate specific anatomical groups ¹⁰⁹² of neurons, such as specific TuBu or ring neuron populations, ¹⁰⁹³ greatly increasing the repeatability of functional characterizations. ¹⁰⁹⁴ Crucially, the identification of corresponding genetic drivers will ¹⁰⁹⁵ enable silencing experiments, optogenetic stimulation and ¹⁰⁹⁶ multi-population recordings to probe circuit function in the future. ¹⁰⁹⁷ Imaging of calcium indicators also facilitated the characterization of ¹⁰⁹⁸ neurons whose axons are prohibitively thin for recording ¹⁰⁹⁹ intracellularly. MeTu-like neurons, for example, have long been 1100 assumed to deliver polarization signals from the medulla to the

¹¹⁰¹ anterior optic tubercle, and here we were able to confirm this by ¹¹⁰² direct observation for the first time.

¹¹⁰³ Skylight polarization features extracted by the MEDRA

¹¹⁰⁴ Since each detector for polarized light in the DRA essentially has a ¹¹⁰⁵ different field of view, the success of this approach depended on ¹¹⁰⁶ the ability to stimulate a sizable number of DRA ommatidia. ¹¹⁰⁷ Surprisingly, almost the full extent of the DRA was stimulated by ¹¹⁰⁸ polarized light originating from a single point in the visual field with ¹¹⁰⁹ a common angle of polarization. A wide range of polarization ¹¹¹⁰ tunings was subsequently revealed in downstream neurons, "" supporting the idea that the Drosophila medulla dorsal rim area 1112 (MEDRA) analyzes the overall pattern of polarized light in the sky ¹¹¹³ and extracts a predominant angle of polarization (AoP) (Labhart, 1114 2016; Rossel and Wehner, 1986), rather than performing many ¹¹¹⁵ local AoP estimates. During the morning and evening when 1116 D. melanogaster are most active, the pattern of polarization in the ¹¹¹⁷ sky can be well approximated by a single, predominant AoP. ¹¹¹⁸ DmDRA1 neurons appear to spatially integrate polarization signals ¹¹¹⁹ from multiple columns of the MEDRA (Fig. 1), and individual ¹¹²⁰ neurons heavily overlap each other (Sancer et al., 2019). This ¹¹²¹ could provide an additional robustness to occlusions of the sky or ¹¹²² of the DRA itself and average out inconsistencies in the available ¹¹²³ light (Labhart et al., 2001; Rossel and Wehner, 1986).

The parallel circuitry between DRA R7, DmDRA1 and MeTu The parallel circuitry between DRA R7, DmDRA1 and MeTu The parallel circuitry between DRA R7, DmDRA1 and MeTu The parallel circuitry between DRA R7, DmDRA1 and MeTu The parallel circuitry between DRA R7, DmDRA1 and MeTu The parallel circuitry between DRA R7, DmDRA1 and MeTu The parallel circuitry between DRA R7, DmDRA1 and MeTu The parallel circuitry between DRA R7, DmDRA1 and MeTu The parallel circuitry between DRA R7, DmDRA2 columns involving R7, The parallel functionally described the responses of DmDRA2 cells That contact R8 cells in this study (Sancer et al., 2019), and these The parallel functions will likely need to be incorporated to build a The parallel functions model of skylight polarization processing in The parallel.

¹¹³⁷ Sensory transformations through the AVP

anterior optic tubercle (AOTU), we 1138 **In** the found ¹¹³⁹ polarization-sensitive neuron populations entering and leaving the ¹¹⁴⁰ tubercle via the intermediate-lateral domain (Fig. 2-4). We also ¹¹⁴¹ observed polarization responses in the lateral domain, although it ¹¹⁴² is unclear whether this is a result of separate polarization-sensitive ¹¹⁴³ MeTu types projecting from the MEDRA to different AOTU ¹¹⁴⁴ domains. Alternatively, since MeTu neurons are also postsynaptic ¹¹⁴⁵ in the AOTU (Omoto et al., 2017), signals from a single ¹¹⁴⁶ polarization input channel could be redistributed to different 1147 regions of the AOTU for integration with other visual modalities or ¹¹⁴⁸ bilateral interactions (Fig. 3). The AOTU in Drosophila is also likely ¹¹⁴⁹ to be a site for modulation of signals depending on time or internal ¹¹⁵⁰ states (Guo et al., 2018; el Jundi et al., 2014; Lamaze et al., 2018), ¹¹⁵¹ and a capacity to modify responses may explain why we observed ¹¹⁵² multiple polarotopic organizations in a MeTu neuron population in 1153 the AOTU (Fig. S3). However, there may also be multiple ¹¹⁵⁴ functional subtypes within the population that more tailored ¹¹⁵⁵ experiments may be able to distinguish.

¹¹⁵⁶ Intriguingly, none of the polarotopies found in presynaptic ¹¹⁵⁷ MeTu neurons (Fig. 2L,M) matched the polarotopy of postsynaptic ¹¹⁵⁸ TuBu dendrites in the AOTU (Fig. 4G,I), which was extremely ¹¹⁵⁹ consistent across animals. Our findings suggest that TuBu ¹¹⁶⁰ neurons extract a processed form of the signals in the AOTU, ¹¹⁶¹ encoding visual features within fewer neurons than the MeTu ¹¹⁶² populations. TuBu neurons appear to divide signals into functional 1169 groups, and the anterior bulb-projecting TuBu, group in every fly ¹¹⁶⁴ contained a set of around six tunings covering -90° to +90° of ¹¹⁶⁵ polarization space in approximately 30° steps, tightly-packed in a ¹¹⁶⁶ micro-glomerular structure with no apparent polarotopy (Fig. 5, Fig. 1167 6). The question remains open as to whether a sun position ¹¹⁶⁸ system and skylight polarization system are independent in the ¹¹⁰⁹ bulb. Unlike the TuLAL neurons in locusts (homologous to TuBu), ¹¹⁷⁰ where there is convergence on the dendrites of postsynaptic ¹¹⁷¹ neurons (Hadeln et al., 2020; Pegel et al., 2018; Pfeiffer et al., 1172 2005), TuBu neurons appear to form one-to-one contact with ¹¹⁷³ individual ring neurons (Omoto et al., 2017). Hence, we posit that 1174 the site of integration of celestial cues is not at the synapse ¹¹⁷⁵ between TuBu and ring neurons. Although we found evidence that ¹¹⁷⁶ angles of polarization are represented in the superior bulb (Fig. 5, ¹¹⁷⁷ Fig. 6), where unpolarized cues are also known to be represented, ¹¹⁷⁸ the populations we recorded contained a limited range of tunings ¹¹⁷⁹ and resembled a system for detecting visual features with a ¹¹⁸⁰ particular polarization signature (Labhart, 2016), such as 1181 horizontally polarized light reflected from surfaces like water, rather ¹¹⁸² than a system for accurate estimation of orientation. Such ¹¹⁸³ responses would likely be mediated by more ventral regions of the 1184 eye than the DRA (Velez et al., 2014; Wernet et al., 2012). It 1185 should be noted that our polarized light stimulus broadly 1186 illuminated the eye from a dorsal position and, although we ¹¹⁸⁷ attempted to minimize reflections, we did not measure whether reflected polarized light fell on the ventral eye during our 1189 experiments.

¹¹⁹⁰ Stereotypic polarotopy in the periphery gives way to ¹¹⁹¹ idiosyncratic plasticity in the CX

¹¹⁹² By recording the ensemble response of a population of R4m ring ¹¹⁹³ neurons, both in the anterior bulb and ellipsoid body (EB), we 1194 determined that they do not simply relay the responses of 1995 presynaptic TuBu, neurons to the EB. Instead, they appear to ¹¹⁹⁶ deliver a subset of signals more prominently than others, ¹¹⁹⁷ bestowing the population with an ensemble response tuned to a ¹¹⁹⁸ specific angle of polarization (Fig. 7). Furthermore, we found that ¹¹⁹⁹ this population tuning conveys a different angle of polarization in 1200 individual animals, and one exciting possibility is that this ¹²⁰¹ represents a flexible heading signal relative to polarized light cues, ¹²⁰² which could direct behavior (Warren et al., 2018). A question to ¹²⁰³ address in future work is whether the preferred angle of 1204 polarization of an individual ring neuron is itself fixed, in which 1205 case we may have observed the result of a winner-take-all ¹²⁰⁶ competition among the R4m population in the EB, or if the whole ¹²⁰⁷ population flexibly re-tunes to preferentially respond to a common ¹²⁰⁸ AoP. Recordings from individual neurons will be required to resolve 1209 this.

It is clear that among R4m and E-PG neurons, polarization It is clear that among R4m and E-PG neurons, polarization Itunings are not represented with a retinotopic map in the EB or PB It which is common between individual animals (Fig. 7, Fig. 8). This is in contrast with the consistent polarotopic organizations found U214 upstream in the MEDRA or AOTU (Fig. 1–4), but in agreement It with a previous study which showed that the azimuthal position of U116 unpolarized visual stimuli is also not represented retinotopically in U117 E-PG neurons (Fisher et al., 2019). The lack of organization in U118 E-PG responses also matches previous findings in the U119 corresponding CL1a neurons in locusts, but contrasts with the U120 polarotopic organization found in other columnar neurons in the U121 locust CX, such as CPU1, and the tangential TB1 neurons (Heinze U122 and Homberg, 2007, 2009; Pegel et al., 2019). A potential

¹²²³ explanation for the lack of consistent polarotopy in CL1a, or indeed ¹²²⁴ E-PG neurons, was offered by Heinze and Homberg (2009): at ¹²²⁵ least two of each neuron type innervates an individual glomerulus ¹²²⁶ in the PB. Could each of these have differential responses to ¹²²⁷ polarized light to enable different configurations across the PB? ¹²²⁸ Intriguingly, the TB1-like Δ7 neurons in the *Drosophila* PB appear ¹²²⁹ to synapse onto only a subset of the E-PG neurons in a single ¹²³⁰ glomerulus (Turner-Evans et al., 2020), perhaps indicating ¹²³¹ independent functional groups. We may therefore yet find a ¹²³² polarotopic organization of responses in the *Drosophila* CX. ¹²³³ Alternatively, such an organization may reflect a common, ¹²⁴⁴ genetically pre-programmed directional goal to facilitate migration, ¹²⁵⁵ which flies may lack (Honkanen et al., 2019), instead using ¹²⁶⁶ polarization cues to follow a fixed course and disperse along ¹²⁷⁷ idiosyncratic headings (Dickinson, 2014).

Our data suggest that in a given fly, E-PG neurons may 1238 1239 respond to one of two approximately orthogonal angles of ¹²⁴⁰ polarization, effectively dividing the population into two groups. ¹²⁴¹ Interestingly, when data from locust CPU1 neurons (likely 1242 homologues of P-F-R neurons in Drosophila) were pooled with 1243 tunings obtained from a number of other polarization-sensitive 1244 columnar CX neuron types, including CL1b (P-EG), CL2 (P-EN), ¹²⁴⁵ CPU2, and CPU4 (P-FN), the organization of tunings in the locust 1246 PB could be interpreted as clustering around two orthogonal 1247 preferred angles (Heinze and Homberg, 2009). A binary system 1248 such as this would be well suited to influence downstream 1249 processes in a motor-centered coordinate frame (Rayshubskiy et ¹²⁵⁰ al., 2020). For example, the eventual output of the compass ¹²⁵¹ network may be a command signal to activate one descending ¹²⁵² neuron of a bilateral pair to initiate a turn to either the left or right, 1253 and thus maintain a heading specified by polarization patterns in 1254 the sky.

1255 An important next step will be to understand how polarized 1256 light influences the activity bump in columnar neurons and whether 1257 the activity of columnar neurons reciprocally influences the tunings 1258 of R4m neurons. We did not observe an activity bump in E-PG ¹²⁵⁹ neurons in the PB, likely due to the open-loop stimulus ¹²⁶⁰ presentation and recordings performed in immobilized animals, ¹²⁶¹ although we could see evidence of flexible encoding of polarization ¹²⁶² information (Fig. 8). According to our mappings of E-PG responses ¹²⁶³ in the PB, the influence of a rotating polarized light stimulus might 1264 be to move the activity bump discontinuously between two ¹²⁶⁵ positions, not dissimilar to observations in a recent investigation of 1266 the influence of airflow on the bump in E-PG neurons (Okubo et 1267 al., 2020). However, a limitation of the polarization stimulus used ¹²⁶⁸ here is that the intensity gradient and position of the light source ¹²⁶⁹ did not change as the angle of polarization rotated, as it would be 1270 seen to by an animal turning under a natural sky. If the ambiguity ¹²⁷¹ between 0/180° polarization cues is resolved by integrating light 1272 intensity information, then the stimulus we used here presented 1273 contradictory, unnatural changes. Behavioral studies in ants 1274 (Wehner and Müller, 2006) and dung beetles (el Jundi et al., 2015) 1275 have demonstrated that skylight polarization cues can have a 1276 greater influence than other visual features in guidance and 1277 navigation behaviors, while in Drosophila intensity gradients ¹²⁷⁸ appear to have a greater behavioral significance (Warren et al., ¹²⁷⁹ 2018). A key challenge for future studies will be to uncover the 1280 mechanisms for integrating and selecting from the multiple sensory ¹²⁸¹ modalities and visual qualities represented in the central complex

¹²⁸² in order to navigate complex environments.

- 1283 References
- ¹²⁸⁴ Batschelet, E. (1965). Statistical methods for the analysis of problems in animal
- ¹²⁸⁵ orientation and certain biological rhythms (Washington, D.C.: American Institute of ¹²⁸⁶ Biological Sciences).
- ¹²⁸⁷ Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 31, ¹²⁸⁸ 1–21.
- ¹²⁸⁹ Braitenberg, V. (1986). Vehicles: Experiments in Synthetic Psychology (Cambridge: MIT ¹²⁹⁰ Press).
- 1291 Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter,
- ¹²⁹² E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent
 ¹²⁹³ proteins for imaging neuronal activity. Nature *499*, 295–300.
- ¹²⁹⁴ Cohn, R., Morantte, I., and Ruta, V. (2015). Coordinated and compartmentalized ¹²⁹⁵ neuromodulation shapes sensory processing in *Drosophila*. Cell 163, 1742–1755.
- ¹²⁹⁶ Collett, T.S., and Collett, M. (2002). Memory use in insect visual navigation. Nat. Rev. ¹²⁹⁷ Neurosci, 3, 542–552.
- ¹²⁹⁸ Courgeon, M., and Desplan, C. (2019). Coordination between stochastic and ¹²⁹⁹ deterministic specification in the *Drosophila* visual system. Science 366.
- ¹³⁰⁰ Cronin, T.W., and Marshall, J. (2011). Patterns and properties of polarized light in air and
- ¹³⁰¹ water. Phil. Trans. R. Soc. B 366, 619–626.
- ¹³⁰² Dacke, M., Nilsson, D.-E., Scholtz, C.H., Byrne, M., and Warrant, E.J. (2003). Animal
 ¹³⁰³ behaviour: insect orientation to polarized moonlight. Nature 424, 33.
- 1304 Davis, F.P., Nern, A., Picard, S., Reiser, M.B., Rubin, G.M., Eddy, S.R., and Henry, G.L.
- ¹³⁰⁵ (2020). A genetic, genomic, and computational resource for exploring neural circuit
 ¹³⁰⁶ function. eLife 9, e50901.
- ¹³⁰⁷ Demerec, M. (1950). Biology of Drosophila (New York: Wiley).
- ¹³⁰⁸ Dickinson, M.H. (2014). Death Valley, *Drosophila*, and the Devonian toolkit. Annu. Rev. ¹³⁰⁹ Entomol. 59, 51–72.
- ¹³¹⁰ Donlea, J.M., Pimentel, D., and Miesenböck, G. (2014). Neuronal machinery of sleep
 ¹³¹¹ homeostasis in *Drosophila*. Neuron *81*, 860–872.
- ¹³¹² Dus, M., Ai, M., and Suh, G.S.B. (2013). Taste-independent nutrient selection is
- ¹³¹³ mediated by a brain-specific Na+/solute co-transporter in *Drosophila*. Nat. Neurosci. *16*, ¹³¹⁴ 526–528.
- ¹³¹⁵ Efron, B. (1987). Better bootstrap confidence intervals. J. Am. Stat. Assoc 82, 171–185.
- ¹³¹⁶ Feiler, R., Bjornson, R., Kirschfeld, K., Mismer, D., Rubin, G.M., Smith, D.P., Socolich, ¹³¹⁷ M., and Zuker, C.S. (1992). Ectopic expression of ultraviolet-rhodopsins in the blue
- ¹³¹ photoceceptor cells of *Drosophila*: Visual physiology and photochemistry of transgenic ¹³¹ animals. J. Neurosci. *12*, 3862–3868.
- ¹³²⁰ Fisher, Y.E., Lu, J., D'Alessandro, I., and Wilson, R.I. (2019). Sensorimotor experience ¹³²¹ remaps visual input to a heading-direction network. Nature 576, 121–125.
- ¹³²² Fortini, M.E., and Rubin, G.M. (1991). The optic lobe projection pattern of
- ¹³²³ polarization-sensitive photoreceptor cells in *Drosophila melanogaster*. Cell Tissue Res. ¹³²⁴ 265, 185–191.
- ¹³²⁵ Foster, J.J., Temple, S.E., How, M.J., Daly, I.M., Sharkey, C.R., Wilby, D., and Roberts,
- ¹³²⁶ N.W. (2018). Polarisation vision: overcoming challenges of working with a property of ¹³²⁷ light we barely see. Sci. Nat. *105*, 27.
- ¹³²⁸ Franconville, R., Beron, C., and Jayaraman, V. (2018). Building a functional connectome ¹³²⁹ of the *Drosophila* central complex. eLife 7, e37017.
- ¹³³⁰ v. Frisch, K. (1949). Die Polarisation des Himmelslichtes als orientierender Faktor bei
 ¹³³¹ den Tänzen der Bienen. Experientia 5, 142–148.
- ¹³³² Fujita, S.C., Zipursky, S.L., Benzer, S., Ferrús, A., and Shotwell, S.L. (1982). Monoclonal
 ¹³³³ antibodies against the *Drosophila* nervous system. Proc. Natl. Acad. Sci. USA 79,
 ¹³³⁴ 7029–7033
- ¹³⁵ Gao, S., Takemura, S.-Y., Ting, C.-Y., Huang, S., Lu, Z., Luan, H., Rister, J., Thum, A.S., ¹³³⁶ Yang, M., Hong, S.-T., et al. (2008). The neural substrate of spectral preference in
- ¹³³⁷ *Drosophila*. Neuron 60, 328–342.
- ¹³³⁸ Giraldo, Y.M., Leitch, K.J., Ros, I.G., Warren, T.L., Weir, P.T., and Dickinson, M.H. (2018).
 ¹³³⁹ Sun navigation requires compass neurons in *Drosophila*. Curr. Biol. 28, 2845–2852.e4.
- ¹³⁴⁰ Gomez-Marin, A., Duistermars, B.J., Frye, M.A., and Louis, M. (2010). Mechanisms of
 ¹³⁴¹ odor-tracking: multiple sensors for enhanced perception and behavior. Front. Cell.
 ¹³⁴² Neurosci. 4. 6.
- ¹³⁴³ Green, J., Adachi, A., Shah, K.K., Hirokawa, J.D., Magani, P.S., and Maimon, G. (2017).
 ¹³⁴⁴ A neural circuit architecture for angular integration in *Drosophila*. Nature 546, 101–106.
- ¹³⁴⁵ Guizar-Sicairos, M., Thurman, S.T., and Fienup, J.R. (2008). Efficient subpixel image ¹³⁴⁶ registration algorithms. Opt. Lett. 33, 156–158.
- ¹³⁴⁷ Guo, F., Holla, M., Díaz, M.M., and Rosbash, M. (2018). A circadian output circuit ¹³⁴⁸ controls sleep-wake arousal in *Drosophila*. Neuron *100*, 624–635.e4.
- ¹³⁴⁹ Hadeln, J., Hensgen, R., Bockhorst, T., Rosner, R., Heidasch, R., Pegel, U., Pérez, M.Q.,
 ¹³⁵⁰ and Homberg, U. (2020). Neuroarchitecture of the central complex of the desert locust:
 ¹³⁵¹ tangential neurons. J. Comp. Neurol. *528*, 906–934.
- ¹³⁵² Hanesch, U., Fischbach, K.-F., and Heisenberg, M. (1989). Neuronal architecture of the
- ¹³⁵³ central complex in *Drosophila melanogaster*. Cell Tissue Res. 257, 343–366.
- ¹³⁵⁴ Hardie, R.C. (1984). Properties of photoreceptors R7 and R8 in dorsal marginal
 ¹³⁵⁵ ommatidia in the compound eyes of *Musca* and *Calliphora*. J. Comp. Physiol. A *154*,
 ¹³⁵⁶ 157–165.
- ¹³⁵⁷ Heinze, S. (2013). Polarization vision. In Encyclopedia of Computational Neuroscience, ¹³⁵⁸ D. Jaeger, and R. Jung, eds. (New York: Springer), pp. 1–30.
- ¹³⁵⁹ Heinze, S. (2014). Polarized-light processing in insect brains: recent insights from the
- 1360 desert locust, the monarch butterfly, the cricket, and the fruit fly. In Polarized Light and
- ¹³⁶¹ Polarization Vision in Animal Sciences, G. Horváth, ed. (Berlin: Springer), pp. 61–111.

- ¹³⁶² Heinze, S., and Homberg, U. (2007). Maplike representation of celestial *E*-vector
 ¹³⁶³ orientations in the brain of an insect. Science *315*, 995–997.
- ¹³⁶⁴ Heinze, S., and Homberg, U. (2009), Linking the input to the output: new sets of neurons
- ¹³⁶⁵ complement the polarization vision network in the locust central complex. J. Neurosci.
 ¹³⁶⁶ 29, 4911–4921.
- ¹³⁶⁷ Heinze, S., and Reppert, S.M. (2011). Sun compass integration of skylight cues in ¹³⁶⁸ migratory monarch butterflies. Neuron *69*, 345–358.
- 1990 Haires O. Flamman, I. Asakarai O. al kurdi D. and Dannart O.M. (2010). And
- ¹³⁶⁹ Heinze, S., Florman, J., Asokaraj, S., el Jundi, B., and Reppert, S.M. (2013). Anatomical ¹³⁷⁰ basis of sun compass navigation II: the neuronal composition of the central complex of
- ¹³⁷¹ the monarch butterfly. J. Comp. Neurol. 521, 267–298.
- ¹³⁷² Homberg, U., Hofer, S., Pfeiffer, K., and Gebhardt, S. (2003). Organization and neural
 ¹³⁷³ connections of the anterior optic tubercle in the brain of the locust, *Schistocerca gregaria*.
- ¹³⁷⁴ J. Comp. Neurol. 462, 415–430.
- ¹³⁷⁵ Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M., and el Jundi, B. (2011). Central
- ¹³⁷⁶ neural coding of sky polarization in insects. Phil. Trans. R. Soc. B 366, 680–687.
- ¹³⁷⁷ Honkanen, A., Adden, A., da Silva Freitas, J., and Heinze, S. (2019). The insect central
 ¹³⁷⁸ complex and the neural basis of navigational strategies. J. Exp. Biol. 222, jeb188854.
- ¹³⁷⁹ Horváth, G., and Varju, D. (2004). Polarized Light in Animal Vision: Polarization Patterns
- ¹³⁸⁰ in Nature (Berlin: Springer).
 ¹³⁸¹ Immonen, E.-V., Dacke, M., Heinze, S., and el Jundi, B. (2017). Anatomical organization
 ¹³⁸² of the brain of a diurnal and a nocturnal dung beetle. J. Comp. Neurol. *525*, 1879–1908.
- ¹³⁸³ Jenett, A., Rubin, G.M., Ngo, T.-T.B., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B.D.,
- ¹³⁸⁴ Cavallaro, A., Hall, D., Jeter, J., et al. (2012). A GAL4-driver line resource for *Drosophila* ¹³⁸⁵ neurobiology. Cell Rep. 2, 991–1001.
- ¹³⁸⁶ el Jundi, B., Pfeiffer, K., and Homberg, U. (2011). A distinct layer of the medulla
- ¹³⁸⁷ integrates sky compass signals in the brain of an insect. PLoS One 6, e27855.
- ¹³⁸⁸ el Jundi, B., Pfeiffer, K., Heinze, S., and Homberg, U. (2014). Integration of polarization
 ¹³⁹⁹ and chromatic cues in the insect sky compass. J. Comp. Physiol. A Neuroethol. Sens.
 ¹⁹⁹⁰ Neural Behav. Physiol. 200, 575–589.
- ¹³⁹¹ el Jundi, B., Warrant, E.J., Byrne, M.J., Khaldy, L., Baird, E., Smolka, J., and Dacke, M.
 ¹³⁹² (2015). Neural coding underlying the cue preference for celestial orientation. Proc. Natl.
 ¹³⁹³ Acad. Sci. USA *112*, 11395–11400.
- ¹³⁹⁴ Karuppudurai, T., Lin, T.-Y., Ting, C.-Y., Pursley, R., Melnattur, K.V., Diao, F., White, B.H.,
- ¹³⁹⁵ Macpherson, L.J., Gallio, M., Pohida, T., et al. (2014). A hard-wired glutamatergic circuit
- ¹³⁹⁶ pools and relays UV signals to mediate spectral preference in *Drosophila*. Neuron *81*,
 ¹³⁹⁷ 603–615.
- ¹³⁹⁸ Kempter, R., Leibold, C., Buzsáki, G., Diba, K., and Schmidt, R. (2012). Quantifying ¹³⁹⁹ circular-linear associations: hippocampal phase precession. J. Neurosci. Methods 207,
- ¹⁴⁰¹ Kim, S.S., Rouault, H., Druckmann, S., and Jayaraman, V. (2017). Ring attractor ¹⁴⁰² dynamics in the *Drosophila* central brain. Science *356*, 849–853.
- ¹⁴⁰³ Kim, S.S., Hermundstad, A.M., Romani, S., Abbott, L.F., and Jayaraman, V. (2019).
- ¹⁴⁰⁴ Generation of stable heading representations in diverse visual scenes. Nature 576, ¹⁴⁰⁵ 126–131.
- ¹⁴⁰⁶ Labhart, T. (2016). Can invertebrates see the e-vector of polarization as a separate
 ¹⁴⁰⁷ modality of light? J. Exp. Biol. 219, 3844–3856.
- 1408 Labhart, T., Petzold, J., and Helbling, H. (2001). Spatial integration in
- ¹⁴⁰⁹ polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and ¹⁴¹⁰ benefits. J. Exp. Biol. 204, 2423–2430.
- 1411 Lamaze, A., Krätschmer, P., Chen, K.-F., Lowe, S., and Jepson, J.E.C. (2018). A
- ¹⁴¹² wake-promoting circadian output circuit in *Drosophila*. Curr. Biol. 28, 3098–3105.e3.
- ¹⁴¹³ Liu, S., Liu, Q., Tabuchi, M., and Wu, M.N. (2016). Sleep drive is encoded by neural ¹⁴¹⁴ plastic changes in a dedicated circuit. Cell *165*, 1347–1360.
- 1415 Macpherson, L.J., Zaharieva, E.E., Kearney, P.J., Alpert, M.H., Lin, T.-Y., Turan, Z., Lee,
- ¹⁴¹⁶ C.-H., and Gallio, M. (2015). Dynamic labelling of neural connections in multiple colours
 ¹⁴¹⁷ by trans-synaptic fluorescence complementation. Nat. Commun. 6, 10024.
- ¹⁴¹⁸ Mappes, M., and Homberg, U. (2004). Behavioral analysis of polarization vision in
- ¹⁴¹⁹ tethered flying locusts. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.
 ¹⁴²⁰ 190, 61–68.
- ¹⁴²¹ Mathejczyk, T.F., and Wernet, M.F. (2019). Heading choices of flying *Drosophila* under ¹⁴²² changing angles of polarized light. Sci. Rep. *9*, 16773.
- 1423 Nern, A., Pfeiffer, B.D., and Rubin, G.M. (2015). Optimized tools for multicolor stochastic
- ¹⁴²⁴ labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl.
 ¹⁴²⁵ Acad. Sci. USA *112*, E2967–E2976.
- ¹⁴²⁶ Neuser, K., Triphan, T., Mronz, M., Poeck, B., and Strauss, R. (2008). Analysis of a ¹⁴²⁷ spatial orientation memory in *Drosophila*. Nature *453*, 1244–1247.
- ¹⁴²³ Ofstad, T.A., Zuker, C.S., and Reiser, M.B. (2011). Visual place learning in *Drosophila* ¹⁴²⁹ *melanogaster*. Nature 474, 204–207.
- ¹⁴³⁰ Okubo, T.S., Patella, P., D'Alessandro, I., and Wilson, R.I. (2020). A neural network for
 ¹⁴³¹ wind-guided compass navigation. Neuron *107*, 1–17.
- 1432 Omoto, J.J., Keleş, M.F., Nguyen, B.-C.M., Bolanos, C., Lovick, J.K., Frye, M.A., and
- ¹⁴³³ Hartenstein, V. (2017). Visual input to the *Drosophila* central complex by developmentally
 ¹⁴³⁴ and functionally distinct neuronal populations. Curr. Biol. 27, 1098–1110.
- ¹⁴³⁵ Omoto, J.J., Nguyen, B.-C.M., Kandimalla, P., Lovick, J.K., Donlea, J.M., and
- ¹⁴³⁶ Hartenstein, V. (2018). Neuronal constituents and putative interactions within the
- 1437 Drosophila ellipsoid body neuropil. Front. Neural Circuits 12, 103.
- ¹⁴³⁸ Otsuna, H., Shinomiya, K., and Ito, K. (2014). Parallel neural pathways in higher visual ¹⁴³⁹ centers of the *Drosophila* brain that mediate wavelength-specific behavior. Front. Neural
- ¹⁴⁴⁰ Circuits 8, 8.

- ¹⁴⁴¹ Pegel, U., Pfeiffer, K., and Homberg, U. (2018). Integration of celestial compass cues in ¹⁴⁴² the central complex of the locust brain. J. Exp. Biol. 221, jeb171207.
- ¹⁴⁴³ Pegel, U., Pfeiffer, K., Zittrell, F., Scholtyssek, C., and Homberg, U. (2019). Two ¹⁴⁴⁴ compasses in the central complex of the locust brain. J. Neurosci. 39, 3070–3080.
- ¹⁴⁴⁵ Pfeiffer, K., and Homberg, U. (2007). Coding of azimuthal directions via
- 1446 time-compensated combination of celestial compass cues. Curr. Biol. 17, 960-965
- 1447 Pfeiffer, K., and Kinoshita, M. (2012). Segregation of visual inputs from different regions
- ¹⁴⁴⁸ of the compound eye in two parallel pathways through the anterior optic tubercle of the ¹⁴⁴⁹ bumblebee (*Bombus ignitus*). J. Comp. Neurol. *520*, 212–229.
- ¹⁴⁵⁰ Pfeiffer, K., Kinoshita, M., and Homberg, U. (2005). Polarization-sensitive and
- ¹⁴⁵¹ light-sensitive neurons in two parallel pathways passing through the anterior optic ¹⁴⁵² tubercle in the locust brain. J. Neurophysiol. *94*, 3903–3915.
- ¹⁴⁵³ Phipson, B., and Smyth, G.K. (2010). Permutation *p*-values should never be zero:
- ¹⁴⁵⁰ Pripson, D., and Sniyth, G.A. (2010). Permutation p-values should never be zero.
 ¹⁴⁵⁴ calculating exact *p*-values when permutations are randomly drawn. Stat. Appl. Genet.
 ¹⁴⁵⁵ Mol. Biol. 9.
- ¹⁴⁵⁶ Rayshubskiy, A., Holtz, S.L., D'Alessandro, I., Li, A.A., Vanderbeck, Q.X., Haber, I.S.,
- ¹⁴⁵⁷ Gibb, P.W., and Wilson, R.I. (2020). Neural circuit mechanisms for steering control in ¹⁴⁵⁸ walking *Drosophila*. bioRxiv, 10.1101/2020.04.04.024703.
- ¹⁴⁵⁹ Reiser, M.B., and Dickinson, M.H. (2008). A modular display system for insect behavioral
 ¹⁴⁶⁰ neuroscience, J. Neurosci. Methods *167*, 127–139.
- ¹⁴⁶¹ Rossel, S., and Wehner, R. (1986). Polarization vision in bees. Nature 323, 128–131.
- ¹⁴⁶² Salcedo, E., Huber, A., Henrich, S., Chadwell, L.V., Chou, W.H., Paulsen, R., and Britt,
- ¹⁴⁶³ S.G. (1999). Blue- and green-absorbing visual pigments of *Drosophila*: ectopic
- ¹⁴⁶⁴ expression and physiological characterization of the R8 photoreceptor cell-specific Rh5
 ¹⁴⁶⁵ and Rh6 rhodopsins. J. Neurosci. *19*, 10716–10726.
- 1466 Sancer, G., Kind, E., Plazaola-Sasieta, H., Balke, J., Pham, T., Hasan, A., Münch, L.O.,
- ¹⁴⁵⁷ Courgeon, M., Mathejczyk, T.F., and Wernet, M.F. (2019). Modality-specific circuits for ¹⁴⁶⁸ skylight orientation in the fly visual system. Curr. Biol. 29, 2812–2825.e4.
- ¹⁴⁶⁹ Saravanan, V., Berman, G.J., and Sober, S.J. Application of the hierarchical bootstrap to ¹⁴⁷⁰ multi-level data in neuroscience. bioRxiv, 10.1101/819334.
- ¹⁴⁷¹ Scheffer, L.K., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S.-Y., Havworth, K.J.,
- ¹⁴⁷² Huang, G.B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., et al. (2020). A connectome ¹⁴⁷³ and analysis of the adult *Drosophila* central brain. eLife 9, e57443.
- ¹⁴⁷⁴ Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., ¹⁴⁷⁵ Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source
- ¹⁴⁷⁶ platform for biological-image analysis. Nat. Methods *9*, 676–682.
- ¹⁴⁷⁷ Schnaitmann, C., Haikala, V., Abraham, E., Oberhauser, V., Thestrup, T., Griesbeck, O.,
 ¹⁴⁷⁸ and Reiff, D.F. (2018). Color Processing in the Early Visual System of *Drosophila*. Cell
 ¹⁴⁷⁹ 172, 318–330.e18.
- ¹⁴⁸⁰ Seelig, J.D., and Jayaraman, V. (2013). Feature detection and orientation tuning in the ¹⁴⁸¹ Drosophila central complex. Nature 503, 262–266.
- ¹⁴⁸² Seelig, J.D., and Jayaraman, V. (2015). Neural dynamics for landmark orientation and ¹⁴⁸³ angular path integration. Nature 521, 186–191.
- 1484 Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N.G., Palmer, A.E., and
- ¹⁴⁸⁵ Tsien, R.Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins
- 1486 derived from *Discosoma* sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572.
- ¹⁴³⁷ Sharkey, C.R., Blanco, J., Leibowitz, M.M., Pinto-Benito, D., and Wardill, T.J. (2020). The ¹⁴³⁸ spectral sensitivity of *Drosophila* photoreceptors. bioRxiv, 10.1101/2020.04.03.024638.
- ¹⁴⁸⁹ Shiozaki, H.M., and Kazama, H. (2017). Parallel encoding of recent visual experience ¹⁴⁹⁰ and self-motion during navigation in *Drosophila*. Nat. Neurosci. 20, 1395–1403.
- 1491 Shiozaki, H.M., Ohta, K., and Kazama, H. (2020). A multi-regional network encoding
- ¹⁴⁹² heading and steering maneuvers in *Drosophila*. Neuron 106, 1–16.
 ¹⁴⁹³ Stephens, G.C., Fingerman, M., and Brown, F.A. (1953). The Orientation of *Drosophila* to
- 1494 Plane Polarized Light. Ann. Entomol. Soc. Am. 46, 75–83.
- 1495 Stone, T., Webb, B., Adden, A., Weddig, N.B., Honkanen, A., Templin, R., Wcislo, W.,
- ¹⁴⁹⁶ Scimeca, L., Warrant, E., and Heinze, S. (2017). An anatomically constrained model for ¹⁴⁹⁷ path integration in the bee brain. Curr. Biol. 27, 3069–3085.e11.
- 1498 Strausfeld, N.J. (1976). Atlas of an Insect Brain (Berlin: Springer).
- ¹⁴⁹⁹ Strausfeld, N.J., and Hirth, F. (2013). Deep homology of arthropod central complex and ¹⁵⁰⁰ vertebrate basal ganglia. Science *340*, 157–161.
- ¹⁵⁰¹ Sun, Y., Nern, A., Franconville, R., Dana, H., Schreiter, E.R., Looger, L.L., Svoboda, K.,
 ¹⁵⁰² Kim, D.S., Hermundstad, A.M., and Jayaraman, V. (2017). Neural signatures of dynamic
 ¹⁵⁰³ stimulus selection in *Drosophila*. Nat. Neurosci. 20, 1104–1113.
- ¹⁵⁰⁴ Talay, M., Richman, E.B., Snell, N.J., Hartmann, G.G., Fisher, J.D., Sorkaç, A., Santoyo,
 ¹⁵⁰⁵ J.F., Chou-Freed, C., Nair, N., Johnson, M., et al. (2017). Transsynaptic mapping of
- ¹⁵⁰⁶ second-order taste neurons in flies by *trans*-Tango. Neuron *96*, 783–795.e4.
- ¹⁵⁰⁷ Taube, J.S., Muller, R.U., and Ranck, J.B., Jr (1990). Head-direction cells recorded from
 ¹⁵⁰⁸ the postsubiculum in freely moving rats. I. Description and quantitative analysis. J.
 ¹⁵⁰⁹ Neurosci. *10*, 420–435.
- ¹⁵¹⁰ Timaeus, L., Geid, L., and Hummel, T. (2017). A topographic visual pathway into the ¹⁵¹¹ central brain of *Drosophila*, bioRxiv, 10,1101/183707.
- ¹⁵¹² Tirian, L., and Dickson, B.J. (2017). The VT GAL4, LexA, and split-GAL4 driver line
- ¹⁵¹³ collections for targeted expression in the *Drosophila* nervous system. bioRxiv,

¹⁵¹⁷ and function of a biological ring attractor. Neuron, 10.1016/j.neuron.2020.08.006.

¹⁵²⁰ ventral retina in Drosophila. J. Neurogenet. 28, 348-360.

¹⁵¹⁵ Turner-Evans, D.B., Jensen, K.T., Ali, S., Paterson, T., Sheridan, A., Ray, R.P., Wolff, T.,

¹⁵¹⁶ Lauritzen, S., Rubin, G.M., Bock, D.D., et al. (2020). The neuroanatomical ultrastructure

¹⁵¹⁹ circuitry guiding behavioral responses to polarized light presented to either the dorsal or

¹⁵¹⁸ Velez, M.M., Gohl, D., Clandinin, T.R., and Wernet, M.F. (2014), Differences in neural

1514 10.1101/198648.

15/23

- ¹⁵²¹ Wada, S. (1974). Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera):
 ¹⁵²² Architektur und Verteilung in den Komplexaugen. Z. Morph. Tiere 77, 87–125.
- ¹⁵²³ Warren, T.L., Weir, P.T., and Dickinson, M.H. (2018). Flying *Drosophila melanogaster* ¹⁵²⁴ maintain arbitrary but stable headings relative to the angle of polarized light. J. Exp. Biol
- ¹⁵²⁵ 221, jeb177550.
- ¹⁵²⁶ Warren, T.L., Giraldo, Y.M., and Dickinson, M.H. (2019). Celestial navigation in
 ¹⁵²⁷ Drosophila. J. Exp. Biol. 222, jeb186148.
- 1528 Wehner, R., and Müller, M. (2006). The significance of direct sunlight and polarized

¹⁵²⁹ skylight in the ant's celestial system of navigation. Proc. Natl. Acad. Sci. USA *103*,
 ¹⁵³⁰ 12575–12579.

- ¹⁵³¹ Weir, P.T., and Dickinson, M.H. (2011). Flying *Drosophila* Orient to Sky Polarization. Curr. ¹⁵³² Biol. 22, 21–27.
- ¹⁵³³ Weir, P.T., and Dickinson, M.H. (2015). Functional divisions for visual processing in the ¹⁵³⁴ central brain of flying Drosophila. Proc. Natl. Acad. Sci. USA *112*, E5523–E5532.
- ¹⁵³⁵ Weir, P.T., Henze, M.J., Bleul, C., Baumann-Klausener, F., Labhart, T., and Dickinson,
- ¹⁵³⁶ M.H. (2016). Anatomical reconstruction and functional imaging reveal an ordered array of ¹⁵³⁷ skylight polarization detectors in *Drosophila*. J. Neurosci. 36, 5397–5404.
- 1538 Wernet, M.F., Velez, M.M., Clark, D.A., Baumann-Klausener, F., Brown, J.R., Klovstad,
- ¹⁵³⁹ M., Labhart, T., and Clandinin, T.R. (2012). Genetic dissection reveals two separate
- ¹⁵⁴⁰ retinal substrates for polarization vision in *Drosophila*. Curr. Biol. 22, 12–20.
- ¹⁵⁴¹ Wolf, R., Gebhardt, B., Gademann, R., and Heisenberg, M. (1980), Polarization
- ¹⁵⁴² sensitivity of course control in Drosophila melanogaster. J. Comp. Physiol. 139, 177–191.
- ¹⁵⁴³ Wolff, T., Iyer, N.A., and Rubin, G.M. (2015). Neuroarchitecture and neuroanatomy of the ¹⁵⁴⁴ *Drosophila* central complex: A GAL4-based dissection of protocerebral bridge neurons
- ¹⁵⁴⁵ and circuits. J. Comp. Neurol. *523*, 997–1037.
- ¹⁵⁴⁶ Yang, H.H., St-Pierre, F., Sun, X., Ding, X., Lin, M.Z., and Clandinin, T.R. (2016).
- ¹⁵⁴⁷ Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell ¹⁵⁴⁸ 166, 245–257.
- ¹⁵⁴⁹ Zar, J.H. (1999). Biostatistical Analysis (Harlow: Pearson).
- ¹⁵⁵⁰ Zeller, M., Held, M., Bender, J., Berz, A., Heinloth, T., Hellfritz, T., and Pfeiffer, K. (2015).
- 1551 Transmedulla neurons in the sky compass network of the honeybee (Apis mellifera) are a
- ¹⁵⁵² possible site of circadian input. PLoS One 10, e0143244.

1553 Acknowledgments

¹⁵⁵⁴ We are grateful to Sam LoCascio for technical advice. Tanya Wolff
 ¹⁵⁵⁵ and Vivek Jayaraman kindly provided the split-Gal4 line SS00096.
 ¹⁵⁶⁶ We also thank Holger Krapp, Kit Longden, and members of the
 ¹⁵⁷⁷ Frye lab for their comments on the manuscript. Stocks obtained
 ¹⁵⁸⁶ from the Bloomington Drosophila Stock Center (NIH
 ¹⁵⁹⁹ P40OD018537) were used in this study. This work was supported

¹⁵⁶⁰ by grants from the NIH (R01-NS096290 to V.H. and

¹⁵⁶¹ R01-EY026031 to M.A.F.).

1562 Author contributions

- ¹⁵⁶³ Ordered according to main list of authors:
- 1564 Conceptualization: B.J.H., J.J.O., V.H., M.A.F.
- ¹⁵⁶⁵ Data curation: B.J.H., P.K., B.-C.M.N.
- ¹⁵⁶⁶ Formal analysis: B.J.H., J.J.O., P.K., B.-C.M.N.
- ¹⁵⁶⁷ Funding acquisition, resources, administration: V.H., M.A.F.
- ¹⁵⁶⁸ Investigation: B.J.H., J.J.O., P.K., B.-C.M.N., M.F.K., N.K.B.
- ¹⁵⁶⁹ Methodology: B.J.H., J.J.O., M.F.K.
- ¹⁵⁷⁰ Software, validation: B.J.H.
- ¹⁵⁷¹ Supervision: B.J.H., J.J.O., V.H., M.A.F.
- ¹⁵⁷² Visualization: B.J.H., J.J.O., P.K., V.H.
- ¹⁵⁷³ Writing original draft: B.J.H.
- ¹⁵⁷⁴ Writing review & editing: B.J.H., J.J.O., P.K., V.H., M.A.F.

1575 METHODS

1576 In vivo calcium imaging

¹⁵⁷⁷ Fly preparation

¹⁵⁷⁶ Flies were raised at 25°C on a standard cornmeal/molasses diet in
¹⁵⁷⁹ 40 ml vials, under a 12:12 hour dark:light cycle. Imaging
¹⁵⁸⁰ experiments were performed between ZT0–14, although time of
¹⁵⁸¹ day was not a factor in our experimental design or analysis. We
¹⁵⁸² imaged 1–7 day old female flies expressing either UAS-GCaMP6s
¹⁵⁸³ (Chen et al., 2013) for dendritic regions or UAS-sytGCaMP6s
¹⁵⁸⁴ (Cohn et al., 2015) for axon terminals, together with UAS-tdTomato
¹⁵⁸⁵ (Shaner et al., 2004) for image registration. Flies were cold

1586 anaesthetized and mounted on a custom fly holder, modified from 1587 (Weir et al., 2016), with the head pitched forward so that its ¹⁵⁸⁸ posterior surface was approximately horizontal (Fig. S1A). ¹⁵⁸⁹ Surfaces of the fly holder visible to the fly were covered in matte ¹⁵⁹⁰ white paint (Citadel) and roughened to reduce confounding ¹⁵⁹¹ reflected polarized light cues (Foster et al., 2018). We fixed the fly ¹⁵⁹² to the holder using UV-curing glue (Fotoplast) around the ¹⁵⁹³ posterior-dorsal cuticle of the head and at the base of the wings on ¹⁵⁹⁴ either side of the thorax. To reduce movement of the brain we fixed ¹⁵⁹⁵ the legs, abdomen and proboscis with beeswax. We used forceps 1596 to remove the cuticle and air-sacs above the optic lobe or central ¹⁵⁹⁷ brain, depending on the recording site, and cut muscle 1 ¹⁵⁹⁸ (Demerec, 1950) to reduce movement. Physiological saline (103 1599 mM NaCl, 3 mM KCl, 1.5 mM CaCl₂, 4 mM MgCl₂, 26 mM ¹⁶⁰⁰ NaHCO₃, 1 mM NaH₂PO₄, 10 mM trehalose, 10 mM glucose, 5 1601 mM TES, 2 mM sucrose) was perfused continuously over the brain 1602 at 1.5 ml/min via a gravity drip system and the bath was ¹⁶⁰³ maintained at 22°C for the duration of experiments by an inline 1604 solution heater/cooler (SC-20, Warner Instruments) connected to a ¹⁶⁰⁵ temperature controller (TC-324, Warner Instruments).

1606 Imaging setup

¹⁶⁰⁷ We used a two-photon excitation scanning microscope controlled ¹⁶⁰⁸ by Slidebook (ver. 6, 3i) with a Ti:sapphire laser (Chameleon ¹⁶⁰⁹ Vision, Coherent) at 920 nm and a 40× objective (0.8 numerical ¹⁶¹⁰ aperture, NIR Apo, Nikon). For each brain area imaged, we aimed ¹⁶¹¹ to capture the full extent of the volume of labeled neurons, using a ¹⁶¹² maximum step-size of 4 µm between imaging planes, and ¹⁶¹³ maintained a volume-rate of at least 1 Hz. Image resolution varied ¹⁶¹⁴ depending on the number of planes captured but was not less than ¹⁶¹⁵ 100 pixels in the longest dimension. We recorded frame capture ¹⁶¹⁶ markers and stimulus events on a DAQ (6259, NI) sampling at 10 ¹⁶¹⁷ kHz

¹⁶¹⁸ Polarized light stimulus

¹⁶¹⁹ We used a custom polarized light stimulus device comprising a UV ¹⁶²⁰ LED (M340D3, Thorlabs), a 7.5 mm diameter aperture, a ground 1621 glass diffuser (DGUV10-1500, Thorlabs), a low-pass filter ¹⁶²² (FGUV11, Thorlabs), and a removable linear polarizer (BVO UV, ¹⁶²³ Bolder Optic). The UV LED was controlled through MATLAB 2017a ¹⁶²⁴ (Mathworks, MA) via a DAQ (6259, NI) and LED driver (LEDD1B, ¹⁶²⁵ Thorlabs). The polarizer was rotated with a bipolar stepper motor 1626 (ROB-10551, SparkFun) and spur gears (1:1), and a motor driver 1627 (ROB-12779, SparkFun) controlled through MATLAB (2017a, ¹⁶²⁸ Mathworks) via a DAQ (USB1208, MCC), with a minimum ¹⁶²⁹ step-size of 7.5°. The motor was operated in open-loop and a Hall ¹⁶³⁰ effect sensor (A1324, Allegro) was used to detect the proximity of ¹⁶³¹ a magnet which passed once per revolution, in order to verify ¹⁶³² correct operation. Angles of polarization and directions of rotation ¹⁶³³ are expressed from an external viewpoint looking towards the fly ¹⁶³⁴ (Fig. S1A). 0°/180° corresponds to a vertical orientation in the 1635 transverse plane and an alignment with the fly's long-axis in the ¹⁶³⁶ horizontal plane. We investigated the reproducibility of the ¹⁶³⁷ polarizer's angular positions and measured <1° variation over ¹⁶³⁸ multiple revolutions and <1° of position hysteresis (backlash) after ¹⁶³⁹ reversing the direction of rotation. The surface of the polarizer was ¹⁶⁴⁰ positioned frontally, 110 mm from the fly's head at an elevation of ¹⁶⁴¹ approximately 65° above the eye-equator (Fig. S1A). The light ¹⁶⁴² subtended a solid angle of approximately 4° and the entirety of the ¹⁶⁴³ fly, including the dorsal rim area of both eyes, was illuminated. We ¹⁶⁴⁴ measured approximately 0.8 μW/cm² irradiance at the fly's head at 1645 the spectral peak of 342 nm (8.7 nm FWHM) with the polarizer 1646 attached (Fig. S1B). We calibrated the LED power in order to ¹⁶⁴⁷ maintain a similar irradiance value with the polarizer removed (Fig.

¹⁶⁴⁸ S1B). We measured a \pm 5% modulation in light intensity over a full ¹⁶⁴⁹ revolution of the device (Fig. S1B), due to a slight off-axis tilt of the ¹⁶⁵⁰ diffuser and polarizer. This intensity modulation was of similar ¹⁶⁵¹ magnitude both with the polarizer attached and removed, and was ¹⁶⁵² therefore unlikely to be an effect of polarization. We reasoned that ¹⁶⁵³ if calcium activity in neurons was modulated by the rotation of the ¹⁶⁵⁴ device with the polarizer attached, but not with the polarizer ¹⁶⁵⁵ removed, then the varying angle of polarization throughout the ¹⁶⁶⁶ revolution was its cause, rather than the varying light intensity. To ¹⁶⁷⁷ quantify the difference in modulation between these two polarizer ¹⁶⁸⁸ conditions, we report the change in polarization-selectivity index ¹⁶⁹⁹ (Δ PSI) throughout (see *Polarization-selectivity index*).

1660 We verified that the polarized light stimulus elicited an ¹⁶⁶¹ expected response in the dorsal rim photoreceptors by recording ¹⁶⁶² calcium signals in R7/R8 terminals in the medulla dorsal rim area ¹⁶⁶³ (MEDRA) (Fig. S1C-E). We observed preferential responses to ¹⁶⁶⁴ different angles of polarized light across the MEDRA and ¹⁶⁶⁵ approximately orthogonal preferred angles within R7/R8 pairs in 1666 individual columns (Fig. S1C-E). Moving anterior to posterior ¹⁶⁶⁷ across the right MEDRA, the preferred angle of polarization rotated ¹⁶⁶⁸ counter-clockwise (Fig. S1E), matching a previous characterization 1669 (Weir et al., 2016). We estimated that at least 80% of MEDRA ¹⁶⁷⁰ columns were stimulated and conveyed polarization tunings that ¹⁶⁷¹ matched predictions based on the anatomy of photoreceptors at ¹⁶⁷² corresponding positions (Weir et al., 2016) (Fig. S1E-G), with 1673 weak responses or deviations observed only in the anterior-most ¹⁶⁷⁴ columns (Fig. S1E,F) likely due to their posterior receptive fields ¹⁶⁷⁵ which faced away from the stimulus. With the polarizer removed. ¹⁶⁷⁶ we observed no spatial organization of tunings in photoreceptor ¹⁶⁷⁷ terminals and PSI values close to zero (Fig. S1J), indicating ¹⁶⁷⁸ reduced modulation of activity by the stimulus.

1679 LED display

¹⁶⁶⁰ We used a 32 × 96 pixel display, composed of 8 × 8 panels of ¹⁶⁸¹ LEDs (470 nm, Adafruit) with controllers (Reiser and Dickinson, ¹⁶⁸² 2008), arranged in a half-cylinder spanning ± 90° azimuth from ¹⁶⁸³ visual midline and approximately ± 30° elevation from the ¹⁶⁸⁴ eye-equator (Fig. S1A). Each LED pixel subtended a solid angle of ¹⁶⁸⁵ approximately 1.5° at the eye-equator. At their maximum intensity, ¹⁶⁸⁶ we measured approximately 0.11 μ W/m² irradiance at the fly's ¹⁶⁸⁷ head at the spectral peak of 460 nm (243 nm FWHM).

¹⁶⁸⁸ Experimental protocols

¹⁶⁶⁹ Visual stimuli were presented in sets as described below. Between
¹⁶⁰⁰ each stimulus set, 10 s of spontaneous activity was recorded in
¹⁶⁹¹ darkness with no visual stimulation. The polarizer could only be
¹⁶⁹² removed or attached between recordings, but could be done so
¹⁶⁹³ while maintaining the same imaging parameters and field-of-view
¹⁶⁹⁴ under both conditions.

¹⁶⁹⁵ Angle of polarization tuning

¹⁶⁹⁶ To characterize responses to different angles of polarization, we ¹⁶⁹⁷ rotated the polarizer discontinuously in 30° steps with the UV LED ¹⁶⁹⁸ on throughout. Each of the 12 positions (6 unique angles of ¹⁶⁹⁹ polarization) was maintained for 4–4.5 s and we used 4 s of ¹⁷⁰⁰ imaging data collected during this period in our analysis. The ¹⁷⁰¹ polarizer was then rotated through 30° in 0.5 s. At least two ¹⁷⁰² complete revolutions of the polarizer were made. For recordings ¹⁷⁰³ with the polarizer removed, the procedure was repeated and one ¹⁷⁰⁴ revolution of the stimulus was made.

1705 Polarized light flash

¹⁷⁰⁶ To characterize responses to individual wide-field flashes of ¹⁷⁰⁷ polarized light, the polarizer was first rotated to 0° (vertical) in ¹⁷⁰⁸ darkness. A series of three flashes of the UV LED were presented, ¹⁷⁰⁹ 4 s on:4 s off. After 10 s the same procedure was repeated with ¹⁷¹⁰ the polarizer at 90° (horizontal). The light was the same used in ¹⁷¹¹ the tuning protocol. For recordings with the polarizer removed, the ¹⁷¹² procedure was repeated with flashes at the 0° position.

1713 Unpolarized light flash

¹⁷¹⁴ To characterize responses to individual wide-field flashes of ¹⁷¹⁵ unpolarized light, the entire LED display was illuminated following ¹⁷¹⁶ the same procedure as for polarized light flashes.

1717 Bars

¹⁷¹⁸ To characterize retinotopic responses to unpolarized stimuli, a ¹⁷¹⁹ single bright, vertical bar was presented on the LED display (32 × ¹⁷²⁰ 1 pixel) with all other LEDs off (0.78 Weber contrast). Bars initially ¹⁷²¹ remained stationary for 3 s, then jittered left and right (\pm 1 pixel) for ¹⁷²² 3 s, followed by an inter-trial period of 4 s with all LEDs off. Bars ¹⁷³³ were presented at five equally spaced azimuth positions spanning ¹⁷²⁴ \pm 90°, presented sequentially from left to right around the fly. This ¹⁷²⁵ procedure was repeated twice.

1726 Optic flow

¹⁷²⁷ To characterize responses to unpolarized motion stimuli, a sparse ¹⁷²⁸ random dot pattern was presented on the LED display that ¹⁷²⁹ simulated forward translational optic-flow (thrust), with the frontal ¹⁷²⁰ point of expansion approximately at the eye-equator. ¹⁷³¹ Approximately 1% of LEDs in the display were illuminated in each ¹⁷³² frame of the pattern, with all other LEDs off (0.83 Weber contrast). ¹⁷³³ Windowed regions of this pattern were presented sequentially ¹⁷³⁴ (lateral-left: -90°:-50° azimuth; frontal: -40°:+40° azimuth; ¹⁷³⁵ lateral-right: +50°:+90° azimuth; each covering the full elevation ¹⁷³⁶ extent of \pm 30°) followed by the whole pattern (-90°:+90° azimuth). ¹⁷³⁷ Motion was presented in each region for 4 s, with an inter-trial ¹⁷³⁸ period of 4 s with all LEDs off. This procedure was repeated twice.

1739 Data analysis

1740 Data export

¹⁷⁴¹ Recorded imaging data was exported as 8-bit tiff frames. We
 ¹⁷⁴² compiled all time-points for a single imaging plane and a maximum
 ¹⁷⁴³ average intensity projection (MIP, detailed below) across all planes
 ¹⁷⁴⁴ at each time-point.

1745 Image registration

¹⁷⁴⁶ We used a DFT-based registration algorithm (Guizar-Sicairos et ¹⁷⁴⁷ al., 2008) to first correct for motion in the MIP of the ¹⁷⁴⁸ activity-independent tdTomato channel across all timepoints. We ¹⁷⁴⁹ then applied the same registration displacements (*x*,*y*) to all ¹⁷⁸⁰ individual planes of the activity-dependent GCaMP channel.

¹⁷⁵¹ Maximum intensity projection

¹⁷⁵² We constructed a maximum intensity projection (MIP) based on ¹⁷⁵³ each imaging plane's time-averaged fluorescence intensities, ¹⁷⁵⁴ which avoided a bias towards including cells that were bright ¹⁷⁵⁵ throughout an experiment but did not necessarily show modulation ¹⁷⁵⁶ (versus cells which were inhibited for the majority of an experiment ¹⁷⁵⁷ but were modulated nonetheless). The time-series of each pixel in ¹⁷⁵⁸ the projection also originated from a fixed plane throughout the ¹⁷⁵⁹ recording. In summary: for each imaging plane, we found an ¹⁷⁶⁰ average intensity image sampling only frames captured during 1761 periods of inactivity between stimulus sets. We then found the ¹⁷⁶² imaging plane (z) with the highest average intensity at each ¹⁷⁶³ position (x,y). The intensity time-series (t) from this location (x,y,z)¹⁷⁶⁴ was then inserted into a new array (x,y,t) to form the projection. ¹⁷⁶⁵ Neighboring pixels in the projection could therefore contain signals 1766 from different imaging planes, but individual pixels contained 1767 signals from only one plane. All analysis was conducted on this ¹⁷⁶⁸ projection unless otherwise stated.

¹⁷⁶⁹ Angle of polarization tuning

¹⁷⁷⁰ For each pixel, we found the average fluorescence intensity across ¹⁷⁷¹ the frames captured during each angle presentation to obtain a ¹⁷⁷² polarization tuning curve. Since a polarization-tuned analyser ¹⁷⁷³ should respond identically to parallel angles of polarization (e.g. ¹⁷⁷⁴ 0°/180°), we expected bimodal data with diametrically opposite ¹⁷⁷⁵ modes. We therefore found the axial mean resultant vector, ¹⁷⁷⁶ correcting for grouped data, and took its angle as the preferred ¹⁷⁷⁷ angle of polarization, defined modulo 180° (Batschelet, 1965; ¹⁷⁷⁸ Berens, 2009; Zar, 1999).

1779 Polarization-selectivity index

¹⁷⁸⁰ For each pixel, we found the average fluorescence intensity during 1781 the first two presentations of the angles closest to and ¹⁷⁸² diametrically opposite its preferred angle of polarization in the tuning experiment (F_{pref}). We then found the average intensity at $_{^{1784}}$ orthogonal angles (F_{ortho}) and calculated the polarization-selectivity ¹⁷⁸⁵ index (PSI) as the difference between F_{oref} and F_{ortho} , divided by ¹⁷⁸⁶ their sum, with possible values ranging from 0 to 1. Where average ¹⁷⁸⁷ PSI values are reported for a driver line, we used a broad ROI 1788 drawn around all labeled neurons in the brain area recorded, ¹⁷⁸⁹ which we refer to as the 'overall ROI'. To draw the overall ROI we 1790 used an average intensity image from frames between stimulus 1791 sets as a guide. We also used this average intensity image to 1792 define additional regions: we defined regions of 'cells' as the ¹⁷⁹³ brightest 10% of pixels within the overall ROI, unless otherwise 1794 stated (e.g. Fig. 5B,C), and 'background' as the dimmest 10% of ¹⁷⁹⁵ pixels outside of the overall ROI. For the overall ROI, cells and 1796 background regions, the distribution of PSI values within a ¹⁷⁹⁷ recording tended to be non-normal; for average values we report ¹⁷⁹⁸ the median value for an individual animal and the mean of the ¹⁷⁹⁹ median values across animals. Where Δ PSI values are reported, ¹⁸⁰⁰ we subtracted the mean PSI values within the same region across 1801 all tuning experiments recorded with the polarizer removed. Where 1802 we applied a PSI-threshold to filter polarization-selective pixels in a 1803 recording (e.g. tuning maps, polarotopy analysis), we used the 1804 mean + 1 SD of PSI values within its background. This typically ¹⁸⁰⁵ resulted in a PSI threshold between 0.3-0.4. This threshold was 1806 modified for E-PG recordings in the protocerebral bridge where ¹⁸⁰⁷ PSI values of cells tended to be lower than the background when ¹⁸⁰⁸ averaged over multiple presentations; instead we used the mean + 1809 1 SD of PSI values within cells across all tuning experiments with 1810 the polarizer removed.

¹⁸¹¹ Polarization tuning maps

¹⁸¹² To construct spatial maps of polarization tuning, we combined a ¹⁸¹³ color-coded representation of preferred angle of polarization and a ¹⁸¹⁴ grayscale representation of average intensity (Fig. S1J). Pixels ¹⁸¹⁵ falling within the overall ROI which had an above-threshold PSI ¹⁸¹⁶ value (see *Polarization-selectivity index*) were assigned a color ¹⁸¹⁷ consistent with those used previously (Weir et al., 2016) to convey ¹⁸¹⁸ their preferred angle of polarization. All other pixels with ¹⁸¹⁹ below-threshold PSI value or falling outside of the overall ROI ¹⁸²⁰ convey their average intensity during periods of inactivity with a ¹⁸²¹ normalized grayscale color-code (Fig. S1J).

¹⁸²² Automatically generated ROIs

¹⁸²³ In addition to manually drawn ROIs, we generated ROIs based on ¹⁸²⁴ polarization tuning maps (Fig. S2A). Briefly, we discretized tuning ¹⁸²⁵ maps so that they contained only 6 preferred angles of ¹⁸²⁶ polarization, corresponding to those presented in the tuning ¹⁸²⁷ experiment ± 15°, plus null values for excluded pixels. For each ¹⁸²⁸ angle, we identified contiguous areas of 20 or more pixels with that ¹⁸²⁹ tuning and retained the largest area as an ROI.

1830 Time-series

¹⁸³¹ We found the mean fluorescence intensity of pixels within a given ¹⁸³² ROI in each frame to obtain its time-series (F_t). For polarization ¹⁸³³ tuning experiments, we calculated $\Delta F/F = F_t/F_0-1$, where F_0 was ¹⁸³⁴ the root mean square value of the time-varying intensity across the ¹⁸³⁵ entire experiment. For all other experiments, we calculated F_0 as ¹⁸³⁶ the mean of F_t during the 0.5 s preceding stimulus onset. To find ¹⁸³⁷ the average time-series across multiple recordings with ¹⁸³⁸ mismatched sampling times, we resampled values at a common ¹⁸³⁹ rate using linear interpolation. This procedure produced no ¹⁸⁴⁰ discernible alteration of the original data points.

¹⁸⁴¹ Polarotopy and scatter plots

¹⁸⁴² For recordings in the medulla and AOTU, we included only the set ¹⁸⁴³ of polarization-selective pixels, as described for the tuning maps 1844 (see Polarization tuning map). For recordings in the bulb and ¹⁸⁴⁵ protocerebral bridge, we used ROIs drawn manually on individual ¹⁸⁴⁶ glomeruli. We projected pixel or ROI positions (x, y) onto a single 1847 horizontal axis (anterior-posterior in the medulla, medial-lateral in 1848 the central brain) or vertical axis (ventral-dorsal throughout) and 1849 then normalized to give a linear position ranging from 0 to 1. The 1850 majority of recordings were performed in the right brain ¹⁸⁵¹ hemisphere; where left hemisphere recordings were included, we ¹⁸⁵² inverted their positions along both axes (i.e. in the medulla, ¹⁸⁵³ anterior positions on the left were pooled with posterior positions ¹⁸⁵⁴ on the right), since we expected the mirror-symmetric polarotopy ¹⁸⁵⁵ found in the dorsal rim (Fig. S1G,H) to be preserved downstream. 1856 We then pooled the normalized positions and corresponding ¹⁸⁵⁷ preferred AoP across all recordings and created a scatter plot with 1858 a random subset of 1000 data points, displaying either the ¹⁸⁵⁹ corresponding PSI value or preferred AoP as the color of each 1860 point in the plot.

We quantified circular-linear associations between preferred 1862 angle (multiplied by two to correct for axial data) and normalized ¹⁸⁶³ position by finding the slope and phase offset of a regression line, 1864 and then a correlation coefficient, according to (Kempter et al., ¹⁸⁶⁵ 2012). We found the correlation coefficient for the population by 1866 pooling all data points, then performed a permutation test on the 1867 pooled dataset with shuffled combinations of position and ¹⁸⁶⁸ preferred AoP and recalculated the correlation coefficient 10,000 ¹⁸⁶⁹ times. We report an upper-bound on the p-value as the proportion 1870 of shuffled datasets with a correlation coefficient exceeding that ¹⁸⁷¹ found for the experimental dataset plus one (Phipson and Smyth, 1872 2010). We also found the correlation coefficients for individual ¹⁸⁷³ recordings and an associated p-value (Kempter et al., 2012). 1874 Where indicated, the regression lines for the pooled dataset and 1875 for individual recordings with a sufficient number of pixels to give a ¹⁸⁷⁶ meaningful correlation (p<0.05) are shown on scatter plots.

We applied the Fisher z-transformation to correlation 1877 ¹⁸⁷⁸ coefficients to find a mean correlation coefficient across flies. We 1879 used a hierarchical bootstrap method (Saravanan et al.) to find 1880 95% confidence intervals for the mean correlation coefficient ¹⁸⁸¹ found. We resampled with replacement from the population of flies, ¹⁸⁸² then resampled with replacement from all recordings made from 1883 those flies and recalculated the mean correlation coefficient after ¹⁸⁸⁴ applying the Fisher z-transformation, repeated 10,000 times. From 1885 the bootstrapped population of mean correlation coefficients we 1886 found confidence intervals using the bias-corrected and 1887 accelerated method (Efron, 1987). In all cases, the correlation 1888 coefficient for the pooled dataset from all recordings was found to 1889 be close to the mean coefficient for individual flies and within the 1890 confidence interval calculated. For recordings in the bulb and 1891 protocerebral bridge, we also calculated the circular-circular

¹⁸⁹² correlation coefficient (Berens, 2009; Zar, 1999).

1893 Polar histograms

¹⁸⁰⁴ We found the normalized probability distribution of preferred ¹⁸⁹⁵ angles of polarization with a bin width of 15°. We then constructed ¹⁸⁹⁶ polar histograms with each bin's probability depicted as the area of ¹⁸⁹⁷ a wedge, rather than its radial length. We included in this analysis ¹⁸⁹⁸ either all pixels within the overall ROI (Fig. 7) (see ¹⁸⁹⁹ *Polarization-selectivity index*) or the region of cells only (Fig. 5) ¹⁹⁰⁰ (see *Polarization tuning maps*), in which case we excluded ¹⁹⁰¹ recordings with few above-threshold pixels (less than 10% of the ¹⁹⁰² overall ROI). The results were qualitatively similar in both cases.

¹⁹⁰³ Population tuning vectors

¹⁹⁰⁴ For individual recordings, we found the direction and length of the ¹⁹⁰⁵ population tuning in an individual animal by calculating the axial ¹⁹⁰⁶ mean resultant vector of its preferred angles of polarization. For ¹⁹⁰⁷ the pixel-based approach, we included all pixels within the overall ¹⁹⁰⁸ ROI and weighted individual preferred angles by their PSI value ¹⁹⁰⁹ (Berens, 2009), rather than applying a threshold. Since individual ¹⁹¹⁰ neurons with a larger area provided a greater contribution in this ¹⁹¹¹ analysis we compared it with an ROI-based approach, using ROIs ¹⁹¹² drawn manually on individual micro-glomeruli in the bulb. We ¹⁹¹³ excluded recordings with fewer than four ROIs, and weighted the ¹⁹¹⁴ individual preferred angle of an ROI by its mean PSI-value. The ¹⁹¹⁵ results were qualitatively similar for both approaches. ¹⁹¹⁶ Cross-correlation ¹⁹¹⁷ For E-PG recordings in the protocerebral bridge, we manually ¹⁹¹⁸ drew ROIs on the 16 individual glomeruli visible in each recording

¹⁹¹⁹ (one additional column on either end of the PB does not contain ¹⁹²⁰ E-PGs). We then paired each ROI on the left side with an ROI on ¹⁹²¹ the right side, using a pairing scheme which wrapped on either ¹⁹²² side independently (i.e. 1L/1R, 8L/2R, 7L/3R, see Fig. 8A). For ¹⁹²³ each pair, we obtained the time-series for the ROIs across all ¹⁹²⁴ frames in the recording and found their normalized ¹⁹²⁵ cross-correlation coefficient at zero lag, ranging from -1 to 1. We ¹⁹²⁶ plot the coefficient values for each pair (Fig. S6A) and the mean ¹⁹²⁷ coefficient across all pairs from all recordings after applying the ¹⁹²⁸ Fisher z-transformation. We then shifted the pairing scheme by ¹⁹²⁹ one position on the right side and repeated the procedure until all ¹⁹³⁰ pairing schemes had been evaluated.

1931 Auto-correlation

¹⁹³² For recordings in the bulb, we used ROIs manually drawn on ¹⁹³³ individual micro-glomeruli. For E-PG recordings in the ¹⁹³⁴ protocerebral bridge, we used ROIs drawn on pairs of left and right ¹⁹³⁵ glomeruli (Fig. 8A). For each ROI, we obtained the time-series ¹⁹³⁶ across the first two cycles of the tuning experiment. We detrended ¹⁹³⁷ the time-series and calculated its normalized auto-correlation ¹⁹³⁸ function. We then found the time difference between the first peak ¹⁹³⁹ in the function and the period of the stimulus presented during the ¹⁹⁴⁰ tuning experiment. We plot the value of these time differences for ¹⁹⁴¹ each ROI, which we refer to as a 'peak shift' (Fig. S6D), along with ¹⁹⁴² limits for the maximum expected peak shift for a phase-locked ¹⁹⁴³ response to the stimulus (± 2 s, half the duration of each angle ¹⁹⁴⁴ presentation).

¹⁹⁴⁵ Data and code availability

¹⁹⁴⁶ The datasets and code generated during this study are available at ¹⁹⁴⁷ the Open Science Framework: doi.org/10.17605/osf.io/3tsd6

¹⁹⁴⁸ Confocal imaging

1949 Fly lines

¹⁹⁵⁰ The following driver lines belonging to the Janelia (R) (Jenett et al.,
 ¹⁹⁵¹ 2012) and Vienna Tiles (VT) (Tirian and Dickson, 2017)
 ¹⁹⁵² collections, were obtained from Bloomington Drosophila Stock

¹⁹⁵³ Center (BDSC): R13E04-Gal4 (48565), R13E04-LexA (53457),
¹⁹⁵⁴ R13E04-p65.AD (isolated from original stock number: 86690),
¹⁹⁵⁵ VT059781-Gal4.DBD (75090), R56F07-Gal4 (39160),
¹⁹⁵⁶ R73C04-Gal4 (39815), R17F12-Gal4 (48779), R49E09-Gal4
¹⁹⁵⁷ (38692), R88A06-Gal4 (46847), R34H10-Gal4 (49808),
¹⁹⁵⁸ R34D03-Gal4 (49784), R34D03-LexA (54662), R19C08-Gal4
¹⁹⁵⁹ (48845), R78B06-Gal4 (48343).

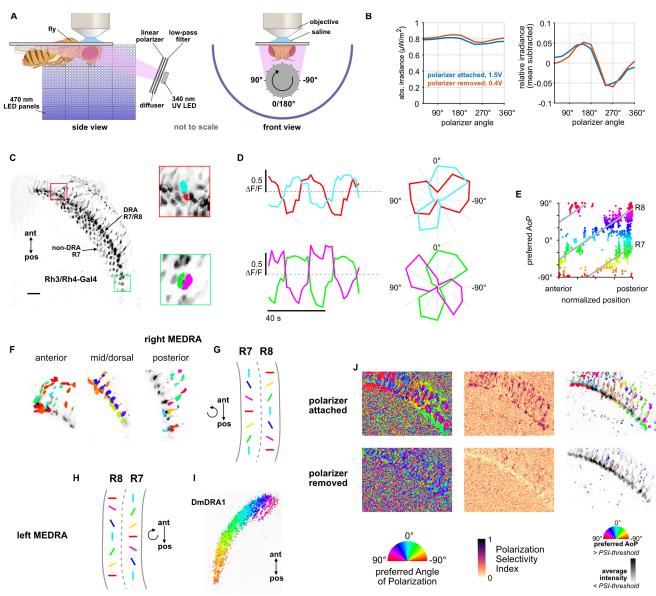
The following stocks were also acquired from BDSC: 1960 1961 Pan-R7-Gal4 (11: 8603). Pan-R7-Gal4 (111) 8604) ¹⁹⁶² 10xUAS-mCD8::GFP (32184), 26xLexAop-mCD8::GFP (32207), 1963 [10xUAS-mCD8::RFP, 13xLexAop-mCD8::GFP] (32229),¹⁹⁶⁴ UAS-sytGCaMP6s (64415), UAS-tdTomato (36328), MCFO-4 (64089), 1965 (64088) MCFO-5 MCFO-6 (64090), ¹⁹⁶⁶ [UAS-nsyb-spGFP1-10, LexAop-CD4-spGFP11] (GRASP; BDSC ¹⁹⁶⁷ 64314). trans-Tango (77123) was provided by G. Barnea. ¹⁹⁶⁸ SS00096-Gal4 was a gift from V. Jayaraman and T. Wolff.

¹⁹⁶⁹ Fly rearing for immunostaining

¹⁹⁷⁰ Flies were raised at 25°C on a standard cornmeal/molasses diet in ¹⁹⁷¹ bottles or vials, under a 12:12 hour dark:light cycle, and we ¹⁹⁷² dissected 3–4 day old female flies. For *trans*-Tango analyses we ¹⁹⁷³ dissected 17–18 day old female flies raised at 18°C (Talay et al., ¹⁹⁷⁴ 2017).

1975 Immunostaining

¹⁹⁷⁶ Immunohistochemical staining was conducted as previously ¹⁹⁷⁷ described (Omoto et al., 2017; 2018). Briefly, brains were ¹⁹⁷⁸ dissected in phosphate buffered saline (PBS) and fixed in ice-cold ¹⁹⁷⁹ 4% EM-grade paraformaldehyde in PBS for 2.5 hours. They were ¹⁹⁸⁰ subsequently washed for 4 x 15 mins in ice-cold PBS followed by ¹⁹⁸¹ cold ethanol dehydration (5 min washes in 5, 10, 20, 50, 70, 100% ¹⁹⁸² EtOH). After incubation for approximately 12 hours in 100% EtOH ¹⁹⁸³ at 4°C, brains were subjected to a rehydration procedure with ¹⁹⁸⁴ EtOH in the reverse sequence. Brains were then washed for 4 x 15 ¹⁹⁸⁵ min in ice-cold PBS and 4 x 15 min in ice-cold 0.3% PBT (PBS 1986 with 0.3% Triton X-100), followed by 4 x 15 min in room ¹⁹⁹⁷ temperature (RT) 0.3% PBT. They were then incubated in blocking ¹⁹⁸⁸ buffer (10% Normal Goat Serum in 0.3% PBT) for 30 min at RT. ¹⁹⁸⁹ Following this, the brains were incubated in primary antibodies, ¹⁹⁹⁰ diluted in blocking buffer at 4°C for approximately three days. They ¹⁹⁹¹ were subsequently washed 4 x 15 min in RT 0.3% PBT and placed ¹⁹⁹² in secondary antibodies diluted in blocking buffer at 4°C for ¹⁹⁹³ approximately three days. They were finally washed 4 x 15 min in ¹⁹⁹⁴ RT 0.3% PBT and placed in VectaShield at 4 °C overnight before ¹⁹⁹⁵ imaging (Vector Laboratories). trans-Tango and GRASP analyses ¹⁹⁹⁶ required separate staining of neuropil and respective fluorophores ¹⁹⁹⁷ due to different incubation times.


The following antibodies were used: rat-antiDN-cadherin 1998 ¹⁹⁹⁹ (DN-EX #8, 1:20, Developmental Studies Hybridoma Bank); 2000 mouse anti-neuroglian (BP104, 1:30, Developmental Studies ²⁰⁰¹ Hybridoma Bank); chicken anti-GFP (1:1000, ab13970, Abcam); 2002 Rabbit anti-DsRed (1:1000, 632496, Clontech); rabbit anti-HA ²⁰⁰³ (1:300, Cell Signaling Technologies); and mouse anti-V5 (1:1000, ²⁰⁰⁴ ThermoFisher Scientific). The following secondary antibodies, IgG₁ ²⁰⁰⁵ (Jackson ImmunoResearch; Molecular Probes, Thermo Fisher ²⁰⁰⁶ Scientific), were used: Cy5 conjugated anti-mouse (1:300), 2007 Cv3-conjugated anti-rat (1:300), Alexa 488-conjugated ²⁰⁰³ rabbit-anti-GFP (1:1000), Alexa 488-conjugated anti-chicken 2009 (1:1000), Alexa 546-conjugated anti-rabbit (1:1000), and Alexa ²⁰¹⁰ 488-conjugated anti-mouse (1:1000). The following antibodies ²⁰¹¹ from Abcam were also used: Cy5-conjugated anti-rat (1:300) and ²⁰¹² Cy3-conjugated anti-rabbit (1:300).

²⁰¹³ Confocal microscopy and image analysis

²⁰¹⁴ Processed brains were mounted on glass slides and imaged in ²⁰¹⁵ either the antero-posterior (A–P) or dorsal-ventral (D–V) axis with ²⁰¹⁶ a Zeiss LSM 700 Imager M2 using Zen 2009 (Carl Zeiss), with a ²⁰¹⁷ 40x oil objective. Images were processed using Image J (FIJI)

2022 SUPPLEMENTARY INFORMATION

²⁰¹⁹ (Schindelin et al., 2012). Image stacks of the AOTU or EB were ²⁰¹⁹ rotated slightly and interpolated to align the neuropil with the ²⁰²⁰ imaging plane. Background labeling was removed to improve ²⁰²¹ visualization in some projections (Fig. 2B,C, Fig. 3G–G").

²⁰²³ Figure S1: Polarizer characterization and R7/R8 photoreceptor stimulation

A: Schematic of experimental setup. Volumetric two-photon imaging of the medulla dorsal rim area (MEDRA) was performed while ultraviolet light was presented continuously and a ²⁰²⁵ linear polarizing filter varied the angle of polarization. Rotations and angles of polarization are expressed from the external viewpoint looking towards the animal's head. (Fly illustration: ²⁰²⁶ BioRender.com)

2023 B: Modulation of intensity over one revolution of the polarizer in absolute units (left) and with the mean subtracted (right). The amplitude of modulation (approximately ± 5%) was similar 2023 with the polarizer attached or removed.

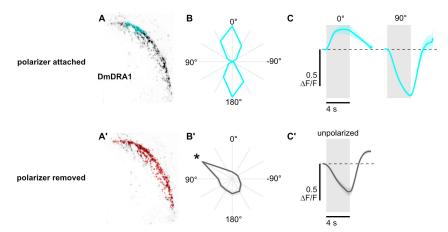
C Example time-averaged maximum-intensity projection of GCaMP activity in DRA R7/R8 + non-DRA R7 photoreceptors in the dorsal medulla (Rh3/Rh4-Gal4>sytGCaMP6s). Insets: 2000 ROIs drawn on R7 and R8 terminals in anterior (top) and posterior (bottom) MEDRA.

D: GCaMP activity in R7/R8 terminals from C in response to rotations of polarizer. Right: Polar plot of average responses for each angle of polarization presented.

E: Example scatter plot showing the polarotopic organization of DRA R7/R8 photoreceptors for the recording in C. Individual points represent pixels recorded from R7/R8, showing their normalized horizontal position in the MEDRA and their preferred angle of polarization (AoP).

2034 F: Example tuning maps of preferred AoP for recordings in a single plane, showing details of R7/R8 terminals in posterior, mid/dorsal and anterior MEDRA in the right optic lobe.

²⁰³⁵ **G**: Summary of preferred AoP in R7/R8 in the right MEDRA (from Weir et al., 2016).

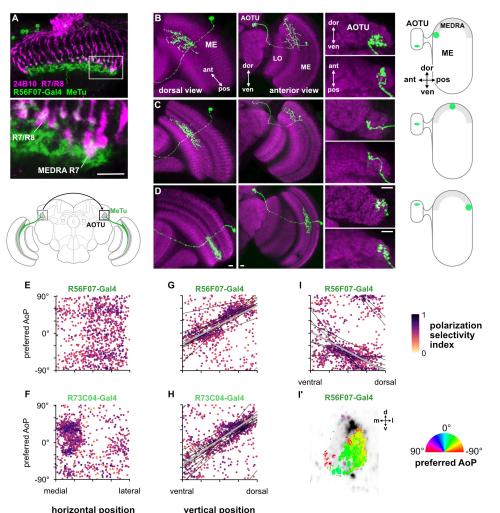

²⁰³⁶ H: Summary of preferred AoP in R7/R8 in the left MEDRA.

²⁰³⁷ I: Example polarization tuning map for DmDRA1 in the left MEDRA.

2008 J: Example construction of a polarization tuning map for a maximum-intensity projection of two-photon imaging data in the medulla. Left: Preferred AoP for all pixels, with the polarizer

2009 attached (top) and removed (bottom). GCaMP-expressing photoreceptors can be differentiated from background noise, and show a retinotopic organization of preferred AoP only with

²⁰⁴⁰ the polarizer attached. Center: Polarization-selectivity index (PSI), a measure of fluorescence intensity modulation by the polarizer device, for the same data. Right: Preferred AoP values ²⁰⁴¹ with a PSI-threshold applied. Below-threshold pixels (grayscale) show average intensity values over the experiment.


²⁰⁴² Figure S2: Polarization-opponent flash responses in DmDRA1

2²⁰⁴³ A: Example time-averaged maximum-intensity projection showing GCaMP activity in DmDRA1 neurons (DmDRA1-split>sytGCaMP6s) and example ROIs automatically-generated

²⁰⁴⁴ around areas of DmDRA1 neurons with a preferred angle of polarization around 0° (top, cyan) or around the brightest pixels for experiments with the polarizer removed (bottom, red). ²⁰⁴⁵ B: Normalized tuning curves for ROIs (N = 11, one ROI per animal). Mean ± SEM. B': *denotes the first angle of polarization presented, during which time activity was often falling in

2046 experiments with the polarizer removed (see Fig. 1C).

2047 C: Average responses of ROIs to 4 s UV light flashes with the polarizer at 0° (pk ΔF/F = 0.23) and 90° (pk ΔF/F = -0.64, N = 10, p = 0.0002), and with the polarizer removed (bottom) (pk ²⁰⁴⁸ ΔF/F = -0.38, N = 7). Mean ± SEM.

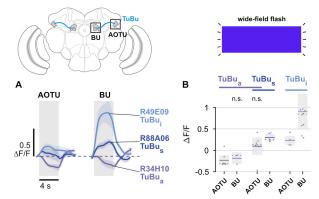
horizontal position

2049 Figure S3: Retinotopic mapping of medulla dorsal rim area to AOTU by MeTu neurons and organization of polarization-selective responses

A: Confocal section of the medulla (dorsal view) showing R7/R8 photoreceptors (24B10 antibody staining: green) and their proximity to MeTu neurons (R56F07-Gal4>GFP: magenta).

2051 Bottom: Enlargement of medulla dorsal rim area (MEDRA). Scale bar denotes 10 µm.

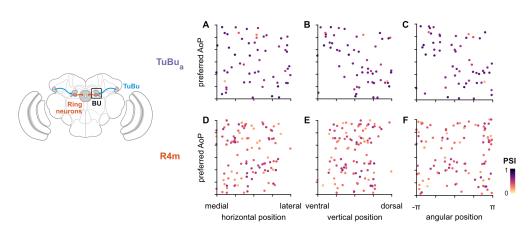
2052 B: Confocal projections of a single MCFO clone of R56F07 MeTu neurons with dendrites in the anterior/dorsal medulla (ME) in proximity to the medulla dorsal rim area. Left: Dorsal view. ²⁰⁵³ Center: Anterior view. Right: High magnification projections showing the position of terminals in the anterior optic tubercle (AOTU).


 $^{\scriptscriptstyle 2054}$ C: As in B, for a MeTu neuron with dendrites in the mid/dorsal medulla.

2055 D: As in B, for a MeTu neuron with dendrites in the posterior/dorsal medulla. Scale bars denote 10 µm.

2006 E: Scatter plot showing the organization of polarized light responses in R56F07 MeTu neurons. Individual points represent pixels recorded in MeTu neurons, showing their normalized ²⁰⁵⁷ horizontal position in the AOTU and their preferred angle of polarization (AoP). Color displays PSI value (pooled ρ = 0.03, N = 17 recordings).

²⁰⁵⁸ **F**: As in **E**, for R73C04 MeTu neurons (pooled ρ = -0.22, N = 11 recordings).


- 2009 G: Scatter plot showing the predominant polarotopic organization of R56F07 MeTu neurons. Thin lines show linear-circular fits for data from individual animals with significant correlations
- 2000 (mean individual ρ = 0.61, SEM 0.16 , N = 7 animals), thick line shows fit for all pooled data (pooled ρ = 0.68, N = 8 recordings, p < 10-6 permutation test).
- ²⁰⁶¹ H: As in G for R73C04 MeTu neurons (mean individual ρ = 0.68, SEM 0.12, N = 10 animals), thick line shows fit for all pooled data (pooled ρ = 0.58, N = 10 recordings, p < 10⁻⁶
- ²⁰⁶³ I: Scatter plot showing an occasional, second organization of responses in R56F07 MeTu neurons (mean individual ρ = 0.52, SEM 0.12, N = 6 animals), thick line shows fit for all pooled ²⁰⁶⁴ data (pooled ρ = 0.30, N = 7 recordings, p < 10⁻⁶ permutation test). I': Example polarization tuning map of second organization of responses.

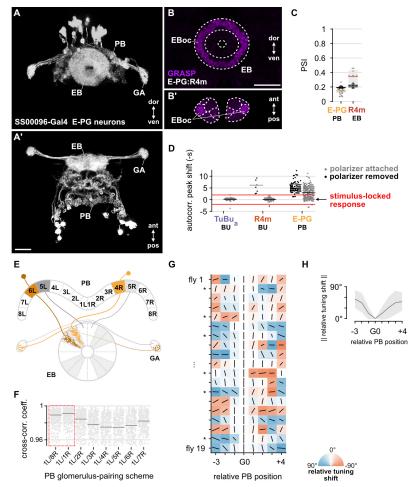
2065 Figure S4: Unpolarized flash responses in TuBu neurons

²⁰⁶⁶ A: Average responses of all TuBu neurons in each population to 4 s blue light flashes, recorded in the anterior optic tubercle (AOTU) (GCaMP6s) and bulb (BU) (sytGCaMP6s). Mean ± ²⁰⁶⁷ SEM.

2006 **B**: Peak responses for individual animals and their mean and median (dashed line). (pk ΔF/F **TuBu**_s AOTU: -0.23, CI 0.16, N = 7, p = 0.008, BU: -0.19, CI 0.12, N = 3, p = 0.11; **TuBu**_s + 2009 **TuBu**_s AOTU: 0.10, CI 0.27, N = 7, p = 0.38, BU: 0.30, CI 0.10, N = 5, p = 0.02; **TuBu**_s AOTU: 0.23, CI 0.12, N = 5, p = 0.013, BU: 0.90, CI 0.68, N = 10, p = 0.002) Shaded box denotes 2070 Bonferroni corrected 95% confidence interval.

²⁰⁷¹ Figure S5: Unstructured organization of preferred angles of polarized light in the anterior bulb

²⁰⁷² **A**: Scatter plot showing the horizontal organization of TuBu_a tunings in the anterior bulb (BUa). Individual points represent ROIs drawn on micro-glomeruli, showing their normalized ²⁰⁷³ horizontal position within the BUa and their preferred angle of polarization (AoP). Color of individual points displays PSI value (**TuBu_a**; N = 8 animals, 14 recordings, 6 left BU: 29 ROIs, ²⁰⁷⁴ 4.8 ± 1.0 per animal, 8 right BU: 28 ROIs, 4.7 ± 0.8 per animal; mean ROI PSI 0.65 ± 0.12) (0 significant individual linear-circular correlations; pooled data ρ = -0.02, p = 0.91 permutation ²⁰⁷⁵ test).


2076 B: As in A, for vertical organization of TuBu_a tunings (1 significant individual linear-circular correlation, ρ = -0.61; pooled data ρ = 0.46, p = 0.002 permutation test).

2077 C: As in A, for circular organization of TuBu_a tunings (5 significant individual circular-circular correlations, mean ρ = 0.84, SEM 0.69; pooled data ρ = -0.43, p = 0.23 permutation test).

²⁰⁷⁸ **D**: As in **A**, for horizontal organization of R4m tunings (**R4m**: N = 25 animals, 26 recordings, 2 left BU: 8 ROIs, 4.0 ± 0.0 per animal, 24 right BU: 96 ROIs, 4.0 ± 0.8 per animal; mean ROI ²⁰⁷⁹ PSI 0.38 ± 0.12) (1 significant individual linear-circular correlation, ρ = -0.76; pooled data ρ = 0.01, p = 0.96 permutation test).

2000 E: As in B, for vertical organization of R4m tunings (0 significant individual linear-circular correlations; pooled data ρ = 0.09, p = 0.47 permutation test)

²⁰⁸¹ **F**: As in **C**, for circular organization of R4m tunings (3 significant individual circular-circular correlations, mean ρ = 0.98, SEM 0.34; pooled data ρ = 0.02, p = 0.98 permutation test).

²⁰⁸² Figure S6: E-PG neurons show inconsistent responses to the angle of polarized light and variable tunings

2003 A: Confocal projection (anterior view) of E-PG expression pattern in the ellipsoid body (EB), protocerebral bridge (PB) and gall (GA) (SS00096-Gal4>GFP). A': Dorsal view. Scale bar 2084 denotes 25 µm.

2005 B: Confocal projection of GRASP (GFP reconstitution across synaptic partners) signal for connections from E-PG to R4m neurons in the EB. B': Dorsal view. Scale bar denotes 25 µm. 2006 C: Average PSI values within E-PG neurons in the PB and R4m neurons in the EB (light dots) and background regions (dark dots) in individual animals (E-PG neurons: 0.14, CI 0.05, 2007 background: 0.19, CI 0.01, N = 22 animals, p = 0.0001 t-test; R4m neurons: 0.34, CI 0.11, background: 0.21, CI 0.03, N = 7 animals, p = 0.02 t-test).

2008 D: Shift in time of the first peak of an ROI's auto-correlation function, relative to the period of the polarizer (0 s). Red lines indicate a window of ± 2 s: a peak shift of greater magnitude 2009 indicates a response which was not phase-locked with the polarizer stimulus (median peak shift **TuBu**; attached 0.15 s, CI 0.59, N = 7 animals, 85 ROIs included; **R4m**: attached 0.07 s, 2000 CI 0.56, N = 25 animals, 126 ROIs included; removed 5.76 s, CI 8.91, N = 9 animals, 10 ROIs included; E-PG: attached 2.73 s, CI 2.77, N = 22 animals, 504 ROIs included; removed

²⁰⁹¹ 4.79 s, CI 5.63, N = 18 animals, 175 ROIs included).

20092 E: Summary schematic of E-PG neuron innervation patterns in the ellipsoid body (EB) and protocerebral bridge (PB) and gall (GA). Highlighting indicates the L/R pairing scheme used. 2093 9L/9R in PB not shown.

2094 F: Normalized cross-correlation coefficient for all E-PG pairs of left and right glomeruli in the PB, using different pairing schemes. Each scheme name gives the pairing of 1L and its right 2005 PB partner; all other pairs within the scheme follow the same logic. Horizontal lines mark the Fisher z-transformed mean coefficient (N = 22 animals). Highlighted schemes represent

²⁰⁹⁶ pairings of E-PGs innervating neighboring wedges of the EB. Pairing scheme 1L/1R is used in this study.

2007 G: Relative tunings in individual animals. Orientation of lines represent preferred AoP (relative to G0), length of lines indicate PSI (height of each square is equal to a PSI value of 1). 2098 Asterisks indicate significant individual circular-circular correlations between position and preferred AoP.

²⁰⁹⁹ H: Average tuning shift (relative to G0), summarizing data in G. Mean ± SEM (N = 19).