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Abstract 

Although multisensory integration is crucial for sensorimotor function, it is still unclear how 

sensory cues provided by the visual and proprioceptive systems are combined in the brain during 

motor behaviors. Here we characterized the effects of multisensory interactions on local field 

potential (LFP) activity obtained from the superior parietal lobule (SPL) as non-human primates 

performed an arm position maintenance task with either unimodal (proprioceptive) or bimodal 

(visual-proprioceptive) sensory feedback. Based on previous analyses of spiking activity, and 

observations that LFP and spikes are highly correlated in some cortical areas, we hypothesized 

that evoked LFP responses would be tuned to arm location but would be suppressed on bimodal 

trials, relative to unimodal trials. We also expected to see a substantial number of recording sites 

with enhanced beta band spectral power for only one set of feedback conditions, as was previously 

observed for spiking activity. We found that evoked activity and beta band power were tuned to 

arm location at many individual sites, though this tuning often differed between unimodal and 

bimodal trials.  At the population level, both evoked and beta band activity were consistent with 

feedback-dependent tuning to arm location, while beta band activity also showed evidence of 

suppression on bimodal trials. The results suggest that multisensory interactions can alter the 

tuning and gain of arm position-related LFP activity in the SPL and that this activity can be used 

to decode the arm’s location under varying sensory conditions. 

Keywords: Vision, Proprioception, Cue Integration, Reaching  
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Introduction  

Multisensory (or multimodal) integration (MSI) is crucial for sensorimotor function, 

particularly when estimating the state of the body (i.e. the position and velocity of relevant body 

segments) and planning movements. Combining multiple sensory cues provides a means of 

overcoming inherent noise in the sensory systems and reduces uncertainty in state estimates 

(Ernst and Bülthoff, 2004). This has been demonstrated across a variety of behavioral domains 

including target localization, object recognition, navigation, and limb movement (Giard and 

Peronnet, 1999; Ernst and Banks, 2002; Battaglia et al., 2003; Sober and Sabes, 2003; Bremmer, 

2005; Morgan et al., 2008). For example, during reaching movements, visual and proprioceptive 

cues are thought to be combined with hand position and velocity estimates derived from 

efference copies of motor commands and a forward model to form estimates of hand location 

that are less biased and more precise (Wolpert et al., 1995; Van Beers et al., 1996). 

However, it is still unclear how sensory cues are combined in the brain. Seminal 

neurophysiological studies of subcortical neurons by Stein and colleagues quantified the degree 

of enhancement or suppression of neuronal firing rates arising during MSI (Stein and Meredith, 

1993; Wallace and Stein, 1997; Jiang et al., 2001). These studies helped establish the well-

known principles of inverse effectiveness (i.e., greater enhancement for weaker stimuli) and 

superadditivity (i.e. multisensory responses greater than the sum of unimodal responses) (for 

review see: Stein and Stanford, 2008). Although these early studies emphasized responses to 

weak unimodal stimuli, and therefore multisensory enhancement of spiking activity, more recent 

investigations of the cerebral cortex suggest subadditivity (including suppression) may be more 

common (Sugihara et al., 2006; Avillac et al., 2007; Morgan et al., 2008; Kayser et al., 2010; Shi 

et al., 2013) .  Importantly, suppression of activity under bimodal conditions has been shown to 
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be associated with greater information transmission (Kayser et al., 2010) and improved decoding 

accuracy (Shi et al., 2013).  Moreover, a network level divisive normalization model has been 

developed that can account for the empirical principle of inverse effectiveness and observed sub- 

and superadditivity (Oshiro et al. 2011) and probabilistic population codes predict subadditive 

(suppressed) neural responses during Bayesian integration of sensory cues (Ma et al., 2006). 

More recent work indicates that MSI may manifest in the brain through other mechanisms 

as well. For example, changes in neuronal spike timing or variability have been observed during 

multisensory interactions (Kayser et al., 2010; Koehler et al., 2011; Shi et al., 2013; Chabrol et al., 

2015; VanGilder et al., 2016) and local field potentials (LFPs) have been shown to exhibit both 

multisensory enhancement and suppression. For example, in non-human primates, LFPs are either 

enhanced or suppressed depending on the temporal congruency and type of facial and vocal 

expressions of conspecifics (Ghazanfar, 2005). Similarly, enhancement or suppression of LFPs 

can occur depending on whether audio-visual cues are derived from conspecifics, other animals, 

or artificial sources. (Kayser et al., 2008). Modulations of spectral power within specific frequency 

bands of EEGs and LFPs during multisensory processing have also been observed (Belitski et al., 

2010; Sarko et al., 2013; Engel et al., 2007, 2012).  Regarding visual-proprioceptive interactions 

specifically, although effects of these interactions on spike rates and spike timing have been 

previously described (Graziano et al., 2000; Shi et al., 2013; VanGilder et al., 2016), little 

information exists regarding the effects of such multisensory interactions on LFPs. 

We have previously characterized multisensory interactions in a population of neurons in 

the superior parietal lobule (SPL) as non-human primates performed an arm position 

maintenance task with unimodal (proprioceptive) or bimodal (visual-proprioceptive) sensory 

feedback (Shi et al., 2013; VanGilder et al., 2016).  Our rationale for focusing on activity related 
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to position maintenance rather than movement was that multisensory interactions should be more 

amenable to study under quasi-static rather than highly dynamic conditions.  Moreover, study of 

the neural substrates and mechanisms of arm position maintenance have been relatively ignored, 

despite evidence that they may only partially overlap with those involved in movement (Brovelli 

et al., 2005; Shadmehr, 2017).  Regarding effects of multisensory interactions, we found that, 

relative to unimodal conditions, neuronal firing rates were largely suppressed under bimodal 

conditions, consistent with subadditive multisensory interactions. Some neurons also exhibited 

beta (13-30Hz) oscillatory spiking under only one set of sensory conditions (unimodal or 

bimodal), while others did so under both conditions. In the current study, we examined LFPs 

recorded during the same experiments. For our previous analyses of spike times, we focused on 

the beta band due to the prevalence of strong oscillatory activity in this range in posterior parietal 

areas during various tasks (Buneo et al., 2003; Joelving et al., 2007; Witham and Baker, 2007) 

and its reported role in  linking large-scale cortical networks during the maintenance of 

sensorimotor state (Brovelli et al., 2004; Engel and Fries, 2010).  We hypothesized that patterns 

of enhancement and suppression observed in spiking activity would be reflected in evoked LFP 

responses, i.e. these responses would be suppressed on bimodal trials relative to unimodal trials. 

In addition, we expected to see modulations of LFP power in the beta band that mirrored those 

observed in the spike spectra, i.e. beta power would be enhanced at individual recording sites 

under one or both sets of conditions.  
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Methods 

Experimental Subjects and Paradigm   

All experimental and veterinary care procedures were approved by the Arizona State 

University Institutional Animal Care and Use Committee and conducted according to the U.S. 

Public Health Service Policy on Humane Care and Use of Laboratory Animals (Public Law 99–

158) and the Guide for the Care and Use of Laboratory Animals (National Academy Press, 

1996). Environmental social enrichment, housing, and feeding procedures also conformed to 

institutional standards, which are AAALAC International accredited. 

We have described the experimental paradigm and apparatus in previous reports but 

provide an overview here (Shi et al., 2013; VanGilder et al., 2016). Briefly, two rhesus macaques 

(‘X’ and ‘B’) were trained to make reaching movements within a semi-immersive 3D virtual 

reality environment displayed on a 3D monitor and projected onto a mirror in their fields of 

vision. The monkeys made center-out reaches to eight peripheral targets and maintained their 

hand location at these targets with or without visual feedback. The mirror blocked the view of 

each monkey’s actual arm, but visual feedback of hand location was provided as a spherical 

cursor within the virtual environment. An active motion tracking system (Phoenix Technologies 

Inc.) monitored arm movements via LED markers placed on each monkey’s wrist. Eye 

movements were tracked using a remote optical tracking system (Applied Science Laboratories, 

Inc.). At the start of each trial, an animal had to align the arm cursor with the starting location, 

which appeared as a green sphere presented in the center of the virtual workspace. Once this 

location had been maintained for 500ms (baseline period), one of the peripheral reach targets 

was pseudorandomly presented, serving as the “go” cue to begin the reach (movement period). 

When the peripheral target was acquired, an animal performed a saccade back to the starting 
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location. This began the “static holding period,” where the animal maintained its hand location at 

the peripheral target while fixating at the starting location for 800-1200ms. During the static 

holding period, visual feedback of the arm cursor was allowed on half the trials (bimodal (B) 

condition) and removed on the remainder (unimodal (U) condition). Spherical behavioral 

windows with radii ranging from 2-2.4 cm surrounded the reach targets and a behavioral window 

with a radius of ~6.5° of visual angle surrounded the fixation point. Trials were deemed 

successful if the animals acquired both the reach targets and fixation point and maintained 

position within these windows for the remainder of the trial. Animals completed five (5) 

successful trials to each target in both sensory conditions and target locations were 

pseudorandomly varied on a trial-by-trial basis. 

Data Acquisition  

We analyzed evoked LFP responses from 173 recording sites (97 from monkey X, and 73 

from monkey B) located within the superficial cortex of the superior parietal lobule (area 5). 

Note that this is less than the number of recording sites reported in Shi et al. (2013) and 

VanGilder et al. (2016) due to technical issues that corrupted the signals at some sites. LFPs 

were recorded acutely using varnish-coated tungsten microelectrodes (~1-2MΩ at 1kHz). LFPs 

were separated from the spike data after amplification by low-pass filtering at 300Hz and were 

sampled at 1kHz before saving to disk with the associated behavioral data (Multichannel 

Acquisition Processor, Plexon Inc.). 

Data Analysis 

All analyses were conducted in MATLAB (MathWorks, Natick, MA). For all statistical 

analyses, an alpha of 0.05 was used.  
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Evoked Potentials   

LFP data underwent two stages of preprocessing. The Chronux toolbox (Bokil et al., 

2010, http://chronux.org) was used to remove line noise and slow voltage fluctuations caused by 

electrical transients that may cause a slow “drift” of the signal. Line noise was removed using 

Thomson’s regression method to detect and remove 60Hz sinusoids and any harmonics from the 

data (Jarvis and Mitra, 2001; Bokil et al., 2010). A sliding-window linear regression procedure 

was used to remove the slow voltage drift wherein a least-squares trend line was fit to the signal 

within each successive temporal window. Subsequently, the best fitting trend lines in each 

window were then weighted and combined to estimate the slow fluctuation, which was then 

removed from the data signal. 

To examine the effects of hand location and sensory condition on evoked responses, the 

filtered LFP signals were first aligned to the start of the holding period. For each hand location, 

the mean LFP response for each trial and sensory condition was squared, and then averaged over 

the holding period time window. The square root of this quantity (RMS) was then compared 

across final hand locations and sensory conditions (Liu and Newsome, 2006; O’Leary and 

Hatsopoulos, 2006). Specifically, a two-way ANOVA (factors: hand location, sensory condition) 

was used to assess the effects of sensory condition and reach direction on the mean evoked LFP 

response at individual recording sites during the baseline, movement, and holding periods. 

Using the same framework from previous experiments (Stein et al., 1989; Shi et al., 

2013) an enhancement/suppression index was also computed for the evoked LFP responses 

obtained at each site. First, a preferred hand location was determined.  Following convention 

used in previous studies, the preferred location was defined as the hand location with the largest 

trial-averaged evoked response in the U condition (O’Leary and Hatsopoulos, 2006; Shi et al., 
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2013).  Next, LFP responses were averaged across trials for the preferred hand location for both 

B and U conditions. Enhancement/suppression indexes (I) were computed as follows: 

 

INDX1 = 
𝐵𝑝𝑒𝑎𝑘_𝑈−𝑈𝑝𝑒𝑎𝑘_𝑈

𝑈𝑝𝑒𝑎𝑘_𝑈
∗ 100  (Eq. 1) 

where B and U refer to the trial-averaged evoked responses for the preferred hand locations (as 

defined by the U condition). For this index, positive values indicate enhancement and negative 

values indicate suppression of LFP responses under bimodal conditions.  Suppression or 

enhancement was considered to be statistically significant based on the result of the ANOVA 

performed on the RMS values.  We also calculated a second index (INDX2) to account for the 

possibility that some enhancement/suppression might arise from differences in tuning between 

the two conditions:  

INDX2 = 
𝐵𝑝𝑒𝑎𝑘_𝐵−𝑈𝑝𝑒𝑎𝑘_𝑈

𝑈𝑝𝑒𝑎𝑘_𝑈
∗ 100  (Eq. 2) 

We also analyzed population-level differences in the evoked responses. For this, evoked 

responses were first normalized by baseline activity then averaged across trials and recording 

sites for the preferred location in both conditions.   For these analyses, a nonpreferred location 

was also determined and was defined as the hand location with the lowest trial-averaged evoked 

response in the U condition. T-tests were used to determine if the evoked responses differed 

between B and U conditions, and between preferred and nonpreferred locations for each 

condition. 
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Spectral Analysis 

Temporal structure in the LFPs was analyzed using the multitaper spectral estimation 

technique. For each trial, we used 9 data tapers and a time-bandwidth parameter of 5, providing a 

spectral resolution of 6.25Hz.  For each recording site, trial-averaged power spectra with jackknife 

error bars were computed for each reach direction/hand location and condition. At the population 

level, spectra for each recording site were normalized by the average baseline power (-500-0 ms 

prior to target onset) before averaging across sites. Population spectra error bars were derived from 

the jackknife standard error across recording sites. All analyses were performed using custom 

MATLAB programs supplemented by the Chronux toolbox (Bokil et al., 2010) for multitaper 

spectral analyses.    

We also analyzed the average LFP spectral power within each of the following frequency 

bands: delta (0-4Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (30-90 Hz). 

As with the evoked responses, for each recording site a two-way ANOVA (reach direction, 

sensory condition) was conducted to assess the effects of reach direction/hand location and 

sensory condition on the power in a given band.  At the population level, T-tests were used to 

test for differences between population spectra associated with each sensory condition, as well as 

between preferred/nonpreferred locations for each condition. 

 

Results 

Behavior  

Analyses of behavioral data were previously reported (Shi et al., 2013) but will be 

summarized here. The experimental paradigm maximized the likelihood that final arm locations 

would be the same during both B and U conditions of the task. This was to ensure that any 
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observed changes in neural responses could be interpreted as resulting from interactions between 

sensory cues and not differences in endpoint locations. Mean endpoint locations and variances 

along the horizontal, vertical and depth axes did not differ significantly between sensory 

conditions, suggesting that during the static holding period, hand location was largely identical in 

the two conditions. The results of the current study were interpreted within this context.  

 

Time Domain 

Results of a two-way ANOVA 

(factors: sensory condition and hand 

location/movement direction) on the mean 

evoked LFP responses recorded at individual 

sites during the baseline, movement, and 

holding periods are summarized in Table 1. 

baseline movement hold

hand location 3% 33% 25%

condition 6% 5% 9%

interaction 2% 2% 3%

Results of two-way ANOVA on 

evoked responses

Table 1 Summary of two-way ANOVA on baseline, 

movement, and hold epochs.  Numbers represent 

percentages of recording sites (n=173) that showed 

significant effects (p<0.05). 
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 Main effects of hand 

location were common 

during the 800-ms static 

holding period, though at a 

smaller number of sites 

(43/173; ~25%) than during 

the movement period 

(57/173; ~33%). Figure 1 

shows the LFP evoked 

responses at an exemplary 

recording site that 

demonstrated significant 

effects of hand location during the holding period. The voltage traces for both sensory conditions 

were largely similar at each hand location, though there were clear differences among the 

responses at the eight target locations.  Looking at the central polar plot, mean LFP evoked 

potentials were greater for hand locations up and to the left of the starting location, with a maximal 

response at 135º.  

Although only a relatively small percentage of individual recording sites (~9%) exhibited 

statistically significant effects of sensory condition during the holding period by ANOVA, an 

analysis of multisensory enhancement/suppression indexes (INDX1; Eq. 1) calculated at each 

recording site revealed that activity during B trials was generally suppressed relative to activity on 

Figure 1 Evoked LFP responses at a recording site with only significant effects 

of hand location during the holding period. Each panel corresponds to one of the 

8 reach targets.  Trial averaged responses (with bootstrap error bars) aligned to 

reach target acquire are shown.  Grey box corresponds to the static holding period 

(0.4-1.2s) after target acquire. 
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U trials.Error! Reference source not found. 

Figure 2 shows a bar graph of these indices for 

all recording sites. For the preferred hand 

location, over 87% had a negative index value 

(mean index value= -20.6), indicating activity 

was largely suppressed during B trials relative 

to U trials.  Importantly, INDX1 reflects 

differences in activity between conditions at 

the preferred location defined by the U 

condition. Thus, this index assumes that tuning was identical in the two conditions. If this was not 

the case, then some of the observed suppression could reflect differences in spatial tuning to hand 

location rather than differences in the sensory conditions themselves.  When tuning was compared 

between conditions at individual sites, differences were common: 123 recording sites (71%) had 

different tuning for the two sensory conditions. Since reaches were directed to 8 discrete targets 

locations, tuning differences between conditions were quantified as relative distance between 

preferred locations, with a mean of 2.14 targets locations. 

Figure 2  Multisensory interaction indices (INDX1) for 

evoked responses during the holding period.  Red bars 

indicate recording sites that exhibited statistically 

significant effects of sensory condition (ANOVA, p<0.05). 
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To account for the effects of tuning changes on 

multisensory enhancement/suppression, we also 

calculated a second index that was based on the preferred 

location in each sensory condition (INDX2). Here, 

suppression was not as common nor as strong (mean 

index value = -13.8), though activity was still suppressed 

at a majority of recording sites during the B condition 

(not shown).  Nevertheless, this suggests that many 

individual sites demonstrated differences in activity 

between conditions that could have reflected a 

combination of tuning differences and multisensory 

response suppression or just tuning differences alone. 

Tuning differences, multisensory suppression or 

a combination of the two effects lead to different 

predictions regarding population level analyses focused 

on the preferred direction. For example, Figure 3 shows 

idealized tuning curves for hand location for both 

conditions (Georgopoulos et al., 1984; Todorov, 2002; 

Lalazar et al., 2016).  Four scenarios are illustrated. In Figure 3A, the curves exhibit tuning 

differences between conditions without attenuation of responses in the B condition, i.e. without 

multisensory suppression. The bar plots to the right show the expected differences in activity when 

the preferred location for the U condition (PLU) is used to compare responses as well as when the 

preferred location for the B condition (PLB) is used.  Under this scenario, differences in activity at 

Figure 3 Idealized cosine-tuning curves for 

hand location in the presence and absence of 

multisensory suppression and/or tuning 

changes.  Cosine tuning functions were 

assumed based on (Georgopoulos et al., 

1984) (see also (Lalazar et al., 2016).  A: 

Shift in tuning with no suppression.  B: 

Suppression without tuning changes.  C: 

Suppression combined with small tuning 

changes. D: Suppression combined with 

large tuning changes.  See text for details. 
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the preferred location are expected to be equivalent in magnitude but opposite in sign for the two 

comparisons. For the scenario illustrated in Figure 3B, tuning is assumed to be identical for the 

two conditions but with suppression of response magnitude in the B condition. Here, differences 

in response magnitudes are expected to be 

equivalent in magnitude and sign for 

comparisons based on both PLU and PLB. In 

Figure 3Error! Reference source not found.C 

and Figure 3D, combinations of tuning 

differences and bimodal suppression are shown. 

In these scenarios, differences in response 

magnitudes for the two comparisons are 

nonequivalent in magnitude with signs that 

depend on the difference in tuning. For small 

differences in tuning, signs are expected to be 

the same (Figure 3C), while for larger 

differences they are expected to differ (Figure 

3D). In conclusion, condition-dependent 

differences in activity can be distinguished from 

differences in tuning by comparing the magnitude 

and sign of response differences between PLU 

sorted and PLB sorted datasets, a strategy that was 

employed in the analysis of our population evoked potentials and spectra. 

Figure 4  Mean population evoked responses for both 

sensory conditions and hand locations (preferred and 

non-preferred).  Data are aligned to target acquire (t=0).  

The grey box (04.-1.2s) corresponds to the 800-ms 

static holding period. A: Responses when the U 

condition was used to define preferred location.  Inset: 

means and standard deviations over the entire holding 

period.  B: Responses when the B condition was used. 
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Figure 4 shows the population evoked responses for PLU sorted (A) and PLB (B) sorted 

datasets.  Activity for both sensory conditions and hand locations (preferred and nonpreferred) are 

shown.  Generally speaking, LFP activity prior to movement onset (~ -0.4s) was indistinguishable 

between sensory conditions and hand locations. During the subsequent movement period, the 

temporal profiles for each sensory condition were largely similar for their respective reach 

directions, though response magnitudes differed between directions (as expected). Although 

responses were sorted into preferred or nonpreferred based on activity during the holding period, 

these earlier differences in magnitude indicate that the evoked LFPs were also strongly modulated 

by movement direction (see also Table 1).  Notably though, no differences between sensory 

conditions were observed prior to or during movement. 

Near the start of the static holding period (Fig. 4, grey boxes) differences in evoked 

responses due to movement direction and sensory condition became apparent. The divergence of 

activity between the U and B conditions at the start of the holding period is notable because it is 

the only part of the task where the sensory feedback conditions differed, i.e. visual information 

about arm location was only available until the start of the holding period in the U condition. 

Previous analyses established that the distributions of hand locations were largely similar between 

conditions during this period of the task (Shi et al., 2013), thus the differences in LFP activity seen 

here could be attributed to differences in sensory condition, differences in tuning, or both (as 

previously discussed).  For the PLU sorted data (Fig. 4A), evoked activity for the preferred hand 

location differed significantly between U and B conditions during the holding period (t test, 

p<0.05), with activity for the B condition appearing suppressed with respect to the U condition.  

For the nonpreferred hand location, activity also differed between conditions during the holding 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.11.293365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.293365


period (t test, p<0.05) with activity during the B condition appearing greater (less negative) than 

that in the U condition.   

For the PLB sorted data (Fig. 4B), the opposite trends were observed.  That is, although 

activity also differed significantly between the U and B conditions for both the preferred and non-

preferred locations (t tests, p<0.05), activity in the B condition appeared greater than activity in 

the U condition for the preferred location and was more negative in the nonpreferred location.   

When the unsigned differences in activity between conditions were compared statistically between 

PLU sorted and PLB sorted datasets, no significant differences were found (t tests, p<0.05).  Thus, 

at the population level, evoked responses were largely consistent with scenario A in Fig. 3, 

indicating differences in activity between conditions reflected mainly differences in tuning and not 

multisensory suppression. 
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Frequency Domain 

Previous results from this area showed that during the maintenance of static arm positions, 

the spike trains of many neurons were strongly oscillatory in the beta band (13-30Hz),  though 

modulation of spike timing within other frequency bands was observed as well (VanGilder et al., 

2016).  As a result, in the present study we analyzed the delta, theta, alpha, beta, and gamma bands 

of the LFP during the holding period. Figure 5 shows example single site LFP power spectra for 

the preferred hand location. Spectra obtained 

during the baseline period (black) are 

superimposed on spectra obtained during the 

holding period for both sensory conditions. The 

shapes of the holding period spectra seen in this 

figure were typical, with the greatest power being 

concentrated at the lower frequencies and with a 

notable ‘bump’ in the beta band. Importantly, 

power in the lower frequency bands (delta, theta, 

alpha, beta) generally increased during the 

holding period relative to that in the baseline 

period, regardless of sensory condition or final 

hand location.  Nevertheless, power in these 

frequency bands was modulated by sensory 

condition and/or hand location at some sites, as 

described below.  

Figure 5 Trial averaged LFP power spectra (with 

jackknife error bars) for the holding and baseline 

periods at a single site.  Power was enhanced relative 

to baseline during the holding period from frequencies 

less than ~30 Hz. 
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As with the evoked potentials, 

a two-way ANOVA was used to 

quantify the effects of sensory 

condition and final hand location at 

individual recording sites. Table 2 

summarizes the ANOVA results for each frequency band and task condition. Responses across 

recording sites were largely similar between sensory conditions and hand locations, with many 

sites having no main effects of either factor, especially in the delta, theta, and alpha bands. Hand 

location generally had a greater influence on spectral power than did sensory condition during the 

holding period, particularly at higher frequencies (beta and gamma), where approximately 20% of 

the sites showed statistically significant effects. The numbers of sites with statistically significant 

effects of sensory 

condition were more 

evenly distributed across 

frequencies. 

Figure 6 shows 

the power spectra for an 

example recording site 

that showed main effects 

of hand location in the 

beta and gamma bands. 

At this site, beta power 

was tuned for hand 

delta theta alpha beta gamma

hand location 8% 6% 12% 21% 24%

condition 6% 6% 6% 6% 5%

interaction 3% 2% 2% 5% 3%

Results of two-way ANOVA on LFP spectra

Figure 6 Trial-averaged LFP spectra (with jackknife error bars) from a single 

recording site that showed main effects of hand location in the beta and gamma bands 

during the holding period.  Spectra were averaged across trials.  Blue traces are B 

trials, red traces are U trials.  Spectral power is in log units.  Central polar plot is based 

on  mean power in beta band. 

 

Table 2 Summary of two-way ANOVA on baseline, movement, and hold 

epochs.  Numbers represent percentages of recording sites (n=173) that 

showed significant effects (p<0.05). 
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locations down and to the left of the starting position, i.e. for movements that were directed to 

targets at 225°. However, no observable differences in power between sensory conditions were 

observed for this frequency band. This was confirmed by ANOVA, which showed a statistically 

significant effect of hand location (F=9.46, p<0.05), but no main effect of sensory condition 

(F=0.21, p=0.65) nor interaction effects (F=0.29, p<0.96). Interestingly, at this site power in the 

lower frequencies was not tuned to direction but tended instead to show effects of the sensory 

conditions.  For example, power in the alpha band was not tuned to final hand location (F=1.02, 

p=0.43) but did differ significantly between sensory conditions (F=5.85, p<0.05), being stronger 

for the U condition.  No significant interaction effect was found (F=0.59, p=0.77).  Thus, when 

effects of the sensory conditions were observed at single sites they were not necessarily coupled 

to effects of location/direction but could independent of such effects.  

As with the evoked activity, even 

though only a relatively small percentage of 

individual recording sites (6%) exhibited 

statistically significant effects of sensory 

condition on beta power during the holding 

period, multisensory enhancement/suppression 

indexes (INDX1) for the preferred hand 

location indicated that beta band power was 

generally suppressed on B trials relative to power 

on U trials. Figure 7 shows a bar graph of these 

indices for all recording sites. Over 86% of the sites had a negative index value (median index 

value= -20.45), indicating that beta power was generally greater on U trials than B trials.  To assess 

Figure 7  Multisensory interaction indices (Eq. 1) for 

beta power during the holding period.  Red bars 

indicate recording sites that exhibited statistically 

significant effects of sensory condition (ANOVA, 

p<0.05). 
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the extent to which tuning differences between 

conditions might have played a role in this apparent 

suppression, we also calculated multisensory 

enhancement/suppression indices using Eq. 2 

(INDX2).  As with the evoked responses we found 

that when using this index suppression was not as 

common nor as strong (median index value = -

3.45), suggesting that differences in beta power at 

many sites reflected either a combination of tuning 

differences and multisensory suppression or tuning 

differences alone. 

Figure 8 shows the population averaged 

spectra during the holding period for PLU sorted 

(Figure 8A) and PLB sorted (Figure 8B) datasets.  

Activity for both sensory conditions and the 

preferred hand location (based on beta power) are 

shown.  Spectra were normalized by baseline power 

before averaging. As observed previously, power during the holding period was largely 

concentrated in the lower frequency bands, with the greatest power being observed in the delta 

range of frequencies. Power in the theta and alpha frequencies dropped sharply before rising again 

during the beta band – consistent with the beta bump seen in the single site spectra (Figure 5 & 

Figure 6).  

Figure 8 Population spectra for all recording sites in the 

B (blue) and U (red) conditions during the holding period 

for the preferred direction.  Error bars are jackknife error 

bars.  The grey box indicates the beta band (13-30 Hz). 

A: Spectra when the U condition was used to define 

preferred location.  Inset: means and standard deviations 

of the power over the beta band.  B: Spectra when the B 

condition was used. 
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For the PLU sorted data (Figure 8A), power in the beta band differed significantly between 

U and B conditions during the holding period (t test, p<0.05), with activity for the B condition 

appearing suppressed with respect to the U condition.  Power also differed significantly between 

the U and B conditions for the PLB sorted data (Figure 8B; t test, p<0.05), but in this case power 

in the B condition was greater than activity in the U condition.   Critically, and in contrast to the 

evoked potentials, unsigned differences in beta power between conditions differed between the 

PLU and PLB sorted datasets (t tests, p<0.05).  Thus, at the population level, beta power was largely 

consistent with scenario D in Fig. 3, indicating that differences in power between conditions 

reflected both differences in tuning and an overall attenuation of responses in the B condition 

(multisensory suppression). 

 

Discussion 

Here we examined the effects of bimodal (visual-proprioceptive) interactions on LFP 

signals recorded at multiple sites in the SPL as non-human primates performed an arm position 

maintenance task. Based on previous work from our lab and observations that LFPs and spikes are 

highly correlated in several cortical areas (Pesaran et al., 2008; Denker et al., 2011; Banerjee et 

al., 2012; Esghaei et al., 2017), we hypothesized that evoked LFP responses would be modulated 

by multisensory interactions in a manner similar to spiking activity (Shi et al., 2013).  That is, we 

expected that evoked responses would be attenuated on bimodal trials (B) relative to those on 

unimodal (U) trials. We also expected to see modulations of LFP spectral power that mirrored 

those observed for spiking activity (VanGilder et al., 2016), i.e. for individual sites beta power was 

expected to increase during arm position maintenance but for only one set of feedback conditions. 
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We found that the effects of multisensory interactions on LFP activity (evoked and beta 

band) were dependent in part upon the criteria used to define preferred hand location. When 

activity on U trials was used to define the preferred location, multisensory interactions appeared 

to result predominantly in suppression. However, when activity for both types of trials was used, 

suppressive effects weakened or reversed sign at many individual sites. At the population level, 

differences in evoked activity between conditions appeared to result largely from feedback-

dependent tuning to hand location. However, for beta band power, effects were more consistent 

with multisensory suppression superimposed upon feedback-dependent tuning differences. This 

suggests that different aspects of arm position maintenance (spatial location vs sensory feedback 

signals available for position) are coupled within the frequency domain representations of LFP 

activity in the SPL and can be potentially be decoded to extract the current location of the limb, 

regardless of sensory conditions.  

Multisensory suppression 

In the time-domain, evoked activity was suppressed on B trials in a manner similar to spiking 

activity (Shi et al., 2013), both in degree and in the extent to which tuning differences contributed 

to this apparent suppression.   Previous work has shown that LFP activity and spiking activity are 

highly correlated in several cortical areas (Siegel et al., 2009; Whittingstall and Logothetis, 2009; 

Ray and Maunsell, 2011; Khodagholy et al., 2015), though the precise nature of the relationship 

between these signals remains controversial (Ray, 2015; Pesaran et al., 2018; Watson et al., 2018).  

For example, although many studies have assumed that LFPs and spikes represent separate 

components of extracellular signals, a recent study of the medial temporal area MT showed that 

LFP activity peaks later than, is partially predicted by, preceding spiking activity, suggesting that 

modulations of lower frequency LFPs are an epiphenomena of local spiking (Esghaei et al., 2017).  
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However, the extent to which local spiking contributes to LFPs may be brain area- and brain state–

dependent (Pesaran et al., 2018), thus the precise nature of the relationship between spikes and 

LFPs in the PPC during arm position maintenance remains equivocal and a potential focus of future 

studies. 

For the frequency-domain, we expected to see enhanced beta band spectral power at individual 

sites for only one or both sets of feedback conditions, as was previously observed for spiking 

activity (VanGilder et al., 2016). This was not generally observed – instead we found that enhanced 

beta power was ubiquitous across recording sites regardless of sensory condition and final hand 

location.  Moreover, few individual sites showed effects of sensory condition on beta power, 

though at the population level multisensory suppression of this enhanced beta band activity was 

observed.  What mechanism could account for the prevalence of feedback-independent 

enhancement of LFP beta power, but site and feedback-dependent enhancement of beta power in 

spiking activity? One possible explanation relates to differences in connectivity patterns of neurons 

within a given cortical area.  Cortical areas receiving strong sensory inputs are thought to contain 

multiple interconnected subnetworks of neurons that may be selectively responsive to sensory 

features (Harris and Mrsic-Flogel, 2013). However, all ionic processes (such as transmembrane 

synaptic inputs) contribute to the  extracellular electrical field (Buzsáki et al., 2012; Einevoll et 

al., 2013). Thus in a given cortical area, the spiking activity of individual neurons may be 

dependent on their subnetwork-specific responses to selective task conditions, whereas the LFP 

signal reflects the activity of any of the overlapping subnetworks engaged by a task.  Furthermore, 

spiking activity is dependent on the unique biophysical properties of the neurons within a particular 

subnetwork, and this may influence which neurons are ultimately entrained by oscillatory synaptic 

input (Wilson et al., 2018). 
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One of the overriding principles of MSI, based on numerous behavioral and computation 

studies, is that that sensory cues are weighed according to their relative reliabilities in a given 

context (Fetsch et al., 2013).  The experiments described here did not systematically alter the 

reliability of either visual or proprioceptive inputs, thus it is difficult to determine the extent to 

which the suppression of beta band activity at the population observed here can be attributed to 

bottom-up, stimulus-driven processes.  However, MSI is influenced not only by relative signal 

reliabilities but also top-down attentional processes (Choi et al., 2018; Keil and Senkowski, 2018; 

Limanowski and Friston, 2020).  Effects of bottom up versus top down processes on MSI have 

been observed to be frequency dependent, with bottom-up processing being reflected in frequency 

bands greater than 30 Hz (e.g. gamma band), and top-down processing reflected in lower bands 

such as beta (Siegel et al., 2012; Keil and Senkowski, 2018).  Specific effects such as enhancement 

or suppression however may also be task and area/network dependent.  For example, in an audio-

visual congruence task, Friese et al (2016) found that attention led to increased gamma band 

activity but decreased beta-band activity in early sensory cortex areas (Friese et al., 2016).   

Effects of endogenous attention on MSI have particular relevance to the current results.  

The data reported here were obtained from recordings of the superficial cortex of the SPL, an area 

that is believed to be strong proprioceptive inputs from primary somatosensory areas (Cavada and 

Goldman‐Rakic, 1989; Andersen et al., 1990; Caminiti et al., 1996).  On U trials, beta band LFP 

was elevated relative to that on B trials.  This could reflect the fact that in order to maintain position 

under these conditions, animals needed to strongly attend to signals provided by the proprioceptive 

(and motor) systems.  On B trials, where vision was also available for position monitoring, 

attention to proprioception was likely not as critical.  Thus, the reduction in beta activity could 

reflect an attention-driven shift in the balance of activation among cortical areas involved in 
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position monitoring, from those that are more dominantly proprioceptive to those that are more 

visual in nature (Limanowski and Friston, 2020).  

Feedback-specific differences in directional/positional tuning 

Evoked activity and beta band power were tuned to arm location at many individual sites 

and at the population level, consistent with evidence that the SPL in primates is involved in the 

multisensory representation of arm position (Graziano et al., 2000; Lloyd et al., 2003; Pellijeff et 

al., 2006; Shi et al., 2013; VanGilder et al., 2016) and arm postural control (Lacquaniti et al., 1995; 

Wolpert et al., 1998; Pellijeff et al., 2006; Parkinson et al., 2010).  Critically, however, tuning to 

hand location often differed between unimodal and bimodal trials.  Tuning is not currently believed 

to be a static feature of neural responses, as tuning curves of individual neurons can change as a 

function of time, learning, attention, and differences in kinematics/dynamics, among other factors 

(Donoghue et al., 1998; Li et al., 2001; Paz and Vaadia, 2004; Sergio et al., 2005; Churchland and 

Shenoy, 2007; Hatsopoulos et al., 2007; Jarosiewicz et al., 2008; Stevenson et al., 2011).   In the 

current experiments, animal’s performed a task on which they were highly trained, thus it is 

unlikely that learning related factors contributed strongly to condition-dependent tuning 

differences.  In addition, data were analyzed during the same ‘holding’ epoch for both conditions, 

and neither mean arm position nor position variability differed between conditions.  Although it is 

conceivable that, due to the kinematic redundancy of the arm, different arm configurations were 

used for the same location in the two conditions, these differences were likely slight, thus it is also 

unlikely that biomechanical factors contributed strongly to tuning differences between conditions.  

Lastly, it’s unlikely that the tuning changes observed here were due to temporal factors, as the 

conditions were run concurrently and were randomly interleaved on a trial by trial basis.  This 
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suggests that multisensory interactions altered the tuning properties of some sites (and neurons 

(Shi et al. 2013)) in the SPL on very short time scales in these experiments. 

What could account then for the observed differences in tuning between sensory 

conditions?  As discussed above, attention-driven shifts in the balance of activation among cortical 

areas could be responsible for the multisensory suppression of beta band activity observed here, 

thus the notion that tuning differences were also drive by attention is certainly plausible.  Another 

possibility is that differences in tuning could reflect context-dependent encoding of hand position 

(Buneo and Andersen, 2006; Buneo and Soechting, 2009).   That is, in the absence of continuous 

and reliable visual feedback (e.g., for movements generated in the dark or following long delays 

without feedback) hand location is determined largely by proprioceptive feedback (and/or forward 

modeling) and is therefore likely to be encoded in a body-centered frame of reference.  In contrast, 

when the hand is visible, hand location could be remapped from body to eye-centered coordinates, 

or be encoded in both reference frames simultaneously.  Evidence from previous studies focusing 

on the SPL and dorsal premotor cortex are consistent with the idea that arm movement and posture 

related variables can be encoded in multiple frames of reference simultaneously(Buneo et al., 

2002; Pesaran et al., 2006; Buneo and Andersen, 2012), thus it is conceivable that a similar 

phenomenon underlies the feedback-specific tuning observed here.  
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