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Abstract

Motivation: The least absolute shrinkage and selection operator (lasso) and principal component re-
gression (PCR) are popular methods of estimating traits from high-dimensional omics data, such as
transcriptomes. The prediction accuracy of these estimation methods is highly dependent on the covari-
ance structure, which is characterized by gene regulation networks. However, the manner in which the
structure of a gene regulation network together with the sample size affects prediction accuracy has not
yet been sufficiently investigated. In this study, Monte Carlo simulations are conducted to investigate the
prediction accuracy for several network structures under various sample sizes.
Results: When the gene regulation network was random graph, the simulation indicated that models
with high estimation accuracy could be achieved with small sample sizes. However, a real gene regulation
network is likely to exhibit a scale-free structure. In such cases, the simulation indicated that a relatively
large number of observations is required to accurately predict traits from a transcriptome.
Availability and implementation: Source code at https://github.com/keihirose/simrnet
Contact: hirose@imi.kyushu-u.ac.jp

1 Introduction

Technological advancements have enabled the collection of highly multidimensional data from biological
systems (Gehlenborg et al., 2010; Mochida and Shinozaki, 2011; Li and Sillanpää, 2012; Hasin et al., 2017).
For example, RNA sequencing quantifies expression levels of thousands of genes. Such omics data is useful in
predicting organismal traits, with empirical applications including diagnosis and classification of diseases and
prediction of patient survival (van ’t Veer et al., 2002; Bøvelstad et al., 2007; Chan et al., 2016; Nandagopal
et al., 2019) and possible future applications in predicting crop yields (Kremling et al., 2018), insecticide
resistance (Dermauw et al., 2013), and environmental adaptation (Nagano et al., 2019).

A common challenge in predicting traits from omics data is the dimension of the data far exceeding that
of the sample size (known as high-dimensional regression). For example, if one is to apply least-squares
estimation in multiple regression (e.g. trait ≈ β0 + β1gene1 + β2gene2 + · · · ) to predict a trait value from a
transcriptome, the sample size needs to be (at least) larger than the number of model parameters. However,
because transcriptome studies typically observe thousands of genes, a sample size exceeding the number of
genes is not realistic at present. In this case, high-dimensional regression modeling must be considered.

The least absolute shrinkage and selection operator (lasso, Tibshirani, 1996) is one of the most frequently
used methods for high-dimensional regression. It simultaneously achieves variable selection and parameter
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estimation. Theoretically, the prediction accuracy of the lasso is highly dependent on the correlation structure
among exploratory variables; it is high under certain strong conditions, such as the compatibility condition
(van de Geer and Bühlmann, 2009). However, in practice, it is not easy to check whether the compatibility
condition holds. Another popular estimation method for high-dimensional regression is principal component
regression (PCR, Jolliffe, 1986). PCR is a two-stage procedure: first, principal component analysis is con-
ducted for predictors, following which the regression model on which the principal components are used as
predictors is fitted. This method may perform well when the exploratory variables are highly correlated.

It is reasonable to assume that gene regulation networks will result in conditional independence among
the levels of gene expression (Wei and Li, 2007; Dobra et al., 2004; Yu et al., 2013). Here, two variables
are conditionally independent when they are independent given other variables (e.g. two focal variables
are independently influenced by a third variable, Wille and Bühlmann, 2006). When a random vector of
exploratory variables follows a multivariate normal distribution, two variables are conditionally independent
if and only if the corresponding element of the inverse covariance matrix is nonzero. Essentially, the networks
are characterized by the nonzero pattern of the inverse covariance matrix.

One of the most notable characteristics of biological networks is their scale-free nature, that is, the degree
distribution of the network follows a power-law expressed as p(x) ∝ x−γ (γ > 1) (Barabási and Albert,
1999; Milo et al., 2002). Empirical studies suggest that biological networks are often scale-free (Barabasi
and Oltvai, 2004; Albert, 2005; Arita, 2005), although exceptions have also been found Broido and Clauset
(2019). Therefore, it is reasonable to consider the problem of high-dimensional regression when the networks
of exploratory variables are scale-free. Here, it should be noted that the relative performance of different
high-dimensional regression techniques may depend on sample sizes. However, to the best of our knowledge,
the effect of the gene regulation network structure together with sample size on prediction accuracy has not
yet been sufficiently investigated.

This paper provides a general simulation framework to study the effects of correlation structure in ex-
planatory variables. As an example, the prediction of ambient temperature from the transcriptome, for which
good empirical data is available (Nagano et al., 2012, 2019), is considered. It should be noted that the im-
plementation of the proposed procedure is independent of the empirical data in Nagano et al. (2012, 2019);
the proposed framework may be applied to predict any consequence of gene expression differences (e.g. crop
yield). The proposed framework is based on the Monte Carlo simulations. Three datasets of transcriptome
and their traits are generated. The datasets are characterized by the covariance structure of exploratory
variables; one of the covariance structures corresponds to the scale-free gene regulation network. Both lasso
and PCR are applied to these simulated datasets to investigate the prediction accuracy with different types
of gene regulation networks. The sample size is also varied to examine its effect on the prediction accuracy.

The remainder of this paper is organized as follows. Section 2 describes prediction methods for high-
dimensional regression in the given simulation. Section 3 discusses the proposed simulation framework.
Finally, Section 4 presents the concluding remarks.

2 Prediction methods for high-dimensional data

Suppose that we have n observations {(xi, yi) | i = 1, . . . , n}, where xi are p-dimensional vector of explanatory
variables and yi are responses (i = 1, . . . , n). Let X = (x1, · · · ,xn)

T and Y = (y1, · · · , yn)T . Consider the
linear regression model:

Y = Xβ + ϵ,

where ϵ = (ϵ1, · · · , ϵn)T is a vector of error variables with E(ϵ) = 0 and var(ϵ) = σ2In.

2.1 Lasso

The lasso minimizes a loss function that consists of quadratic loss with a penalty based on an L1 norm of a
parameter vector:

β̂ = arg min
β

1

2
∥Y −Xβ∥2 + λ∥β∥1, (1)

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.11.293456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.293456


where λ > 0 is a regularization parameter. Because of the nature of the L1 norm in the penalty term, some
of the elements of the coefficients are estimated to be exactly zero. Thus, variable selection is conducted,
and only variables that correspond to nonzero coefficients affect the responses.

2.2 PCR

In some cases, the first few largest eigenvalues of the covariance matrix of predictors (i.e., proportional
contributions of principle components) can be considerably large (e.g., spiked covariance model, Johnstone
et al., 2001). In such a case, the lasso may not function effectively in terms of both prediction accuracy
and consistency in model selection, because the conditions for its effective performance (e.g., compatibility
condition, Bühlmann and van de Geer, 2011) may not be satisfied. This issue could be addressed using PCR
because it transforms data with a large number of highly correlated variables into a few principal components.
In the first stage of PCR, principal component analysis is applied to predictors, and the dimension of xi is
reduced to d (d≪ p). In this work, d was chosen such that d principle components collectively explain 90%
or more variance (and d− 1 principle components do not). Then, in the second stage, regression analysis is
conducted, for which the principal components are used as predictors. Here, the regression coefficients in the
second stage are estimated by the lasso.

3 Simulation framework

An overview of the simulation is presented in Fig. 1. First, the model that defines the relationship between
the trait and the levels of gene expression was parameterized. This was done using the empirical data in
Nagano et al. (2019), which quantified the transcriptome of wild Arabidopsis halleri subsp. gemmifera weekly
for two years in their natural habitat as well as bihourly on the equinoxes and solstices (p = 17205 genes
for n = 835 observations). Three types of simulated data were generated using different covariance matrices
of genes, denoted as Σj (j = 1, 2, 3). Σ1 is the sample covariance matrix of genes. Generally, none of the
elements of the inverse of sample covariance matrix are exactly zero, implying that each gene interacts with
all the other genes. Such a fully connected network is ineffective in terms of interpretation of the mechanism
of gene regulation. Thus, two other covariance matrices were produced to simulate sparse networks based
on the sample covariance matrix Σ1. Σ2 is generated by the graphical lasso (Yuan and Lin, 2007), which
corresponds to the random graph. Although the graphical lasso is widely used because of its computational
efficiency, real networks are often scale-free. Therefore, Σ3, which corresponds to the scale-free network, was
generated here. The estimation of scale-free networks is achieved by the reweighted graphical lasso (Liu and
Ihler, 2011). Based on these three covariance matrices Σj (j = 1, 2, 3), the simulated transcriptome data were
generated from the multivariate normal distribution. The simulated ambient temperature were generated
from simulated transcriptome data. Finally, lasso and PCR were applied to these simulated data to compare
their prediction accuracies. The sample sizes of the simulated data were varied to investigate the relationship
between prediction accuracy and sample sizes.

3.1 Evaluation of the estimation procedure

The performance of the estimation procedure is investigated by the following expected prediction error:

E

[{
Y ∗ − (X∗)T β̂

}2
]
,

where X∗ and Y ∗ follow X∗ ∼ N(0,Σj) (j = 1, 2, or 3) and Y ∗ ∼ N((X∗)Tβ, σ2), respectively. The

estimator β̂ is obtained using current observations, while X∗ and Y ∗ correspond to future observations. The
Σj (j = 1, 2, 3), β, and σ2 are true values but unknown. In practice, these parameters are defined by using
the actual dataset, (X,Y ). Detail of setting of these parameters will be presented in Section 3.2.

To estimate the expected prediction error, the Monte Carlo simulation is conducted. We first randomly
generate training and test data, (X̃train, Ỹtrain) and (X̃test, Ỹtest), respectively. Here, X̃train follows a mul-
tivariate normal distribution with mean vector µX and variance-covariance matrix Σj , where µX is the
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Figure 1: Overview of the simulation.
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sample mean of X. Then, Ỹtrain is generated by Ỹtrain = X̃trainβ + ϵ, where ϵ is a random sample from
N(0, σ2I) with I being an identity matrix. The test data, (X̃test, Ỹtest), are generated by the same procedure
as (X̃train, Ỹtrain) but independent of (X̃train, Ỹtrain). The number of observations for the training and test
data are N (N = 50, 100, 200, 300, 500, 1000) and 1000, respectively. The lasso and the PCR described in
Section 2 are performed with training data (X̃train, Ỹtrain), following which RMSE is calculated in (8). The
above process, from random generation of data to RMSE calculation, was performed 100 times.

3.2 Parameter setting

3.2.1 Covariance structures

Here, the characterization of the network structure of predictors by conditional independence is considered.
When the predictors follow a multivariate normal distribution, the network structure based on the conditional
independence corresponds to the nonzero pattern of the inverse covariance (precision) matrix. In other words,
the network structure is characterized by the inverse covariance matrix of predictors.

Let S be the sample covariance matrix of predictors, that is, S =
∑n

i=1(xi − x̄)(xi − x̄)T /n with x̄ =∑n
i=1 xi/n. Let Ωj = Σ−1

j (j = 1, 2, 3). Σ1 is a ridge estimator of the sample variance-covariance matrix,

that is, Σ1 = S + δI. Here δ is a small positive value (in this simulation, δ = 10−5). The term δI allows the
existence of Ω1. Note that because Ω1 is not sparse, it leads to the complete graph, which is of no use in
interpreting gene regulatory networks. To generate a covariance matrix whose inverse matrix is sparse, L1

penalization is employed for the estimation of Ω2 and Ω3 as follows:

Ω̂j = arg min
Ω

{log |Ω| − tr(ΩS)− Pj(Ω)} (j = 2, 3), (2)

where Pj(Ω) (j = 2, 3) are penalty terms which enhance the sparsity of the inverse covariance matrix. To
estimate the sparse inverse covariance matrix, the lasso penalty is typically used as follows:

P2(Ω) = ρ

p∑
i=1

∥ω−i∥1, (3)

where ω−i = (ωi1, ωi2, · · · , ωi(i−1), ωi(i+1), · · · , ωip)
T ∈ Rp−1. The problem (3) is referred to as the graphical

lasso (Yuan and Lin, 2007), and there exists several efficient algorithms to obtain the solution (Friedman
et al., 2008; Witten et al., 2011; Boyd, 2011). The estimator of (2) with (3) corresponds to Ω2 and Σ2 = Ω−1

2 .
The lasso penalty (3) does not enhance scale-free networks. It penalizes all edges equally so that the esti-

mated graph is likely to be a random graph, that is, the degree distribution becomes a binomial distribution.
To enhance scale-free networks (i.e., power-law distribution), the log penalty (Liu and Ihler, 2011) is used as
follows:

P3(Ω) = ρ

p∑
i=1

log (∥ω−i∥1 + ai) , (4)

where ai > 0 are tuning parameters. From a Bayesian viewpoint, the prior distribution which corresponds
to the log penalty becomes the power-law distribution (Liu and Ihler, 2011); thus, the penalty (4) is likely
to estimate the scale-free networks. The estimator of (2) with (4) corresponds to Ω3.

Because the log-penalty (4) is nonconvex, it is not easy to directly optimize (2). To implement the
maximization problem (2), Liu and Ihler (2011) constructed the minorize-maximization (MM) algorithm

(Hunter and Lange, 2004), in which the weighted lasso penalty P
(t)
M (Ω) with current parameter Ω

(t)
3 is used:

P
(t)
M (Ω) =

p∑
i=1

∑
j ̸=i

ρ
(t)
ij |ωij |, (5)

where ρ
(t)
ij are the weights

ρ
(t)
ij =

ρ

∥ω(t)
−i∥1 + ai

. (6)
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Figure 2: Logarithm graph of the largest 30 eigenvalues of Σ1 (black square), Σ2 (blue triangle) and Σ3 (red
circle). The horizontal axis expresses the index of eigenvalues arranged in descending order.

Because the weighted graphical lasso can be implemented by a standard graphical lasso algorithm, the
estimator is obtained as the following algorithm:

1. Set t = 0. Get Ω
(0)
3 via ordinary graphical lasso. Repeat 2 to 4 until convergence.

2. Update weights ρ
(t)
ij using (6).

3. Get Ω
(t+1)
3 via the weighted graphical lasso (2) with penalty (5).

4. t← t+ 1.

To obtain Σ2 and Σ3, the tuning parameters ai (i = 1 . . . , p) and ρ must be determined. Following
the experiments in Liu and Ihler (2011), ai = 1 was set for i = 1 . . . , p. To select the value of the reg-
ularization parameter ρ, several candidates were first prepared. In our simulation, the candidates were
ρ = 0.3, 0.4, 0.5, 0.6, 0.7. From these, the value of ρ was selected such that the extended Bayesian information
criterion (EBIC, Chen and Chen, 2008; Foygel and Drton, 2010)

EBIC = −n {log |Ω2| − tr(Ω2S)}+ q log n+ 4qδ log p (7)

was minimized. Here, q is the number of nonzero parameters of the upper triangular matrix of Ω̂, and
δ ∈ [0, 1) is a tuning parameter. As the value of δ increases, a sparser graph is generated. Note that δ = 0
corresponds to the ordinary BIC (Schwarz, 1978). We set δ = 0.5 because Foygel and Drton (2010) showed
that δ = 0.5 yielded good performance in both simulated and real data analyses. As a result, the EBIC
selected ρ = 0.5.

The upper triangular matrix Ω3 must be estimated with the reweighted graphical lasso problem. A value
of p = 17205 results in p(p+1)/2 ≈ 148 million parameters. As a result, with the machine used in this study
(Intel Core Xeon 3 GHz, 128 GB memory), it would take several days to conduct the reweighted graphical
lasso approach, even with a small number of iterations such as T = 5. For this reason, T = 5 iterations were
employed to produce Σ3 here.

Fig. 2 depicts the logarithm of the largest 30 eigenvalues of Σj (j = 1, 2, 3). The first few largest
eigenvalues of Σ3 are significantly larger than those of Σ2, implying that the scale-free networks tend to
produce predictors with large correlations.

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.11.293456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.293456


3.2.2 Regression parameters

The values of β and σ2 are determined as follows. First, 10-fold cross-validation is performed as described
below, and the regularization parameter λ in (1) is selected. The data (X,Y ) are divided into ten datasets,
(X(j), Y (j)) (j = 1, . . . , 10), which consist of almost equal sample sizes. LetX(−j) = (X(1), . . . , X(j−1), X(j+1),
. . . , X(10)), and Y (−j) = (Y (1), . . . , Y (j−1), Y (j+1), . . . , Y (10)) (j = 1, . . . , 10). For each j (j = 1, . . . , 10), the

training and test data are defined by (X(−j), Y (−j)) and (X(j), Y (j)), respectively. Then, the parameter β̂(j)

(j = 1, . . . , 10) is found by the lasso:

β̂(j) = arg min
β

(
∥Y (−j) −X(−j)β∥22 + λ∥β∥1

)
.

For each j (j = 1, . . . , 10), the verification error is calculated as follows:

CV(j) =
1

#Y (j)
∥Y (j) −X(j)β̂(j)∥22.

Then, λ is adopted such that it minimizes CV = 1
10

∑10
j=1 CV

(j), the mean of CV(j). Following this,
the dataset (X,Y ) is again randomly divided into two datasets: test data (Xtest, Ytest) and training data
(Xtrain, Ytrain). Lasso estimation (1) is performed using the training data, with λ obtained by the above
10-fold cross-validation. Then, β is defined as the lasso estimator, resulting in the number of nonzero param-
eters of β being 259. Fig. 3 shows the histogram of nonzero parameters of β. It is seen that the majority of
the nonzero coefficients were close to zero; only 15 parameters had absolute values larger than 0.1.

In addition, the root mean squared error (RMSE) is calculated as follows:

RMSE =
1√

#Ytest
∥Ytest −Xtestβ̂∥2, (8)

and the variance of errors, σ2, is defined by σ2 = (RMSE)2.

3.3 Results

The box and whisker plot of the RMSE is drawn in Fig. 4. The horizontal axis is N (the number of
observations of training data) and the vertical axis is the RMSE based on 1000 observations of test data.

We compared the performance of the lasso with that of the PCR. When Σ1 and Σ3 were used, the PCR
performed worse than the lasso for small sample sizes. Some predictors associated with small eigenvalues
may affect prediction performance. Meanwhile, for Σ2, the performance of PCR was slightly more stable
than that of the lasso for small sample sizes.

The prediction accuracy was compared among the three covariance structures. For both lasso and PCR,
when Σ1 and Σ3 were used, the values of RMSE decreased as N increased. On the other hand, when Σ2

was used, the values of RMSE remained almost unchanged, approximately ranging between 2.5–3, as N
increased. In the case of scale-free (Σ3), when the number of observations was large, the estimation accuracy
was approximately between 2.5–3, which was almost identical to the accuracy of Σ2. For example, the mean
RMSE at N = 1000 in Fig. 4 (e) was nearly equal to that at N = 50 in (c). The reason the accuracy of Σ2

remained high even at N = 50 is considered to be that Σ2 was weakly-correlated (Fig. 2) and the majority
of the nonzero parameters of β were small (Fig. 3). Such a weakly-correlated covariance matrix implies
conditions on Σ2 that achieve nearly optimal rates may be satisfied (e.g., van de Geer and Bühlmann, 2009).

As described before, Σ1 was the sample covariance matrix, while Σ3 (and Σ2) was estimated using the
graphical lasso. As the lasso-type regularization methods shrink parameters toward zero, the correlations
among exploratory variables reduce with the graphical lasso. Therefore, Σ3 resulted in smaller correlations
as compared to Σ1. Consequently, the prediction accuracy reduces with stronger correlations.
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Figure 3: Histogram of 259 nonzero parameters of β.

3.4 Code availability

The proposed simulation is implemented in R package simrnet, which is available at https://github.com/
keihirose/simrnet. Below is a sample code of the simrnet in R:

library(devtools)
install_github("keihirose/simrnet") #install package
library(simrnet) #load package
data(nagano2019)
attach(nagano2019)
rho <- (1:9) / 10 #tuning parameters for glasso
pars <- genpar(X,Y,rho) #set true parameter
result <- simrnet(pars, times.sim=100) #conduct simulation
plot(result)

When p = 100, it took less than 12 minutes to conduct the simulation with 100 replications using the
machine employed herein (Intel Core Xeon 3GHz, 128GB memory). For high-dimensional data such as
p = 17205, which was used in the simulation presented in this paper, several days were required to complete
the simulation task.

4 Concluding remarks

In a gene regulation network, a gene regulates a small portion of a genome, not all the genes in a genome.
This indicates that gene regulation network is expected to be a sparse network rather than a complete
graph. Therefore, two covariance matrices indicating sparse networks (Σ2, Σ3) were prepared in addition
to a covariance matrix derived from empirical data (Σ1). Generally, although hundreds of genes contribute
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Figure 4: Box and whisker plot of RMSE. The variance-covariance matrix used in the simulations is Σ1 in
(a)–(b), Σ2 in (c)–(d), and Σ3 in (e)–(f). The regression model is estimated by the lasso (Section 2.1) in (a),
(c), and (e) and by PCR (Section 2.2) in (b), (d), and (f).
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to defining a trait, their contributions are not equal. It is frequently observed that genes regulating a trait
include a few large-effect genes and several small-effect genes. This property was reflected in the distribution
of β (Fig. 3). When a limited number of regression coefficients had a large contribution to the definition of
a trait, and the gene regulation network was random (Σ2), the simulation indicated that models with high
estimation accuracy could be developed from a small number of observations (Fig. 4). However, a real gene
regulation network is likely to exhibit scale-free structure. In such cases, the simulation indicated that the
prediction of traits from a transcriptome requires a relatively large number of observations to produce good
performance (Σ1, Σ3, Fig. 4). In conclusion, it is necessary to secure sufficiently large sample sizes when
performing regression analysis of data with scale-free network.

Conventional theory on the relationship between RMSE and sample size has been developed under the
assumption that the sample size exceeds the number of exploratory variables (e.g., Fahrmeir et al., 2007).
However, omics data, which is rapidly being accumulated, results in high dimensional data with strong
correlations. Thus, our simulation study considered more complicated settings than the traditional ones.
Our simulation, or its extension, may be used in the future to find clues about theoretical aspects that
may ultimately lead to the development of a sample size determination technique for omics data. Another
important future research topic is the development of methods that have better estimation accuracy than
the lasso in the case of small sample sizes.
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van de Geer, S. A. and Bühlmann, P. (2009). On the conditions used to prove oracle results for the lasso.
Electron. J. Statist., 3, 1360–1392.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 12, 2020. ; https://doi.org/10.1101/2020.09.11.293456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.293456


van ’t Veer, L. J. et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. nature,
415(6871), 530–536.

Wei, Z. and Li, H. (2007). A markov random field model for network-based analysis of genomic data.
Bioinformatics, 23(12), 1537–1544.
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