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Abstract 25 

Tissue clearing methods allow every cell in the mouse brain to be imaged without physical 26 
sectioning. However, the computational tools currently available for cell quantification in cleared 27 
tissue images have been limited to counting sparse cell populations in stereotypical mice. Here 28 
we introduce NuMorph, a group of image analysis tools to quantify all nuclei and nuclear 29 
markers within the mouse cortex after tissue clearing and imaging by a conventional light-sheet 30 
microscope. We applied NuMorph to investigate a Topoisomerase 1 (Top1) conditional 31 
knockout mouse model with severe brain structure deficits and identified differential effects of 32 
Top1 deletion on cortical cell-types and structures that were associated with spatial patterns of 33 
long gene expression. These tools are applicable for the study of 3D cellular level structural 34 
deficits in brains from other animal models of neuropsychiatric disorders.  35 

Introduction 36 

The mammalian cortex is composed of a diverse assembly of cell-types organized into complex 37 
networks, which function together to enable complex behaviors (Harris et al., 2019; Tasic et al., 38 
2018; Zeisel et al., 2015). Disruption of cortical cytoarchitecture, either by genetic or 39 
environmental perturbation, can lead to altered brain function and create risk for 40 
neuropsychiatric disorders (Shin Yim et al., 2017; Stoner et al., 2014). A common approach for 41 
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studying the mechanisms by which genetic variation increases risk for neuropsychiatric 42 
disorders is through the use of genetically modified animal models in a WT/KO experimental 43 
design. In order to observe the causal effects of disorder relevant genes on structure-function 44 
relationships, genetic tools can be applied to activate or silence genes in specific cell-types 45 
(Tsien et al., 1996) by imaging cellular organization through fluorescence microscopy.  One 46 
critical goal in such experiments is to determine if the number of cells of a given type are altered 47 
by these genetic risk factors throughout different brain structures. However, a common limitation 48 
in imaging experiments done at cellular resolution is that they are restricted to  anatomical 49 
regions of interest by physical sectioning which prevents the detection of region-specific effects. 50 
This becomes a particular issue for the cortex, one of the largest structures in the brain (Wang 51 
et al., 2020), where heterogeneity between cortical areas is often unmeasured by standard 52 
methods. 53 
 54 
In order to image the entire brain without physical sectioning, tissue clearing methods render 55 
biological specimens transparent while preserving their 3 dimensional structure. Cleared tissues 56 
can then be rapidly imaged using light-sheet microscopy as plane illumination improves 57 
acquisition rates by 2-3 orders of magnitude compared to point scanning systems while also 58 
limiting the effects of photobleaching (Richardson and Lichtman, 2015; Ueda et al., 2020). Great 59 
strides have been made in the development of clearing protocols that are compatible with 60 
immunolabeling and the design of complementary sophisticated imaging systems (Matsumoto 61 
et al., 2019; Murray et al., 2015; Park et al., 2018; Susaki et al., 2020). Yet challenges still 62 
remain in expanding the accessibility of these technologies to research labs for quantitative 63 
analysis at cellular resolution.  64 
 65 
For example, many of the current imaging protocols for whole brain profiling require custom light 66 
sheet systems to image tissues at cellular resolution (Fei et al., 2019; Matsumoto et al., 2019; 67 
Pende et al., 2018; Tomer et al., 2014; Voigt et al., 2019). These systems are therefore 68 
inaccessible to those lacking the expertise or resources required to assemble the necessary 69 
microscope components. Expanding tissues during the clearing process is a potential 70 
workaround that can increase the effective spatial resolution allowing for interrogation of 71 
subcellular structures without the need for custom imaging solutions (Chen et al., 2015; Gao et 72 
al., 2019; Ku et al., 2016; Murakami et al., 2018). However, expanded tissues can fall outside of 73 
the working distance of conventional microscope objectives and require prolonged imaging 74 
times with significantly larger data storage resources. Therefore, computational tools designed 75 
for conventional light sheet microscope users are needed to compare cell counts in a WT/KO 76 
design. 77 
 78 
With over 100 million cells in a mouse brain and image sizes of tissue cleared brain 79 
approaching terabytes, advanced image analysis tools are needed to achieve accurate cell 80 
quantification. Current segmentation methods for tissue cleared brain images apply a threshold 81 
for nuclear staining intensity and filter objects with a predefined shape, size, and/or density 82 
(Renier et al. 2016; Matsumoto et al. 2019; Fürth et al. 2018). However, variations in cell size, 83 
image contrast, and labeling intensity can all lead to inaccurate counts. In addition, whole brain 84 
images are  typically registered to a standard reference, such as the Allen Reference Atlas 85 
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(ARA), to assign cell locations to their corresponding structural annotations. Thus far, image 86 
registration has been performed mostly on stereotypical mice and has not been designed for 87 
mouse models with significant changes in gross morphology. With these limitations, the 88 
computational tools currently available have not been fully adopted for studying cellular 89 
organization in mouse models.  90 
 91 
To address these issues, we developed a group of image analysis tools called NuMorph 92 
(Nuclear-Based Morphometry) (available here: https://bitbucket.org/steinlabunc/numorph/) for 93 
end-to-end processing to perform cell-type quantification within the mouse cortex after tissue 94 
clearing and imaging by a conventional light-sheet microscope. To demonstrate the 95 
effectiveness of the tool, we applied and evaluated NuMorph to quantify structural changes in a 96 
mouse model with strong differences in cortical structure, a topoisomerase I (Top1) conditional 97 
knockout (Top1 cKO) mouse model that exhibits clear reductions in both cortical size and 98 
specific cell types (Fragola et al., 2020). Our results reveal cell-type and structure specific 99 
effects caused by Top1 deletion and demonstrate the broad applicability of our analysis tools for 100 
studying severe brain structure phenotypes in combination with tissue clearing methods. 101 

Methods 102 

Animals 103 

Top1 conditional knockout mice (Neurod6Cre/+::Top1fl/fl , Top1 cKO) were bred by crossing 104 
Top1fl/fl mice (Mabb et al., 2016) with the Neurod6Cre  mouse line (Jackson Laboratory) 105 
(Goebbels et al., 2006) as described previously (Fragola et al., 2020). All animal procedures 106 
were approved by the University of North Carolina at Chapel Hill Institutional Animal Care and 107 
Use Committee. Mice were maintained on a 12-hr dark/light cycle and housed at temperatures 108 
of 18-23°C, 40-60% humidity, and ad libitum food and water. Genomic DNA extracted from tail 109 
or ear samples was utilized for genotyping by PCR. Primers for gene amplification are as 110 
follows (listed 5’-3’): Top1-F: GAGTTTCAGGACAGCCAGGA, Top1-R: 111 
GGACCGGGAAAAGTCTAAGC; Cre-F: GATGGACATGTTCAGGGATCGCC, Cre-R: 112 
CTCCCATCAGTACGTGAGAT. Male P15 Top1 cKO were used for tissue clearing experiments 113 
along with WT (Neurod6+/+::Top1fl/fl) littermate controls. 114 

Tissue Clearing & Immunolabeling 115 

Tissue clearing was performed on 4 WT and 4 Top1 cKO according to the iDISCO+ protocol 116 
(Renier et al., 2016). Briefly, P15 mice were fixed via transcardial perfusion using 4% 117 
paraformaldehyde and whole brain samples were dissected and cut along the midline. As the 118 
effects of Top1 deletion on gross structure were bilateral upon visual inspection, only the left 119 
hemisphere was used in clearing experiments and analysis. Samples were then washed in 120 
phosphate-buffered-saline (PBS), dehydrated in a graded series of methanol (Fisher, A412SK), 121 
pretreated with 66% dichloromethane (Sigma- Aldrich, 270997)/methanol and 5% H2O2 122 
(Sigma-Aldrich, H1009)/methanol, followed by rehydration, permeabilization (20% dimethyl-123 
sulfoxide, Fisher, BP2311; 1.6% Triton X100, Sigma-Aldrich, T8787; 23mg/mL Glycine, Sigma-124 
Aldrich G7126), and blocking with 6% goat serum (Abcam, ab7481). Samples were then 125 
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incubated with antibodies for Cux1 (Santa Cruz, sc-13024-Rb, 1:200) and Ctip2 (Abcam,  126 
ab18465-Rt, 1:500) for 5 days at 37°C in PTwH buffer (PBS; 0.5% Tween-20, Fisher, BP337; 127 
10mg/L Heparin, Sigma-Aldrich, H3393) . After 2 days of washing with PTwH, samples were 128 
then incubated with TO-PRO-3 (Thermo Fisher, T3605, 1:300), goat anti-rat Alexa Fluor 568 129 
(Thermo Fisher, A11077, 1:200), and goat anti-rabbit Alexa Fluor 790 (Thermo Fisher, A11369, 130 
1:50) for an additional 5 days at 37°C. Samples were then washed for 2 days with PTwH, 131 
dehydrated again using a graded methanol series, incubated in 66% dichloromethane/methanol 132 
for 3 hours, followed by a 30 minute incubation in 100% dichloromethane before storing in a 133 
dibenzyl ether solution (RI = 1.56, Sigma-Aldrich, 108014) at RT. Tissue clearing and antibody 134 
labeling required 21 days to complete.  135 

Light-Sheet Imaging 136 

Imaging of cleared brain samples was performed using the Ultramicroscope II (LaVision Biotec) 137 
equipped with MVPLAPO 2X/0.5 NA objective (Olympus), sCMOS camera (Andor), and 138 
ImSpector control software. The zoom body was set to 2.5x magnification (yielding 1.21 139 
μm/pixel) and a single light sheet was used with NA = 0.085 (9 μm thickness/ 4 μm z-step) as 140 
this showed increased axial resolution for cell nuclei compared to using multiple light sheets. 141 
Dynamic horizontal focusing using the contrast enhanced setting in ImSpector was used to 142 
ensure axial resolution was maintained along the width of the image using the recommended 143 
number of steps depending on the laser wavelength. In addition, images were partially cropped 144 
by ~20% around the edges to a region of interest at the center (~2100x1800 pixels) to limit 145 
radial aberrations at the corners of the field of view due to the camera lens tube. Samples were 146 
positioned sagittally with the cortex surface facing the single illuminating light-sheet (Figure 147 
S1D). This prevented excessive light scattering and shadowing from affecting the image quality 148 
in the cortical regions. Individual channels were acquired for tiled positions in a row-major order 149 
using 561nm (Ctip2), 647nm (ToPro), or 785nm (Cux1) laser lines. The 785nm channel was 150 
imaged first for the entire hemisphere. After refocusing the objective, the 561nm/647nm 151 
channels were then captured sequentially for each stack at a given tile position. Using these 152 
settings, WT mouse hemispheres were acquired using a 4x4 tiling scheme with 15% overlap (5-153 
7 hours per channel) while Top1 cKO hemispheres were acquired using a 3x3 tiling scheme (3-154 
4 hours per channel) due to their significantly reduced size. 155 

Computing Resources 156 

All data processing was performed locally on a Linux workstation running CentOS 7. The 157 
workstation was equipped with an Intel Xeon E5-2690 V4 2.6GHz 14-core processor, 8 x 64GB 158 
DDR4 2400 LRDIMM memory, 4 x EVGA GeForce GTX 1080 Ti 11GB GPU, and 2 x 4TB 159 
Samsung EVO 860 external SSDs. Hot swap bays were used to transfer data from the imaging 160 
computer to the analysis workstation. 161 

Image Preprocessing 162 

Image preprocessing consists of all the necessary steps to prepare acquired raw images for 163 
image registration and cell quantification. All preprocessing steps were performed using custom 164 
written MATLAB R2020a scripts included in NuMorph and are described below. 165 
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Intensity Adjustments   166 
Two types of image intensity adjustments were performed on raw images prior to image 167 
stitching to increase accuracy of subsequent processing. First, uneven illumination along the y 168 
dimension (perpendicular to the light path) of each 2D image caused by the Gaussian shape of 169 
the light sheet was corrected using a MATLAB implementation of BaSiC, a tool for retrospective 170 
shading correction (Peng et al., 2017). We used 10% of all images, excluding tile positions 171 
around the cerebellum, to estimate a flatfield image for each channel. Each image was then 172 
divided by the flatfield prior to alignment and stitching to correct for uneven illumination. Second, 173 
differences in intensity distributions between image tile stacks, primarily as a result of 174 
photobleaching and light attenuation, were measured in the horizontal and vertical overlapping 175 
regions of adjacent tiles. To ensure bright features were of equal intensity between each stack, 176 
we measured the relative difference (𝑡!"#) in the 95th percentile of pixel intensities in 177 
overlapping regions from 5% of all images. The measured image intensity 𝐼$%!& at tile location 178 
(𝑥, 𝑦)was then adjusted according to: 179 
 180 

 𝐼!"#(𝑥, 𝑦) 	= 	 (𝐼$%!&(𝑥, 𝑦) − 𝐷) ∗ 𝑡!"#(𝑥, 𝑦) + 𝐷 181 
 182 
where 𝐷is the darkfield intensity (set as a constant value based on the 5th percentile of pixel 183 
intensities in all measured regions). 184 

Image Channel Alignment  185 
As image channels are acquired one at a time, subtle drift in stage and sample positions during 186 
imaging may result in spatial misalignment between the reference nuclei channel and the 187 
remaining immunolabeled markers in a multichannel image. We tested two image registration 188 
approaches to ensure robust alignment across image channels. The first approach estimates 189 
2D slice translations to align the immunolabeled channel images to the nuclear channel image. 190 
The axial (z) correspondence between the nuclei channel and every other channel within an 191 
image stack of an individual tile is first estimated using phase correlation at 20 evenly spaced 192 
positions within the stack. The correspondence along the axial direction with the highest image 193 
similarity (based on intensity correlation) determines the relative tile z displacement between 194 
channels (up to 50 μm in some cases). xy translations are then determined after multimodal 195 
image registration for each slice in the tile stack using MATLAB’s Image Processing toolbox. 196 
Outlier translations, defined as x or y translations greater than 3 scaled median absolute 197 
deviations within a local 10 image window in the stack, were corrected by linearly interpolating 198 
translations for adjacent images in the stack. In our data, outlier translations often occur in 199 
image slices without any sample present where the lack of image contents limits registration 200 
accuracy. 201 
 202 
While a rigid 2D registration approach is sufficient for channel alignment when samples are 203 
securely mounted, sporadic movement of some samples during long imaging sessions can 204 
result in not only shifting translation but also rotational drift. In these cases, performing 205 
registration relying solely on translation will result in only part of the target image aligning 206 
correctly to the nuclei reference at a given z position with the remaining misaligned target 207 
features appearing in z positions immediately above and/or below (Figure S1B). To correct for 208 
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these displacements, we applied a nonlinear 3D registration approach using the Elastix toolbox 209 
(Klein et al., 2010) between channels for each individual tile. Full image stacks were loaded and 210 
downsampled by a factor of 3 for the x/y dimensions to make the volume roughly isotropic and 211 
reduce computation time. Intensity histogram matching was then performed and a mask was 212 
identified for the nuclei reference channel using an intensity threshold that limits sampling 213 
positions in the background. Next, an initial 3D translational registration is performed on the 214 
entire image stack between the reference and the remaining channels. The stack is then 215 
subdivided into smaller chunks of 300 images and rigid registration is performed on each chunk 216 
to account for 3D rotation and achieve a more accurate initial alignment within local regions of 217 
the full stack. Finally, a nonlinear B-spline registration is performed on each chunk using an 218 
advanced Mattes mutual information metric to account for xy drift along the z axis and ensure 219 
precise alignment of image features. B-spline transformation grid points were set to be sparser 220 
along xy compared to z (800x800x8 voxels) as this setting well balances accurate alignment 221 
with computational cost while also preventing local warping of background intensities. To 222 
maintain consistency and ensure accurate alignment in all images, the non-rigid alignment 223 
method was used for all samples prior to downstream analyses. 224 

Iterative Image Stitching  225 

A custom 2D iterative stitching procedure was used to assemble whole brain images at high 226 
resolution. First, an optimal pairwise z correspondence along the axial direction was determined 227 
for adjacent tile stacks by exhaustive image matching for the horizontally and vertically 228 
overlapped candidate regions. Specifically, a sample of 10 evenly spaced images were taken 229 
within a stack and registered to every z position within a 20 image window in the adjacent stack 230 
using phase correlation. The displacement in z with the highest count of peak correlations 231 
among the 10 images was presumed to represent the best z correspondence. The difference in 232 
correlation between the best and the 2nd best z displacement was used as a weight for the 233 
strength of the correspondence, with a larger difference representing a stronger 234 
correspondence. This resulted in 4 matrices: pairwise horizontal and vertical z displacements 235 
and their corresponding weights. To determine the final z displacement for each tile, we 236 
implemented a minimum spanning tree (Kruskal, 1956) using displacements and their weights 237 
as vertices and edges, as previously implemented (Chalfoun et al., 2017).   238 
 239 
An intensity threshold to measure the amount of non-background signal was determined by 240 
uniformly sampling 5% of all images and calculating the median intensity. The starting point for 241 
iterative stitching going up/down the stack was selected at a z position with non-background 242 
signal (set to 1 standard deviation above the darkfield intensity) present in all tiles. Translations 243 
in xy were calculated using phase correlation and further refined using the Scale Invariant 244 
Feature Transform (SIFT) algorithm (Lowe, 2004). The top left tile was set as the starting point 245 
for tile placement for each stitching iteration. This ensures stitched images would not be shifted 246 
relative to each other along the z axis. Tiles were blended using sigmoidal function to maintain 247 
high image contrast in overlapping regions. Spurious translations, defined as translations 248 
greater than 5 pixels in x or y from the previous iteration, in images that lacked image content 249 
were replaced by translation results from the previous iteration. 250 
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Image Registration to ARA Using Point Correspondence 251 

Volumetric image registration was performed using Elastix to measure the correspondence 252 
between the stitched TO-PRO-3 channel in the tissue cleared samples and the Nissl-stained 253 
Allen Reference Atlas (ARA) (Dong, 2008; Lein et al., 2007). The atlas and corresponding 254 
volume annotations from Common Coordinate Framework v3 were downloaded using the Allen 255 
Software Development Kit (SDK) (https://allensdk.readthedocs.io/) at 10 μm/voxel resolution. In 256 
each registration procedure, the ARA was downsampled to 25 μm/voxel resolution to perform 257 
registration and the resulting transformation parameters were rescaled and applied to the  258 
annotation volume at the native 10 μm/voxel resolution.  259 
 260 
For registration without point guidance, an affine followed by B-spline transformation sequence 261 
was applied along 3 resolution levels to each sample using advanced mattes mutual information 262 
(MMI) as the sole metric to estimate spatial correspondence (as done previously in (Renier et al. 263 
2016). For points-guided registration, we first manually placed 200 landmarks within both the 264 
ARA and our to-be-registered nuclei reference image, using the BigWarp plugin in Fiji (Bogovic 265 
et al., 2016). The majority of points were located within or around the cortex, as this was our 266 
region of interest and contained the largest deformations in the Top1 cKO samples (Figure S4). 267 
The same set of reference point coordinates in the ARA were selected for each sample and 268 
used as input points in Elastix for affine and B-spline registration along 3 resolution levels. 269 
Estimates of spatial correspondence for points-guided registration was driven by a hybrid metric 270 
based on (1) minimizing the point distances between two images and (2) maximizing the voxel-271 
wise image similarity between two images which is measured by mattes mutual information 272 
(MMI). For affine registration, voxel-wise similarity (based on MMI) was ignored and only points 273 
distance was used to estimate global translation, rotation, and scaling transformations. For B-274 
spline registration, we gradually increased the influence of voxel-wise  similarity in the hybrid 275 
metric during the registration sequence from coarse to fine resolution (1:0.2, 1:0.4, 1:0.6; 276 
MMI:Point Distance weight). The inverse of the final transformation parameters was then 277 
calculated using a displacement magnitude penalty cost function (Metz et al., 2011) and applied 278 
to the Allen Mouse Brain Common Coordinate Framework v3 annotation volume to assign 279 
anatomical labels for each voxel in the native sample space. While a more direct approach 280 
would be to register the ARA to the sample, we found that registering the sample to the ARA 281 
and calculating the inverse achieved slightly higher accuracy in Top1 cKO brains (data not 282 
shown). For WT samples, we registered directly to the ARA without point guidance as we found 283 
this produced similar accuracy but slightly higher consistency in structure volumes between 284 
samples (Figure S3).  285 
 286 
To evaluate registration accuracy, 3D masks of the entire isocortex were manually labeled for 287 
each sample in Imaris (Bitplane) using the 3 acquired channels as markers to delineate cortex 288 
boundaries. Some cortical subplate structures, such as the claustrum, were included in the final 289 
mask as these were difficult to distinguish from the isocortex. The DICE similarity score was 290 
then calculated between each mask and all cortical structures in the registered annotation 291 
volume (Figure 2B) as a metric of registration accuracy. 292 
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Cortical Volume, Surface Area, and Thickness Measurements 293 

Quantitative measurements for the volume, surface area, and thickness of 43 cortical areas 294 
defined in (Harris et al., 2019) and the full isocortex were calculated based on registered 295 
annotation volumes. The voxel sums (at 10 um3/voxel) represent the total volume of each 296 
structure. To calculate volumetric displacement for each sample relative to the Allen atlas, the 297 
spatial Jacobian was measured for each set of transformation parameters, which ranges from -1 298 
to 1, and represents voxel-wise local compression or expansion. Surface area for the isocortex 299 
was calculated based on MATLAB’s implementation of Crofton’s formula (Lehmann and 300 
Legland, 2012). The fraction of layer 1 boundary voxels over all boundary voxels was used to 301 
determine the area of only the outer cortical surface. This measurement was then further 302 
partitioned by the number of layer 1 boundary voxels for each individual structure. To calculate 303 
thickness, the center of mass for layer 1 and layer 6b were first calculated for each structure. A 304 
cubic spline was then fit to pass through the center of mass of the full volume and the 2 border 305 
voxels nearest to layer 1 and 6b centroids. Thickness was then measured based on the arc 306 
length of each spline. Average cortical thickness was weighted by the volume contribution of 307 
each structure.  308 

Nuclei Detection 309 

Imaging data for training the 3D-Unet model was acquired from 3 separate imaging experiments 310 
of TO-PRO-3 labeled nuclei across 5 different regions from the cortex of 2 WT brains. Images 311 
were captured at 0.75x0.75x2.5 μm/voxel for training a high resolution model or 1.21x1.21x4 312 
μm/voxel for training a low resolution model. A binary approximation of the nucleus volume was 313 
initially pre-traced using the cell detection component of the CUBIC-informatics pipeline 314 
(Matsumoto et al., 2019). Specifically, the thresholded Hessian determinant after Difference-of-315 
Gassian filtering was used to create an initial 3D mask of all nuclei in the image. Full images 316 
were then divided into patches of 224x224x64 voxels and preprocessed using min/max 317 
normalization. The corresponding 3D mask for each nucleus was reduced to its 2D component 318 
at the middle z position. Each patch was then manually inspected and corrected for 319 
segmentation error or incorrect shapes using BrainSuite v17a (Shattuck and Leahy, 2002) by 1 320 
rater (OK) to reduce person-to-person variability. The corrected 2D nuclei masks were then 321 
eroded by removing 40% of the outer edge pixels. Each patch was then subdivided into 4 322 
smaller patches of 112x112x32 voxels, with 1 out of the 4 patches being withheld for the 323 
validation set. The full dataset (training + validation) contained 16 patches at 224x224x64 324 
voxels for both the high (14,554 nuclei) and low resolution (53,993 nuclei) models. Nuclei at the 325 
edge of an image stack were also included in the training. Manually labeled data are available at 326 
https://braini.renci.org/ using the Download Image service. 327 
 328 
A modified 3D-Unet architecture (Çiçek et al., 2016; Isensee et al., 2018) was used to identify 329 
the positions of cell nuclei in whole cortex images. We built upon and modified a previous Keras 330 
implementation of 3D-Unet for volumetric segmentation in MRI 331 
(https://github.com/ellisdg/3DUnetCNN) to detect binary masks of cell nuclei positions. As 332 
originally described (Isensee et al., 2018), the 3D-Unet architecture contains a series of context 333 
modules during the contracting path that encodes abstract representations of the input image, 334 
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followed by a series of localization modules on the upscaling path to localize the features of 335 
interest (Figure S4A). We similarly used a model with 5 context modules, residual weights, and 336 
deep supervision in the localization modules. The network was trained using 32 base filters on 337 
image patches of size 112x112x32 voxels with a batch size of 2. Training presumed over ~300 338 
epochs using an Adam optimizer with a dropout rate of 0.4 and an initial learning rate 0.002 that 339 
was reduced by a factor of 2 for every 10 epochs without the loss improving. Additional image 340 
augmentations were implemented during the training to make the model more generalizable. 341 
These include random image permutations, image blurring and sharpening, the addition of 342 
random noise, and intensity variations along x,y,z dimensions in the image patch. Random 343 
scaling was removed as we found that this decreased model performance.  344 
 345 
Nuclei detection accuracy was evaluated using an independent set of 5 images patches of TO-346 
PRO-3- labeled nuclei where the full 3D volume of each nucleus was fully manually drawn with 347 
a unique index at 0.75x0.75x2.5 μm/voxel resolution (~3,500 nuclei total). Each patch was 348 
sampled from a unique region within 1 WT cortex. Evaluation patches were initially delineated 349 
by 4 raters and further refined by 1 rater to reduce between-person variability. We compared our 350 
3D-Unet detection method with those used in 2 previously published pipelines for tissue cleared 351 
image analysis: ClearMap and CUBIC-informatics (Matsumoto et al., 2019; Renier et al., 2016). 352 
For ClearMap, we used voxel size and intensity thresholds after watersheding, as described in 353 
the published implementation. Parameters for cell size and intensity were scaled accordingly to 354 
achieve the most accurate average cell counting results possible for all the patches tested. 355 
Similarly, intensity normalization and Difference-of-Gaussian scaling parameters used in 356 
CUBIC-informatics were adjusted according to image resolution. Filtering by intensity and 357 
structureness was also performed as described in the previous work (Matsumoto et al., 2019) . 358 
 359 
In our evaluation of nuclei detection, precision is the proportion of nuclei correctly predicted out 360 
of all nuclei predictions in an image patch. Precision is therefore calculated by counting the 361 
number of cells with multiple predicted centroids in 1 manually labeled nucleus volume as well 362 
as false positives cells called in the image background divided by the total number of nuclei 363 
detected and subtracting this number from 1. Recall is the proportion of all nuclei instances that 364 
were predicted. Recall was therefore calculated by counting the number of manually labeled cell 365 
volumes that lacked any predicted cell centroids divided by the total number of cells. The 366 
majority of false negative cases were due to touching nuclei. Nuclei whose centroid were within 367 
3 voxels of the image border were excluded from the evaluation.  368 
 369 
Whole brain TO-PRO-3 images were divided into chunks of 112x112x32 voxels to be fed into 370 
the trained 3D-Unet model for prediction of cell centroids. An overlap of 16x16x8 voxels was 371 
used between adjacent chunks to minimize errors from nuclei at chunk edges. Centroid 372 
positions falling in a region less than half the overlap range (i.e. <8 pixels from xy border or <4 373 
pixels from z border) were assumed to be counted in the adjacent overlapping chunk and were 374 
removed. Additionally, a nearest neighbor search using kd-trees (Bentley, 1975) was performed 375 
to remove duplicate centroids within 1.5 voxels of each other, ensuring centroids in overlapping 376 
regions were not counted multiple times. Increasing overlap did not significantly affect the final 377 
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cell counting results (data not shown). Total computation time for detecting all cortical nuclei in 1 378 
WT brain hemisphere was ~2.5 hours using a single GPU. 379 

Cell-type Classification  380 

To classify cell-types, we took a supervised approach by training a linear Support Vector 381 
Machine (SVM) classifier using MATLAB’s Statistics and Machine Learning Toolbox on a set of 382 
intensity, shape, and annotation features within a 2D patch surrounding each centroid. First, 383 
channel intensities were measured at centroid positions for each channel. Cells with intensities 384 
below the median for both Ctip2 and Cux1 were presumed negative for both markers and 385 
removed from model training and classification (~25% of cells). In the remaining cells, we took a 386 
uniform, random sample of 1,000 cells from each brain image dataset and retained 2D patches 387 
(13x13 pixels) around centroid positions. Manual classification required >1 hour per dataset 388 
using a custom NuMorph function that allows fast navigation between cell patches. For each 389 
patch, we recorded several intensity measurements (max, mean, standard deviation, middle 390 
pixel, middle pixel/edge pixel) and applied Otsu thresholding to capture shape measurements 391 
(total filled area, inner filled area) in each channel. These were also combined with categorical 392 
annotations for cortical layer (L1, L23, L4, L5, L6a, L6b) and cortical area (Prefrontal, Lateral, 393 
Somatomotor, Visual, Medial, Auditory; defined in (Harris et al., 2019). Cells were then manually 394 
classified into 4 classes: (1) Ctip2-/Cux1-, (2) Ctip2+/Cux1-, (3) Ctip2-/Cux1+, (4) Outlier. The 395 
outlier class was annotated according to 4 additional subdivisions due to differences in intensity 396 
features: (1) Ctip2+/Cux1+, (2) Pial surface cell, (3) TO-PRO-3-/Ctip2-/Cux1- (4) Striatal cell 397 
(only present in Top1 cKO from residual registration error near white matter boundary). The 398 
SVM model was then trained using all intensity, shape, and annotation features. Model 399 
accuracy was evaluated using 5-fold cross-validation and applied to the remaining cells for 400 
classification. Due to differences in labeling intensity between samples, we trained a new model 401 
for each sample instead of aggregating annotation data. 402 
 403 
We compared supervised cell classification with an unsupervised approach based on modeling 404 
fluorescence intensities at centroids positions as Gaussian mixtures (GM) for Ctip2 and Cux1. 405 
After Z normalization, high intensity cells (Z > 5 and Z < -5) winsorized and outliers expressing 406 
both markers near the sample edge were removed. GM model fitting was then performed 407 
separately on normalized Ctip2 and Cux1 intensities using 2 or 3 components (whichever had 408 
higher accuracy by visual inspection) for 20 replicates using parameters initialized by k-409 
means++ (David Arthur, 2007).  Due to spatial variation in gene expression, we stratified GM 410 
model fitting to 6 general areas defined in (Harris et al., 2019) according to each cell’s structural 411 
annotation to further improve accuracy. We then calculated posterior probabilities of each cell 412 
being positive for either marker. Cells with a posterior probability greater than 0.5 of not being 413 
background were classified as positive. As the vast majority of neurons do not co-express Ctip2 414 
and Cux1 (Molyneaux et al., 2007), we filtered Ctip2+/Cux1+ cells according to their layer 415 
annotation. Cells in L1-L4 with P(Cux1) > P(Ctip2) were classified as Cux1+ and cells in L5-L6b 416 
with P(Ctip2) > P(Cux1) were classified as Ctip2+. The remaining Ctip2+/Cux1+ cells were 417 
classified as outliers. 418 
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Quantification, Statistical Analysis, and Visualization 419 

Final cell-type counts were summed for each annotation in the cortex according to its structure 420 
tree hierarchy. In our analysis, we chose to compare either 43 cortical areas defined in (Harris 421 
et al., 2019) or a more broad grouping of 16 regions at the previous level in the structure 422 
hierarchy. Statistics, including mean counts, standard deviation, fold change, raw p values, and 423 
false discovery rate (FDR) adjusted p values (Benjamini-Hochberg; FDR < 0.05), were 424 
calculated in MATLAB and exported for plotting using custom R scripts and customized slice 425 
visualization. Structure volumes were also used to calculate cell density statistics. Unless stated 426 
otherwise, descriptive statistics in the main text and error bars in figure plots represent mean ± 427 
standard deviation. 428 

429 
2D slice visualizations were created using a custom MATLAB program based on the 430 
allenAtlasBrowser in the SHARP-Track tool (Shamash et al., 2018). Structure annotations were 431 
downsampled along the anterior-posterior axis to reduce memory overhead for smoother 432 
performance and colored by volume, cell count, or cell density statistics. Additional 433 
visualizations for point clouds and surface volumes were created using custom MATLAB scripts 434 
and are available in the NuMorph package. Additional animations were generated in Imaris 435 
(Bitplane) after importing cell centroid position as “spots” objects. 436 

Spatial Gene Expression Correlation 437 

Fold change in cell counts between WT and Top1 cKO were correlated with spatial gene 438 
expression based on in situ hybridization measurements from the Allen Mouse Brain Atlas (Lein 439 
et al., 2007). Expression grid data from sagittal and coronal sections were downloaded using 440 
the  Allen SDK. Expression energy for each gene was first Z-scored across all brain structures 441 
and cortical regions were retained for analysis. Duplicate sections for the same gene were 442 
combined by taking the mean Z score for each structure across sections. We filtered out any 443 
gene that did not have expression data in all cortical structures and removed genes with Z 444 
scores less than 1 in all structures as these represent genes with consistently low cortical 445 
expression or with low congruence between duplicate sections. For the remaining genes, we 446 
applied a robust sigmoidal transformation as described in (Fulcher and Fornito, 2016) to 447 
account for the presence of outliers in ISH expression data. As certain cortical regions also have 448 
greater cell density and therefore greater total ISH energy, we conducted an additional Z score 449 
normalization across cortical regions to have the same average total gene expression. 450 

451 
To reduce known false positive associations from gene-gene coexpression (Fulcher et al., 452 
2020), we ran comparisons to ensemble-based random null models generated using the Gene 453 
Category Enrichment Analysis toolbox 454 
(https://github.com/benfulcher/GeneCategoryEnrichmentAnalysis). Null distributions were 455 
generated for GO categories containing between 10 and 200 genes by 10,000 random samples 456 
to create a Gaussian distribution estimate of each GO null distribution. In total, we used null 457 
models for 4,186 GO categories based on expression of 10,945 genes across 38 cortical 458 
structures. Correlations between spatial gene expression and relative cell count differences 459 
were tested and corrected for multiple-hypothesis testing using a false discovery rate of 0.05. 460 
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Additional annotations for gene length comparisons were downloaded from Ensembl 461 
(Cunningham et al., 2019). The Spearman correlation between each gene’s expression and cell 462 
count or density differences across cortical regions was measured and binned by gene length 463 
based on the longest isoform for each gene. The mean and standard deviation of all correlation 464 
coefficients in each bin (<100kb or >100kb) was used to compare correlation coefficients 465 
between bins (Welch’s t-test). A list of differentially expressed genes in Top1 cKO cortex as 466 
measured by scRNA-seq was acquired from (Fragola et al., 2020) for additional comparisons.   467 

Data and Code Availability 468 

NuMorph source code is available at https://bitbucket.org/steinlabunc/numorph/. Manually 469 
labeled annotations for 3D-Unet training and raw light-sheet images are available at 470 
https://braini.renci.org/ through the “Download Image” service. 471 

Results 472 

iDISCO+ Reveals Neuronal Cell-type Deficits in the Top1 cKO Cortex 473 

A previous study demonstrated that deletion of Top1 in postmitotic excitatory neurons within the 474 
cortex and hippocampus results in massive neurodegeneration in these structures by postnatal 475 
day 15 (P15) (Fragola et al., 2020). Interestingly, while all cortical layers were affected by Top1 476 
deletion, the lower cortical layers (Layers 5-6) showed a noticeably greater reduction in 477 
thickness and cell count compared to the upper cortical layers (Layers 2-4) (Fragola et al., 478 
2020). These observations however were limited to the somatosensory cortex, which itself is a 479 
large structure that can be further decomposed into multiple functional regions. To evaluate the 480 
effects of Top1 deletion on excitatory neuron cell-types throughout all cortical structures, we 481 
performed iDISCO+ (Renier et al., 2016) to clear and image the Top1 cKO 482 
(Neurod6Cre/+::Top1fl/fl) mouse. We chose to use iDISCO+ among other tissue clearing 483 
techniques due to its demonstrated compatibility with antibody labeling, minimal tissue 484 
expansion or shrinkage, and simplified protocol (Renier et al., 2016). To go beyond qualitative 485 
evaluation, we proceeded to develop cell detection and image registration tools that could 486 
accurately quantify the number of upper layer and lower layer neurons in each cortical region in 487 
Top1 cKO mice (Figure 1A). 488 
 489 
We processed one brain hemisphere from four wild-type (WT) and four Top1 cKO mice at P15 -  490 
when the Top1 cKO had displayed strong, bilateral deficits in brain structure (Fragola et al., 491 
2020). We labeled layer-specific cell-types using antibodies for Cux1 (upper layer neuron 492 
marker) and Ctip2 (lower layer neuron marker) in addition to staining all cell nuclei with TO-493 
PRO-3 (TP3) during iDISCO+ processing. After clearing, samples were imaged using the 494 
Ultramicroscope II - one of the most widely used commercial light-sheet microscopes for 495 
imaging cleared tissues (Cai et al., 2019; Ertürk et al., 2012; Kirst et al., 2020; Liebmann et al., 496 
2016; Pan et al., 2016; Renier et al., 2016; Susaki et al., 2015; Tainaka et al., 2014; Ye et al., 497 
2016). The Top1 cKO hemispheres displayed a noticeable reduction in overall cortical volume 498 
(Figure 1B).  During light-sheet imaging, there is a well known trade off between optical 499 
resolution, particularly in the axial (z) dimension, and imaging speed. While the Ultramicroscope 500 
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II features axial sweeping to maintain relatively even z resolution throughout the field of view 501 
(Dean et al., 2015), the additional mechanical movement of the light-sheet significantly reduces 502 
the imaging rate. After testing various imaging schemes, we imaged at 1.21x1.21x4 (μm/voxel) 503 
resolution with a light-sheet thickness of 9 μm. The resulting images provided sufficient 504 
resolution to visually delineate cell nuclei in the cortex (Figure 1C) while limiting imaging time to 505 
~20 hours for all 3 channels in 1 WT hemisphere (~12 hours for Top1 cKO). 506 

507 
Prolonged imaging of cleared tissue samples can induce several artifacts over the course of 508 
image acquisition. In particular, drift in the sample or aberrant microscope stage movement can 509 
cause misalignment between image tile positions within and between channels. These issues 510 
become more pronounced at higher optical resolution where slight variations can prevent 511 
colocalization of cell nuclei with their respective immunolabeled markers. To ensure correct 512 
alignment between channels, we applied a series of rigid and non-rigid registration steps using 513 
the Elastix toolbox (Klein et al., 2010) to map the Cux1 and Ctip2 channels onto the TO-PRO-3 514 
channel without inducing non-specific local background warping (Figure S1). We also found that 515 
many of the commonly used programs for performing 3D image stitching (Bria and Iannello, 516 
2012; Hörl et al., 2019) did not accurately align adjacent tile stacks due to spurious stage 517 
movement, which has been noted by other groups (Kirst et al., 2020). To ensure accurate image 518 
reconstruction, we applied a simplified iterative 2D stitching procedure that uses scale-invariant 519 
feature transforms (Lowe, 2004) to produce continuous images without cell duplication along tile 520 
edges (Figure S2). Finally, differences in fluorescence intensity caused by light attenuation and 521 
photo bleaching during the course of imaging can result in uneven brightness between image 522 
tile positions. To ensure uniform signal across tiles, we measured the differences in image 523 
contrast in overlapping tile regions to estimate and correct for variations in signal intensity 524 
among tile stacks (Figure S1D). 525 

526 
Completion of the preprocessing steps described above resulted in aligned, fully stitched 3 527 
channel images and datasets <1TB per sample (~360GB for WT and ~170GB for Top1 cKO). 528 
The Top1 cKO hemispheres displayed clear reductions in thickness throughout the cortex 529 
(Figure 1D). While all cortical layers showed some amount of degeneration, Layer 5 and Layer 6 530 
neurons seemed to be more severely depleted (Figure 1E) and we hypothesized that certain 531 
cortical areas may be differentially impacted as well. 532 
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Figure 1.  Cellular Resolution Analysis of Brain Structure Phenotypes for Tissue Cleared 533 
3D Brain Images. 534 
A. Overview of tissue processing, imaging, and image analysis procedures. B. 3D rendering of535 
cell nuclei in WT and Top1 cKO samples. C. Example of TO-PRO-3 (TP3) labeled nuclei within 536 
WT cortex captured at sufficient lateral (xy) and axial (xz) resolution for cell quantification. 537 
D. Sagittal sections of TO-PRO-3 nuclear staining and immunolabeling for cell-type specific538 
markers Ctip2 (lower layer neuron) and Cux1 (upper layer neuron) in WT and Top1 cKO 539 
samples. E. Zoomed in images of boxed cortical areas in D demonstrating channel alignment 540 
and showing the expected localization of upper and lower layer markers. 541 
Scale: 1 mm (B,D), 50 μm (C), 200 μm (E). 542 
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Point Correspondence Improves Image Registration for Structures with Large 543 
Morphological Differences 544 

Because of the significant differences in gross morphology within the Top1 cKO brain, image 545 
registration was not accurate using only intensity-based mutual information metrics (Figure 2A). 546 
To improve registration accuracy of the Top1 cKO brain, we manually selected up to 200 points 547 
at distinguishable structure landmarks in the Nissl stained ARA and their corresponding 548 
locations in the TO-PRO-3 nuclei channel for each sample. Point locations were positioned 549 
primarily around the cortex as this was our region of interest (Figure S3). Using Euclidean point 550 
distances as an additional metric during the registration process significantly improved cortical 551 
annotation when compared to a manually delineated mask (Figure 2A). Increasing the number 552 
of points resulted in higher DICE similarity coefficient scores in Top1 cKO samples (Top1 cKO 553 
MMI, mean = 0.526, s.d. = 0.189; Top1 cKO MMI + 200 Pts, mean = 0.890 s.d. = 0.013) 554 
indicating improvements in registration accuracy (Figures 2B and S3C). These results show that 555 
point correspondence can be used to better register mouse models with large structural 556 
variation. 557 

558 
Using the spatial deformation fields generated after image registration, we analyzed which 559 
areas in the Top1 cKO cortex exhibited the largest changes in volume relative to WT. While the 560 
cortex as a whole showed a large reduction in volume (mean = 80%, s.d. = 3.7%, p < 0.001), 561 
we observed slightly greater decreases in frontal regions, such as the orbitofrontal (ORB) and 562 
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Figure 2. Improved Image Registration Using Corresponding Points Identifies Region-563 
Specific Deficits. 564 
A. Cortical masks from registered WT and Top1 cKO brain images (Magenta) compared with565 
manual labelled traces (Green). Mattes mutual information (MMI) was used as the primary 566 
registration metric with additional point correspondence to guide registration in the Top1 cKO 567 
case. B. DICE scores measuring cortical registration accuracy in WT and Top1 cKO samples 568 
based on the number of points used to guide registration. Measurements with no corresponding 569 
points were made using affine + b-spline registration without a points distance metric. Data 570 
represented as mean ± standard deviation. C. Voxel-wise differences in cortical volumes 571 
between Top1 cKO and WT samples. D. Percent change in cortical region volumes in Top1 572 
cKO samples compared to WT. Dashed line indicates average change in the entire cortex. Data 573 
represented as mean ± SEM. 574 

575 
infralimibic (ILA) areas, as well as certain lateral regions near the temporal association area 576 
(TEa) (Figures 2C and 2D). This suggests that the neuronal cell-types within these structures 577 
may be more susceptible to degeneration upon Top1 deletion. 578 

3D-Unet Accurately Quantifies Cell Nuclei in the Cortex 579 

3D cell segmentation of tissue cleared images can be difficult due to the density of cells in the 580 
brain, limits of imaging resolution, and overall data complexity. Here we implemented a deep 581 
learning model, based on a 3D version of the popular U-Net framework (3D-Unet) (Çiçek et al., 582 
2016; Isensee et al., 2018), to accurately quantify the total number of cell nuclei marked by TO-583 
PRO-3 staining within the cortex. We generated two sets of manually labeled nuclei: (1) For 584 
training, ~67,000 cortical nuclei were manually delineated from 256 training image patches 585 
(112x112x32 voxels/patch) of cortical nuclei at either high (0.75x0.75x2.5 μm/voxel) or low 586 
(1.21x1.21x4 μm/voxel) spatial resolutions. To increase manual delineation efficiency, we 587 
focused only on cell detection by delineating a 2D binary mask at the middle Z position to be 588 
used as a marker for each cell nucleus. (2) For evaluation, an independent set of ~3,500 589 
manually delineated nuclei were used where the full 3D extent of the nucleus was labeled in 590 
order to determine accuracy of predicted centroid placement. Cell marker predictions within 591 
each 3D patch were then thresholded and analyzed for connected components to calculate final 592 
cell centroid positions (Figure 3A). 593 

594 
Using the trained 3D-Unet model, we counted 8.43(± 0.05)x106 cells in the P15 WT cortex 595 
(Figure 3B), which was similar to previously published results in adult mice (Murakami et al., 596 
2018). To evaluate cell detection accuracy, we compared precision and recall rates for detecting 597 
nuclei in the evaluation dataset using 3D-Unet and two previously published analysis tools for 598 
tissue cleared images with cell counting components: ClearMap and CUBIC Informatics 599 
(CUBIC). In our tests, 3D-Unet achieved the highest precision and recall rates in both high and 600 
low resolution images when the full training datasets were used (Figures 3C and 3D). At low 601 
resolution, 3D-Unet achieved significantly lower error rates compared to the next best 602 
performing method (CUBIC) at higher resolution (p = 0.043, CUBIC 0.75/3D-Unet 1.21; p < 603 
0.001, CUBIC 1.21/3D-Unet 1.21; p < 0.001, ClearMap 1.21/3D-Unet 1.21; McNemar’s test). 604 
This indicates that, with sufficient training, deep neural networks can compensate for a lack of 605 
imaging resolution and achieve accurate cell quantification. 606 
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607 
Figure 3. Cell Detection Using 3D-Unet Shows Improved Accuracy Compared to Non-608 
learning Based Methods. 609 
A. Description of 3D-Unet approach for detecting cell centroids (CC3D: 3D Connected610 
Component Analysis). B. Cell centroids of WT cortical nuclei predicted by 3D-Unet. C-D. 611 
Comparison of cell detection precision (C) or recall (D) at the indicated xy resolutions (μm/pixel). 612 
Examples of misclassification instances contributing to false positive errors (C) or false negative 613 
errors (D) are shown above. Data represented as mean ± standard deviation. 614 

615 

Lower Layer Neurons in the Frontal Cortex Are Preferentially Targeted by Top1 Deletion 616 

To quantify neuronal cell-types in WT and Top1 cKO cortexes, we developed a supervised 617 
Support Vector Machine (SVM) model to classify cell-types based on local intensity, shape, and 618 
annotation features. We found that a supervised approach, after training on 1,000 nuclei in each 619 
brain sample, achieved more accurate classification compared to an unsupervised mixture 620 
model approach (Figure S5). After removing outliers and summing across cortical structures, we 621 
counted 1.74(± 0.07)x106 Ctip2+ and 1.95(± 0.05)x106 Cux1+ in WT compared to 0.30(± 622 
0.08)x106 Ctip2+ and 0.73(± 0.11)x106 Cux1+ in the Top1 cKO (Figures 4A and 4B). Overall, 623 
this constitutes an ~83% decrease in Ctip2+ cells and ~62% decrease in Cux1+ cells. When 624 
compared to previous results in 2D sections from somatosensory cortex (Fragola et al., 2020), 625 
we saw a similar bias towards lower layer neuron degeneration (Cux1/Ctip2 = 1.97 in 3D SSp; 626 
2.33 in 2D), however with a larger reduction in total neuron counts. While this can be partially 627 
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attributed to differences in cell quantification methods, the increase in sampling depth from 628 
volumetric analyses can also uncover larger effects in total cell count compared to serial 2D 629 
analysis. 630 

631 

Figure 4. Top1 Deletion Induces Broad Degeneration of Neuronal Cell-types but 632 
Increases Cell Density. 633 
A-B. Point cloud display of Cux1+ (A) or Ctip2+ (B) cells within WT and Top1 cKO cortexes. 634 
C-D. Comparison of cell-type counts (C) or densities (D) between WT and Top1 cKO across 635 
cortical regions and the full isocortex. Displaying the top 15 structures (FDR < 0.05) binned by 636 
significance level and sorted by absolute difference in count or density within each bin. Data 637 
represented as mean ± standard deviation and plotted on log10 scale. Structure name 638 
abbreviations provided in Table S1. 639 

640 
Next, we compared differences in cell counts and density for 43 cortical areas defined by 641 
functional connectivity in the ARA (Harris et al., 2019) and the complete isocortex to see which 642 
regions were most affected by Top1 deletion. After correcting for multiple comparisons (FDR < 643 
0.05), all but one of the 43 structures showed a significant decrease in total TO-PRO-3 cell 644 
count indicating broad degeneration across all cortical areas in the Top1 cKO model (Figure 4C 645 
and 5). Among neuronal cell-types, we identified 25 and 41 structures with significant decreases 646 

BA

C

D

WT

~2.0 x106 cells

Top1 cKO
Cux1+

~1.7 x106 cells

WT Top1 cKO
Ctip2+

~0.7 x106 cells ~0.3 x106 cells

All Nuclei Ctip2+

VISpor
RSPagl
ORBl
TEa

RSPd
SSp-bfd
VISp
VISrl
VISa
SSp-n
SSp-m
SSs
MOs
PL
Iso

1e+02 1e+04 1e+06
Counts

Cux1+

AUDd
AUDv
ORBl
SSp-n
MOp
MOs
VISp

AUDpo
VISal
VISl

AUDp
SSp-m
SSs
RSPv
Iso

1e+02 1e+04 1e+06
Counts

All Nuclei

MOp
AId
FRP

ORBvl
ORBl
Iso

AUDv
VISpor
PERI
ECT
RSPv
ACAv
ACAd
ILA
PL

1e+02 1e+04 1e+06
Counts/mm3

Ctip2+

ORBm
ILA

1e+02 1e+04 1e+06
Counts/mm3

Cux1+

Genotype

Top1
WT

-log10(FDR
adjusted p)

RSPv
AUDv
SSp-un
MOp
SSp-tr
VISa
RSPd
VISam
VISpl
VISpor

Iso

1e+02 1e+04 1e+06
Counts/mm3

1.3

5.0

3.0

RSPd
VISli

AUDpo
VISal
GU

AUDv
ORBvl
TEa
RSPv
SSp-m
SSp-bfd

MOs
ORBm
VISl
Iso

1e+02 1e+04 1e+06
Counts

Figure 4. Top1 Deletion Induces Broad Degeneration of Neuronal Cell-types but Increases Cell Densi-
ty.
A-B. Point cloud display of Cux1+ (A) or Ctip2+ (B) cells within WT and Top1 cKO cortexes.
C-D. Comparison of cell-type counts (C) or densities (D) between WT and Top1 cKO across cortical regions 
and the full isocortex. Displaying the top 15 structures (FDR < 0.05) binned by significance level and sorted 
by absolute difference in count or density within each bin. Data represented as mean ± standard deviation 
and plotted on log10 scale. Structure name abbreviations provided in Table S1. 

Genotype

Top1
WT

-log10(FDR
adjusted p)

1.3

5.0

3.0

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.11.293399doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.293399
http://creativecommons.org/licenses/by-nd/4.0/


19 

in Cux1+ and Ctip2+ cell counts, respectively. While many structures, including several areas in 647 
somatosensory cortex (SSp-n, SS-m, SSp-bfd), shared significant losses in both Cux1+ and 648 
Ctip2+ excitatory neurons, the largest reductions were seen in Ctip2+ cells localized in frontal 649 
areas, such as the prelimbic area (PL) and secondary motor area (MOs) not measured in 650 
previous work (Fragola et al., 2020). We then calculated cell density by normalizing counts to 651 
registered structure volumes. Interestingly, the majority of structures show significant increases 652 
in TO-PRO-3+ cell density (Figure 4D), suggesting that, in addition to cell loss, degeneration of 653 
neuronal processes is also contributing to differences in cortical structure. Structures with the 654 
largest increases were again localized in frontal regions, such as the prelimbic (PL), infralimbic 655 
(ILA), and orbitofrontal (ORB) areas, as well as medial regions, such as the anterior cingulate 656 
areas (ACA). Decreases in cell number also resulted in greater reductions in cortical surface 657 
area compared to cortical thickness (Figure S6). Taken together, these results show that, even 658 
in cases where genetic perturbation induces strong phenotypic effects such as in the Top1 cKO 659 
model, NuMorph can reveal more localized differences in cell-type number within specific brain 660 
regions. 661 

662 

Figure 5. Effects of Top1 Deletion Vary Across Cortical Structures and Cell-types. 663 
Coronal slice visualizations displaying percent change in cell count (left hemisphere) and FDR-664 
adjusted p values (right hemisphere) from (Figure 4C). Colored ARA annotations at 665 
corresponding positions displayed for reference. 666 
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Neurodegeneration is Spatially Correlated with Genes Differentially Expressed in Top1 667 
cKO 668 

Previous evidence suggests that lower layer neurons, particularly those in L5, are most 669 
susceptible to degeneration as a result of reduced expression of long, neuronal genes in the 670 
Top1 cKO model (Fragola et al., 2020). While the severe structural deficits in Top1 cKO 671 
precluded us from accurately quantifying L5 neurons in individual cortical regions, we found that 672 
regions with large L5 volumes in the ARA saw the greatest reductions in total structure volume 673 
in Top1 cKO (Figure 6A). Furthermore, these regions also saw the largest increases in cell 674 
density (Figure 6B) suggesting local degeneration of neuronal processes. We then performed 675 
spatial correlations between regional cell count differences and gene expression using in-situ 676 
hybridization (ISH) data from Allen Mouse Brain Atlas (AMBA) (Lein et al., 2007). We tested 677 
whether the degree of Top1 cKO induced structural change among cortical regions was related 678 
to the expression of long genes (i.e. genes >100kb) within those regions, as Top1 is known to 679 
be a transcriptional regulator of long genes (King et al., 2013; Mabb et al., 2016). We found that 680 
in WT, regions with higher densities of Ctip2+ lower layer neurons were significantly associated 681 
with increased long gene expression (Figure 6C), providing further support that lower layer 682 
neurons express longer genes. Additionally, regions with larger reductions in cell numbers in 683 
Top1 cKO were correlated with increased long gene expression (Figure 6D). Interestingly, fold 684 
change in Ctip2+ count differences saw the lowest positive correlation, likely because significant 685 
lower layer degeneration had already occurred by P15, minimizing variation between individual 686 
cortical regions. Gene Ontology analysis using random-null ensembles to overcome gene-687 
enrichment bias (Fulcher et al., 2020), identified 113 functional annotations associated with 688 
greater neuronal loss, including several processes involved in axon guidance and extension 689 
(Figure S6D). We then searched for spatial correlations with individual genes differentially 690 
expressed in the P7 Top1 cKO cortex as measured by scRNA-seq (Fragola et al., 2020). 691 
Among the 125 differentially expressed genes in Top1 cKO that also contained ISH signatures 692 
in the AMBA, 5 were significantly correlated with relative difference in excitatory neuron count 693 
(Figure 6E). The most signficant gene, S100a10 (also known as p11), is predominantly 694 
expressed by L5a corticospinal motor neurons in the cortex (Arlotta et al., 2005; Milosevic et al., 695 
2017). Large reductions in Ctip2+ neurons in the Top1 cKO secondary motor area (MOs) and 696 
other frontal areas where S100a10 is highly expressed, suggest that changes in S100a10 697 
expression may increase susceptibility for L5 degeneration in these regions (Figures 6F and 698 
6G). These results demonstrate how existing spatial gene expression resources can be 699 
leveraged with cleared tissue analysis to identify the specific genes, cell-types, and biological 700 
processes contributing to gene-structure associations. 701 
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Figure 6. Effects of Top1 Deletion Are Associated with Spatial Patterns of Gene 702 
Expression. 703 
A-B. Association between structure volume (A) and cell density (B) in Top1 cKO with L5 volume704 
as a fraction of total volume in the ARA. (R: Spearman correlation coefficient). C-D. Association 705 
between spatial gene expression and WT cell density (C) or negative fold change in cell count 706 
between Top1 cKO and WT (D). Spearman correlation coefficients, binned by gene length, for 707 
each gene’s expression across cortical regions were used for comparisons. Increased 708 
correlation indicates stronger association with cell loss in (D). TP3+ indicates all cells and 709 
ExNeun indicates excitatory neurons (i.e. Ctip2+ or Cux1+). Displaying mean ± SEM. E. Genes 710 
differentially expressed in Top1 cKO excitatory neurons significantly correlated with relative 711 
change in excitatory neuron count across cortical regions (Spearman; FDR < 0.05). F. ISH 712 
expression of S100a10 at P14 in the Allen Developing Mouse Brain Atlas (ADMBA) with the 713 
cortex outlined and a corresponding sagittal section of Top1 cKO. (MOs: secondary motor 714 
area). G. Flattened isocortex displaying percent change in excitatory neuron counts (i.e. Ctip2+ 715 
or Cux1+) in Top1 cKO relative to WT. 716 

Discussion 717 

Tissue clearing methods provide a unique opportunity to explore the cellular organization of the 718 
entire 3 dimensional brain structure. However, the current computational tools for analyzing cell-719 
types in tissue cleared images have either been applied to sparse cell populations where 720 
segmentation is less difficult (Renier et al., 2016; Yun et al., 2019) or taken advantage of tissue 721 
expansion and custom-built light sheet systems to increase spatial resolution (Matsumoto et al., 722 
2019; Murakami et al., 2018). Here, we present NuMorph, a computational pipeline for 723 
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processing and quantifying nuclei within structures of the adult mouse brain acquired by 724 
conventional light-sheet fluorescence microscopy. 725 

726 
In the course of developing NuMorph and an appropriate imaging protocol, a large emphasis 727 
was placed on outlining a reasonable compromise between cell detection accuracy, imaging 728 
time, and computational resources. With the imaging parameters used to resolve cortical nuclei 729 
in this study, WT brain hemispheres required 5-7 hours of imaging per channel, while end-to-730 
end processing and analysis using NuMorph required ~1 day with a GPU-equipped workstation. 731 
By training a 3D-Unet model on a diverse set of manually labeled nuclei from multiple imaging 732 
experiments, we were able to achieve effectively equivalent error rates at this resolution 733 
compared to 1.6x higher resolution (p = 0.91, 3D-Unet 0.75/3D-Unet 1.21; McNemar’s test) that 734 
would have otherwise required significantly longer imaging times and expanded data size by 735 
~4x for a whole hemisphere acquisition. We expect cell detection accuracy using the training 736 
dataset generated here will remain high for analyzing other brain regions with similar cell 737 
density, while supplementation with additional training data may be needed for denser 738 
structures such as the hippocampus. Furthermore, NuMorph provides additional features and 739 
flexibility such as (1) targeting analyses to specific structures after registration to avoid 740 
unnecessary computation time, (2) detecting cells directly by nuclear protein marker expression 741 
without DNA staining, and (3) classifying cell-types by cellular markers using either supervised 742 
or unsupervised methods. 743 

744 
Top1 is critical for maintaining genomic stability and regulating the expression of long genes 745 
important for neuronal function (McKinnon, 2016). Recent evidence suggests that many of these 746 
same long genes contribute to neuronal diversity and have the greatest expression in the 747 
forebrain (Sugino et al., 2019). In the developing cortex, scRNA-seq studies found that L5 748 
neurons had higher long gene expression compared to neurons from other cortical layers (Loo 749 
et al., 2019). In this study, we found that Top1 deletion preferentially targeted many frontal 750 
areas with high L5 thickness, larger numbers of Ctip2+ lower layer neurons, and greater long 751 
gene expression. These effects likely occur much earlier than the time point studied here as 752 
previous behavioural assays showed that severe motor deficits are present as early as P7 753 
(Fragola et al., 2020). Interestingly, inhibition of S100a10 - the gene most correlated with neuron 754 
loss - was recently shown to have a neuroprotective effect, delaying motor neuron loss in a 755 
mouse model amyotrophic lateral sclerosis (ALS) (García-Morales et al., 2019). Because Top1 756 
deletion results in multiple stress factors that negatively impact cell health, additional studies will 757 
be needed to disambiguate which mechanisms ultimately lead to biased degeneration of certain 758 
neuronal subtypes across brain regions. 759 

760 
While NuMorph has proven to be effective in analyzing moderately dense tissues such as the 761 
adult mouse cortex, the development of additional computational tools may be required to 762 
pursue more challenging experimental designs. For example, structures in the embryonic brain 763 
are typically of much higher cell density and vary in gross morphology across developmental 764 
time, making both cell quantification and image registration more difficult. In addition, 765 
segmentation and mapping of fine structures, such as neuronal processes, can be challenging 766 
with limited imaging resolution. Technological improvements in the next generation of light-sheet 767 
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systems can ultimately allow for quantitative interrogation of subcellular structures at high 768 
throughput (Migliori et al., 2018; Voleti et al., 2019). However, computational tools using deep 769 
neural networks have also proven to be effective in executing diverse segmentation tasks 770 
(Friedmann et al., 2020; Kirst et al., 2020; Schubert et al., 2019; Stringer et al., 2020) or even 771 
enhancing image quality (Weigert et al., 2018). Nevertheless, community-based efforts may be 772 
needed to generate sufficient annotation data for training deep learning models to accurately 773 
perform these tasks (Roskams and Popović, 2016). Together we hope these new imaging and 774 
computational tools will lead to greater adoption of tissue clearing methods for quantitative 775 
analyses, rather than qualitative visualizations, of how the entire brain structure is changed by 776 
genetic or environmental risk factors for neuropsychiatric disorders. 777 
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Figure S1, Related to Figure 1. Nonlinear Alignment and Intensity Adjustment of 3D Multichannel 
Images.
A. Overview of alignment procedures. 
B. Example of channel misalignment after 2D registration by translation showing only part of the image 
aligning correctly.
C. Same section as in B after the nonlinear alignment procedure.
D. Top1 cKO sample images of Ctip2 labeling with (right) or without (left) adjusting intensities for tile 
positions and light-sheet width. 
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Figure S2, Related to Figure 1. Iterative 2D Stitching of Multi-Tile Light Sheet Images.
Sample results from 2D iterative stitching of WT mouse hemisphere compared with other dedicated 3D 
stitching software. Yellow lines indicate approximate stitching seams.
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Figure S3, Related to Figure 2. Image Landmark Selection for Points-Guided Image Registration.
A. 1mm thick sagittal maximum intensity projection displaying corresponding points positions in ARA, WT, 
and Top1 cKO brain hemispheres.
B. Coefficients of variation (CoV) of structure volumes for all cortical annotations in the ARA after registration 
with or without corresponding points.
C. DICE scores and CoV metrics for indicated registration procedures. Data represented as mean (± stan-
dard deviation). CoV was calculated for individual ARA annotations (242 structures plotted in B) or the full 
isocortex after registration. These compared with the CoV for the full cortex based on manual annotation. 
Bold value: Top1 MMI/Top1 MMI+ Pts, p < 0.001.
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Figure S4, Related to Figure 3. 3D-Unet Training and Evaluation.
A. 3D-Unet architecture adapted from Isensee et al. 2018.  
B. Approximate patch locations used for training the 3D-Unet nuclei detection model
C. Example images of nuclei detection results. Cross symbols indicate centroids in the displayed z slice 
whereas points indicate centroids in slices directly above or below. Arrows indicate detection errors in the full 
3D volume.
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Figure S5, Related to Figure 4. Cell-type Classification using Supervised SVM Classifier.
A. Cell-type positions for upper and lower layer cortical neurons in a sagittal section for WT and Top1 cKO 
after SVM classifications.
B. Representative images of Ctip2+ and Cux1+ cell-type classification using SVM. Cross symbols indicate 
centroids in the displayed z slice whereas points indicate centroids in slices directly above or below. 
C. Classification accuracies using a trained SVM (supervised) classifier or by Gaussian Mixture Modeling 
(unsupervised). Accuracy is measured as the fraction of 1,000 cells in each sample with the correct classifica-
tion based on manual identification. SVM accuracies determined based on 5-fold cross-validation. 
(***p < 0.001; McNemar test). 
D. Total counts for each cell-type classification in WT and Top1 cKO samples.
E. Distributions of Ctip2+ and Cux1+ cells across cortical layers. 
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E

Figure S6, Related to Figure 6. Structural and Molecular Associations with Cell Loss in the Top1 cKO 
Model.
A. Heatmap displaying percent change in cortical cell count, volume, surface area, and thickness for each
cortical region.
B-D. Correlation between total cell count difference and volume (B), surface area (C), and thickness (D)
across cortical regions.
E. Gene ontology showing the top 25 most significant categories correlated with neuron loss in Top1 cKO.
Bolded categories contain at least 1 gene differentially expressed in Top1 cKO from scRNA-seq studies.
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Table S1, Related to Figure 4. Volume, Cell Count, and Cell Density Statistics for Top1 cKO.  
Cell counts and densities are summed for all counted nuclei after removing outliers (ToPro) as well as cells 
classified Ctip2+ or Cux1+.

Video S1, Related to Figure 4. Visual Comparison of WT and Top1 cKO Brain Hemispheres.  
Representative examples of iDISCO-processed WT and Top1 cKO samples labelling TO-PRO-3 (white), 
Ctip2 (green), and Cux1(magenta). Images were downsampled to 10 μm/voxel for smoother rendering. 
Cortical cell-type classifications displayed as point clouds (white: Ctip2-/Cux1-, teal: Ctip2+, yellow: Cux1+).

Video S2, Related to Figure 4. 3D Inspection of NuMorph Nuclei Counting and Cell-type Classification.  
Visualization of a 400 μm thick WT sagittal section at 1.21x1.21x4 μm/voxel resolution labelling TO-PRO-3 
(white), Ctip2 (green), and Cux1(magenta). Cortical cell-type classifications displayed as point clouds (white: 
Ctip2-/Cux1-, teal: Ctip2+, yellow: Cux1+).
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