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Abstract 18 

Functional traits and neighborhood composition have been used to predict tree growth dynamics. 19 

Temporal changes in trait values (temporal trait plasticity) is one of the mechanisms for adaptive 20 

plastic response to environmental change. However, the consequence of temporal change in trait 21 

values and neighborhoods on the growth performance of individuals has rarely been investigated. 22 

We, therefore tested the effect of temporal changes in trait values and neighborhood crowding on 23 
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the growth rate of individuals in a tropical forest using a dataset containing individual level 24 

growth and functional trait data for Ficus individuals. We collected trait and size data at two time 25 

points (2010 and 2017) for 472 individuals of 15 Ficus species in Xishuangbanna tropical forest 26 

dynamics plot, southwest China. We used linear mixed effect model to predict the effect of 27 

temporal trait plasticity and neighborhood crowding on the relative growth rate of individuals 28 

using these data. We found significant temporal changes in individuals’ functional traits 29 

suggesting a shift in ecological strategies from being functionally acquisitive to conservative. We 30 

also found differences in neighborhood crowding between the two census years indicating that 31 

the strength of individual interactions might change over time. The temporal changes in trait 32 

values and neighborhood crowding were found to predict better the relative growth rate of 33 

individuals, compared to static trait or crowding values in the initial and final censuses. We also 34 

found major axes of tree functional strategies in a principal component analysis, highlighting 35 

potentially adaptive trait differences. Our results in general highlight to consider the temporal 36 

dimension of functional traits and biotic interactions, as our result suggest that growth-trait 37 

relationships may vary between time points, allowing us to understand the demographic response 38 

of species to temporal environmental change. 39 

 40 

Key words: Ficus, functional traits, forest temporal dynamics, neighborhood crowding, species 41 

growth, temporal trait plasticity, tropical trees. 42 

 43 
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INTRODUCTION  47 

Biotic interactions and environmental heterogeneity overlap spatially and temporally in effects 48 

on community assembly, creating dynamic and ecologically complex tropical forest community 49 

(Wright 2002; Zambrano et al. 2017). Biotic interactions at local scales partly drive the 50 

demographic pattern of species that ultimately shape tree community assembly (Fortunel et al. 51 

2018). Heterogenous abiotic environments also sort species based on species ecological 52 

requirements, and regulate species performance and community dynamics in diverse systems 53 

(Lasky et al. 2013). Functional traits have been widely used to make inferences about community 54 

dynamics, as traits are believed to provide insights into the role of environment in assembly 55 

(Poorter and Bongers 2006; Yang et al. 2018). Although testing trait-growth relationships has 56 

become more common and fundamental to understand community dynamics (Swenson et al. 57 

2017), a remaining goal is to understand this relationship from a temporal perspective. 58 

In practice, community trait data are often collected only at a single time point. These 59 

static data are then used for downstream analyses to species demography and to understand 60 

community change through time and space (Swenson et al. 2017). While collecting a single 61 

timepoint of trait data may be pragmatic, particularly in diverse systems, a vast evolutionary 62 

ecology literature shows how traits influence individual performance (Lande and Arnold 1983, 63 

Wade and Kalisz 1990), and how traits change in adaptive (Moran 1992, Baythavong 2011), and 64 

maladaptive response to environment (Ghalambor et al. 2007). Furthermore, traditional 65 

implementation of correlating community variation in traits to demographic traits may lead to 66 

weak or mislead models and inferences (Umaña et al. 2018). How trait values and neighborhood 67 

interactions change over time, and how their temporal changes impact trees demography have 68 

not been widely tested, despite the fact that species interactions and growth strategies are known 69 
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to be temporally dynamic. This may reflect the limitation of trait-based ecology as it usually 70 

gives static trait values for individuals that ignores the temporal variation of traits, and this limits 71 

the ability to understand how temporal variability in traits and biotic interactions regulates the 72 

performance of individuals over time (Swenson et al. 2017).  73 

Adaptive phenotypic plasticity, i.e. when trait changes increase fitness, is a key strategy 74 

by which organisms respond to changes in their environment (Pigliucci 2001). Maladaptive 75 

plasticity, which is a symptom of a failure of an organism to maintain homeostasis, could also be 76 

resulted when a change in trait values through time reduce fitness of organisms (Ghalambor et al. 77 

2007). Temporal trait plasticity is expected to increase as conditions vary over time (Lázaro-78 

Nogal et al. 2015). Long-lived organisms have to have some level of adaptive plasticity to 79 

survive and persist through such a wide range of conditions over their lifespan, relative to short 80 

lifespan organisms such as annual plants. While a growing evolutionary ecology literature has 81 

tested for the effects of trait plasticity on intraspecific fitness variation (Dudley and Schmitt 82 

1996, Van Kleunen and Fischer 2005), less is known about how temporal trait plasticity 83 

influences community assembly. Much of the earlier trait-based studies have focused on 84 

assessing forest community dynamics using traits measured once in the life span of trees that 85 

lacks the temporal domain of ecology (e.g., Wright et al. 2010, Lasky et al. 2014a, Paine et al. 86 

2015, Visser et al. 2016). Temporal trait variation of communities has been less studied than 87 

temporal shifts in species composition, though traits are known to be temporally dynamic 88 

(Enquist and Enquist 2011, Fauset et al. 2012). Few studies have characterized the temporal trait 89 

changes and associated demographic consequences at community level. Van Der Sande et al. 90 

(2016) reported that community trait values (wood density increased; specific leaf area 91 

decreased) changed over time in all of the five studied forest types in the Neotropics suggesting 92 
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that species shifted from being fast-growing to slow-growing species. Temporal shifts of trait 93 

distributions, mainly at the community level, have also been reported (Lasky et al. 2014b, 94 

Katabuchi et al. 2017). The decrease of specific leaf area (SLA) and leaf phosphorus content 95 

over time in the wet tropical forests also suggested a change in functional strategies of species 96 

(Muscarella et al. 2017). A long-term shift of species’ mean trait values through time showing 97 

directional change was also found in a tropical dry forest (Swenson et al. 2020). There are many 98 

studies that have inferred functional turnover in forests through time, using traits measured at a 99 

single time point and assumed to be the same for all individuals of a species. However, these 100 

studies did not measure traits of individual plants, meaning that trait plasticity could not be 101 

quantified. Testing whether the effect of traits on tree growth differs between time points and 102 

how the temporal shift of traits (i.e. temporal trait plasticity) plays a role in shaping the growth 103 

dynamics of communities may help to better understand the direction of forest structural and 104 

functional change.  105 

Trait-growth relationships have been used to reveal plant growth strategies and predict 106 

the demographic trajectories of species (Adler et al. 2013, Yang et al. 2020 in press). However, 107 

the predictive power of traits has been sometimes weak which raises a question about the 108 

significance of traits (Paine et al. 2015). One reason for this could be, apart from the trade-offs 109 

between demographic rates that may conceal the effect of traits on species performance 110 

(Laughlin et al. 2020 in press), trait-growth relationships usually are computed at the species 111 

level using mean trait values and mean growth rates of individuals, despite the fact that trait-112 

driven resource competition occurs at the individual level (Liu et al. 2016). Averaging trait 113 

values of individuals across the species ignores individual level trait variation, limiting the ability 114 

of traits to predict individual growth rates (Liu et al. 2016, Umaña et al. 2018). Individuals traits 115 
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may predict better the growth performance of individuals, as trait differences determine 116 

individuals’ growth strategies (Yang et al. 2018, Worthy & Swenson 2019).  117 

  Neighborhood interactions influence tree growth, and can promote species diversity  118 

(Lasky et al. 2014b, Chen et al. 2016, Lamanna et al. 2017, Zambrano et al. 2017, Fortunel et al. 119 

2018). The growth rate of individuals depends on the density of immediate neighbors with 120 

positive or negative effects. High density of neighbors often reduces the growth or survival rate 121 

of trees (Comita et al. 2010, Johnson et al. 2017, Lamanna et al. 2017). However, studies of 122 

neighborhood interactions have rarely considered temporal dynamics in biotic interactions. That 123 

is, how do neighborhood interactions change over time, and do these changes affect individual 124 

vital rates? Changes in neighborhoods over time, if overlooked, might obscure the effects of 125 

neighbors on individual growth (Bachelot et al. 2015). The number and identity of neighbors 126 

could change through time due to recruitment and mortality, and as a result the strength of 127 

neighborhood effect on growth may change over time (Newbery and Stoll 2013). One of the 128 

challenges of using neighborhood crowding covariates is that neighborhoods may change 129 

spatially in response to variation in resources (light, water, nutrients), so that the actual available 130 

resource supply might differ from what we expect from the level of crowding. And so, it may be 131 

that neighborhood dynamics are better at capturing the variation in actual resource availability, 132 

because we might expect an increase in crowding over time actually does correspond to less 133 

available resources to individuals. Thus, the effect of neighbors may not be captured unless 134 

changes in local neighborhoods are considered. However, the temporal change in neighbors and 135 

its subsequent effect on tree demography has not been widely studied, though few studies being 136 

reported. 137 
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We tested how changes in functional traits and neighborhood interactions affect the 138 

growth of species in the diverse genus of Ficus trees in a tropical forest. We asked the following 139 

specific questions: (i) How do traits, neighborhood crowding, and growth rate of individual trees 140 

change over time? (ii)  Are functional traits and neighborhood crowding temporally consistent in 141 

predicting the relative growth rate of individuals? (iii) Does temporal trait plasticity and changes 142 

in neighborhood crowding predict better the relative growth rate of individuals compared to 143 

using only a single snapshot of traits and neighborhood crowding? 144 

 145 

METHODS 146 

Study site 147 

We carried out this study in the 20-ha Xishuangbanna seasonal tropical rainforest dynamics plot 148 

(FDP) in southwest China (21°37′08″ N, 101°35′07″ E) (Figure S1). Dry and rainy seasons are 149 

typical features of the region with mean annual rainfall and temperature of 1493 mm and 21.8°C 150 

respectively (Cao et al. 2006). The plot ranges from 709 to 869 m in elevation (Lan et al. 2009). 151 

In 2007, all free-standing woody stems ≥ 1 cm in diameter at 130 cm from the ground (Diameter 152 

at Breast Height, DBH) were measured, mapped and identified to species (Condit 1998). 153 

 154 

Focal species 155 

We used the Ficus (Moraceae) genus as a case study, as it is a pantropical genus with more than 156 

800 species in the lowland tropical forest and contains functionally diverse species (Harrison 157 

2005). Ficus assemblages provides a useful system to investigate the mechanisms that maintain 158 

high tropical species diversity (Lasky et al. 2014a). Furthermore, Ficus is the most speciose 159 

genus in the 20-ha plot, with 15 identified species and 4.6% of the total basal area in the plot, and 160 
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a large quantity of soil seedbank (Tang et al. 2006). Most of the individuals are distributed on the 161 

steep slopes of the plot, and some of them are limited to ridges and valleys (Hu et al. 2012). In 162 

2010, leaf functional traits were measured on Ficus individuals with a DBH of at least 10 cm 163 

with leaves accessible with pole shears (Lasky et al. 2014a) and then re-measured these trees in 164 

2017. Thus, we used trait data for the Ficus trees separated by seven years and DBH data 165 

separated by ten years interval in the Xishuangbanna FDP. A species list is given in Table S1.     166 

 167 

Functional traits 168 

We measured eight functional traits data in two census years for the 472 individuals of the 15 169 

Ficus species in the plot. We collected five matured, healthy and sun exposed leaves for each 170 

individual in each census year and measured traits following the standardized protocols 171 

(Cornelissen et al. 2003). We measured leaf area (cm2), specific leaf area (cm2.g−1), leaf 172 

chlorophyll content, leaf fresh mass (g), leaf dry mass (g), leaf dry mass content, leaf thickness 173 

(mm), and leaf succulence (g.cm-2). These traits are expected to represent the fundamental 174 

ecological strategies of individuals for resource acquisition. Leaf area is related to light capture 175 

and heat balance (Poorter and Rozendaal 2008). Specific leaf area is linked to light interception 176 

efficiency and the main part of leaf economic spectrum (Wright et al. 2004). Leaf chlorophyll 177 

content is related to light harvesting capacity of the plant (Coste et al. 2010). Leaf thickness is 178 

related to the mechanical strength of the leaf (Onoda et al. 2011). Leaf dry matter content is 179 

associated with leaf defense ability and decomposition (Van Der Sande et al. 2016). Leaf 180 

succulence represents the trade-off of productivity and life span of the leaf (Garnier and Laurent 181 

1994). We measured the leaf chlorophyll content using SPAD-502 Chl meter (Minolta Camera 182 

Co., Osaka, Japan), and three readings were taken at the widest portion of the leaf blades  183 
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(Marenco et al. 2009). We used electronic digital micrometer to measure leaf thickness (mm) at 184 

the center of fresh leaves with multiple readings, and average was taken (Seelig et al. 2012).  185 

 186 

Tree growth  187 

All Ficus individuals’ diameter at breast height (DBH) was measured in the Xishuangbanna FDP 188 

in 2007 and 2017. Relative growth rates (RGR) used in this study were calculated as 189 

ln(
����/����

�����
), where t is year and the subscripts of f and i are respectively the final and initial 190 

values of the diameter at breast height (Wright et al. 2010). The relative growth rate of species is 191 

graphically indicated in Figure S2.  192 

Neighborhood crowding  193 

Neighborhood competition is one of the biotic driving forces that largely determines the growth 194 

performance of individuals at the local scale (Fortunel et al. 2018). The effect of neighborhood 195 

crowding is expected to decline with distance increases from the focal stem (Uriarte et al. 2010). 196 

Here, we calculated the neighborhood competition of trees using the neighborhood crowding 197 

index (NCI) separately for the two census years in order to evaluate its temporal effect on tree 198 

growth. We computed the neighborhood crowding index (NCI) for each focal stem i of species s 199 

based on the size (DBH) and distance (d) of its neighbors (j=1…J) within a 15 m radius for each 200 

census year (t) (Lasky et al. 2014b, Uriarte et al. 2016). We excluded focal stems within 15 m of 201 

plot boundaries to avoid edge effects in our analysis. A 15 m radius was chosen following the 202 

previous work (Yang et al. 2020 in press).  203 

������ � � ����

	��
�                              ��

�

���,���
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Statistical analyses 204 

The temporal shift in traits and neighborhood crowding 205 

We first tested whether there were temporal shifts in traits (i.e. plasticity) and neighborhood 206 

crowding over time. We used a linear mixed model to test whether significant changes in 207 

univariate traits and NCI values occurred between the two censuses, with census as fixed effect 208 

and the variable of interest, and species identity as random factor. Furthermore, we also used the 209 

principal component analysis (PCA) on the mean centered and standardized trait values (by 210 

dividing the centered trait values by their standard deviations) to find major axes of trait 211 

variation and trait plasticity using the two censuses data.  212 

Since functional traits were sampled twice over time on the same individuals,  213 

we were able to compare the magnitude of trait variation explained by different sources. Using 214 

traits as response variables, we included leaves, individuals, species, and census interval as 215 

random variables in our mixed-effect models to decompose and estimate the variance explained 216 

by each random variable, and expressed it in percentage as the total variance explained by each 217 

of the random components. We standardized all parameters by subtracting the minimum value 218 

from each observed value and then divided by its range value for the ease of interpretation and 219 

comparisons. Data transformation was done for all functional traits, and other variables to meet 220 

the assumption of normal distribution before analysis. Pearson correlation was carried out to 221 

check for trait covariation and hence we removed leaf fresh mass from analysis as it strongly 222 

correlated to leaf dry mass (Table S2, S3, and S4). 223 

 224 

 225 

 226 
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Effect of functional traits and neighborhood crowding on tree growth 227 

The second objective of this study was to evaluate the relative importance of each functional trait 228 

and neighborhood crowding on the relative growth rate of individuals. To address this question, 229 

we built three different models: one model using the first census data, second model using the 230 

second census data, third model is using the temporal changes in trait and neighborhood 231 

crowding (i.e. the difference of traits, and neighborhood crowding between the first and second 232 

census data). For each model, we fitted individual RGR as a function of traits and neighborhood 233 

crowding using linear mixed-effects model. To handle model complexity, we fit separately the 234 

growth model for each functional trait. The first two models take the following form: 235 

���� � �� � ������ � �� traits�,� � ������,�                                    �2� 

Where ���� is the initial tree size (DBH) at the first census year,  �������,� represents the trait 236 

values of individual i in year t. ����,� represents the NCI values of individual i in year t. �� is the 237 

intercept for all individuals. For the third model, though it is the same in form with the above 238 

model, we took the temporal difference in traits and NCI values. We subtracted the traits/NCI 239 

values in 2010 from the corresponding values in 2017 (trait/NCI values in 2017 − trait/NCI 240 

values in 2010), and were used to describe temporal changes in traits/NCI values. We selected 241 

among models using Akaike Information Criterion (AIC) (Table S5, S6, and S7).  242 

Additionally, we used piecewise structural equation models (SEMs) to determine any 243 

possible pathways by which traits, neighborhood crowding and initial DBH size could 244 

interactively influence the relative growth rate of individuals. We hypothesized that initial DBH 245 

size and neighborhood crowding affect individuals’ growth indirectly through their effects on 246 

functional traits. Also, the DBH size may determine the canopy position and crowding 247 

conditions of trees which may in turn influence trait expressions and ultimately affect growth of 248 
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individuals. We computed a series of piecewise SEMs separately for each census data (i.e. 1st 249 

census data, 2nd census data, and temporal changes in traits and neighborhood crowding data). 250 

We developed a conceptual framework model that shows possible direct and indirect casual 251 

relationships among predictors and response variable (Figure S3). These hypothesized 252 

relationships help to optimize the piecewise SEMs. Functional traits, initial DBH size and 253 

neighborhood crowding were predictor variables, whereas relative growth rate of individuals was 254 

a response variable. Species were taken as random effects in our piecewise SEMs analysis. To 255 

minimize model complexity, functional traits were reduced using PCA and we used the first two 256 

PCA axes representing traits as predictors. A series of piecewise SEMs were fit to the data, and 257 

insignificant pathways were removed progressively from models to improve fitness of the model. 258 

We used Fishers’s C statistics to evaluate the goodness fit of the models with high P-values 259 

showing good fit (Lefcheck 2016). We used AIC to select the best fit and parsimonious model.   260 

We used R version 3.5.3 to run all the analyses. ‘lme4’ package was used to fit linear 261 

mixed-effect models (Pinheiro and Bates. 2016). Principal component analysis was conducted 262 

with the ‘rda’ function in vegan package (Oksanen et al. 2014). We used ‘psem’ function in 263 

‘piecewiseSEM’ package for piecewise SEMs analysis (Lefcheck 2016).  264 

 265 

RESULTS  266 

Temporal shifts in trait values, growth and neighborhood crowding  267 

We tested the extent of trait, growth and neighborhood variation at the individual level and 268 

temporal time points in a tropical forest. We found significant temporal changes in trait values 269 

for at least half of the functional traits being tested (Figure 1; see also Figure S4 that compares 270 

individual traits on the scatter plot). SLA decreased significantly from the first census to the 271 
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second census, whereas leaf chlorophyll content, leaf dry mass and leaf succulence increased 272 

from the first to the second census. However, we did not find significant temporal changes in 273 

trait values for Leaf fresh mass, Leaf thickness, Leaf area, and LDMC. Individuals’ size, 274 

expressed as DBH, also increased significantly over time indicating significant growth of focal 275 

trees, whereas significant change was not observed on the neighborhood crowding of individuals, 276 

consistent with the late-successional stage of the forest. 277 

We also analyzed the amount of trait variation explained by the species, individuals, 278 

years and leaves. We found that most functional traits showed significant variation among 279 

leaves, individuals, species and between census years (Figure 2). Most functional trait variations 280 

are explained by the species followed by the individual level.  281 

 282 

Axes of functional variation 283 

To evaluate trait associations and plant strategies, we used a PCA of the seven traits of species 284 

(Figure 3). The first two PCA axes explained almost 66 % of the variation and showed a 285 

spectrum of trait variation. The first PCA axis shows species with a large leaf area, leaf thickness 286 

and dry mass at the left to species with high SLA at the right. The second axis represents species 287 

with high chlorophyll content at the top to species with high LDMC and succulence at the 288 

bottom. These axes, therefore, represent the leaf trait spectrum tradeoff. We also conducted the 289 

PCA on the temporal change in traits (trait values in 2010 were subtracted from traits in 2017) to 290 

see axes of temporal plasticity (Figure S5). Along the first axis, individuals were separated 291 

between those species with decreasing SLA and leaf area on the right-hand side and those with 292 

increasing leaf dry mass on the left side. Species with high leaf thickness and succulence were 293 

represented at the top of the second axis.  294 
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Effect of traits and neighborhood crowding on the relative growth rate of individual trees  295 

We tested how growth was correlated with temporal variation of traits and neighborhood 296 

crowding. We found that traits and neighborhood crowding have not explained significantly the 297 

relative growth rate of individual trees in the first census (Figure 4a). However, in the second 298 

census leaf chlorophyll content, leaf area, leaf dry mass, LDMC, leaf succulence and 299 

neighborhood crowding significantly explained the relative growth rate of individuals (Figure 300 

4b). We also used the temporal changes in functional traits and neighborhood crowding to 301 

predict the growth rate of individuals, and interestingly found that almost all of the change in 302 

trait values and neighborhood crowding explained better the relative growth rate of the 303 

individuals (Figure 4c). See Table S5, S6, and S7 for model AIC values.  304 

We also used SEMs to investigate any possible pathways by which traits and 305 

neighborhood crowding has interactively predicted growth of individuals. We found no 306 

significant causal relationships among traits, neighborhood crowding and initial DBH size to 307 

determine individuals’ growth rates (Figure S6). However, initial DBH size (in addition to its 308 

direct significant negative effect on RGR) has indirect significant positive effect on the RGR of 309 

individuals through its negative effect on PC1 and PC2 of the second census and temporal 310 

change data (Figure S6 b & c). We also found initial DBH to negatively be interacted with 311 

neighborhood crowding which in turn negatively influenced the RGR of individuals in the 312 

temporal change data (Figure S6 c). However, we did not find a pathway through which 313 

neighborhood crowding and traits interactively affect individuals’ growth in all census data.  314 

 315 

 316 

 317 
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DISCUSSION 318 

While past studies of community functional dynamics have focused on turnover in species 319 

identity, here we show patterns arising due to temporal trait plasticity of long-lived individuals. 320 

We predicted individual tree growth using traits measured on individuals while considering at 321 

the same time the biotic context in which that individual was found across time points. We 322 

showed trait-growth relationships, and negative effects of neighborhood crowding on the growth 323 

rate of individuals. The significant change of traits over time (temporal trait plasticity) and the 324 

association of functional traits with the leaf economics spectrum was also detected. Half of the 325 

functional traits measured changed significantly over time and were able to predict individual 326 

growth rates. The covariation of traits also revealed the presence of, to a certain extent, a leaf 327 

economics spectrum.  328 

 329 

Temporal trait plasticity and neighborhood crowding 330 

Tropical forests inhabit dynamic environments, and therefore some changes in functional 331 

strategies of trees might be adaptive. Consistently, we found significant temporal changes of 332 

some functional traits in our plot that could potentially alter individual ecological requirements. 333 

SLA decreased and leaf dry mass increased, possibly suggesting a change in strategies for 334 

resource acquisition. Similar observations have been previously reported using data on turnover 335 

in species identities and assuming fixed trait values for species. For example, in Neotropical 336 

forests changes in species composition over time shifted toward conservative functional 337 

strategies, mainly due to disturbances (Van Der Sande et al. 2016). Muscarella et al. (2017) also 338 

found that communities shifted from species with resource acquisitive to conservative functional 339 

strategies in Mexico. Disturbances like tree fall and landslides have been common on the 340 
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topographically steep plot, potentially influencing the tree community (Hu et al. 2012), 341 

especially Ficus species which tend to be found on the slopes. Furthermore, as species grow 342 

larger, larger amounts of energy could be invested to build non-photosynthetic tissue of the plant 343 

to maximize survival (King 2011). Thus, the formation of high leaf dry mass and succulent 344 

leaves over time could protect species from herbivore and pathogen attack, and provide 345 

mechanical support that maximize the life span of leaves and individual trees (Kitajima and 346 

Poorter 2010, Onoda et al. 2011, Poorter et al. 2018). The temporal development of this 347 

functional strategy could be associated with the resource distribution of the plot. The steep slopes 348 

of the plot, where most of the study Ficus species are distributed, have poor soil nutrients (Hu et 349 

al. 2012). These poor soils might influence the species to gradually develop more conservative 350 

traits (low SLA and leaf area, high leaf dry mass and leaf succulence) to maximize investment on 351 

structural components (minimize construction costs) and survival rate. Similarly, a long-term 352 

shift in functional composition due to species turnover (increased leaf area and SLA, decreased 353 

leaf succulence and wood density) was reported in a tropical dry forest (Swenson et al. 2020). 354 

Therefore, the observed temporal changes in trait values in our study, regardless of the direction 355 

(decreasing or increasing) reflects that the system of the forest is highly dynamic. 356 

We also used the PCA of these traits to explore species functional strategies. The first 357 

two PCA axes explained 66% of the variation, and we found two lines of trait variation showing 358 

the ecological strategies of plants. The first axis corresponded to species with high SLA at one 359 

extreme, versus species with high leaf thickness and area at the other extreme. The second axis 360 

corresponded to species with high leaf chlorophyll content versus high leaf dry matter and 361 

succulent leaves. This resource use strategy trade-off is a common phenomenon in the tropical 362 

trees and is well documented (Wright et al. 2004, Katabuchi et al. 2012, Asefa et al. 2017). The 363 
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negative correlation of SLA and leaf area might suggest that these two important traits were not 364 

integrated to determine the growth performance of the species (Poorter et al. 2018). Similarly, 365 

SLA and leaf area were found to be negatively correlated, probably indicating that costs to 366 

deploy SLA for large leaves was more expensive than small leaves (Milla and Reich 2007). The 367 

negative correlation of SLA with leaf thickness and/or positive correlation of LDMC with leaf 368 

thickness and succulence suggested that thick leaves maximize the longevity of trees by 369 

providing protection from herbivore attack, pathogens and physical damage. In summary, the 370 

functional trait variation of Ficus species supports the globally known leaf economics spectrum. 371 

We also determined the factors associated with the greatest portion of functional trait 372 

variation. All traits were varied significantly among individuals within species and among 373 

different species. However, the largest extent of trait variations was mainly explained by species 374 

identity, with a range of 23.39% for leaf fresh mass to 58.49% for LDMC, suggesting that trait 375 

variation was stronger at the species level than the individual level. The species differences in 376 

traits might be enhanced by niche-driven evolutionary trait divergence among different species. 377 

Phylogenetically conserved traits might show small trait variation within species, suggesting less 378 

trait plasticity among individuals (Poorter et al. 2018). The detection of significant individual 379 

trait variation, however, in general highlights ecological difference among individuals. A 380 

previous study also indicated the variation of Ficus traits at the individual level, reflecting 381 

differences of ecological requirements among individuals co-occurring together at small scales 382 

(e.g. 10 m) (Lasky et al. 2014a). Our result highlights that individual trait variation supports the 383 

species level variation of functional traits suggesting that both the individual and species level 384 

approach together helps to better understand community dynamics.   385 

 386 
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Effect of traits on the relative growth rate of individuals 387 

We tested to what extent individual trait variation predicts the individual variation of growth 388 

rate. The relative growth rate of individuals was found to vary substantially among individuals of 389 

the same species and among different species (Figure S2). We found that initial DBH has 390 

consistent relationships with growth of individuals in both censuses. Our results indicate that the 391 

relationship between functional traits and relative growth rate varied through time. Functional 392 

traits measured at the first census did not predict the growth rates of individuals. However, 393 

in the second census, leaf dry mass, LDMC and leaf area negatively predicted individuals’ 394 

growth rates, whereas chlorophyll content and leaf succulence were positively associated with 395 

the growth rate of individuals. 396 

Detection of weak trait−growth relationships in the first census could be attributed to 397 

different factors. Using stem tree diameter as a growth indicator might be a poor parameter to 398 

describe the entire plant growth pattern, especially for small plants due to the fact that plants 399 

could invest their energy in height and leaf growth to capture adequate amount of sunlight as 400 

height growth is more ecologically important than diameter growth, or underground investment 401 

to maximize nutrient acquisition (Paine et al. 2015, Poorter et al. 2018). The trait-growth 402 

relationship might also be confounded by developmental stages of trees, as ontogenetic stages of 403 

trees were found to determine trait-growth relationships (Iida et al. 2014, Lasky et al. 2015, 404 

Visser et al. 2016), suggesting size-dependent changes in growth strategies (Gibert et al. 2016). 405 

However, these developmental differences should be relatively subtle given the short time 406 

interval between censuses (7 years) relative to the lifespan of many trees (many decades).  407 

The relative growth rate of individuals in the second census, however, was found to be 408 

positively correlated with SLA and chlorophyll content of the species. This is consistent with the 409 
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expectation that high chlorophyll content and SLA are considered to maximize the efficiency of 410 

biomass investment for light interception (Poorter et al. 2008). Similarly, Poorter and Bongers 411 

(2006) found that SLA predicted higher growth rate of rainforest species. Lack of consistent 412 

predictive power of traits on the relative growth rate of individuals over time points in this study, 413 

however, might indicate how sensitive tropical forests are to the temporal dynamics of the 414 

environment or trait plasticity, indicating the importance of complexity and temporal dynamics 415 

in tropical rainforests. However, temporal trait plasticity did explain the relative growth rate of 416 

individuals. Increases in leaf chlorophyll content and leaf succulence over time had positive 417 

correlations with growth, while a decrease in leaf area, leaf dry mass and LDMC over time had a 418 

negative effect on growth, suggesting that temporal shifts in trait values appeared to be more 419 

predictive of growth rate than initial census trait values. These functional traits showed large 420 

variation across time points and subsequently were found to be growth determinants. 421 

Considering the effect of temporal trait plasticity helps to better predict growth dynamics of 422 

trees. Our findings in general highlight that considering the dynamic ecological dimension of 423 

species such as traits, helps to gain a temporal understanding of plant growth dynamics.  424 

We also found both direct and indirect effects of initial DBH of trees on the growth rate 425 

of individuals from our SEMs analyses. Initial DBH of trees was found to directly negatively 426 

affect the relative growth rate of individuals, as we found in the mixed effects models. This 427 

might be because small adult size plants could allocate more resources to height than diameter 428 

growth, as height is more important for interception of light resource (Paine et al. 2015).  429 

However, initial DBH of trees indirectly positively affected the relative growth rate of trees 430 

through its significant negative effect on PC1 and PC2 in the second census and PC1 in the 431 

temporal change data. The PC1 both in the second and temporal change data were mostly 432 
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represented by leaf dry mass and LDMC, while SLA and succulence were largely represented by 433 

PC2 in the second census data (Table S8). Initial DBH size of trees could be negatively related 434 

with resource conservative traits mentioned above that may provide protection against herbivores 435 

and pathogens  (Van Der Sande et al. 2016). Plants could prioritize their survival by building 436 

non-photosynthetic tissues particularly at small adult size at which susceptibility to herbivory 437 

and physical damages is higher. This reduces mortality and maximizes the longevity of trees  438 

(Onoda et al. 2011), and provides time for trees to gradually shift to the strategy by which more 439 

energy could be invested for their growth rates (Iida et al. 2014). Consistently, our result may 440 

demonstrate that initial DBH size of trees could indirectly promote the growth rate of individuals 441 

in a long-term by controlling trait expressions in response to many biotic and abiotic factors. 442 

Initial DBH size of trees also negatively interacted with neighborhood crowding to significantly 443 

limit the RGR of individuals in the temporal change data. The crowding conditions of 444 

individuals could be influenced by the size of neighboring trees. Large trees might dominate 445 

small neighborhood individuals through competition thereby reducing neighborhood density 446 

and/or limit individuals’ growth, as they may have large canopy, crown and deep root systems 447 

(Yang et al. 2020 in press). Our result therefore, suggests that various factors may interactively 448 

influence species performance through multiple pathways.   449 

Effect of neighborhood crowding on the relative growth rate of individuals  450 

We evaluated the effect of neighborhood interactions on individual growth, and how the effect 451 

changes over time. We found that neighborhood crowding significantly limits the growth rate of 452 

individuals, which is consistent with previous studies (Bagchi et al. 2014, Lasky et al. 2014b, 453 

Fortunel et al. 2016, Liu et al. 2016, Fortunel et al. 2018, Umaña et al. 2018). Also, species-454 

specific negative density dependence was found to drive seedling survival (Lin et al. 2012). This 455 
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further confirmed our result that species growth might be influenced by biotic interaction with 456 

neighbors. Interestingly, our result demonstrates not only the negative effect of neighborhood 457 

crowding on growth but also its effect found to vary through time.  458 

Similarly, the growth rate of individuals was negatively affected by changes in the 459 

number of conspecifics over time (Umaña et al. 2018). We detected a coordinated shift (temporal 460 

plasticity) of species from acquisitive to conservative, which may enhance the density-dependent 461 

effect of neighbors on growth rate due to niche overlap (Uriarte et al. 2010). However, the effect 462 

of neighborhood crowding on individuals’ performance in the first census was not significant, 463 

suggesting that interactions between tree neighbors might not be consistent over time. This 464 

inconsistency may be related to trait differences among individuals, which was may be an 465 

important mechanism of coexistence (Lasky et al. 2014a). The relationship of growth and 466 

neighborhood competition might not be completely captured under current environmental 467 

dynamics. As a result, it is always a challenge to explore the effect of neighborhood competition 468 

dynamics on the tree performance unless a temporal change in local neighbor density is 469 

considered. We found that temporal changes in neighborhood crowding affected tree growth, 470 

suggesting the importance of the approach we used to test the impact of temporal shifts of 471 

neighborhood competition on the demography of species. The result of this study highlights the 472 

importance of the temporal dimension of ecology to understand better how species interactions 473 

change over time and predict individual performance. 474 

In conclusion, our result demonstrates that functional traits and neighborhood crowding 475 

have changed over time. This temporal trait plasticity was found to best predict the growth rate 476 

of individuals. Neighborhood interactions also limited the growth of individuals. This all 477 

together suggested that the temporal dynamics of traits and biotic interactions need to be 478 
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considered to explain better the growth dynamics of tropical trees. Furthermore, trees tended to 479 

shift their functional strategies from being acquisitive to conservative, as we observed the 480 

increment of leaf dry mass and succulence, and decrement of SLA and leaf area through time 481 

points. We also found major axes of tree functional strategies in PCA, highlighting potentially 482 

adaptive trait differences. This study in general highlights that a temporal-based approach of 483 

investigating the relationship between traits and biotic interactions, and growth for each 484 

individual tree, can help gain insights into forest dynamics. To better predict future changes in 485 

community structure, function and dynamics, it is therefore important to consider the temporal 486 

change of environments together with changes in traits and biotic interactions over time, as trait-487 

neighborhood-performance relationships vary temporally with environmental conditions. 488 
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 731 

 FIGURE LEGENDS 732 

Figure 1. Comparison of trait values, growth and neighborhood crowding between the two 733 

census years. Asterisk (*) indicates significant differences between the censuses for each 734 

functional trait. DBH-Diameter at breast height. 735 

Figure 2. Variance in trait values explained by species, individuals, census interval, and leaves.  736 

Figure 3. PCA representing multivariate associations among functional traits of the 472 Ficus 737 

individuals. The numbers in parentheses in the PC1 and PC2 axes are the variances explained by 738 

each axis.  739 

Figure 4. Standardized regression coefficients modelling initial size effects, traits and 740 

neighborhood effects on tree relative growth rate. (a) the first census of traits and neighborhood 741 

effect; (b) the second census of traits and neighborhood effect; (c) the effect of the change in 742 

traits and neighborhood crowding values (the trait values in 2010 were subtracted from traits in 743 

2017) on the relative growth rate of individuals during seven years. Circles indicate posterior 744 

medians for each studied parameter and lines indicate 95% confidence intervals, with filled 745 

circles representing significant effect.  746 
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