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Abstract

Traditional synaptic plasticity experiments and models depend on tight
temporal correlations between pre- and postsynaptic activity. These tight tem-
poral correlations, on the order of tens of milliseconds, are incompatible with
significantly longer behavioral time scales, and as such might not be able to ac-
count for plasticity induced by behavior. Indeed, recent findings in hippocam-
pus suggest that rapid, bidirectional synaptic plasticity which modifies place
fields in CA1 operates at behavioral time scales. These experimental results
suggest that presynaptic activity generates synaptic eligibility traces both for
potentiation and depression, which last on the order of seconds. These traces
can be converted to changes in synaptic efficacies by the activation of an in-
structive signal that depends on naturally occurring or experimentally induced
plateau potentials. We have developed a simple mathematical model that is
consistent with these observations. This model can be fully analyzed to find
the fixed points of induced place fields, the convergence to these fixed points,
and how these fixed points depend on system parameters such as the size and
shape of presynaptic place fields, the animal’s velocity, and the parameters of
the plasticity rule.
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1 Introduction

Experiments and models of synaptic plasticity have, for several decades, concentrated
on plasticity which depends on coincident or nearly coincident activation of pre-
and postsynaptic cells. This is most clearly exemplified by spike timing dependent
plasticity (STDP), in which timing differences between pre- and postsynaptic spikes,
on the order of tens of milliseconds, significantly impact the sign and magnitude of
synaptic plasticity [1, 2, 3]. Such correlations between pre- and postsynaptic activity
are possible biological implementations of unsupervised learning [4, 5]. However,
many aspects of behavioral plasticity depend on a supervising signal, or a reward,
which can occur with delays that range from hundreds of milliseconds to seconds or
more. The difficulty in associating events (such as stimulus and reward) at larger time
scales is called the temporal credit assignment problem [6]. Various methods to solve
the temporal credit assignment problem have been proposed, none of which solely
depend on coincidences on the range of tens of milliseconds. One possible solution
depends on synaptic eligibility traces, which can last for several seconds following
neural activity, and which can be converted into changes in synaptic efficacies if they
are followed by a reward or an instructive signal.

Recent evidence in several systems has provided experimental support for the
existence of synaptic eligibility traces. It has been shown that a neuromodulator
applied seconds after a pre before post pairing protocol can induce long-term po-
tentiation (LTP), and that this depends on delayed application of neuromodulator
[7, 8, 9, 10]. It has also been shown that after a post before pre pairing protocol,
a different neuromodulator can induce long-term depression (LTD) [8]. These re-
sults indicate that pairing of pre- and post-synaptic activities can generate some
currently undetermined biochemical processes, which last for several seconds, that
are the substrates of the synaptic eligibility traces for LTP and LTD. If a neuromod-
ulator is applied while the trace is sufficiently active, either LTP or LTD is induced,
depending on the details of the pairing protocol. Note that in these experiments, the
traces induced depend on both pre- and post-synaptic activity, while the conversion
of these traces into efficacy changes depend on a third factor, a neuromodulatory
signal. These examples are therefore examples of three-factor learning [11]. Theo-
retical models consistent with these experimental observations have been shown to
be useful in accounting for learning in model networks [12, 8, 13]. In the cerebellum,
a structure indicated in some forms of conditioning [14], learning depends on two
factors, the activity in the parallel fiber pathway and in the climbing fibers. How-
ever, these two factors are not pre and postsynaptic activity, as the climbing fiber
activity acts as an instructive signal. These specific roles for the two pathways play a
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role in conditioning, since parallel fiber activity depends on the conditioned stimulus
and climbing fiber activity depends on the unconditioned stimulus or possibly the
prediction error [15]. Learning in this system is accomplished through LTD, and the
induction of LTD is maximized when parallel fiber activity precedes climbing fiber
activity by 50-200ms. The mechanisms for this small delay, which is reminiscent of a
short trace, are mediated directly through calcium transients and are well understood
[16].

Recent plasticity experiments in hippocampus in vivo [17, 18] have shown place-
field plasticity that occurs rapidly in response to either naturally occurring or arti-
ficially induced dendritic calcium spikes, also known as ”plateau potentials”. These
protocols have shown both an increase and a decrease in synaptic efficacies occur-
ring in synapses that were active seconds before or after the plateau potentials.
This plasticity, coined ”behavioral time synaptic plasticity” (BTSP), is therefore
also likely to depend on synaptic eligibility traces, both for LTP and LTD. A re-
cent paper has shown that these traces likely depend only on presynaptic activity
and the existing synaptic efficacy, and that change in synaptic efficacies depends on
the overlap between these traces and an instructive signal that is activated by the
plateau potential[18]. The data therefore supports a two-factor model in which the
two factors are presynaptic activity and an instructive signal.

The model we present and analyze here stems from these previous experimental
and theoretical results. We show that the place fields produced by the model have
fixed points, that these fixed points can be defined and calculated, and that the
convergence rate to these fixed points can be estimated. In some simple cases these
fixed points can be fully solved analytically. Using these solutions, we show how
these fixed points depend on the system’s parameters such as the the shape of the
presynaptic place fields and the animal’s velocity. We show explicitly that the place
fields become broader if the animal has a higher velocity, and that LTD far away from
the instructive signal has a slow convergence time to the fixed point. The resulting
place fields also depend on the parameters of the eligibility traces and the instructive
signal, parameters that may be inferred directly by experiments.

2 Model

2.1 Setup

The general framework for the model is as follows, emulating the setup for recent
experiments in hippocampus [17, 18]. A mouse runs along a treadmill of length
L at velocity v. Experimenters record from a postsynaptic CA1 place cell which
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receives inputs from N presynaptic CA3 inputs. As the animal runs along the track,
a dendritic calcium spike (”plateau potential”) is artificially triggered in the CA1
cell, at the same location each lap, in order to induce learning. The CA3 inputs are
themselves place fields which tile the length L of the running track (Figure 1). The
firing rate Ri of each CA3 input i is modeled as a Gaussian function of position:

Ri(x) = αe−(
x−x0
σ

)2 (1)

Where x0 is the center of the given input receptive field. The CA1 output has
a ramp potential (i.e. the membrane potential relative to rest, low-pass filtered to
eliminate spikes, see [18]) determined by the sum of its synaptic input:

V (x) = β

N∑
i=1

WiRi(x) (2)

Each synapse in our model produces two traces, one for LTP and one for LTD, upon
presynaptic firing Ri. The equation for each trace (T ki ) has the form:

dT ki
dt

=
[
−(T ki − T k0 ) + ηkRi(v · t)(T kmax − T ki )

]
/τ k (3)
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Figure 1: Running track and model network. a) A mouse runs at velocity v
along a a running track with locations marked by unique features. Inside the mouse
hippocampus, N CA3 place cells have activity peaks at different locations along the
track, and synapse onto a single postsynaptic CA1 cell. b) The CA3 place cells
considered here are modeled as simple Gaussians centered at evenly spaced locations
along the running track.
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where T ki is a trace for synapse i, k indicates either LTP or LTD, T k0 is the basal
value of the trace for that synapse, T kmax is the maximal value of the trace, τ k the
time constant, and ηk and activation rate constant. By a simple change of variables
Ti → (Ti + T0), and Tmax → Tmax + T0, one gets the slightly simpler equation:

dT ki
dt

=
[
−T ki + ηkRi(v · t)(T kmax − T ki )

]
/τ k. (4)

These traces act as transient markers of the presynaptic firing history, allowing
the network to bridge events that occur within the temporal scale of the trace (τ k).
The ODE dictating the traces has two terms, the first of which is a decay term - in
the absence of presynaptic firing, this term causes the traces return to their basal
level at a rate determined by the time constant τ k. The second term is an activation
term, wherein presynaptic firing causes the traces to approach their saturation value
T kmax. The shape of the trace depends on the trace parameters and on the shape and
location of the place field of the presynaptic neuron to synapse i. Some examples of
such traces can be found in Figure 2b.

For a specific functional shape of an input place field R(x), the place field in time
has the form R(v · t− x0) = R (v · (t− t0)) where x0 indicates the place field center
in space. Therefore traces too can be written as T ki (t− t0). The traces interact with
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Figure 2: Weight dynamics. a) A simple dynamical model of synaptic plasticity,
where both LTP and LTD require an overlap between a trace variable T k and an
instructive signal P . W is the active synaptic weight, and Win are internalized
resources, the total synaptic weight is conserved. b) An illustration of the synaptic
plasticity traces and the instructive signal. c) The overlap Ik between the traces
and the instructive signal, iterated over locations of the instructive signal, where
D = T − t0 is the displacement between the start of the instructive signal and the
center of the presynaptic place field in units of time.
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an ”instructive signal” P(t) which is triggered by the induced plateau potential:

P (t− T ) =

{
0 : t < T

γe
− t−T

τI : t ≥ T
(5)

Where T marks the time of induction of the plateau potential. This instructive
signal is global, acting across all synapses in tandem with the synapse specific traces.

Our learning rule is a very simple induction model which depends on above de-
scribed synaptic traces T ki , instructive signal P (t), and assumes a conserved resource
that can become synaptic efficacy (see Figure 2a). These assumptions produce a
simple ODE for the dynamics of synaptic plasticity:

dWi

dt
= (1−Wi) · T pi (t− t0)P (t− T )−W · T di (t− t0)P (t− T ) (6)

Where again we denote the start time of the instructive signal as T and the temporal
center of the presynaptic place field as t0. By changing variables such that t→ t+ t0
we get:

dWi

dt
= (1−Wi) · T pi (t)P (t−D)−Wi · T di (t)P (t−D) (7)

where D = T − t0 is the displacement between the start of the instructive signal
and the center of the presynaptic place field in units of time. These presynaptic place
fields are tiled along the length L of the running track, therefore for each synapse
i, D is different, but simply linearly shifted. If the set of presynaptic neurons have
centers that are equally and linearly spaced with a spacing ∆x, starting at x0 then
t0(i) = T − (x0(i) + i ·∆x)/v), where t0(i) is the center in time or the presynaptic
receptive field of synapse i. Similarly one could write D = D(i), where each version
of D has he same order but is simply shifted.

2.2 General solution and fixed point

To find the fixed point solution of our learning rule, we can integrate over a single trial
and assume that during that trial, W does not change significantly. The dynamics
will therefore depend on the integral of the overlap between the traces and the
instructive signal (Figure 2c):

Iki (D) =

∫ ttrial

0

T ki (t)P (t−D)dt (8)
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where k ∈ (p, d). The fixed point of equation 6 is therefore:

(1−Wi) · Ipi (D) = Wi · Idi (D) (9)

This implies that the fixed point of Wi is simply:

Wi(D) =
Ipi (D)

Ipi (D) + Idi (D)
(10)

Practically speaking, this fixed point Wi(D) gives us the final weights of all the
synapses in response to an instructive signal presented at time T as a function of
their temporal distance to this instructive signal, D = T − t0. This fixed point can
be calculated numerically in the general case, but can also be calculated analytically
under certain conditions (see Results and Methods). The fixed point can also be
described in terms of spatial dependence, the units for which can be obtained in the
case of constant velocity simply by multiplying D by the animals velocity v.

Equation 10 implies that with linear induction of traces, as assumed in this sec-
tion, the parameters of the two traces must be different if we want the weights to
depend on the displacement between the place field center and the instructive signal.
If the traces are identical for all D, Wi(D) = 0.5 for all D. If they have the same
functional form, but a different scale such that Ip = k ·Id then Wi(D) = k/(1+k) for
every D. For the formulation of traces in equation 3, this would occur, for example,
if the parameters ηd = ηp and τd = τp but T pmax 6= T dmax. In order for the weights to
produce place fields that are selective for a certain range of D, the overlap Id should
generally be broader and shallower than the overlap Ip. This can be implemented di-
rectly by choosing appropriately different trace parameters for LTD and LTP, and/or
by including a basal level of LTD T d0 .

3 Results

3.1 Linear Track

To investigate the evolution of the weights and their convergence to fixed points, we
first consider the case of a linear track. For a linear track, we assume after each lap
the animal ”restarts”, such that for a single trial, previous traversals of the track do
not interfere. By calculating equation 10 for a set input receptive field shape R and a
set instructive signal P , we can numerically solve for the fixed points. The resulting
steady state place field shapes depend on the different parameters of the LTP and
LTD traces. In Figure 3 we show different place field fixed points, with the same
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Figure 3: Fixed point place field structure. a-c) Fixed point weights as a
function of D for different sets of parameters. The velocity in all these subplots is
identical (v = 0.116 m/s), and the same presynaptic Gaussian place field is used,
with a SD width of 0.21 m. All other parameters are indicated above each subplot.

presynaptic place field and the same velocity, but with different trace parameters, as
indicated above each subplot. One can observe that the width, selectivity, symmetry
and overall shape of the place fields significantly depends on these parameters. From
experiments we know that the shape of the fixed point should be such that it is
maximal near D = 0 and gets smaller, approximately symmetrically as D becomes
larger than zero. For a large enough D, Wi should be close to zero. Given these
experimental observations, one can estimate the different trace and instructive signal
parameters that are consistent with experiments.

These numerical calculations can then be checked by performing simulations
where Wi is explicitly updated at every time-step using equation 7. For the fol-
lowing simulations, we use the same parameters as in Figure 3c. We examine here
two different cases. In the first case, initial weights are set to zero, and so the weights
smoothly converge to their unimodal fixed point as the mouse repeats laps along the
track. Figure 4a shows the fixed point CA1 output voltage (equation 2) that results
from this case.

In the second case (Figure 4b), the weights are initialized such that there is a
preexisting place field in the CA1 output. Over the course of learning, interaction
between the traces and the instructive signal cause the new place field (centered at
the location of the instructive signal, D = 0) to potentiate and the preexisting place
field to depress. The further away the initial place field is from the new place field,
the longer it will take the initial place field to depress, owing to a smaller overlap
(Ik) between the traces and the instructive signal. However, the fixed point of the
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Figure 4: Linear track simulations. a,b) Simulated evolution of weights over laps
(dashed lines) and the numerically calculated fixed point weights (solid lines) as a
function of D. For a), initial weights are set to zero. For b), weights are initialized
such that there is a preexisting place field at D = 3.5s. c) Change in ramp amplitude
as a function of D and the initial ramp amplitude, calculated by iterating over 100
random selections of initial/new place field locations, and performing interpolation
on the results.

weights are irrespective of the initial place field, so given enough laps, the initial
place field will always disappear, and the solution will become unimodal.

Note that in both of these cases, and despite the assumptions made in deriving
the fixed point solution of equation 10, the numerical and simulation results are
nearly identical.

Running multiple simulations while iterating over initial place field locations and
instructive signal locations, one can plot the change in place field ramp amplitude
as a function of initial place field ramp amplitude and the time relative to plateau
onset. This creates (Figure 4c) a generalized response curve that predicts the results
of inducing a plateau potential, in a given location and with a given initial ramp
voltage. This generalized curve can be modified by changing parameters of the
model.

3.2 Circular track

A similar exercise can be performed assuming a circular track with continuous
running, where the instructive signal/traces can span across laps and place fields are
periodic. We can think of each cycle as another iteration in which the final value
of traces on the previous run is their initial value of the current run. In this case it
is more complicated to calculate the numerical fixed point, but one way to do so is
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Figure 5: Place field plasticity on a circular track. a) Traces and instructive
signals for a lap >> 1 on the circular track, as a function of time. b) Ip and Id on
circular track. c) Fixed point for weights on the circular track, compared to fixed
point weights for the linear track. Notice that while the two solutions are nearly
identical around D = 0, small deviations can be observed along the flanks near
|D| = 8s.

to consider an infinite number of iterations, and use the convergence of the infinite
series (see subsection 4.2).

In order to illustrate this graphically, we show in Figure 5a the traces for a lap
>> 1, where due to the periodicity of the track, the traces’ (and the instructive
signal’s) values at the end of the track are equal to those at the beginning of the
track. This periodicity is also reflected in the overlaps Ik (Figure 5b) which are
used to calculate the fixed point. It turns out that for a wide range of parameters
the circular track solution closely matches the linear track solution (Figure 5c). In
particular, if the time constant of the traces is shorter than the remaining length
of the track, the traces will decay before the track ends, meaning that the traces
will be at or near zero at the start of the next lap in both the linear and circular
case. As a result, the biggest differences between the circular and linear track fixed
points occur near the start/end of the track, and when the trace time constants
are long relative to the traversal time of the track. Other parameters show a larger
difference between the circular and the linear environments. Different input place
field shapes, such as rectangular, can also cause a separation in the linear and cir-
cular fixed point solutions because of the effects they have on the shape of the traces.
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3.3 Non-Linear trace activation

A further modification can be made to the circular track model by assuming a non-
linear response of the traces to presynaptic firing. Here we assume that instead of
the presynaptic firing rate R, directly activating the traces, this activation is non-
linearly filtered though a function F k(R) where the index k can take the values p
or d indicating a possibly different non-linearity for LTP and LTD traces. Thus the
trace activation equation now takes the form:

dT ki
dt

=
[
−(T ki − T k0 ) + ηkF k (Ri(v · t)) (T kmax − T ki )

]
/τ k. (11)

For simplicity we have chosen a thresholded linear form: F k(x) = Ck[x − θk]+.
Practically it implies that the LTP and LTD traces see different effective presynap-
tic receptive fields, and aside from that, all the previous analysis still holds. The
assumption of non-linear activation does not necessarily produce superior solutions
(i.e. fixed points which more closely match experiment), but it allows for a different
way of obtaining similar results. Examples of the solutions with non-linear traces on
a circular track are shown on Figure 6. In figure 6a we show the effective receptive
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fields for the LTP trace (dashed red) and LTD trace (black) respectively. Apart
from this difference, in this example, the parameters of the LTP and LTD traces are
identical. The narrower LTP effective place field generates a narrower LTP trace,
which allows for a selective receptive field (Fig 6c).

3.4 Velocity Dependence

Until now, we have only shown results for one fixed running speed, but the shape of
the resulting place fields depends on the velocity of the animal on the track. Figure 7
shows how the shape and selectivity of place fields depends on velocity for a given set
of parameters. These results are consistent with experimental results, which show
that as the velocity increases, the width increases and the selectivity of the resulting
place field decreases. Qualitatively similar results are obtained for other parameter
sets, and for non-linear traces. Velocity dependence is similar on the linear and
circular tracks, so we only demonstrate it here for the circular track. Note that the
fixed point of W here is plotted against D in terms of distance in centimeters, so that
the X axis stays the same at different velocities. While at every velocity there is a
single fixed point curve, experimentally we might not reach the fixed points because
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Figure 7: The dependence of place field shape on velocity. a) Fixed points
of the weight vector as a function of D for different movement velocity. b) The
dependence of the half width of the weights a fixed-point on the travel velocity. The
green and orange symbols are for left and right widths, respectively.
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the convergence time might be large.

3.5 Convergence Time

The fixed point of the learning rule produces a single place field centered at the
location of the induced plateau potential, regardless of pre-existing place fields before
learning. However, the rate at which learning converges depends on D - the larger
absolute value of D, the longer the convergence time. This effect is present for both
the potentiation of new place fields and the depression of old place fields. Figure
8a shows the simulated convergence of the weights towards their fixed points as a
function of trial number and D, given zero initial weights. To predict the convergence
time analytically, we use the approximation that W does not change significantly
during a single trial to rewrite equation 6 as:

δW = Ip −W (Ip + Id) (12)
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Figure 8: Convergence to solutions. a) The relative distance to the fixed point
((Wfixed −W ) /Wfixed) as a function of D, shown as logarithmic heatmap. b) The
convergence time, τw (blue), and the number of simulated trials to reach Wfixed/e
(orange) as a function of D (in seconds). Notably, in both cases the convergence time
rises steeply beyond a certain value of D. Both cases start from the initial condition
Wi = 0.
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where Ip and Id are defined as in equation 8. The solution to this difference equation
is an exponential with the time constant τw = 1

Ip+Id
, which gives us an estimate

of the relative convergence time. Simulations show that the analytically predicted
convergence time is closely related to the number of trials it actually takes for the
simulated weights to reach 1

e

Ip
Ip+Id

(1
e
, or approximately 36 percent of their fixed point

values (Figure 8b) when starting from zero initial weights. Notably, the convergence
time steeply rises for large absolute D, such that it takes around 3-5 times as many
trials to converge for D = 8 s as it does for D = 0 s. For even larger D, τw can
become prohibitively long, meaning that the output can effectively maintain two
place fields provided they are far enough apart from each other, as the old place field
will depress incredibly slowly.

3.6 Analytical solution for rectangular place fields

The numerical integrals needed to find the traces T ki , and their overlaps with the
instructive signals, Iki can in some cases be solved analytically. A simple example
that can be solved analytically is when presynaptic receptive fields are rectangular.
To solve for the fixed points analytically, we assume that input place fields are
rectangular, starting at t1 and ending at t2, with an amplitude of α. In terms of the
position variable these start at vt1 and end at vt2. Formally the place field has the
form:

R(t) =


0 : t ≤ t1
α : t1 < t < t2
0 : t ≥ t2

(13)

Using this simple form of R(t), we can explicitly solve T ki and therefore Iki (D)
(8), in the case of the linear track. By performing these calculations (see Methods),

we arrive at the fixed point Wi =
Ipi

Ipi +I
d
i
. The final analytical form of the fixed point

depends on the activation rate (η), saturation values (T kmax) and time constants (τ k)
of the traces, the location (t1 and t2) and amplitude (α) of the receptive field, loca-
tion (t0) and time constant (τp) of the instructive signal, and on the duration of the
lap ttrial. We also include in this analysis a basal level of LTD (T d0 ), which smooths
over some of the artifacts of the rectangular input place field, and makes the solution
more similar to the solutions with Gaussian input place fields demonstrated above.
Figure 9 shows the results of the analytical solution. The fixed points found analyt-
ically match those found via simulations (and those found via numerical methods),
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Figure 9: Analytical solutions for a rectangular receptive field. a) Ip, Id,
and b) Wfixed as a function of D. Here, the LTD trace has a basal level T d0 , which

creates an additional overlap γT d0 τI(1− e
T−ttrial

τI ) (see Methods). The resulting fixed
point is close to symmetric around D = 0, and its properties can be modified via the
model parameters. The parameters used for the figure are as follows: τp = 500ms,
τd = 1500ms, ηp = .25, ηd = 200, T pmax = 2.2, T dmax = 2.0, T p0 = 0, T d0 = 1.5.

given the same input PF and same parameters are used in both cases (Figure 9b).

4 Methods

4.1 General trace solution

We can find a closed form solution for the traces by directly integrating equation 3.
Equation 3 is a non-homogeneous linear first order ODE, which can be solved using
an integration factor U(t). Where:

U(t) = e
1
τ

∫ t
−∞(1+ηRi(v·t′))dt′ (14)
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The solution for equation 3 then has the form:

Ti(t) =
Tmax
τ

[∫ t
−∞ dt

′ηRi(v · t′)U(t′) + C
]

U(t)
(15)

Given Ri(v · t′), one can use equation 15 to solve for Ti(t), and therefore Iki , and
therefore Wi. Some choices of Ri(v · t′) are more analytically tractable than others,
hence the choice of rectangular presynaptic place fields for analysis (equation 13), as
they allow for a closed form solution to this equation.

4.2 Circular track

For a circular track, we must account for the wraparound of both the traces and the
instructive signal in our calculations. If we define as tmax as the time it takes to do
one cycle, then the total time up to time t can be rewritten as t = n · tmax + q, where
n is the number of fully completed cycles. On the n + 1 run the initial condition
denoted by Cn is Ti(n · tmax). Using these definitions, and the periodicity of the place
cell with a period tmax, the solution in equation 15 is:

T̃ ki (t) =
T kmax
τ

[∫ n·tmax+q

n·tmax
dq′ηkRi(v · q′)Uk(q)

]
/Uk(q) + Ti(n · tmax)/Uk(q) (16)

where the index k is p or d for LTP and LTD traces, respectively. The first part
on the right is the same for q in each period, and independent of Tmax. The second

part iteratively forms a series such that: T̃ ki (n · tmax) = T ki (tmax)
∑n−1

j=0

(
Uk(tmax)

)−j
which in the infinite limit converges to: Ti(tmax)/(1 − U(tmax)

−1) This implies that
the solution for the circular track converges to:

T̃ ki (q) =
T kmax
τ

[∫ q

0

dq′Ri(v · q′)Uk(q′)
]
/Uk(q) + Ti(tmax)/(1− U(tmax)

−1) (17)

and T ki (tmax) = Tmax
τ

[∫ tmax
0

dqRi(v · q)Uk(q)
]
/Uk(tmax)

4.3 Convergence time

Explicitly, the solution to equation 12 is:
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W (t) =
Ip

Ip + Id
(1− e−(Ip+Id)t) (18)

Though our assumption to reach this equation (that W does not change much
from trial to trial) is not necessarily true for all D, it is close enough to make this
a good first approximation of W(t) (and therefore τw = 1

Ip+Id
a good approximation

of a convergence time constant). For |D| >> 0, the weights do indeed change quite
slowly, and equation 18 is a reasonable estimate of the weight dynamics.

4.4 Analytical solution for rectangular place fields

In this section we drop for simplicity the superscript for type of trace and the sub-
script for synapse index. Using the trace equation (3) and the above choice of R, the
integration factor U (see section 4.1) has the form:

U(t) =


et/τ : t ≤ t1

e
1
τ
[(1+ηα)t−ηαt1] : t1 < t < t2

e
1
τ
[t+ηα(t2−t1)] : t ≥ t2

(19)

Define V (t) =
∫ t
0
R(t′)U(t′)dt′. The solution (see equation 15) with C = 0 is

simply T (t) = ηTmaxV (t)/(U(t)τ). Let’s now calculate V (t). For t ≤ t1, V (t) = 0,
because R(t) is zero over this range. For t1 < t < t2:

V (t) =
ηατ

1 + αη
e−ηαt1/τ

[
e(1+ηα)t/τ − e(1+ηα)t1/τ

]
. (20)

For t > t2 : V (t) = V (t2).
Therefore:

T (t) =



0 : t ≤ t1

Tmaxηα
1+ηα

[
1− e− 1+ηα

τ
(t−t1)

]
: t1 < t < t2

Tmaxηα
1+ηα

[
1− e− 1+ηα

τ
(t2−t1)

]
e−

t−t2
τ : t ≥ t2

(21)
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Recall that one may take the standard trace equation (equation 4) and transform
it into the one with a basal level (equation 3) via the changes of variables Ti →
(Ti − T0) and Tmax → Tmax − T0. So if we are to include a basal level in our
analytical solution, all the Tmax in equation 21 become Tmax − T0, and the constant
T0 is added to the right side of the equation in all three cases.
Now that T (t) has been solved, one may find the fixed point of Wi (equation 10) by
solving for Iki (equation 8). Assume that we have an instructive signal of the form:

P (t− T ) =

{
0 : t < T

γe
− t−T

τI : t ≥ T
(22)

Where T is the time of the start of the instructive signal. Since Iki =
∫ ttrial
0

T ki (t)P (t−
T )dt, Iki = 0 for both t < t1 (T ki (t) = 0) and t < T (P (t − T ) = 0). This leaves us
with three cases to integrate over: T < t1, t1 ≤ T < t2, and t2 ≤ T < ttrial.

For T < t1:

Iki =

∫ t2

t1

ηαTmax
1 + ηα

[
1− e−

1+ηα
τ

(t−t1)
]
γe
− t−T

τI dt

+

∫ ttrial

t2

ηαTmax
1 + ηα

[
1− e−

1+ηα
τ

(t2−t1)
]
e−

t−t2
τ γe

− t−T
τI dt (23)

which can alternatively be written as:

Iki =
γηαTmax
1 + ηα

[∫ t2

t1

e
− t−T

τI dt−
∫ t2

t1

e
−
[
1+ηα
τ

(t−t1)+ t−T
τI

]
dt

+

∫ ttrial

t2

e
−
[
( 1
τ
+ 1
τI

)t− t2
τ
− T
τI

]
dt−

∫ ttrial

t2

e
−
[
1+ηα
τ

(t2−t1)+ t−t2
τ

+ t−T
τI

]
dt

]
(24)

The two other cases (t1 ≤ T < t2 and t2 ≤ T < ttrial) can be solved via the equation
above by substituting the limits of integration as appropriate. Following this pre-
scription leads to the following solutions:
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For T < t1:

Iki =
γηαTmax
1 + ηα

[
τIe

T/τI
(
e−t1/τI − e−t2/τI

)
+
e

1+ηα
τ

t1+T/τI(
1+ηα
τ

+ 1
τI

) [e−( 1+ηατ + 1
τI

)t2 − e−(
1+ηα
τ

+ 1
τI

)t1
]

+
eT/τI+

1+ηα
τ

t1−ηαt2/τ − et2/τ+T/τI(
1
τ

+ 1
τI

) [
e
−( 1

τ
+ 1
τI

)ttrial − e−(
1
τ
+ 1
τI

)t2
] (25)

For t1 ≤ T < t2:

Iki =
γηαTmax
1 + ηα

[
τI

(
1− e−

t2−T
τI

)
+
e

1+ηα
τ

t1+T/τI(
1+ηα
τ

+ 1
τI

) [e−( 1+ηατ + 1
τI

)t2 − e−(
1+ηα
τ

+ 1
τI

)T
]

+
eT/τI+

1+ηα
τ

t1−ηαt2/τ − et2/τ+T/τI(
1
τ

+ 1
τI

) [
e
−( 1

τ
+ 1
τI

)ttrial − e−(
1
τ
+ 1
τI

)t2
] (26)

For t2 ≤ T < ttrial:

Iki =
γηαTmax
1 + ηα

eT/τI+ 1+ηα
τ

t1−ηαt2/τ − et2/τ+T/τI(
1
τ

+ 1
τI

) [
e
−( 1

τ
+ 1
τI

)ttrial − e−(
1
τ
+ 1
τI

)T
] (27)

For traces with a basal level, each of three cases has an additional basal overlap

Ik0 =
∫ ttrial
0

T k0 P (t− T )dt = γT k0 τI(1− e
T−ttrial

τI ).

The fixed point can then be calculated by plugging in these expressions for Iki into

Wi =
Ipi

Ipi +I
d
i

(equation 10), for each of the three cases. Figure 9 shows the fixed point

solution that results from these calculations, assuming a non-zero basal level for the
LTD trace.
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5 Discussion

Synaptic plasticity that operates on behavioral time scales has been shown to deter-
mine place field plasticity in CA1 neurons. The underlying structure of such plasticity
is significantly different than the commonly studied Hebbian forms of plasticity that
assume near temporal coincidence of pre and postsynaptic activity. Experimental
results in CA1 using both in vivo and slice preparations strongly suggest that presy-
naptic activity generates synaptic eligibility traces for both LTP and LTD [17, 19].
Prior modeling work [18] shows, using simulations, that these two opposing traces,
combined with a weight dependence can account for the place field plasticity observed
in vivo.

Here we proposed a simple formulation for two-factor plasticity [20] that depends
on eligibility traces for both LTP and LTD, an instructive signal and weight de-
pendence. We have shown that this rule can be mathematically analyzed to yield
a simple expression for the fixed points of these place fields. These results show
that place fields can have spatial selectivity only if the traces have essentially dif-
ferent temporal dynamics, or if they are induced non-linearly, and with different
non-linearities. Such results are general, beyond the specific shapes of presynaptic
place fields and the model’s parameters. The general rule in both cases is that for ob-
taining selective place fields, the overlap between the LTD trace and the instructive
signal should have a broader shape the the overlap between the LTP trace and the
instructive signal; the more pronounced this difference, the sharper the place field.
By assuming specific shapes of presynaptic activity and of the instructive signal, we
can calculate exactly the shape of the learned postsynaptic place fields at steady
state and can estimate the local convergence rate to these shapes. We also used
simulation to validate the analytical results and show that the convergence of place
fields is rapid. In the case of a rectangular presynaptic place field a fully analytical
solution is obtained.

The shape of the postsynaptic place field at steady state depends on many of
the system parameters and assumptions, such as the shape of the presynaptic place
field and the parameters that determine the dynamics of the traces or the instructive
signal. One additional parameter that significantly affects the shape of the place
field is the animal’s velocity. If the animal moves through space slowly, place fields
are more local and selective, while a fast velocity results in non-local and broad place
fields. These results generalize beyond a narrow set of parameters, and can therefore
be used to experimentally validate the model.

We have also shown that the weakening of prior place fields in old locations is
significantly slower than the strengthening of the previously weak efficacies in the new
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location. The determining factor for this rate of change is the overlap between both
eligibility traces and the instructive signal. Locations near the peak of the instructive
signal are the ones that get enhanced, as in such locations there is a maximal overlap
between the traces and the instructive signal, and therefore a fast convergence rate.
On the other hand, locations which might have strong initial weights but are far
from the instructive signal get weakened. For such signals the overlap between the
instructive signal and both traces is much smaller and therefore the convergence to
the fixed point is also much slower.

In this formulation we have assumed that the synaptic efficacy dynamics are
weight dependent. Such weight dependence can arise from an assumption of a con-
served quantity, for example a conserved number of receptors in the membrane and
an internal synaptic store. This assumption is also motivated by a previous weight
dependent model, that compares well with experimental results [18]. The existence
of fixed points in our model, and their shape critically depends on this assumption.

In our solution we assume that the animal’s velocity is constant throughout,
though in a real environment this is not the case. Animals change their running
speed as they traverse the track, speeding up and slowing down and even sometimes
stopping to eat. Such varying velocity implies that there is no true fixed point with
this model, and that the place fields fluctuate around some mean fixed point. For a
changing velocity, one can perform simulations using experimentally obtained veloc-
ity profiles instead of an analytical solutions [18]. Such results are more biologically
realistic but are much more complex and offer less intuition. It is feasible that using
the animal’s velocity statistics, the mean around which the place fields fluctuate, the
variance with which they fluctuate, etc. can be estimated.

The inclusion of eligibility traces in our learning rule is essential, as it allows the
model to associate activity with temporally distal instructive signals and thereby
solve the temporal credit assignment problem. Traditional models of learning such
as Hebbian plasticity or STDP are insufficient to describe plasticity which occurs on
behavioral time scales, as they are restricted to learning tight temporal correlations
of activity. Previous characterizations of eligibility traces have generally depended on
both pre- and postsynaptic activity, where the conversion of traces to actual synaptic
efficacies depended on a third factor such as a reward signal [7, 8, 12, 21, 13, 20]. In
contrast, the model presented here is essentially a two-factor rule, in which traces
depend only on presynaptic activity, and weight changes depend on both traces and
the instructive signal. For feed forward circuits with a supervised or reinforcement
type objective (such as the hippocampal circuit we describe in our model), there is no
real need for three factor learning since the circuit tries to find an association between
two external factors a stimulus and some form of instructive signal. Indeed, previous
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work has shown that experimentally observed behavioral timescale synaptic plasticity
in CA1 is in fact inconsistent with three-factor rules which depend on synchronous
pre- and postsynaptic activity [18]. The observation that place field plasticity in CA1
neurons can be described by a two-factor rule actually makes its analysis simpler,
enabling the detailed results found here. In other systems, such as sensory systems
(for which previous eligibility trace theories were developed), the aim is to alter the
dynamics of a recurrent network, so for such models three-factor might indeed be
necessary [12, 8, 13]. Regardless, both two- and three-factor eligibility trace models
provide a simple and mathematically tractable explanation for learning that occurs
on behavioral time scales.
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