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Abstract: The prefrontal cortex (PFC)’s functions are thought to include working memory, as its 

activity can reflect information that must be temporarily maintained to realize the current goal. We 

designed a flexible spatial working memory task that required rats to navigate - after distractions 

and a delay - to multiple possible goal locations from different starting points and via multiple 

routes. This made the current goal location the key variable to remember, instead of a particular 

direction or route to the goal. However, across a broad population of PFC neurons, we found no 

evidence of current-goal-specific memory in any previously reported form - i.e. differences in the 

rate, sequence, phase or covariance of firing. This suggests such patterns do not hold working 

memory in the PFC when information must be employed flexibly. Instead, the PFC grouped 

locations representing behaviorally equivalent task features together, consistent with a role in 

encoding long-term knowledge of task structure. 
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Introduction 

Animals can pursue a goal while handling distractions and delays, starting from a variety 

of initial conditions, and adapting their responses in the face of unexpected obstacles. To guide 

such flexible goal-directed behavior, there needs to be a representation of the goal itself that is 

robust to these circumstances which can provide top-down instruction for selecting appropriate 

actions. The prefrontal cortex (PFC) plays a central role in flexible goal-directed behavior (Miller 

& Cohen, 2001; Fuster, 2015), and one of its primary functions is thought to be the maintenance 

of information relevant for achieving the current goal (i.e. working memory) (Fuster & Alexander, 

1971; Funahashi et al., 1989; Miller et al., 1996; Rainer et al., 1998; Romo et al., 1999; Wang, 

1999; Erlich et al., 2011; Wimmer et al., 2014; Inagaki et al., 2019; Wu et al., 2020). Therefore, 

the PFC is a prime candidate area for containing a representation of the current goal itself.  

Spatial working memory tasks are well-suited for investigating such representations. First, 

the current goal, a particular spatial location, can be clearly specified and is ethologically relevant 

for many species (O'Keefe & Nadel, 1978). Second, all of the aspects of flexibility mentioned 

above can be incorporated naturally in a form that many animals, including rodents, can solve. 

However, rodent spatial working memory experiments employed to date with recording in PFC or 

other brain areas (Wood et al., 2000; Frank et al., 2000; Baeg et al., 2003; Fujisawa et al., 2008; 

Gill et al., 2011; Harvey et al., 2012; Pfeiffer & Foster, 2013; Wilkenheiser & Redish, 2015; Ito et 

al., 2015; Spellman et al., 2015; Kim et al., 2016; Guise & Shapiro, 2017; Bolkan et al., 2017) 

have not combined all of these elements of flexibility in a single task. As a result, potential working 

memory representations of the current goal have been difficult to dissociate from behavioral or 

sensory correlates. For instance, classic T-mazes have a single start and single route to each of the 

two goals. Thus, differential neural activity before reaching the T junction could represent the 

goals themselves, the two sets of stereotyped actions used to reach each goal as well as any 

associated sensory correlates (e.g. looking left versus right), or the plan to “go left” or “go right”. 

Furthermore, any goal-specific activity could differ if the animal were to start from another point, 

and therefore not be usable under different initial conditions. Here, we devised a novel spatial 

working memory task incorporating multiple aspects of behavioral flexibility, allowing a search 
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for a “pure” representation of the goal itself by disambiguating goal-related activity from other 

correlates.  

Results 

In our task, rats needed to remember one of three goal locations in each trial. The current 

goal was encoded during a “sample phase”, in which animals were guided with light cues to one 

goal where they received a small reward. Rats had to remember this location until they needed to 

navigate to that goal again in the “test phase”—starting from one of three different locations and 

via one of three routes in the absence of lighted cues—to receive a large reward. The different 

routes were implemented by using an elevated maze design with bridges that could be raised (open) 

and lowered (blocked). The available route was only revealed after a 3 s (3.2 s in one animal) 

“fixation” period (hereafter referred to as the “delay period”) during which animals had to hold 

their nose in one of the three test phase “start” location ports. The correct start location port was 

assigned pseudorandomly in each trial. To find the correct start port between each trial’s sample 

and test phase, animals had to poke their nose into different ports until they found the one that 

elicited a tone when poked, which indicated the correct choice. (Figure 1A, B, Movie S1). The 

goal, sample phase route and test phase route were also pseudorandomly assigned in each trial (see 

methods). This design requires animals to update the currently relevant goal every trial (working 

memory task), and pushes them to remember the goal itself instead of memorizing a specific 

behavioral sequence or planning a particular motor action to reach the goal. Thus, the goal location 

is the key variable to retain, which must then be used flexibly to solve the task: navigating to that 

goal from any location by any route. Furthermore, having more than two goals excludes a strategy 

of navigating to one goal by default and only remembering when the goal is the other one—i.e. 

having three goals promotes the use of working memory representations of each goal itself. 

Animals reached high levels of performance (Figure 1C, D, mean performance over all 

rats: 77.37, 95% CI: [72.46, 81.97]). To examine whether animals indeed remembered the goal 

location itself instead of particular routes, we compared the performance in trials where the route 

(bridge) animals had to take in the test phase was the same or different from the outbound and/or 

return bridge in the sample phase. The performance was comparable across routes for all animals, 

indicating that rats remembered goal locations instead of routes. Furthermore, the performance 

was comparable and above chance for all goal locations, implying that rats remembered each goal 
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location rather than relying on a strategy of remembering only a subset of them. Rats spent several 

seconds in each task phase and generally ran faster on test outbound runs than sample outbound 

runs. The search time to find the correct start location was on average slightly higher in the trials 

where the subsequent choice was incorrect, but overlapped with search times in correct trials 

(Figure 1D).  

A Neuropixels probe (Jun et al., 2017) was chronically implanted in medial prefrontal 

cortex (mPFC), previously shown to be required in variants of simpler rodent spatial working 

memory tasks (Spellman et al., 2015; Guise & Shapiro, 2017). 100-200 units were simultaneously 

recorded across subareas including anterior cingulate (ACC), prelimbic (PL), infralimbic (IL), and 

dorsal peduncular (DP) cortex (Figure 1B) (n = 3 animals; 182, 131, and 98 cells). We focused our 

analyses on the delay period since, during that time, behavior is well-controlled, and animals must 

remember a given goal while being in different, defined locations and facing different, defined 

directions, as well as not knowing the required future motor action. Analyses were applied to all 

putative principal cells with stable firing rates throughout performance (97, 84, and 68 cells; see 

methods) and pooled across subareas (results including all cells or split by subarea were similar 

and are provided in the supplementary figures as indicated). 

We searched for representations of the current goal encoded in terms of the major forms of 

delay period activity previously found in other working memory tasks, spatial or non-spatial, 

involving recordings from the PFC or elsewhere in primates and rodents: activity reflecting the 

representation at the time of encoding the sample item (Funahashi et al., 1989; Miller et al., 1996; 

Rainer et al., 1998; Romo et al., 1999; Wu et al., 2020), elevated/suppressed activity in single cells 

(Fuster & Alexander, 1971; Funahashi et al., 1989; Miller et al., 1996; Rainer et al., 1998; Romo 

et al., 1999; Kim et al., 2016; Inagaki et al., 2019) or sequential firing patterns across multiple cells 

that tile the delay period (Baeg et al., 2003; Fujisawa et al., 2008; Pastalkova et al., 2008; Harvey 

et al., 2012; Ito et al., 2015), oscillatory phase-dependent firing (Siegel et al., 2009; Watrous et al., 

2018), and elevated/suppressed covariances in firing among pairs of neurons (Barbosa et al., 2020). 

We first tested whether memory of the current goal could be maintained during the delay 

period by a firing rate pattern across cells (population vector, PV) similar to the one when the 

animal was at the goal itself during the sample phase. To begin with, the PV at each goal during 

the sample phase was distinguishable and stable over time (Figures 2A and S2-1A), including 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.11.292888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.292888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 
 

across sample and test phases (Figure S2-1B). We correlated the overall activity during the delay 

period with the sample phase PV at each goal and asked whether it was more correlated with the 

currently remembered goal’s PV. This was not the case (Figure 2B), as also seen in a different task 

(Guise & Shapiro, 2017). To test if the remembered goal was represented as transient increases in 

correlation or a switching between current and other goals with the relevant (current) one being 

overrepresented (Kelemen and Fenton, 2010), we attempted to predict the goal based on 

correlation scores resulting from sliding a window of variable width across the delay period. While 

the animal’s current (i.e. start) location was readily decodable (as expected), the remembered goal 

was not, using a wide range of time bins (Figure 2C) or activity restricted to individual subareas 

(Figure S2-2).   

If the remembered goal is not maintained by activity directly related to activity at the goal 

itself, it could be (i) transformed into a different, but goal-specific, pattern, potentially dependent 

on the start location (ii) encoded in egocentric coordinates (i.e. the direction relative to the current 

start location) (Sarel et al., 2017) instead of in terms of the absolute (allocentric) goal location, (iii) 

represented by a sequential, instead of tonic, activity pattern and/or (iv) reflected in the phase of 

spike times or the short timescale interactions between pairs of neurons (Barbosa et al., 2020). We 

initially tested if any single cell activity in 100-ms- to full-delay-period-sized time bins showed 

consistent firing differences for allocentric, start-dependent or egocentric goal location (Figure S3-

1). We found significant differences for the current (i.e. start) location, but not allocentric or 

egocentric goal location. There was also no evidence of start-dependent encoding of goals, i.e. a 

unique code for the 9 start-goal pairs. We then tested whether the remembered goal was encoded 

with a sequential activity pattern across multiple cells that may not be detectable at the single cell 

level (Figure 3). We employed several classification methods at multiple time resolutions (Figure 

3C). Note that, for this analysis, potential activity patterns were always referenced to the delay 

period onset, as previously seen for memory-related sequences that tile the delay period (Fujisawa 

et al., 2008; Pastalkova et al., 2008; Harvey et al., 2012). Results were consistent across methods 

and time resolutions: current location could readily be decoded with any classification method for 

time bin resolutions between 100 ms to the full delay period duration. In contrast, no method could 

successfully classify the remembered goal in allocentric or egocentric coordinates at any time 

resolution (Figure 3C), including when using all cells regardless of firing rate stability (Figure S3-

2). We next tested whether information might be stored in spike timing relative to local field 
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potential (LFP) oscillations (Siegel et al., 2009; Watrous et al., 2018). We explored two frequency 

bands (5-12 Hz, 15-30 Hz), identified based on their power in the delay period. First, we calculated 

each cell’s goal-specific phase preference in the delay period. We compared the distribution of 

phase preference magnitudes to one where goal labels were shuffled. The distributions were not 

different, suggesting the remembered goal does not affect overall phase preference. Second, we 

asked whether spike counts at specific phases might differ in a goal-specific manner, but they did 

not (Figures 4A and S4-1). We also explored the possibility of a recently described form of 

“activity-silent” memory, in which working memory is expressed in the spiking synchrony 

between pairs of neurons while stimulus information is not decodable from firing rates (Barbosa 

et al., 2020). However, neither for the pairs of neurons exhibiting excitatory interactions nor for 

the pairs exhibiting inhibitory interactions did covariances differ between trials associated with 

one goal versus the others (Fig 4B, and S4-2, see methods). Together, these results suggest that 

previously described forms of working memory maintenance are not responsible for storing the 

current goal in our task in which this information must be employed flexibly.  

If mPFC does not encode memory of the goal in this task, what task-relevant processes 

might it support? We tested whether other task features could be decoded from mPFC activity. 

First, mPFC delay period activity did not indicate an upcoming or past error (Figure 5A), further 

corroborating that mPFC might not directly store current memory content. We then checked if 

mPFC distinguished the two task phases not only at the goal (Figure S2-1B) but when animals 

returned to the center. Before reaching the center, and at the center, task phase was not decodable 

(Figures 5B) (note the decodability afterwards could arise from cue or behavior differences in the 

two phases that were not present earlier). Lastly, we compared the population activity while rats 

engaged in different behaviors at different locations. Within each group of behaviors (i.e. waiting 

at a start nose port, crossing a bridge/route, consuming reward at a goal), mPFC displayed spatial 

selectivity (e.g. it differentiated the three bridges). Furthermore, we found that this spatial 

selectivity was embedded within a larger organization of activity in which these distinct, task-

relevant groups were clearly separable from each other (Figures 5C and S5). 
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Discussion 

Previous work has shown sensory stimulus-specific delay period activity (“delay activity”) 

independent of motor plans (Romo et al., 1999; Wu et al., 2020) or resistant to distractor stimuli 

(Miller et al., 1996), and start-independent spatial (Brown et al., 2016; Guise & Shapiro, 2017; 

Watrous et al., 2018) or route-independent visuospatial (Saito et al., 2005) goal-specific delay 

activity in the PFC. A pair of studies (using a single start location) (Spellman et al., 2015; Bolkan 

et al., 2017) showed no evidence of goal-selective delay activity in rodent prelimbic mPFC. In one 

of these studies, motor planning was prevented, but not in the other (i.e. standard T-maze), and a 

study similar to the latter one (Kim et al., 2016) found goal-selective delay activity. Another study 

(Lara & Wallis, 2014) found no evidence of visual stimulus-selective delay activity in primate 

PFC. However, this study used color as the relevant stimulus dimension and found little evidence 

of color-selective activity even during stimulus presentation. Since PFC neurons have been shown 

in other cases to encode sample stimulus color (Buschman et al., 2012), this suggests that encoding 

of the stimulus during the sample period may be a prerequisite of observing stimulus-selective 

activity in the delay period. Spatial information is strongly represented in PFC in primates 

(Funahashi et al., 1989; Rainer et al., 1998; Saito et al., 2005; Lara & Wallis, 2014) and essentially 

all rodent studies, including here (Figures 2A and S2-1); yet, we found no spatial goal-selective 

delay activity. Furthermore, our ability to decode the current start position, and the relatively high 

number of cells recorded simultaneously in our study, suggest that our data set was large enough 

to have detected an effect of sizes previously reported in the literature for simpler tasks.  

In contrast to previous studies, we combined all elements of flexibility in one task – 

distractions, different start locations, and different, unpredictable routes, as well as more than two 

goals. We found no evidence of goal-selective delay activity in any of the major forms previously 

documented over a wide range of parameters and across large numbers of simultaneously recorded 

cells in multiple mPFC subareas. Thus, these representations are unlikely to serve as general 

working memory correlates that can be employed under conditions of high behavioral flexibility, 

such as those often encountered in the real world. Whether animals in simpler tasks use such 

canonical representations of working memory to solve those tasks, employ an alternative strategy, 

or rely on an as-yet-undiscovered pattern of activity remains an open question. Our work therefore 

stresses the importance of employing more cognitively challenging tasks that allow dissociation 
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between correlates of high-level cognitive variables and other task-related variables. The search 

for a pure, flexible working memory correlate could focus both on other brain areas, or on 

exploring as-yet-unobserved activity patterns or alternative memory mechanisms involving the 

mPFC – for instance, those related to short-term synaptic plasticity mechanisms (Mongillo et al., 

2008) beyond the previously reported covariance patterns (Barbosa et al., 2020) investigated here. 

Finally, our results suggest a role for mPFC in working memory tasks by representing task 

structure in terms of groups of behaviorally related elements (Jung et al., 1998; Yu et al., 2018; 

Kaefer et al., 2020), consistent with findings that the PFC forms long-term memories of learned 

stimulus categories (Freedman et al., 2001). 
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Figure 1. Task design, behavior and recording. 

(A) Schematic of “multi-start/multi-goal/multi-route” (“MSMGMR”) task environment. (B) Top: 

Each trial consisted of the following steps: (1) the current goal is randomly assigned and cued with 

lights; a single, randomly assigned route (bridge) is available; rat gets small reward upon arrival 

at cued goal; (2) animal returns to center via any route; all routes are blocked upon arrival at center; 

(3) animal searches for randomly assigned start position, indicated by a tone once animal pokes 

nose into correct port; (4) animal must maintain nose poke for 3 s; (5) a randomly assigned route 

becomes available and animal can navigate to goal; (6) animal returns to center via any route to 

initiate next trial (see Movie S1). Bottom left: Neuropixels probe is chronically implanted in 

mPFC, and 384 channels spanning multiple subareas are recorded from simultaneously. Bottom 

right: Spiking activity during task. (C) Task performance (test phase). (D) Left: Task performance 

in subsets of trials in which different routes were taken. Again, a single outbound route was 

randomly assigned for both test and sample phases; inbound routes could be freely chosen by the 

animal. Center left: Performance for each goal location. Center right: Time spent for each of the 
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task steps (see also B) (mean and 95% CI). Right: Search time for the start location for correct and 

incorrect trials (mean and 95% CI). 
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Figure 2. Memory is not maintained by goal-location-specific activity in the delay period.  

(A) Population vectors (PVs) of activity while animal at each goal during sample phase (left) are 

distinct and stable (middle, correlation matrix of single trials in one animal; right, decoding 

accuracy, logistic regression classifier, mean over all trials and animals: 94.48%, 95% bootstrap 

CI: [90.87, 96.80]). (B) Correlation of PV while at goal during sample phase and PV during delay 

period while animal must maintain that goal-specific information. (C) Left, top: Example single-

trial PV over time during delay period correlated with each goal PV. Left, middle: Goal with 

maximum correlation at each time bin above. Left, bottom: Same for all correct trials in this 

animal, sorted by current goal. Middle: Analogous to left but correlated with each start location 

PV (excluding contribution from current trial). Right: Correlation-based classification for range of 

binwidths (mean and 95% CI). Class per trial determined by highest mean correlation over entire 

delay (unfilled) or majority vote of class with highest correlation at each time point (filled). 
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*binwidths were 0.4, 0.8, 1.6 and 3.2 s for one animal that had 3.2 (versus 3) s delay (also for 

Figures 3C and 5A). 
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Figure 3. Lack of differential activity patterns corresponding to the current, remembered goal in 

the delay period. 

(A) Leftmost: Differential patterns considered corresponded to activity across cells and time bins 

during delay period. Potential encoding schemes (left to right): start location represented 

independently of current, remembered goal; current goal represented independently of current 

(start) location; current goal represented in egocentric coordinates, i.e. direction to current goal 

with respect to current (start) location; current goal represented distinctly in different start 

locations. (B) Population activity analysis of potential encoding schemes during delay period using 

supervised classification. Top: Confusion matrices expected for each scheme. Bottom, left: 

Confusion matrix using support vector machine (SVM) classification (0.75 s bins) for one animal. 

(C) 3-class delay period activity classification using logistic regression (LR), SVM, random forest 

(RF), or Naïve Bayes after feature selection (NB) over range of time resolutions (mean and 95% 

CI).   
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Figure 4. Lack of differential phase or covariance of firing corresponding to the current, 

remembered goal in the delay period.  

(A) Phase analysis. Left: Spectrogram of delay period LFP. Middle: Example cell phase preference 

of delay period spikes and resultant vector length (r, gray) across all trials for each current goal 

(top). Cumulative distribution of r for all cells from one animal compared to shuffle of trials for 

two frequency bands (bottom). Right: Decoding accuracy (mean and 95% CI) using spike counts 

at specific phases. Phases for each frequency band were divided into 2, 4 or 6 phase bins. (B) cross-

correlation selectivity index for the delay period (CCSI, after Barbosa et al., 2020 is a measure of 

the difference in covariance between trials where the current goal is the one where a given pair of 

neurons preferentially fires at during the sample period and trials where the current goal is either 

of the other two goals) for cell pairs determined to have excitatory or inhibitory interactions (mean 

and 95% CI, see methods).  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.11.292888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.292888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
 

 
Figure 5. Prefrontal cortex encodes task-relevant information and forms groups of behavioral 

equivalence. 

(A) Decodability of whether goal error occurred in upcoming or previous test phase based on 

population activity during delay period (mean and 95% CI). (B) Decodability of task phase from 

population activity (200 ms bins) while animal is moving inbound from goal to center in sample 

or test phase (pre-0 s) and after it arrives at center, for one animal. Similar results in another animal 

(not shown). (C) t-SNE of population vectors of activity while animal is at key task locations: 

individual starts, goals, and bridges/routes. 
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Methods 
Experimental Procedures  

 

Surgery: 

 

All procedures were conducted in accordance with the Janelia Research Campus 

Institutional Animal Care and Use Committee. The chronic Neuropixels implant surgery followed 

previously described methods (Jun et al., 2017). Briefly, animals were anesthetized with isoflurane 

and mounted in a stereotaxic frame (Kopf Instruments). After thorough cleaning of the skull, a 

ground screw was placed through the skull above the cerebellum. A small craniotomy (diameter 

~1 mm) was made above the target area (AP: 3.24 mm, ML: 0.6 mm) in the right hemisphere. A 

single-shank Neuropixels “1.0” probe was lowered over the course of about an hour to a depth of 

6.0-6.3 mm. The craniotomy was covered with artificial dura (Dow Corning Silicone gel 3-4680) 

and any parts of the probe outside of the brain were covered with sterile Vaseline. The probe was 

permanently fixed to the skull with dental acrylic and a protective cone made of copper mesh and 

dental acrylic or light cured cement was built around the probe. Recordings started after animals 

had fully recovered and were accustomed to the recording cable when attached to the implant, ~2-

3 weeks after implant surgery. 

 

Behavioral procedures: 

 

Rats were housed in a reverse light cycle room (12 h:12 h day:night) and training and 

experiments were conducted mostly in the dark phase.   

Rats learned the “multi-start/multi-goal/multi-route” (“MSMGMR”) task over the course 

of several months in successive learning steps with generally one learning session per day. Animals 

were food restricted (with their weight maintained at ≥85% of their initial weight) to increase 

motivation to collect reward in our task. 

Reward was given in the form of a sweet and nutritious liquid reward (Ensure Plus). The 

reward was dispensed from custom-made Teensy-operated reward pods which, along with the 

custom-made nose ports and bridges (that provide available “open” routes when up and are 
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unavailable “blocked” routes when down in this elevated maze environment), were controlled by 

custom-written finite state machine software written in Matlab.  

Data from three male Long-Evans rats were included in this study. (Two other animals 

were trained to high levels of performance for this study, but the recordings were lost before 

training was complete, in one case due to probe failure. In both of these cases, the probe was 

implanted before training began and the losses occurred after ~4 months of training. To limit such 

outcomes, the probe was implanted after training was complete in the subsequent animals (two of 

the three included ones).) Animals were ~12 weeks of age when training began for two animals 

and ~6 months for one animal.  

To accustom animals to the elevated maze layout and the type of reward they would 

receive, animals were placed on the maze for ~30 min per session to explore and collect reward 

from any of the reward pods, which were located at the end of each goal arm and one in the center 

of the maze. All routes were available at this point in training and animals could freely move 

around to collect reward from any of these four reward sites on the maze (Figure 1A). Animals 

started exploring the maze immediately and learned to navigate between the reward sites within a 

few sessions. 

Next, the sample phase of the task was introduced. Here, the animal learned the meaning 

of the visual cues (blue LEDs on the goal reward pod(s) blinking) and to find the current goal 

location by repeatedly being visually guided to the same goal and returning to the center after each 

run, which allowed it to understand the basic structure of the task (i.e. run out, run back to center, 

run out, and so on). This sample phase was implemented in two different configurations throughout 

the training and recording sessions for the three rats. For one rat, the correct goal location was 

indicated by a blinking light at the correct reward pod. For the other two rats, we used a reversed 

configuration where the correct goal was the only goal reward pod not blinking. This configuration 

was introduced to reduce the potential for the animals to remember the location of a simple visual 

cue instead of remembering the spatial location of the goal. However, both versions were readily 

learned by the animals and did not lead to any obvious changes in behavior in the test phase.  

After the animal had learned to follow the guided cues, the test phase was introduced. Here 

the animal was cued 3-4 times to sample the same goal, followed by one run in which the animal 

was not cued and had to navigate to the same (correct) reward pod. If the animal went to an 

incorrect reward pod in the test phase first, they received a diminished or no reward if they then 
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went to the correct one afterwards. The number of repeated ‘sample phases’ to the same goal was 

successively lowered until sample and test phases were interleaved.  

Next, the use of a particular route was enforced during the sample phase. After animals 

returned from the test phase to the center reward pod, two of three bridges were lowered, i.e. the 

routes were blocked, forcing the animal to use the remaining one in the sample phase. The route 

available in each sample phase was chosen pseudorandomly.  

Next, to introduce the nose pokes, all routes were blocked upon arrival of the rat at the 

center after the sample phase. The animal could choose any nose port; correct poking was indicated 

with a 4 kHz tone upon brief poking (50 ms). After holding for the specified duration, all routes 

would become available (i.e. all bridges were raised). At this stage, the duration of the required 

poke was successively increased from the initial 50 ms to approximately 1 second. Once the animal 

developed a habit of choosing the same nose port to make the routes available, only one 

pseudorandomly chosen nose port would elicit the tone and raise the bridges. The nosepoke 

duration was then successively increased until the animal became proficient at holding it for 3 

seconds (for two animals) and 3.2 seconds (for one animal). In two animals (the ones in which the 

goal was indicated as the pod that was not blinking), any incorrect nose poke was indicated by a 

constantly on light at that port after it had been poked at least once.  

As a final learning step, only one route would become available after the correct nose port 

poke (i.e. for the test phase).  

The final version of the task used the following pseudorandom method for determining the 

goal, available sample phase route, correct nose poke, and available test phase route for each trial. 

The pseudorandom sequence of trials was determined anew for each session. There are 27 distinct 

combinations of start position, goal location and test phase routes. To keep these combinations in 

balance overall and locally and to discourage formation of preferences for a particular goal, the 

order of these 27 combinations was randomly permuted  with the constraints that (i) each of the 

three subblocks of nine trials was also balanced to equally contain each start location, goal location 

and test phase bridge, and (ii) the same goal was not repeated more than two consecutive trials. 

The sample route only had the constraint that in a subblock of nine trials, for each goal location 

each of the routes was presented once in the sample phase. Identical blocks of 27 trials were 

repeated in a given session. Note that there was no indication given to the animal of the 27-trial 

block or 9-trial subblock structure, so the entire session appeared as a single long sequence of 
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trials. In this final version, the animal was not allowed to correct an error in the test phase and had 

to go to the center to initiate a new trial. In addition to the given pseudorandomly determined 

sequence of trials, if the animal made an error in the test phase of a trial, that same trial could be 

repeated one time (but with a potentially different sample route). In terms of discouraging 

preferences for a given goal, repeating a trial due to an error would necessarily mean the animal 

was not repeating a trip to the same goal in the test phase. 

After the animal was able to perform the full task, training was continued until the animals 

reached ~70% accuracy (total training time from naïve animal to this point was ~ 3.5-6 months). 

Then (for two animals), a Neuropixels probe was implanted in the medial prefrontal cortex (while 

for one animal the Neuropixels probe had been implanted before training). Recording began after 

the animal recovered and was acclimated to the recording cable.  

Between training sessions, the maze was wiped with 70% ethanol to reduce any odor cues 

animals might use to navigate to the correct goal. Furthermore, the maze was mounted on a 

turnable-like frame and rotated to one of three orientations in between sessions, to further lower 

the probability that animals used local cues to remember goal locations. The maze was set up in a 

room with multiple cues outside of the maze, such as other lab equipment. Care was taken to ensure 

that the reward pods at the goals all delivered the same amount of reward and appeared visually 

identical. These precautions were taken to ensure that animals learned to use distal, non-local cues 

for navigation and to encode the currently rewarded goal location.  

After conclusion of the experiments, animals were deeply anesthetized and underwent 

transcardial perfusion with saline followed by 4% PFA for fixation. Brains were removed and 

sliced for histological verification of the recording site.  

 

Electrophysiology 

 

Neural data from Neuropixels “1.0” probes (https://www.neuropixels.org) was recorded 

with SpikeGLX software (http://billkarsh.github.io/SpikeGLX/). 384 channels were recorded 

simultaneously across subareas of the medial prefrontal cortex in two separate frequency bands 

(spike, 300 Hz to 10 kHz sampled at 30 kHz, and LFP, 0.5 Hz to 300 Hz sampled at 2.5 kHz). The 

recording system and a laptop capturing the digitized data from the probe were mounted on a 

manually controlled, motorized rotating platform mounted at the ceiling to avoid the cable from 
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becoming too twisted from the animals’ turning. This apparatus was used for two of three animals. 

For one animal, the experiment was briefly interrupted to ‘untwist’ the cable by rotating the animal 

when it became necessary.  

 

Data Analysis 

 

All data analysis was done using custom-written programs in Matlab or Python, and for 

some machine learning procedures the scikit-learn library was used (Pedregosa et al., 2011). 

 

Preprocessing: 

 

Multiple sessions were recorded from each animal but only one was included in the 

analysis per animal as the probes were not moveable and the population of cells could not be 

assumed to be independent across different recording sessions. JRCLUST (Jun et al., 2017) 

(version 08/2019, Vidrio) was used to automatically presort the spike data then manually curate it 

afterwards. To allow the animal to settle into the behavioral task and to remove global drifts 

leading to changes in firing rate across a significant number of cells (which were observed to occur 

at the beginning of each session, presumably due to the handling of the rat necessary to attach the 

probe to the cable), 10-20 trials were removed from the beginning of each session. Because we 

were searching for a working memory code that was stable and robust throughout the session, and 

to reduce the possibility that non-stationarities would reduce the generalization performance of the 

decoders, we selected for analysis the subset of cells that satisfied the following 3 

stability/robustness criteria applied to each cell separately (but we also performed the main 

analyses including all cells without such selection, Figure S3-2). First, the overall firing rate had 

to be stable across the session: specifically, a linear regression on the standardized firing rate in 10 

s bins over the session was performed and the absolute difference between the first bin and the last 

bin could not exceed 1 (i.e. the slope of any change in firing rate needed to be within ±1 s.d./n, 

where n = the total number of 10 s bins). Second, the firing rate in delay periods had to be stable 

across the session: specifically, the absolute difference of a linear regression on the summed spike 

count for all delay periods (3 or 3.2 s each) between the first and the last delay period could not 

exceed 1.4. Third, the cell needed to be active in a minimum number of delay periods: specifically, 
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the cell had to fire at least one spike in at least one-sixth of all delay periods (set to potentially 

allow for a cell that was active in half of the delay periods for a particular goal and silent 

otherwise). The numbers of clusters isolated during spike sorting were 182, 131, and 98 for the 

three animals and, after applying the criteria above, 103, 86, and 72 cells remained. Putative fast-

spiking GABAergic interneurons were excluded from analysis based on having a combination of 

faster waveform (shorter peak to trough interval) and higher firing rate across the whole recording 

duration, resulting in 97, 84, and 68 active, stable, putative principal cells for the three animals.  

Unless otherwise noted, only correct test phase trials were used for analysis. After 

removing the trials in the beginning as described above the numbers of total trials (number of 

correct trials) per animal were 79 (62), 81 (64) and 145 (110).  

 

Correlation analysis:  

 

For the correlation matrices in Figure 2A and B, a “goal arrival” population vector for each 

trial was calculated from the three second period after the animal had arrived at the goal in the 

sample phase (where time point 0 was assigned to be the time that the infrared beam on the reward 

pod was broken, which triggers delivery of the reward). Similarly, for all test phases a delay period 

population vector was calculated. The matrices containing the raw firing rates were concatenated 

and the Pearson’s correlation coefficient was calculated for all combinations of population vectors. 

In Figure 2A only the correlations among goal population vectors are shown and in Figure 2B the 

correlation between delay period population vectors and goal population vectors are shown.  

To test whether the remembered goal is preferentially represented in the delay period over 

time (Figure 2C), we calculated the average population vector from all sample phases when the 

animal was at one specific goal and correlated the resulting 3 population vectors with each time 

bin in all delay periods. For each delay period the ‘winning’ goal was either the one with the 

highest mean correlation with that goal across all bins or the one that had the highest number of 

time bins in which the correlation was highest with that goal (majority vote). A corresponding 

approach was taken to classify each delay period with regards to the start (current location), except 

the current delay period was excluded from the average of the start population vector. Here and 

elsewhere, a  bootstrap analysis was used to calculate the 95% confidence interval of the decoding 
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accuracy: for each binwidth, 10000 samples were drawn randomly from all trials from all animals 

with replacement and the 2.5 and 97.5 percentile values of the means were taken as the interval.  

 

H-score analysis: 

 

To assess what information is encoded in the delay period at the single-cell level (Figure 

S3-1), the spikes in each delay period were binned using a variety of binwidths and each cell × bin 

was considered one sample of a class. Several types of classes were considered separately: the 

current start (current location), the remembered goal, the goal in egocentric coordinates (i.e. behind 

the start, to the left, or to the right), or the combination of the start and the remembered goal (3x3 

classes). The distributions of spike counts of samples belonging to different classes (e.g. the 

different starts) were compared using the Kruskall-Wallis test. To correct for multiple 

comparisons, false discovery rate (FDR) correction was applied to each binwidth tested.  

 

Supervised machine learning classification methods: 

 

Generally, for each classification method, a range of hyperparameters were tested and a set 

of parameters that reached the highest cross-validation accuracy for start (i.e. current location) 

decoding was chosen for each method and kept constant. A leave-one-out cross-validation scheme 

was used for all classification methods. The numbers of samples per class were balanced 

throughout by randomly subsampling from the class(es) with the higher number of samples in the 

training set. Decoding accuracy was reported as the mean of the cross-validated accuracy over all 

classes. For population analyses where the delay period was binned in time (Figures 3B,C, S2-1B, 

S3-2 and 5A,B), all bins of a given delay period were concatenated into one vector and each cell 

× bin was treated as a separate feature, i.e. the activity patterns considered were fixed with respect 

to the starts of the delay periods (and analogously for the phase bins in Figure 4A). The matrix 

size used for classification was thus # of time bins times * # of cells by # of trials. Each feature 

was standardized over all trials by subtracting the mean and dividing by the standard deviation, 

unless stated otherwise. Logistic regression (Figure 2A, right, 3C, 5A) was used with L2 

regularization. The support vector machine classifier (Figure S2-1B, 3C, S3-2B and 5B) was used 

with a Gaussian kernel to allow for nonlinear decision boundaries. The kernel coefficient was set 
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to 0.001 and L2 regularization was used. In Figure 3B, left bottom, the data was divided into 9 

classes, corresponding to the 9 possible combinations of remembered goals and current start 

locations. For Figure 3C, three classes corresponding to either the three possible start locations, 

three allocentric goals, or three egocentrically defined goals were used. Correspondingly, for the 

analysis of task phase and spatial selectivity at the goal (Figure S2-1B; note the time period 

analyzed was the 3 s after the animal had arrived at the goal as in Figure 2), the data were divided 

into 6 classes corresponding to the 6 possible combinations of goal location and task phase. For 

the summary plot containing all animals in Figure S2-1B, middle, only the classification accuracy 

of either phase or goal was considered. For Figure S2-1B, right, two classifiers were trained, one 

with all data from the sample phase and one with all data from test phase. The remaining data were 

each used to predict the goal it encoded, i.e. data from the test phase were fed into the classifier 

built from sample phase data and the other way around. Decoding accuracy was given as the mean 

over all three classes. In Figure 5B for trial phase decoding at the center we only compared trials 

in which the animal took the same bridge back to center so that direction of arrival at the center 

was comparable.  

For the Random Forest classification in Figure 3C and Figure S3-2, the data was prepared 

and balanced as described above, and the forest contained 1000 trees for each classifier. The 

maximum number of features considered for finding the best split was chosen to be √𝑛𝑛, with n 

being the number of features considered, i.e. for smaller time bins where the number of features is 

higher as described above, more features would be considered for each split.  

For the Naïve Bayes classification (Figure 3C and S3-2), Gaussian distribution of the 

features was assumed and for each classifier only the 10% of features with the highest H-scores 

(from Kruskal-Wallis test) were used.  

 

LFP-phase analysis (Figure 4A and S4-1): 

 

LFP channels that corresponded to references or were noisy (standard deviation, std, either 

lower than 1/4 of the mean std or 4 times higher than the mean std) were removed. The LFP trace 

considered for a given cluster was the average of 10 LFP channels that were at least 8 sites away 

in both directions from the center of the cluster (i.e. the site with maximum amplitude) whose 

phase was analyzed, generally consisting of five sites above and below the center of the site (but 
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if the center was too close to the edge of a block of recorded channels, the 10 channels used to 

average could be split unequally, e.g. 8 sites above and 2 sites below for a cluster near the bottom 

of a block). The LFP from 3 s before to 3 s after the delay period was filtered in the 5 to 12, or 15 

to 30 Hz (FIR filter), but only the delay period itself was considered for phase analysis. The phase 

of the oscillation of a frequency band was determined by calculating the angle of the Hilbert 

transform. Periods in which the resulting phase was not monotonically increasing between peaks 

were rejected (mean time rejected per delay period, across animals and both frequency bands: 206 

ms, maximum time rejected: 1.322 s, out of 3-3.2 s total) and spike times were mapped onto phases. 

For each cell the spike phases from all delay periods were divided into three classes, corresponding 

to the currently remembered goal. The length of the mean phase (resultant vector length) was 

computed as a measure of preferred firing phase for each cell and class. To test whether firing 

phase contained any information about the remembered goal location, the labels (remembered goal 

1, remembered goal 2 or remembered goal 3) of delay periods were shuffled and the distribution 

of resultant vector lengths were compared to the one from the actual labels (Figures 4A, middle 

and S4-1). In a separate approach (Figure 4A, right), the phases of all spikes were binned into 2, 6 

or 12 bins, corresponding to the number of spikes that were elicited in a particular phase bin (e.g. 

one of the bins for the 2-bin case included phases from -90 to 90 deg). All phase bins for each cell 

were concatenated and used as features for a logistic regression classifier trained on all but one 

test trial and tested on that trial (i.e. leave-one-out). To account for differences in total valid 

duration of each delay period (which could be less than the full duration due to the existence of 

periods with non-monotonically increasing phase), the counts in each bin in each delay period 

were divided by the total valid duration of that delay period. To account for differences in overall 

spike rate, these adjusted counts were normalized by subtracting the mean and dividing by the 

standard deviation over all delay periods for a given feature. 

 

Covariance analysis (Figure 4B and S4-2): 

 

Covariance was analyzed using the method described in Barbosa et al. (Barbosa et al., 

2020) and the associated code at https://github.com/comptelab/interplayPFC. The following 

adaptations were made to fit our experimental data. Only cells that were significantly modulated 

at the sample goal location (i.e. different for different goals) were included in the analysis. A cell’s 
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‘preferred goal location’ was the one where it had the highest firing rate. Only pairs of neurons 

that shared the same preferred goal location were considered for analysis. 

As in Barbosa et al. (Barbosa et al., 2020), spikes for all trials were binned in 10 ms bins 

and shuffled in steps of 50 ms. The cross-covariance was calculated for each shuffle (1000) and 

the mean subtracted from each trial to remove any dynamics faster than 50 ms. The resulting (jitter-

corrected) cross-covariance was taken to be the mean of the 3 bins around the 0-lag bin. In the case 

of the single time point analysis the full delay period was considered (3 or 3.2 s). For the time 

resolved version in Figure S4-2 bottom, time windows of 1 s were used and cross-covariance was 

repeatedly calculated in steps of 50 ms. An ‘excitatory pair’ of neurons was considered as such if 

the sign of the mean jitter-corrected covariance was positive both for the preferred and non-

preferred trials and conversely considered an ‘inhibitory pair’ if the sign was negative for both. 

Pairs with inconsistent signs were discarded. The sign was calculated separately for the delay 

period only and the extended delay period in Figure S4-2 for the time resolved version (-2 s to 5 

s, with 0 being the beginning of the delay period).  

This procedure resulted in the following numbers of total pairs/excitatory/inhibitory for the 

full delay period: rat 1: 288/67/67, rat 2: 339/88/82, rat 3: 232/61/59.  

For the time resolved version these numbers were: rat 1: 288/72/59, rat 2: 339/72/84, rat 3: 

232/62/66.  

The cross-correlation selectivity index (CCSI) (Barbosa et al., 2020) for the excitatory pairs 

was the mean difference of the cross-covariance in preferred and non-preferred trials, and similarly 

for the inhibitory pairs. The numbers of preferred and non-preferred trials were matched (by 

randomly subsampling the non-preferred trials).  

 

t-distributed stochastic neighbor embedding (t-SNE) – analysis (Figure 5C and S5): 

 

For t-SNE embeddings, firing rate population vectors from all delay periods (correct trials), 

the period 0-3 sec after goal arrival in the sample phase, and activity during crossing of the bridge 

after the delay period (crossing time: 0.28 s on average) in the test phase were embedded in 2-

dimensional space according to Maaten and Hinton (Maaten and Hinton, 2008); perplexity was set 

to 35 and the learning rate to 100. Ten embeddings were calculated for each data set and the 

embedding with the lowest Kullback-Leibler divergence between data and embedding is shown. 
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The overall structure of embeddings was stable over multiple runs and a range of perplexities and 

learning rates. Hyperparameters were kept constant when the embeddings were calculated 

separately for subareas. 
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Supplemental Figures 

 
Figure S2-1. Representations are distinct and stable at goals. 

(A) The average firing rate population vector at each goal (first 3 s after arrival) over the first 5 

visits in the sample phase was calculated and each was correlated with the single visit population 

vectors of all following trials during the sample phase. The correlation coefficient was generally 

higher and at a similar level over the duration of recording sessions (90 - 135 min) for the current 

goal location. (B) Sample and test goal decoding at goal. Left: SVM decoding confusion matrix 

for one animal (binwidth: 750 ms); Middle: decoding performance for goal when at goal 

(regardless of phase, light blue) and trial phase (regardless of which goal, gray) for all animals at 

a range of binwidths. Note that both the identity of the goal as well as the trial phase in which it is 

visited can be decoded. Reward amount is smaller in sample than in test phase, which may 

contribute to the difference between test and sample phase activity at the goal. However, activity 

exhibits similarities at each goal across sample and test phases; Right: Decoding of goal identity 

as in Middle, but here the ability to predict the goal the animal is at is based on a classifier trained 

on data from the respective other task phase, thus assessing the overlap of goal representation 

during sample and test phases. Decoding accuracy was just as high as in the task phase-mixed 

classifier (Middle), suggesting no interference between task phase representation and spatial 

location code. 
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Figure S2-2. Goal-location-specific representations are not maintained in the delay period for 

any subarea. 

Same analysis as in Figure 2C, right, but for subareas of prefrontal cortex separately: correlation 

scores for remembered goal location at different temporal binwidths (mean and 95% CI). 

Remembered goal location could not be decoded in any subarea.   
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Figure S3-1. Single-cell firing rate analysis for individual animals.  

Left Top: Example 200 ms-binned activity and test of significant encoding by single cell × bin 

(bottom). Middle Top: List of potential encoding schemes (analogous to Figure 3). Bottom: 

Corresponding fraction of cell × bins with Kruskal-Wallis p-value < 0.05 (light gray, dark gray: 

FDR corrected). Note that for all animals a fraction of cell × bins encoded the current start position 

but not the maintained goal location.  
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Figure S3-2. Population decoding for all cells independent of selection criteria. 

Summary of 3-class classification of delay period activity using different methods using all cells 

recorded (same as Figure 3C but without stability selection criteria (see methods) and including 

interneurons; logistic regression (LR), SVM, random forest (RF), Naïve Bayes after feature 

selection (NB)). Means across all animals and 95% CIs are shown.  
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Figure S4-1. Phase analysis for individual animals.  

Same as Figure 4A left and middle but for rat 1 and rat 2.  
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Figure S4-2. Covariance analysis for individual animals.  

Top: CCSI for the full delay period for individual animals (mean and 95% CI). Bottom. Time 

course of CCSI (in sliding 1 s windows) for individual animals. Gray shaded area depicts the delay 

period. Green: inhibitory pairs. Orange: excitatory pairs. Plotted are means and 95% CIs. Green 

and orange horizontal segments represent centers of individual windows where the mean 

covariance differed for preferred and non-preferred trials; however, the CCSIs for the full delay 

period above (and pooled across animals in Figure 4B) show that there is no overall significant 

relationship between excitatory or inhibitory neuron pair covariances and the current goal in the 

delay period.  
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Figure S5. t-SNE analysis for each animal and subarea. 

Same as Figure 5C but for cells belonging to ACC, prelimbic cortex, and infralimbic cortex 

separately. Only cells with stable firing rates were considered (see methods). Numbers of cells for 

each subarea as in Figure S2-2. Red rectangle: same as shown in Figure 5C. 

 
 

 

Movie S1. 

Video showing three consecutive trials of animal performing the task. 
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