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3

Naturalistic stimuli, such as movies, activate a substantial portion of the hu-4

man brain, invoking a response shared across individuals. Encoding mod-5

els that predict the neural response to a given stimulus can be very useful6

for studying brain function. However, existing neural encoding models fo-7

cus on limited aspects of naturalistic stimuli, ignoring the complex and dy-8

namic interactions of modalities in this inherently context-rich paradigm. Us-9

ing movie watching data from the Human Connectome Project (HCP, N =10

158) database, we build group-level models of neural activity that incorporate11

several inductive biases about information processing in the brain, including12

hierarchical processing, assimilation over longer timescales and multi-sensory13

auditory-visual interactions. We demonstrate how incorporating this joint in-14

formation leads to remarkable prediction performance across large areas of15

the cortex, well beyond the visual and auditory cortices into multi-sensory sites16

and frontal cortex. Furthermore, we illustrate that encoding models learn17

high-level concepts that generalize remarkably well to alternate task-bound18

paradigms. Taken together, our findings underscore the potential of neural19

encoding models as a powerful tool for studying brain function in ecologically20

valid conditions.21
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Introduction22

How are dynamic signals from multiple senses integrated in our minds to generate a coher-23

ent percept of the world? Understanding the neural basis of perception has been a longstanding24

goal of neuroscience. Previously, sensory perception in humans has been dominantly studied via25

controlled task-based paradigms that reduce computations underlying brain function into sim-26

pler, isolated components, preventing broad generalizations to new environments or tasks (1).27

Alternatively, fMRI recordings from healthy subjects during free-viewing of movies present a28

powerful opportunity to build ecologically-sound and generalizable models of sensory systems,29

known as encoding models (2, 3, 4, 5, 6, 7).30

To date, however, existing works on encoding models study sensory systems individually, and31

often ignore the temporal context of the sensory input. In reality, the different senses are not32

perceived in isolation; rather, they are closely entwined through a phenomenon now well-known33

as multi-sensory integration (8, 9). For example, specific visual scenes and auditory signals34

occur in conjunction and this synergy in auditory-visual information can enhance perception in35

animals, improving object recognition and event detection as well as markedly reducing reaction36

times (10). Furthermore, our cognitive experiences unfold over time; much of the meaning we37

infer is from stimulation sequences rather than from instantaneous visual or auditory stimuli.38

This integration of information from multiple natural sensory signals over time is crucial to our39

cognitive experience. Yet, previous encoding methodologies have precluded the joint encoding40

of this rich information into a mental representation of the world.41

Accurate group-level predictive models of whole-brain neural activity can be invaluable to the42

field of sensory neuroscience. These models learn to disregard the idiosyncratic signals and/or43

noise within each individual, while capturing only the shared response relevant to the stimuli.44

Naturalistic viewing engages multiple brain systems and involves several cognitive processes45

simultaneously, including auditory and visual processing, memory encoding and many other46

functions (11). Group-level analysis in this paradigm is enabled by the synchrony of neuronal47

fluctuations in large areas of the cortex across subjects (12). Thus far, inter-subject correlation48

(ISC) analysis (12) has been a cornerstone tool for naturalistic paradigms because of its ability49

to characterize the shared response across individuals. Group-level encoding models adopt an50

alternative approach for capturing shared response, one grounded in out-of-sample prediction51

and generalization (1). This allows them to model neural activity beyond a constrained stimulus52

set. However, there is a clear gap between the two mediums of analysis. While ISC analysis53

suggests that large areas of the cortex exhibit fluctuations that are consistent across subjects,54

existing neural encoding models have largely focused on predicting activity within pre-defined55

functional areas of the brain such as visual and auditory cortices. It is unclear how they may56

be scaled to develop a single predictive model for whole-brain neural responses, given that57

naturalistic scenes produce wide-spread cortical activations. In this paper, we aim to fill this58

gap: provided adequate characterization of stimuli, we hypothesize that the stable component59

of neural activity across a subject population, i.e., the stimulus related activity, should be pre-60
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dictable. In the present study, we aim to quantify and improve the encoding of this wide-spread61

stimulus-driven cortical activity using rich stimulus descriptions.62

Brain responses in real-world conditions are highly complex and variable. Owing to their high63

expressive capacity, deep neural networks (DNNs) are well-suited to model the complex high-64

dimensional nature of neural activity in response to the multitude of signals encountered during65

movie-watching. Recently, DNNs optimized for image or sound recognition have emerged as66

powerful models of computations underlying sensory processing (4, 5, 7, 2), surpassing tradi-67

tional models of image or sound representation based on Gabor filters (3) and spectrotempo-68

ral filters (13), respectively, in higher-order processing regions. In this approach, the stimuli69

presented during brain activity recordings are fed as input to pre-trained neural networks and70

activations of individual layers are linearly transformed into predictions of neural responses in71

different regions of the brain. This approach affords a useful interpretation of these feature72

spaces as outcomes of a task-constrained optimization, shedding light on how high-level be-73

havioral goals, such as recognition, may constrain representations in neural systems (2). While74

useful, task-driven features may diverge from optimal neural representations and tuning these75

features to better match the latter may be both feasible and beneficial (14). This approach can76

help bridge the quantitative gap in explaining neural responses under realistic conditions while77

improving our understanding of the nature of information processing in the brain. From a purely78

modeling standpoint, our methodological innovations are threefold. First, we propose an end-79

to-end deep-learning based encoding model that extracts semantic feature maps from audio and80

visual recognition networks and refines them jointly to predict the evoked brain response. To81

this effect, we demonstrate that using different modalities concurrently leads to improvements82

in brain encoding. Second, we note that cognitive perception during movie-watching involves83

maintaining memory over time and demonstrate the suitability of recurrent neural networks84

(RNNs) to capture these temporal dynamics. Finally, based on existing evidence of hierarchical85

information processing in visual and auditory cortices (5, 7), we adopt features at multiple lev-86

els of abstraction rather than low level or high level stimulus characteristics alone. We embed87

these inductive biases about hierarchy, long-term memory and multi-modal integration into our88

neural architecture and demonstrate that this comprehensive deep-learning framework general-89

izes remarkably well to unseen data. Specifically, using fMRI recordings from a large cohort of90

subjects in the HCP, we build group-level encoding models that reliably predict stimuli-induced91

neuronal fluctuations across large parts of the cortex. As a demonstration of application, we92

employ these encoding models to predict neural activity in response to other task-based stimuli93

and report excellent transferability of these models to artificial stimuli from constrained cogni-94

tive paradigms. This further suggests that these encoding models are able to capture high-level95

mechanisms of sensory processing.96

Approaching multi-sensory perception through the predictive lens of encoding models has sev-97

eral advantages. Because of their unconstrained nature, encoding models can enable data-driven98

exploration and catalyze new discoveries. Using six neural encoding models with different tem-99

poral scales and/or sensory inputs, trained only on ∼36 minutes of naturalistic data per subject,100
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we can replicate findings from a large number of prior studies on sensory processing. First, by101

prominently highlighting the transition from short to long temporal receptive windows as we102

move progressively from early to high-level auditory areas, we can distinguish the cortical tem-103

poral hierarchy. Next, by differentiating uni-sensory cortices from multi-sensory regions such104

as the superior temporal sulcus and angular gyrus, we can reproduce the multi-modal architec-105

ture of the brain. Finally, by synthesizing neural response to arbitrary stimuli such as faces,106

scenes or speech, we can demonstrate the functional specialization of known brain regions for107

processing of these distinct categories. Altogether, our results highlight the advantages and108

ubiquitous applications of DNN encoding models of naturalistic stimuli.109

Materials and Methods110

Dataset111

We study high-resolution 7T fMRI data of 158 individuals from the Human Connectome Project112

movie-watching protocol comprising 4 audio-visual movie scans (15, 16). The movies repre-113

sent a diverse collection, ranging from short snippets of Hollywood movies to independent114

vimeo clips. All fMRI data was preprocessed following the HCP pipeline, which includes mo-115

tion and distortion correction, high-pass filtering, head motion effect regression using Friston116

24-parameter model, automatic removal of artifactual timeseries identified with Independent117

Component Analysis (ICA) as well as nonlinear registration to the MNI template space (16).118

Complete data acquisition and preprocessing details are described elsewhere (15, 16). Finally,119

whole-brain fMRI volumes of size 113x136x113 are used as the prediction target of all pro-120

posed encoding models. Rest periods as well as the first 20 seconds of every movie segment121

were discarded from all analysis, leaving ∼12 minutes of audio-visual stimulation data per122

movie paired with the corresponding fMRI response. We estimated a hemodynamic delay of123

4 sec using ROI-based based encoding models, as the response latency that yields highest en-124

coding performance (Figure S2, see Supplementary Information for details). Thus, all proposed125

models are trained to use the above stimuli to predict the fMRI response 4 seconds after the cor-126

responding stimulus presentation. We train and validate our models on 3 audio-visual movies127

with a 9:1 split respectively and evaluate our models on the first three clips of the held-out test128

movie. Since the last clip in the held-out movie is repeated within the training movies, we129

excluded it from our analysis.130

Methodology131

We train six encoding models employing different facets of the complex, dynamic movie stim-132

ulus. These include: (1) Audio-1sec and (2) Audio-20sec models, which are trained on single133

audio spectrograms extracted over 1 second epochs and contiguous sequences of 20 spectro-134

grams spanning 20 seconds respectively; (3) Visual-1sec and (4) Visual-20sec models, trained135

with last frames of 1-second epochs and sequences of 20 evenly spaced frames within 20-second136
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Fig. 1. Schematic of the proposed models. (A) The short-duration (1-sec) auditory and visual models take a single
image or spectrogram as input, extract multi-scale hierarchical features and feed them into a CNN-based response
model to predict the whole-brain response (B) The long-duration (20-sec) uni-modal models take a sequence of
images or spectrograms as input, feed their hierarchical features into a recurrent pathway and extract the last
hidden state representation for the response model (C) The short-duration multi-modal model combines uni-modal
features and passes them into the response model (D) The long-duration multi-modal model combines auditory
and visual representations from the recurrent pathways for whole-brain prediction. Architectural details, including
the feature extractor and convolutional response model are provided in Supplementary Information.

clips respectively; (5) Audiovisual-1sec and (6) Audiovisual-20sec models, which employ au-137

dio and visual input as described above, jointly. All models are trained to minimize the mean138

squared error between the predicted and measured whole-brain response. Figure 1 depicts the139

overall methodology for training different encoding models.140

Stimuli141

Audio We extract mel-spectrograms over 64 frequency bands between 125-7500 Hz from142

sound waveforms to represent auditory stimulus in ∼1 second epochs, following (17). The143

audio spectrogram is treated as a single grayscale 96x64 image, denoted by xat , for the short144

duration model. For the longer-duration model, the input is simply a contiguous sequence of145

20 of these gray-scale images, represented as sat = {xai }ti=t−19. This representation of audi-146

tory input is also supported by strong evidence that suggests the cochlea may be providing a147

spectrogram-like input to the brain for information processing (18).148
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Visual All videos were collected at 24 fps. We extract the last frame of every second of the149

video as a 720x1280x3 RGB input, denoted by xvt , for the 1-sec models. We emphasize that the150

input here is a single RGB frame and we are using the 1-sec terminology only to be consistent151

with the nomenclature for audio models. We further arrange the last frame of every second in152

a 20-second clip into a sequence of 20 images, denoted by svt = {xvi }ti=t−19, to represent the153

continuous stream of visual stimuli. These are presented to the longer-duration Visual-20sec154

and Audiovisual-20sec models.155

The inputs to the Audio-1sec, Visual-1sec, Audio-20sec, Visual-20sec, Audiovisual-1sec and156

Audiovisual-20sec models are thus given as xat , xvt , sat , svt , {xat , xvt } and {sat , svt } respectively.157

Audio-1sec and Visual-1sec models158

Neural encoding models comprise two components: a feature extractor, which pulls out rel-159

evant features, s, from raw images or audio waveforms and a response model, which maps160

these stimuli features onto brain responses. In contrast to existing works that employ a linear161

response model (4, 7), we propose a CNN-based response model where stimulus features are162

mapped onto neural data using non-linear transformations. Previous studies have reported a163

cortical processing hierarchy where low-level features from early layers of a CNN-based fea-164

ture extractor best predict responses in early sensory areas while semantically-rich deeper layers165

best predict higher sensory regions (7, 5). To account for this effect, we employ a hierarchical166

feature extractor based on feature pyramid networks (19) that combines features from early,167

intermediate and later layers simultaneously. The detailed architectures of both components,168

including the feature extractor and convolutional response model are described in Figure S3.169

We employ state-of-the-art pre-trained ResNet-50 (20) and VGG-ish (17) architectures in the170

pyramid network to extract multi-scale features from images and audio spectrograms, respec-171

tively. The base architectures were selected because pre-trained weights of these networks172

optimized for behaviorally relevant tasks (recognition) on large datasets, namely Imagenet (21)173

and Youtube-8M (22), were publicly available. Resnet-50 was trained on image classification174

with 1000 classes, while the VGG-ish network was pre-trained on audio event recognition with175

∼30K categories. Further, due to computational and memory budget, the Resnet-50 was frozen176

during training across all models. On the other hand, we were able to fine-tune the VGG-ish177

network in both the Audio and Audiovisual encoding models. We note that in contrast to im-178

ages, there is a clear asymmetry in the axes of a spectrogram, where the distinct meanings of179

time and frequency might warrant 1D convolutions over time instead of 2D convolutions over180

both frequency and temporal axes. However, we found the benefits of a pre-trained network to181

be substantial in training convergence time and hence did not explore more appropriate archi-182

tectures.183
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Audio-20sec and Visual-20sec models184

Audio-20sec and Visual-20sec models employ the same feature extractor and CNN response185

model as their 1-second counterparts. However, here, the feature extraction step is applied on186

each image in a sequence of 20 frames, followed by a long short-term memory (LSTM) module187

to model the temporal propagation of these features. The output dimensions of the LSTM unit188

are set to 1024 and 512 for the visual and auditory models respectively, to ensure an equitable189

comparison with the corresponding 1-sec models. The last hidden state output of this LSTM190

unit is fed into the CNN response model with the same architecture as the 1-sec models.191

Audiovisual-1sec and Audiovisual-20sec models192

Meaningful comparison across different models requires the control of as many design choices193

as possible. To ensure fair comparisons, the Audiovisual-1sec model employs the same feature194

extractors as the Visual-1sec and Audio-1sec models. The only difference, here, is that the195

corresponding 1024-D and 512-D feature representations are concatenated before presenting196

to the CNN response model and the concatenated features are passed into a bottleneck layer197

to reduce the final feature dimensionality to the maximum among audio and visual feature198

dimensions, i.e., 1024, so that the multi-modal model is not equipped with a higher-dimensional199

feature space than the maximum among uni-modal models. We note that the response model200

has the same architecture across all 6 proposed models. Similarly, the Audiovisual-20sec model201

employs the same feature extraction scheme as the Visual-20sec and Audio-20sec models, but202

fuses the last hidden state output of the respective LSTM units by simple concatenation followed203

by a dense layer to reduce feature dimensionality to 1024 before feeding it into the response204

model.205

Evaluation206

We first evaluated the prediction accuracy of all models on the independent held-out movie by207

computing Pearson correlation coefficient (R) between the measured and predicted response at208

every voxel. Here, the ‘measured’ response refers to the group-averaged response across the209

same group of 158 subjects on which the models were trained. Comparison among these mod-210

els enables us to tease apart the sensitivity of individual voxels to input timescales and different211

sensory stimuli. Voxel-level correlation coefficients between the predicted and measured re-212

sponses were averaged to summarize the prediction accuracy of each model in relevant cortical213

areas (Figure 2B-F). For this region-level analysis, ROIs were derived with a comprehensive214

multi-modal parcellation of the human cortex (23), which was mapped onto the MNI-1.6 mm215

resolution template. We note that ROIs were employed only to interpret the results of the216

study and relate them to existing literature. We emphasize that all performance metrics re-217

ported henceforth are based on voxel-level correlations. It is important to note that prediction218

accuracy at every voxel is bounded by the proportion of non-stimulus related variance that re-219

flects measurement noise or other factors. We thus also show the regional level performance of220
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all models against the reliability (“noise ceiling”) of measured responses within those regions221

(Figure 3).222

Noise ceiling estimation:223

The reliability of the group-averaged response at each voxel is estimated from a short 84 second224

clip that was repeatedly presented at the end of all movie sessions. We compute an effective up-225

per bound on our performance metric, i.e., the correlation coefficient, as the correlation between226

the measured fMRI response (group-mean) during different runs. We repeat this process 6 times227

(choosing pairs from 4 repeat measurements) to get a mean noise ceiling estimate per voxel, as228

shown in Figure 3D. We divide the voxel-level prediction accuracy (R) by this noise ceiling to229

get noise-normalized prediction accuracy of all models in left panels of Figure 3A-C. We note230

that this noise ceiling is computed on the repeated video clip, which is distinct from the test231

movie on which the model performance metrics are computed. Direct comparison against this232

noise ceiling can be sub-optimal, especially if the properties of the group-averaged response233

vary drastically across the two stimulus conditions. We address this limitation during model234

evaluation against data from a held-out independent group of subjects by computing a more235

suitable upper bound, which is achievable by a group-level encoding model (Figure S7, see236

Supplementary Information for more details). As we demonstrate in the results (Figure S7, S8),237

the trend and spatial distribution of model performance against noise ceiling remains unchanged238

across the model evaluation and noise ceiling estimation method.239

Results240

Multi-sensory inputs and longer time-scales lead to the best encoding performance with241

significant correlations across a large proportion of the stimulus-driven cortex242

To gain quantitative insight into the influence of temporal history and multi-sensory inputs243

on encoding performance across the brain, we computed the mean prediction accuracy in five244

groups of regions defined as per the HCP MMP parcellation (23), namely, (1) auditory regions245

comprising both early and association areas, (2) early visual and visual association regions, (3)246

known multi-sensory sites and regions forming a bridge between higher auditory and higher247

visual areas, (4) language-associated regions, and (5) frontal cortical areas. As our research248

concerns stimulus-driven processing, only ROIs belonging to the “stimulus-driven” cortex were249

included in the above groups (Table S2, see Supplementary Information for the definition of250

“stimulus-driven” cortex). Groups 1 and 2, which are associated with a single modality (audi-251

tory or visual) do not show any marked improvement from audio-visual multi-sensory inputs252

and are best predicted by features of their respective sensory stimulus (Figure 2B,C). The per-253

formance boost with multi-sensory inputs is more pronounced in groups 3, 4 and 5 which are254

not preferentially associated with a single modality, but are involved in higher-order processing255

of sensory stimuli (Figure 2D-F). Further, temporal history of the stimulus yields consistent256

improvement in prediction performance in almost all groups of regions, albeit to different ex-257
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Fig. 2. Regional predictive accuracy for the test movie. (B)-(F) depict quantitative evaluation metrics for all
the proposed models across major groups of regions as identified in the HCP MMP parcellation (A). Predictive
accuracy of all models is summarized across (B) auditory, (C) visual, (D) multi-sensory, (E) language and (F)
frontal areas. Box plots depict quartiles and swarmplots depict mean prediction accuracy of every ROI in the
group. For language areas (Group 4), left and right hemisphere ROIs are shown as separate points in the swarmplot
because of marked differences in prediction accuracy. Statistical significance tests (results indicated with horizontal
bars) are performed to compare 1-sec and 20-sec models of the same modality (3 comparisons) or uni-modal
against multi-modal models of the same duration (4 comparisons) using paired t-test (p-value < 0.05, Bonferroni
corrected) on mean prediction accuracy within ROIs of each group.
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tents. Improvements in groups 3, 4 and 5 agree well with the idea that higher-order sensory258

processing as well as cognitive and perceptual processes, such as attention and working mem-259

ory, are hinged upon the history of sensory stimuli; therefore, accumulated information benefits260

response prediction in regions recruited for these functions. Further, both auditory and visual261

association cortices are known to contain regions that are responsive to sensory information ac-262

cumulated over the order of seconds (24). This potentially explains the significant improvement263

observed for long-timescale encoding models compared to their short-timescale counterparts in264

these sensory cortices (Figure 4). Together, the Audiovisual-20sec model integrating audio-265

visual multi-sensory information over longer time-scales yields maximum prediction accuracy266

(R) and highest percentage (∼ 83 percent) of significantly predicted voxels across the stimulus-267

driven cortex (Figure 3E), suggesting that the Audiovisual-20sec model can adequately capture268

complementary features of each additional facet (multi-sensory stimuli / temporal information)269

of the sensory environment.270

Longer time-scales improve encoding performance, particularly in higher order auditory271

areas272

As a movie unfolds over time, the dynamic stream of multi-modal stimuli continuously up-273

dates our neural codes. Evidence from neuroimaging experiments suggests that different brain274

regions integrate information at different timescales; a cortical temporal hierarchy is reported275

for auditory perception where early auditory areas encode short timescale events while higher276

association areas process information over longer spans (25). This temporal gradient of audi-277

tory processing is well-replicated within our study. Comparison of 1-sec and 20-sec models278

allows us to distinguish brain regions that process information at shorter timescales from those279

that rely on longer dynamics. There is a negligible contribution of longer timescale inputs280

on prediction correlations in regions within early auditory cortex, such as A1, LBelt, PBelt,281

MBelt and Restro-insular cortex (RI) (Figure 3A, 4A), in line with previous reports suggesting282

short temporal receptive windows (TRWs) of early sensory regions (25). Shorter integration283

windows are in agreement with the notion that these regions facilitate rapid processing of the284

instantaneous incoming auditory input. In contrast, response in voxels within auditory associ-285

ation ROIs lying mainly in the superior temporal sulcus or along the temporal gyrus (A4, A5,286

STSda, STSva, STSdp, STSvp, STGa, TA2) is seen to be much better predicted with longer287

time-scales (Figure 3A, 4A). Cumulatively across association ROIs, Audio-20sec model yields288

a highly significant improvement in prediction accuracy (∼50%) over the Audio-1sec model, in289

comparison to a marginal improvement (∼5%) across early auditory ROIs.290

Longer time-scales lead to significantly better predictions in the dorsal visual stream and291

MT+ complex292

The distinct association of dorsal visual stream with spatial localization and action-oriented293

behaviors and ventral visual stream with object identification is well documented in the liter-294
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Fig. 3. Predictive accuracy of uni-modal (A,B) and multi-modal (C) models over the whole brain in the test
movie. Colors on the brain surface indicate the Pearson’s correlation coefficient between the predicted timeseries
at each voxel and the true voxel’s timeseries normalized by the noise ceiling (D) computed on repeated validation
clips. Only significantly predicted voxels (p-value < 0.5, FDR corrected) are colored. ROI box plots depict the
un-normalized correlation coefficients between the predicted and measured response of voxels in each ROI and
the respective noise ceiling for the mean. (E) shows the percentage of voxels in stimulus-driven cortex that are
significantly predicted by each model and mean prediction accuracy across the stimulus-driven cortex.
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Fig. 4. Influence of temporal history on encoding performance. (A) Mean predictive performance of Audio-
1sec and Audio-20sec models in early auditory and association auditory cortex ROIs. A major boost in encoding
performance is seen across auditory association regions with the 20-sec model. (B) Mean predictive performance
of Visual-1sec and Visual-20sec models across ROIs in the dorsal, ventral and MT+ regions. Dorsal stream and
MT+ ROIs exhibit a significant improvement with Visual-20sec model but no effect is observed for the ventral
stream. Boxplots are overlaid on top of the beeswarm plot to depict quartiles. Horizontal bars indicate significant
differences between models in the mean prediction accuracy within ROIs of each stream using paired t-test (p-value
< 0.05).

ature (26). Another specialized visual area is the medial temporal complex (MT+), which has295

been shown to play a central role in motion processing. The functional division between these296

streams thus suggests a stronger influence of temporal dynamics on responses along the dorsal297

pathway and MT+ regions. To test this hypothesis, we contrast the encoding performance of298

Visual-1sec and Visual-20sec models across the three groups by averaging voxel-wise correla-299

tions in their constituent ROIs. In accordance with the dorsal/ventral/MT+ stream definition in300

the HCP MMP parcellation, we use the following ROIs for analysis: (a) dorsal: V3A, V3B, V6,301

V6A, V7, IPS1 (b) ventral: V8, Ventral Visual Complex (VVC), PIT complex, Fusiform Face302

Complex (FFC) and Ventro-medial Visual areas 1,2 and 3 (c) MT+: MT, MST, V4t, FST. Figure303

4B demonstrates the distribution of mean correlations over these ROIs for different models and304

streams. Our findings suggest that temporal history, as captured by the Visual-20sec model,305

can be remarkably beneficial to response prediction across the dorsal visual stream ( 30% im-306

provement over Visual-1sec model) and the MT+ complex ( 62% improvement over Visual-1sec307

model), in agreement with our a priori hypothesis . Further, in our experiments, no marked im-308

provement was observed for the ventral visual stream, indicating a non-significant influence of309

temporal dynamics on these regions.310
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Fig. 5. Sensitivity of ROIs to different sensory inputs. (A) Predictive accuracy (R) of audiovisual encoding model
with and without input distortions, (B) Sensory sensitivity index of different brain regions as determined using
performance metrics under input distortion (see Supplementary Information for details). Regions dominated by
a single modality are shown in darker colors, whereas light-colored regions are better predicted by a combina-
tion of auditory and visual information. Red indicates auditory-dominant regions whereas blue indicates visual
dominance.

Auditory and visual stimuli features jointly approach the noise ceiling in multi-sensory311

areas312

Examining prediction accuracy against response reliability allows us to quantify how far we are313

from explaining predictable neural activity. A high fraction of the stimulus-driven cortex (∼314

83%) is predictable with a longer timescale input and joint audiovisual features. Notably, areas315

extending anteriorly and posteriorly from the primary auditory cortex such as the posterior STS,316

STGa and TA2 achieve prediction correlations close to the noise ceiling with the Audiovisual-317

20 sec model (Figure 3C), suggesting that DNN representations are remarkably suited to encode318

their response.319

Interestingly, performance in auditory regions is much closer to the noise ceiling than visual320

regions. Understanding audition and vision in the same space further allows us to appreciate321

the differences between these modalities. While this may suggest that audition is perhaps a322

simpler modality to model, the differences could also result from a bias of the dataset. A more323

diverse sampling of acoustic stimuli in the training set could allow the model to generalize better324

in auditory regions. Furthermore, in contrast to auditory stimulation where all subjects hear the325

same sounds, visual stimulation can elicit highly varied responses dependent on gaze location.326

This variability could plausibly make group-level visual encoding a more difficult task.327

Joint encoding models tease apart the modal sensitivity of voxels throughout the sensory328

cortex329

Neural patterns evoked by movies are not simply a conjunction of activations in modality-330

specific cortices by their respective uni-sensory inputs; rather, there are known cross-modal331

influences as well as regions that receive afferents from multiple senses (27). Can we interro-332
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gate a joint encoding model to reveal the individual contribution of auditory and visual features333

in encoding response across different brain regions? To address this question, we shuffled334

inputs of either modality along the temporal axis during inference. We measured test perfor-335

mance of the trained audio-visual model on predictions generated by shuffling inputs of one336

modality while keeping the other one intact. This distortion at test time allows us to identify337

areas that are preferentially associated with either visual or auditory modality. We hypothe-338

sized that regions encoding multi-sensory information will incur loss in prediction accuracy339

upon distortion of both auditory and visual information. Further, uni-sensory regions will likely340

be adversely affected by distortion of either auditory or visual information but not both. To341

test this hypothesis, we further developed a sensory-sensitivity index that directly reflects the342

sensitivity of individual brain regions to information about auditory or visual stimuli (see Sup-343

plementary Information for details). For this examination, we utilized the Audiovisual-1sec344

model to avoid potential confounds associated with temporal history, although analysis of the345

Audiovisual-20sec model showed similar results. Figure 5 demonstrates the result of this analy-346

sis on sensory-specific regions as well as regions known for their involvement in multi-sensory347

integration. The benefit from (non-distorted) multi-sensory inputs to the prediction correlations348

of the Audio-visual model is most remarkably seen in posterior STS, STGa and sensory-bridge349

regions such as the temporal-parietal-occipital junction (TPOJ1-3) and superior temporal visual350

(STV) area. Another region that seems to be employing features of both modalities, albeit to a351

lesser extent, is the frontal eye field (FEF), whose recruitment in audiovisual attention is well352

studied (28).353

Classically, multi-sensory integration hubs are identified as regions that show enhanced activ-354

ity in response to multi-sensory stimulation as opposed to presentation of either uni-sensory355

stimuli based on some statistical criteria (29). Accordingly, the posterior STS is consistently356

described as a multi-sensory convergence site for audio-visual stimuli (27, 30, 29, 9). Its role357

in audiovisual linguistic integration has also been well-studied in the literature (28). Other358

multi-sensory integration sites reported extensively in prior literature include the temperopari-359

etal junction (9,27,28) and superior temporal angular gyrus (31). Our findings above lend strong360

support for the multi-sensory nature of all these regions.361

Encoding models as virtual neural activity synthesizers362

Next, we sought to characterize whether encoding models can generalize to novel task paradigms.363

By predicting neural activity for different visual categories from the category-specific represen-364

tation task within the HCP Working Memory (WM) paradigm, we generated synthetic func-365

tional localizers for the two most common visual classes: faces and places. Specifically, we366

predict brain response to visual stimuli, comprising faces, places, tools and body parts, from367

the HCP task battery. We use the predicted response to synthesize contrasts (FACES-AVG and368

PLACES-AVG) by computing the difference between mean activations predicted for the cate-369

gory of interest (faces or places respectively) and the average mean activations of all categories370

at each voxel (Figure 6). The predicted and measured contrasts are thresholded to keep top 5%371
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Fig. 6. Encoding models as virtual brain activity synthesizers. (A) Synthetic contrasts are generated from trained
encoding models by contrasting their “synthesized” (i.e., predicted) response to different stimulus types. (B)
Comparison of the synthesized contrast for ‘speech’ against the speech association template on neurosynth. (C-D)
compare the synthesized contrasts for ‘faces’ and ’places’ against the corresponding contrasts derived from HCP
tfMRI experiments.
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of the voxels.372

We observe a notable overlap between the synthetic and measured group-level contrasts. Fur-373

ther, our findings are consistent with the well-known cortical specificity of neuronal activations374

for processing of faces and places. Both the synthetic and measured faces contrasts are con-375

sistent with previously identified regions for face-specific processing, including the fusiform376

face area (corresponds to fusiform face complex (FFC) in Figure 6), the occipital face area in377

lateral occipital cortex (overlaps with the PIT complex in HCP MMP parcellation), and regions378

within temporo-parieto-occipital junction and STS (32, 33). Among these, the selective role of379

the Fusiform Face Area in face processing has been most consistently and robustly established.380

Another region known to respond more strongly to faces than other object categories, namely381

posterior STS, has been previously implicated in processing of facial emotions (32).382

Similarly, both synthetic and measured places contrasts highlight cortical regions thought to be383

prominent in selective processing of visual scenes. These include the parahippocampal areas384

(PHA1-3), retrosplenial cortex (POS1 in HCP MMP parcellation) and the transverse occipital385

sulcus (TOS), which comprises the occipital place area (OPA) (34).386

Cortical areas related to speech processing are similarly discovered using our models by con-387

trasting activations predicted for speech stimuli against non-speech stimuli such as environmen-388

tal sounds (Figure 6B, see Supplementary Information for more details). The synthetic contrast389

shows increased activation in language-related areas of the HCP MMP parcellation such as 55b,390

44 and the superior frontal language (SFL) area with left-lateralization, in accordance with pre-391

vious language fMRI studies (35). In addition, areas tuned for voice processing in STS (36) are392

also highlighted. The synthetic map also shows highest correlation with ‘speech’ on neurosynth393

term-based meta-analysis (37) and overlaps considerably with the speech association template394

on the platform.395

Additional analyses396

In prior studies, neural response prediction is done via regularized regression, where the signal397

at each voxel is modeled as a weighted sum of stimulus features with appropriate regulariza-398

tion on the regression weights. Following earlier works, we also train l2-regularized regression399

models using features derived from hierarchical convolutional networks trained on image or400

sound recognition such as those used in the proposed models, as well as semantic categories401

features labelled using the WordNet semantic taxonomy similar to (38). The latter are typically402

used for mapping the semantic tuning of individual voxels across the cortex. Our models con-403

sistently outperform the baselines, further illustrating the benefits of the proposed methodology404

(Figure S4(A)-(C), see Supplementary Information for more details). Additionally, we also per-405

formed ablation studies to understand the influence of different network components, namely406

the “non-linear” response model as well as the “hierarchical” feature extractor on model predic-407

tion performance and found that both components improve performance, although their relative408

contribution is stronger in visual encoding models than auditory models (Figure S4D, see Sup-409
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plementary Information for more details). The superior predictive performance of our models410

in comparison to the classical approach along with our ablation studies suggest that an inter-411

play of end-to-end optimization with a non-linear response model can jointly afford improved412

generalization performance.413

To test the generality of the models beyond the subject population they were trained on, we fur-414

ther compared the predictions of all models against the group-averaged response of a held-out415

group within HCP comprising 20 novel subjects distinct from the 158 individuals used in the416

training set, on the same independent held-out movie. The noise ceiling for this group was com-417

puted as the correlation coefficient between the mean measured response for the independent418

test movie across all 158 subjects in the training set and the group-averaged response computed419

over the 20 new subjects. This metric captures the response component shared across inde-420

pendent groups of subjects and thus reflects the true upper bound achievable by a group-level421

encoding model. As shown in Figure S7 (see Supplementary Information for more details), the422

models can accurately predict neural responses as measured with respect to the group mean of423

the held-out subjects, with the Audiovisual-20sec model performance even approaching noise424

ceiling in some regions, particularly the higher-order auditory association regions and multi-425

sensory sites such as the posterior STS. Importantly, the predictivities across the cortical sur-426

face are consistent with the performance metrics reported for the training subject population in427

Figure 3. Finally, by comparing model predictions against neural responses at the single subject428

level for subjects from the held-out group, we further demonstrate that the Audiovisual-20sec429

model can also successfully capture the response component that individual subjects share with430

the population (Figure S9, see Supplementary Information for details).431

Discussion432

Free viewing of dynamic audio-visual movies enables an ecologically valid analysis of a col-433

lective set of functional processes at once, including temporal assimilation and audio-visual434

integration in addition to momentary sensory-specific processing. Perception, under such stim-435

ulation, thus recruits sensory systems as well as areas subserving more sophisticated cogni-436

tive processing. Building quantitatively accurate models of neural response across widespread437

cortical regions to such real-life, continuous stimuli thus requires an integrated modelling of438

these disparate computations on sensory inputs. In this paper, we have presented six deep neu-439

ral network based encoding models with varying sensory and temporal information about the440

audio-visual stimulus. Subsequently, we queried the role of input history and different sen-441

sory information on prediction performance across individual regions of the cortex. We have442

shown that exploiting the richness of the stimulus along the time axis and sensory modality443

substantially increases the predictive accuracy of neural responses throughout the cortex, so444

far as approaching the noise ceiling for voxels in some known multi-sensory sites, such as the445

posterior STS (27, 30, 29, 9).446
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Auditory and visual scenes are the principal input modalities to the brain during naturalistic447

viewing. Yet, existing encoding models ignore their interactions. We employ a common strat-448

egy in multi-modal machine learning settings, namely feature fusion, to jointly model auditory449

and visual signals from the environment. We find that minimizing the prediction error is a450

useful guiding principle to learn useful joint representations from an audio-visual stimulation451

sequence and demonstrate that models that consume multi-modal signals concurrently, namely,452

Audiovisual-1sec and Audiovisual-20sec, can not only predict the respective uni-modal cortices453

slightly better but also lead to remarkable improvements in predicting response of multi-sensory454

and frontal brain regions (Figure 2). Further, we show that multi-modal neural encoding models455

not only boost performance in large areas of the cortex relative to their uni-modal counterparts456

(Figure 2,3E), but also shed light on how neural resources are spatially distributed across the457

cortex for dynamic multi-sensory perception (Figure 5). The predictivity of different sensory458

inputs for neural response, as evaluated on independent held-out data, can facilitate reverse in-459

ference by identifying the sensory-associations of different brain regions, providing clues into460

the multi-sensory architecture of the cortex. By comparative analysis of predictive performance461

in different regions across models (Figure 2) as well as perturbation analysis within the multi-462

modal model (Figure 5), we identify a number of regions that are consistently sensitive to both463

auditory and visual information, most notably the superior temporal sulcus and some frontal464

regions. Regions within inferior frontal cortex, have been implicated in the processing of visual465

speech, guiding sensory inferences about the likely common cause of multi-modal auditory and466

visual signals, as well as resolving sensory conflicts (39). Prior research has also implicated467

an extensive network of inferior frontal and premotor regions in comprehending audiovisual468

speech, suggesting that they bind information from both modalities (40). While unveiling the469

causal sequence of events for a mechanistic understanding of multi-sensory perception is not470

possible with the proposed approach, our findings align well with commonly held theories of471

sensory fusion which suggest that uni-sensory signals are initially processed in segregated re-472

gions and eventually fused in regions within superior temporal lobe, occipital-temporal junction473

and frontal areas (27). This proposition is corroborated by our experiments as response predic-474

tion in these regions is best achieved by a combination of both sensory inputs (Figure 3,5).475

A linear response model with pre-trained and non-trainable feature extractors, while simple and476

interpretable, imposes a strong constraint on the feature-response relationship. The underlying477

assumption is that neural networks optimized for performance on behaviorally relevant tasks,478

are mappable to neural data with a linear transform. We designed a flexible model, capable479

of capturing complex non-linear transformations from stimulus feature space to neural space,480

leading to more quantitatively accurate models that are better aligned with sensory systems.481

Even better accounts of cortical responses are then obtained by interlacing dynamic, multi-482

modal representation learning with whole-brain activation regression in an end-to-end fashion.483

Using these rich stimulus descriptions, we demonstrated a widespread predictability map across484

the cortex, that covers a large portion (∼83%) of the stimulus-driven cortex (Figure 3C,E), in-485

cluding association and some frontal regions. While inter-subject correlations in these regions486
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are frequently reported (12, 41), suggesting their involvement in stimulus-driven processing,487

response predictability in these areas had remained elusive so far. Further, the cortical predic-488

tivity is maintained even as we compare model predictions against neural responses of held-out489

subjects (Figure S7 and S9), suggesting that the proposed models are capable of successfully490

capturing the “shared” or stimulus-driven response component. These results provide com-491

pelling evidence that deep neural networks trained end-to-end can learn to capture the complex492

computations underlying sensory perception of real-life, continuous stimuli.493

We further demonstrated that encoding models can form an alternative framework for prob-494

ing the time-scales of different brain regions. While primary auditory and auditory belt cor-495

tex (comprising A1, PBelt, LBelt, Mbelt) as well as the ventral visual stream benefit only496

marginally from temporal information, there is a remarkable improvement in prediction per-497

formance in auditory and visual association and pre-frontal cortices, most notably in superior498

temporal lobe, visuomotor regions within the dorsal stream such as V6A, temporal parietal oc-499

cipital junction and inferior frontal regions. The improvement in prediction performance with500

the 20-second input is consistently seen for both uni-modal and multi-modal models. It is im-501

portant to acknowledge that directly comparing the prediction accuracies of static (1-sec) and502

recurrent (20-sec) models to infer processing timescales of different brain regions has its limita-503

tions. First, this analysis can be confounded by the slow hemodynamic response as performance504

improvement may be driven in part by the slow and/or spatially varying dynamics. Based on505

our analysis with ROI-level encoding models, the latter seems like a less plausible explanation506

(Figure S2, see Supplementary Information for details). Further, we performed additional anal-507

yses to understand the relationship between performance improvement in individual voxels and508

their autocorrelation properties and found a strong correspondence between the two, suggesting509

that the distribution of performance improvement across the cortex broadly agrees well with510

processing timescales (Figure S5, see Supplementary Information for details).511

Predictions from long-timescale models are based on temporal history as provided in stimulus512

sequences, and not just the instantaneous input. Modeling dynamics within these sequences513

appropriately is crucial to probe effects of temporal accumulation. RNNs have internal memo-514

ries that capture long-term temporal dependencies relevant for the prediction task, in this case,515

encoding brain response, while discarding task-irrelevant content. We compare this modeling516

choice against a regularized regression approach on stimulus features concatenated within T-517

second clips, with T ranging between 1 and 20 (Figure S4, see Supplementary Information for518

details). The inferior performance compared to our proposed models as well as a non-increasing519

performance trend against T for these linear models indicates that accumulation of temporal520

information by simply concatenating stimulus features over longer temporal windows is insuf-521

ficient; rather, models that can efficiently store and access information over longer spans, such522

as RNNs with sophisticated gating mechanisms, are much more suitable for modeling neural523

computations that unfold over time. Since activations of units within RNNs depend not only524

on the incoming stimulus, but also on the “current” state of the network as influenced by past525

stimuli, they are capable of holding short-term events into memory. Adding the RNN module526
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can thus be viewed as augmenting the encoding models with working memory.527

Investigating timescales of representations across brain regions by understanding the influence528

of contextual representations on language processing in the brain, as captured by LSTM lan-529

guage models for instance, has become a major research focus recently (42). In these language530

encoding models for fMRI, past context has been shown to be beneficial in neural response pre-531

diction, surpassing word embedding models. However, models that explain neural responses532

under dynamic natural vision while exploiting the rich temporal context have not yet been rig-533

orously explored with human fMRI datasets. In a previous study with awake mice, recurrent534

processing was shown to be useful in modelling the spiking activity of V1 neurons in response535

to natural videos (43). In dynamic continuous visual stimulation fMRI paradigms, a common536

practice is to concatenate multiple delayed copies of the stimulus to model the hemodynamic537

response function as a linear finite impulse response (FIR) function (38). However, since the538

feature dimensionality scales linearly with time-steps, this approach is limited to HRF mod-539

eling and is not feasible to capture longer dynamics of the order of tens of seconds. Another540

approach is to employ features from neural networks trained on video tasks, such as action541

recognition (6). However, these encoding models are constrained to capture one aspect of dy-542

namic visual scenes and are likely useful to predict neural responses in highly localized brain543

regions. Most studies in visual encoding remain limited to static stimuli and evoked responses544

in relatively small cortical populations.545

Our brain has evolved to process ‘natural’ images and sounds. In fact, recent evidence has546

shown that sensory systems are intrinsically more attuned to features of naturalistic stimuli547

and such stimuli can induce stronger neural responses than task-based stimuli (44). Here, we548

demonstrate that encoding models trained with naturalistic data are not limited to modeling549

responses of their constrained stimuli set. Instead, by learning high-level concepts of sensory550

processing, these models can also generalize to out-of-domain data and replicate results of al-551

ternate task-bound paradigms. While our models were trained on complex and cluttered movie552

scenes, we tested their ability to predict response to relatively simple stimuli from HCP task bat-553

tery, such as faces and scenes (Figure 6). The remarkable similarity between the predicted and554

measured contrasts in all cases suggests that ‘synthetic’ brain voxels, predicted by the trained555

DNNs, correspond well with the target voxels they were trained to model. We thus provide556

evidence that these encoding models are capsulizing stimulus-to-brain relationships extending557

beyond the experimental world they were trained in. On the other hand, classical fMRI experi-558

ments, for instance task contrasts, don’t generalize outside the experimental circumstance they559

were based on. This preliminary evidence suggests that encoding models can serve as promis-560

ing alternatives for circumventing the use of contrast conditions to study hypotheses regarding561

the functional specialization of different brain regions. Embedded knowledge within these de-562

scriptive models of the brain, could also be harnessed in other applications, such as independent563

neural population control by optimally synthesizing stimuli to elicit a desired neural activation564

pattern (45).565
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With purely data-driven exploration of fMRI recordings under a hypothesis-free naturalistic566

experiment, our models replicate the results of previous neuroimaging studies operating under567

controlled task-based regimes. Our analysis lends support to existing theories of perception568

which suggest that primary sensory cortices build representations at short timescales and lead569

up to multi-modal representations in posterior portions of STS (25). Encoding performance570

in these regions is consistently improved with longer timescales as well as multi-sensory in-571

formation. We reasoned that regions that are sensitive to multi-modal signals and/or longer572

stimulus dynamics could be distinguished by interrogating the performance of these models573

on unseen data. To date, encoding models have been rarely used in this manner to assess in-574

tegration timescales or sensory-sensitivity of different brain regions. Classically, processing575

timescales have been probed using various empirical strategies, for example, by observing ac-576

tivity decay over brief stimulus presentations or by comparing auto-correlation characteristics577

of resting-state and stimulus-evoked activity (46). Further, multi-sensory regions are identified578

via carefully-constructed experiments with uni-modal and multi-modal stimulus presentations,579

followed by analysis of interaction effects using statistical approaches (27). Here, we suggest580

that encoding models can form an alternate framework to reveal clues into these functional prop-581

erties that can be rigorously validated with future investigation. As with interpreting the results582

of any predictive model, one should, however, proceed with caution. Sounds are generated by583

events; this implies that sound representations implicitly convey information about actions that584

generated them. Similarly, visual imagery provides clues into auditory characteristics, such as585

the presence of absence of speech. Thus, it is difficult to completely disentangle the individual586

contributions of auditory and visual features to prediction performance across cortical regions.587

Similarly, longer time-scale inputs can lead to a more robust estimate of the momentary sen-588

sory signal, potentially confounding the interpretations of TRWs. Here, we contend that these589

models can, nonetheless, serve as powerful hypothesis generation tools.590

The methodological innovations in this study must also be considered in light of their limi-591

tations. Due to high dimensionality of features in early layers of the ResNet architecture for592

high-dimensional visual inputs, we employ pooling operations on these feature maps. Thus,593

low-level visual features, such as orientations, are compromised. The consequent unfavorable594

outcome is a low predictive performance in V1. Further, since different subjects can focus on595

different parts of the stimulus, group-level models can also blur out the precise object orienta-596

tion information. This is particularly relevant for complex naturalistic stimuli such as movies.597

In the future, incorporating eye gaze data into these models can be an interesting exploration.598

Furthermore, due to computational constraints, the proposed model is only able to examine the599

effects of stimuli up to 20 seconds in the past. However, previous research with naturalistic600

stimuli has shown that some brain regions maintain memory of the order of minutes during601

naturalistic viewing (47). Existing evidence also suggests that neural activity is structured into602

semantically meaningful and coherent events (25). Capturing long-range context in encoding603

models can be a challenging, yet fruitful endeavour yielding potentially novel insights into604

memory formation.605
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There are also inherent differences between proposed neural network models and biological606

networks. DNNs fail to capture known properties of biological networks such as local recur-607

rence, however, they have been found to be useful for modelling neural activity across different608

sensory systems. At present, feed-forward DNNs trained on recognition tasks constitute the609

best predictors of sensory cortical activations in both humans and non-human primates (2).610

In light of this observation, a recent study proposed that very deep feed-forward only CNNs611

(for example, ResNet-50 as employed in this study for visual feature extraction) might im-612

plicitly be approximating ‘unrolled’ versions of recurrent computations of the ventral visual613

stream (48). Object recognition studies on non-human primates have also hinted at a functional614

correspondence between recurrence and deep non-linear transformations (49). Although the615

functional significance of intra-regional recurrent circuits in core object recognition is still un-616

der debate, mounting evidence suggests they may be subserving recognition under challenging617

conditions (49, 50). Thus, investigation of more neurobiologically plausible models of the cor-618

tex that innately model intra-regional recurrent computations should be explored in the future,619

especially in relation to their role in visual recognition.620

Concluding remarks621

Comprehensive descriptive models of the brain need comprehensive accounts of the stimulus.622

Using a novel group-level encoding framework, we showed that ‘reliable’ cortical responses623

to naturalistic stimuli can be accurately predicted across large areas of the cortex using multi-624

sensory information over longer time-scales. Since our models were trained on a large-scale,625

multi-subject and open-source dataset, we believe these results could provide an important point626

of reference against which encoding models for naturalistic stimuli can be assayed in the future.627

The continued interplay of artificial neural networks and neuroscience can pave the way for628

several exciting discoveries, bringing us one step closer to understanding the neural code of629

perception under realistic conditions.630

H2: Supplementary Materials631
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Data and Software availability769

All experiments in this study are based on the Human Connectome Project movie-watching770

database. The dataset is publicly available for download through the ConnectomeDB software771

(https://db.humanconnectome.org/). Throughout this study, we utilized 7T fMRI data from the772

‘Movie Task fMRI 1.6mm/59k FIX-Denoised’ package within HCP. The network implemen-773

tation, analysis codes as well as trained model weights will be made available on the project774

Github page.775
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Supplementary materials776

HCP Movies777

Table S1 summarizes the HCP movie-watching dataset split used for training and evaluating all778

models.

Table S1. HCP dataset split

Movie Split Stimulus-response pairs per subject

7T_MOVIE1_CC1 v2 Training/Validation 652
7T_MOVIE2_HO1 v2 Training/Validation 716
7T_MOVIE3_CC2 v2 Training/Validation 669
7T_MOVIE4_HO2 v2 Testing 699

779

Region of Interest (ROI) selection780

ROIs were selected for each analysis based on the descriptions provided in the neuroanatomical781

supplementary results of the HCP MMP parcellation (23) and an extensive literature review.782

For Figure 2 in the main text and Figure S8, ROIs were thus assigned to groups 1-5 according783

to Table S2).784

Table S2. ROI categorization

Group ROIs

1. Auditory A1, LBelt, PBelt, MBelt, RI, STSda, STSva, A4, A5, TA2
2. Visual V1, V2, V3, V3A, V3B, V3CD, V4, V4t, V6, V6A, V7, V8, DVT, LO1-3, PIT, FFC, VMV1-3, IPS1, MT, VVC
3. Multi-sensory + sensory bridges STSdp, STSvp, STGa, STV, TPOJ1-3
4. Language 55b, SFL, PSL, 44, 45
5. Frontal IFSa, IFSp, IFJa, IFJp, FEF

Dorsal and ventral visual stream ROIs as well as early and association auditory cortex ROIs785

in Figure 4 (main text) were derived from the explicit stream segregation and categorization786

described in the HCP MMP parcellation (23) and are defined here for quick reference.787

• Dorsal: V3A, V3B, V6, V6A, V7, IPS1788

• Ventral: V8, VVC, PIT, FFC, VMV1-3789

• MT+: MT, MST, V4t, FST790

• Early auditory: A1, PBelt, MBelt, RBelt, RI791

• Association auditory: A4, A5, TA2, STGa, STSdp, STSda, STSvp, STSva792

All ROIs are shown in Figure S1793
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Fig. S1. Group segregation from the HCP MMP parcellation.

Estimating BOLD response delay794

BOLD response delay was estimated using ROI-level encoding models due to their faster iter-795

ation times in comparison to voxel-wise encoding. The input to these models was the prepro-796

cessed stimuli as described for voxel-wise encoding with the same train-validation-test split,797

and the output was the evoked ROI-level fMRI response at different lags (1-7 seconds) from798

the stimulus. Thus, the output is a 360-D vector corresponding to the mean fMRI response in799

each ROI of the HCP MMP parcellation. The feature extractors were identical to those in the800

proposed voxel-wise auditory and visual models. However, instead of a convolutional response801

model, here, the response model comprised two fully connected layers with output dimensions802

of 512 and 360 with an exponential linear unit and linear activation respectively. All models803

were trained for 20 epochs with a batch size of 4 and a learning rate of 1e-4. Validation curves804

were monitored to ensure convergence. Prediction accuracy of each model was computed as

Fig. S2. ROI-based encoding performance for estimating delay. (A) depicts the estimated mean and standard
error of the prediction accuracy (R) across various delays (1-7s) within the early auditory and association auditory
group (blue) as well as across all ROIs (red), as obtained using the single epoch (1s) auditory model. (B) depicts
the estimated mean and standard error of the prediction accuracy (R) for various delays (1-7s) within the primary
and dorsal visual streams (blue) as well as across all ROIs (red), as obtained using the single frame visual model.
Gray regions depict the standard error in estimating mean across ROIs within each group. ROI categorization is
described in the sub-section on ROI selection.

805

the mean Pearson’s correlation coefficient between the predicted and measured response across806

all ROIs, in the held-out movie dataset. Based on Figure S2, we estimated a response delay807

of 4 seconds, as this lag yielded the maximum prediction accuracy across all ROIs for both808
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auditory and visual ROI-level models. Further, even while restricting the prediction accuracy809

(R) to ROIs within different cortical areas (such as the early/association auditory areas or the810

dorsal/ventral visual stream), the optimal lag was consistently 4 seconds, suggesting that the811

difference in performance of 1-sec and 20-sec models in these regions (Figure 4) is not largely812

driven by differences in the hemodynamic response function (HRF).813

Defining the stimulus-driven or “synchronous” cortex814

We isolated voxels involved in stimulus-driven processing, termed “synchronous” or “stimulus-815

driven” voxels, by computing mean inter-group correlations over all training movies. Inter-816

group correlations were computed by splitting the entire group of subjects into two halves and817

computing correlations between the mean response time-course of each half (comprising 79818

subjects) at every voxel. We employed a liberal threshold of 0.15 for this correlation value.819

Thus, the mask of “stimulus-driven” voxels included those voxels that achieved an inter-group820

correlation of 0.15 or above. We computed mean quantitative metrics over this mask in Fig-821

ure 3E (main text) to compare different models.822

Model architectures and implementation823

The base feature extraction networks and convolutional response model in Figure 1 had the ar-824

chitecture as detailed in Figure S3. The feature extraction networks are reminiscent of the fea-825

ture pyramid network, which has shown significant improvements as a generic feature extractor826

across various applications. These networks comprise a parallel top-down pathway with lateral827

connections which grants them the ability to characterize both “what” and “where” in cluttered828

scenes, thereby enhancing object detection. We note that similar models with top-down and829

skip connections have been popular in vision research, since they can enrich low-level features830

with high-level semantics. The output of the feature extractor is fed into the convolutional re-831

sponse model to predict the evoked fMRI activation. This enables us to train both components832

of the network simultaneously in an end-to-end manner. Since the output response is differen-833

tiable with respect to network weights, the weights are adjusted via a first-order gradient-based834

optimization method to minimize the mean squared error between the predicted and target ac-835

tivation values across the entire brain.836

For ResNet-50, we use activations of the last residual block of each stage, namely, res2, res3,837

res4 and res5 to construct our stimulus descriptions s. From the VGG-ish network, we use838

the activations of each convolutional block, namely, conv2, conv3, conv4 and the penulti-839

mate dense layer fc2 1. The first three set of activations are refined through a top-down path to840

enhance their semantic content, while the last activation is concatenated into s directly (res4 ac-841

tivations are vectorized using global average pool). The top-down path comprises three feature842

1Pre-trained tensorflow/keras models for the visual and auditory backbone were available at
https://keras.io/applications https://github.com/tensorflow/models/tree/
master/research/audioset/vggish respectively
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maps at different resolutions with an up-sampling factor of 2 successively from the deepest layer843

of the bottom-up path. Each such feature map comprising 256/128 channels (in visual/auditory844

models respectively) is merged with the corresponding feature map in the bottom-up path (re-845

duced to 256/128 channels by 1x1 convolutions) by element-wise addition. Subsequently, the846

feature map at each resolution is collapsed into a 256/128 dimensional feature vector through847

a global average pool operation and concatenated into s, leading to a 1024-D and 512-D fea-848

ture representation for the visual and auditory stimuli respectively. The aggregated features are849

then passed onto a CNN comprising the following feedforward computations: a fully connected850

layer to map the features into a vector space which is reshaped into a 1024-channel cuboid of851

size 6x7x6 followed by four 3x3x3 transposed convolutions (conv.T) with a stride of 2 and852

exponential linear unit activation function to up-sample the latter. Each convolution reduces853

the channel count by half with the exception of the last convolution which outputs the single-854

channel predicted fMRI response.855

The 20-second models additionally comprised an LSTM layer to model the temporal propaga-856

tion of features across the contiguous sequence of input frames and/or spectrograms. The LSTM857

module has driven success across varied sequence modeling tasks due to its ability to efficiently858

regulate the flow of information across cells through gating. The memory cell in LSTM is modu-859

lated by three gates, namely, the input, forget and output gates. We note that the LSTM layer did860

not change the dimensionality of the input features so that equitable comparisons can be made861

against 1-sec models. The Audiovisual-1sec model concatenated features obtained from the862

base visual (1024-D) and audio (512-D) feature extraction networks, reduced their combined863

dimensionality to the higher value among the two (1024-D) by passing through a bottleneck864

dense layer followed by the same convolutional response model. The Audiovisual-20sec model865

additionally incorporated modal-specific LSTM networks prior to feature concatenation.866

Implementation:867

We note that all 6 models have roughly the same order of trainable parameters in the range of868

242M-362M. All parameters were optimized using Adam with a learning rate of 1e-4. Audi-869

tory and visual models were trained for 50 epochs with unit batch size. The stimulus as well870

as subject whose fMRI response is used as the target in the loss (“mean squared error”) are871

randomly sampled over each step of the training but kept consistent across models. We found872

this method to work better than using the group-averaged response as target, presumably be-873

cause this sampling provides information about both the cross-subject mean and the variance874

of response. Given the noise characteristics at each voxel, we hypothesize that this enables the875

model to focus on regions that can be well predicted with the given stimulus. Validation curves876

were monitored for all models to ensure convergence.877

Regularized linear regression: WordNet features878

Another popular approach in voxel-wise forward encoding beyond primary sensory cortices is879

the semantic category encoding model that is based on high-level semantic features (38). This880
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Fig. S3. Implementation details for the audio (top left) and visual (top right) feature extraction networks as well
as the convolutional response model (bottom). All layers and blocks outside the yellow rectangle (bottom-up
pathway) are trained from scratch. The blocks inside the yellow rectangular window are initialized with networks
pre-trained on image or sound recognition. Further, ResNet-50 is frozen during the training of all encoding models,
whereas VGG is fine-tuned. The sequence of operations within each block are defined from top to bottom, while
the number of repetitions for each sequence within the block are indicated with the multiplicative symbol on the
right.
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approach relies on labels that indicate the presence of semantic object and action categories in881

each movie frame. In this analysis, we employed WordNet labels that were provided as part882

of the HCP movie-watching data pipeline. The semantic labels were manually assigned by the883

Gallant lab team using the WordNet semantic taxonomy and subsequently converted to Word-884

Net synsets to build an 859-D semantic representational space (corresponding to 859 WordNet885

synset names). Following (38), we fitted l2 regularized linear regression models (known as886

ridge regression) to find weights corresponding to different input features for every voxel. The887

regularization parameter, α was optimized independently for each voxel by testing among 10888

log-space values in [1, 1000]. The optimal alpha is obtained by averaging across 15 boot-889

strapped held-out sets. In addition to fitting models with WordNet features extracted 4s prior to890

the measured neural response, we developed longer timescale linear models by concatenating891

the WordNet features extracted for each second (as described above) over T-second windows892

with T ranging from 1 to 20 seconds and presented these aggregated features to the bootstrapped893

regularized regression model. Figure S4 (B) demonstrates the performance of WordNet models894

across different groups of regions as a function of T, and (C) depicts the voxel-level prediction895

accuracy (R) of the best performing WordNet model that stacks features from 4-12s (at an inter-896

val of 1s) prior to the encoded cortical response. While simple and interpretable, the WordNet897

models clearly under-perform in terms of prediction accuracy (R) in comparison to the models898

proposed in the present study.899

Regularized linear regression: deep convolutional features900

We also trained group-level encoding models using a linear response model since this consti-901

tutes the dominant state-of-the-art approach to neural encoding (5, 4, 7). To enable a fair com-902

parison against the proposed 1-sec uni-modal models, we extract hierarchical features from the903

same layers of the ResNet-50 and VGG-ish architectures as employed by the proposed mod-904

els. The only difference here is the lack of a top-down pathway (since it is not a part of the905

pre-trained network but is trained with random initialization on the neural response prediction906

task), which prevents the refinement of coarse feature maps before aggregation. Pooling the907

outputs of different layers channel-wise using the global average pooling operation (namely908

{v1, v2, v3, v4} for the visual model and {a1, a2, a3, a4} for the audio model in Figure S3) leaves909

us with and 1024 and 3840 features to present to the auditory and visual models, respectively.910

Further, to compare against the longer-duration 20-sec models, we adopted two approaches: (1)911

we simply concatenated the stimulus features extracted for each second (as described above)912

over T-second windows with T ranging from 1 to 20 seconds and presented these aggregated913

features to the linear response model; alternatively, (2) we reduced the dimensionality of the914

aggregated features to a fixed length (set to 128) as in (1) using principal component analy-915

sis run on the training data. We added this comparison to rule out the fact that the temporal916

trend in performance of linear models is simply driven by a higher-dimensional feature space.917

We note that even after dimensionality reduction, the components retained at least 80% of the918

explained variance in all cases. Audio-visual encodings with linear response models were ob-919
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tained similarly by simply fusing the respective audio and visual hierarchical features through920

concatenation before linear regression. We apply l2 regularization on the regression coeffi-921

cients and adjust the optimal strength of this penalty through cross-validation on the training922

data using log-spaced values in {1e−14, 1e14} for each model. We report performance of the923

best models in Figure S4(A). Note that unlike the WordNet models, we found that optimizing924

a single regularization penalty α common across all voxels outperformed independent voxel-925

wise fitting with bootstrap in this case. Thus, we only present the results for the former. We926

note here that the convolutional response model in our proposed approach (instead of a fully-927

connected approach) allowed us to keep the learnable parameters manageable, facilitating joint928

optimization/fine-tuning of the feature extractor and response models. The consistently superior929

performance of the proposed models against linear regression based approaches strongly sug-930

gests that there is merit in end-to-end learning for encoding responses to dynamic, multi-sensory931

stimuli.932

Fig. S4. Performance of linear response models with (A) deep convolutional features and (B) semantically rich
WordNet features. The x-axis depicts the length of the windows (in seconds) over which the stimulus features
are concatenated and y-axis shows the mean Pearson’s correlation coefficient between the predicted and measured
responses across the stimulus-driven voxels. (C) shows the cortical map of the prediction accuracy (R) for the best
WordNet model. (D) shows results of the ablation study and highlights the importance of different components of
the proposed model architecture.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.09.11.293878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.293878
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ablation study933

To determine the influence of different architectural components on prediction performance of934

the proposed models, we performed an ablation study to investigate the individual contributions935

of (i) non-linearities in the response model, (ii) hierarchical (multi-scale) feature maps and (iii)936

fine-tuning audio sub-network (VGG). We selectivity removed each of these components from937

the respective 1sec models and compared the resulting performance against the proposed model938

that employs all (i)-(iii) components. There are several interesting observations to make from939

this ablation analysis (Figure S4D). (i) First, we find that encoding models with a frozen VGG940

network that is not updated during training incur a loss in performance compared to the pro-941

posed model where VGG layers are trainable during neural response prediction. This clearly942

demonstrates the advantages of altering these pre-trained models and suggests that fine-tuning943

is both feasible and beneficial in improving neural response prediction. (ii) Next, we find that944

prediction performance deteriorates after removing the non-linearities in both the Audio-1sec945

and Visual-1sec models. In the context of the Visual-1sec model with a frozen pre-trained back-946

bone (ResNet-50) and coupled with (i), this observation further highlights that it is possible to947

develop models of human sensory processing that are quantitatively more precise in matching948

brain activity than task-driven neural networks. (iii) Finally, we assessed the benefit of using949

hierarchical feature maps over selecting the single best-performing layer for each model (audio950

or visual) based on cross-validation. For both audio and visual models, we find that features951

from the last layer (i.e., a4 and v4, respectively) yield the highest mean prediction accuracy (R)952

across the synchronous cortex. However, although the convolutional response model architec-953

ture is common across these encoding models, it is important to note that this analysis is still954

plagued by confounds such as the different dimensionality of feature spaces across different955

layers that feed into the response model. The best performing single-layer encoding model,956

however, still performs worse than the hierarchical approach.957

Computing significance estimates958

The statistical significance of individual voxel predictions (Figure 3) was computed as the p-959

value of the obtained sample correlation coefficient for the null hypothesis of uncorrelation (i.e.,960

true correlation coefficient is zero) under the assumptions of a bivariate normal distribution. We961

employed the false-discovery procedure of Benjamini & Hochberg (1995) (51) to control for962

multiple comparisons under assumptions of dependence. For statistical comparison of model963

performance within each group of regions in Figure 2 (main text), we performed paired t-test on964

ROI-level average performance metrics and corrected for multiple comparisons among models965

(Bonferroni).966

Sensory-sensitivity index967

Distorting the input to the audio-visual model at test time allows us to interrogate the sensory-968

sensitivity of different brain regions. We developed a sensory-sensitivity index of each ROI969
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based upon predictive performance of the model with distorted inputs, as shown in Figure 5. Let970

SVr and SAr denote the mean prediction accuracy of the model in region r after shuffling (tem-971

porally) the input order of the visual and auditory stimuli, respectively. The sensory-sensitivity972

index for region r is then defined as sr = SAr−SVr

SAr+SVr
. Note that positive values of this index indi-973

cate that region r incurs a greater loss in predictivity upon distortion of visual information than974

auditory information, suggesting a higher visual sensitivity for this voxel. Similarly, negative975

values signal towards a higher auditory-sensitivity.976

Stimuli for synthetic contrasts977

Synthetic contrasts were generated to study the generalization of our models to new experi-978

mental paradigms (Figure 6). We focus on predicting task-based contrasts for three semantic979

categories, namely, faces, places and speech, since these are the most well-studied categories in980

the context of their distinct functional signatures. The stimuli for visual contrasts were derived981

from the HCP Working Memory paradigm, which combines category specific representation982

tasks (including faces and places) and working memory tasks. After excluding gray-scale im-983

ages, we were left with 102, 77, 97 and 103 images for the categories of faces, places, body984

parts and tools, respectively. Since these are static image without any dynamic content, we985

employed the Visual-1sec model to derive the visual contrasts (Figure 6(C),(D)).986

Stimuli for the speech and non-speech contrast were extracted from large popular datasets for987

these categories. Speech stimuli were extracted from a human speech-utterance dataset com-988

prising short audio clips of interviews recorded on YouTube (52). Non-speech stimuli were989

extracted from another large dataset comprising short clips of environmental sounds (53). We990

randomly extracted ∼ 100 minutes of audio waveforms from these datasets for both categories.991

The stimuli were processed for mel-spectrogram extraction in the same manner as the HCP992

audio-visual movies. Since the non-speech stimuli only comprised contiguous clips of roughly993

3 − 5 second duration, we employed the Audio-1sec model to obtain the speech contrast (Fig-994

ure 6(B)).995

Performance improvement and autocorrelation decay996

In the past, processing timescales in the brain have been probed using several different means (46).997

In one of the proposed approaches, the decay time of temporal autocorrelation is used as a proxy998

measure to understand the variation in processing timescales across different brain regions.999

With this approach, it was shown that decay times increased progressively along the temporal1000

hierarchy. Following this line of work, we estimated the autocorrelation decay time constant1001

(π) for each voxel by fitting an exponential, A exp{−t/π}, to the autocorrelation function (au-1002

tocorrelation computed at different lags). The exponential model was first independently fit for1003

each movie run and each voxel and the estimated π were subsequently averaged across runs to1004

obtain one decay time constant per voxel. Here, we were primarily interested in understanding1005

whether there is any relationship between the performance improvement of the 20-sec model1006
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Fig. S5. Performance boost of the 20-sec model over 1-sec model is higher in voxels with longer autocorrela-
tion decay times. (A) & (B) depict the performance improvement (∆R) against decay time constants for voxels
associated with auditory and visual regions, respectively (Table S2). The r value indicates the Pearson’s correla-
tion coefficient between the two quantities. Each dot in the scatterplot represents an individual voxel. Bivariate
kernel density estimates are overlaid on top of the scatterplot as contours to depict the probability distribution of
observations.

over 1-sec model, ∆R, computed as the difference between the prediction accuracies of the1007

Audiovisual-20sec and Audiovisual-1sec at every voxel, and the temporal autocorrelation prop-1008

erties of that voxel. We hypothesized that in voxels with longer processing timescales, the au-1009

tocorrelation would persist for longer durations (resulting in larger π) and the longer timescale1010

model (20-sec) would yield more substantive improvement over the 1-sec model. As shown in1011

Figure S5, we observed a significantly positive correlation between performance improvement1012

and the autocorrelation decay time constant (r = 0.49 and 0.50 across voxels in auditory and1013

visual regions as defined in Table S2), in line with our hypothesis. This suggests that the benefit1014

of employing the 20-sec model, as quantified in terms of performance improvement, is indeed1015

more remarkable in regions with longer processing timescales.1016

Surface visualization1017

All input fMRI data, as well as response predictions in this study are volume based. In order1018

to be consistent with prior research on encoding models that employ surface visualizations, we1019

created surface versions of volumetric predictability and synthetic contrast maps, as shown in1020

Figures 3, 5 and 6. We employed the 3D trilinear mapping method from connectome workbench1021

that computes the result on each vertex based on linear interpolation from voxels on each side1022

of the vertexfc2 2. However, since volume to surface mappings are an approximation, we only1023

employ this conversion for visualizations. All reported metrics are computed on volumes only1024

2https://www.humanconnectome.org/software/workbench-command
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on a per-voxel basis.1025

Qualitative analysis1026

To gain qualitative insights into the predictions of the most accurate model (Audiovisual-20sec)1027

on the held-out movie, we plot the predicted as well as measured response time-series of the1028

voxel with ‘median’ prediction accuracy (R) in the best performing ROI of each group (Fig-1029

ure S6). The latter corresponds to A4, V3CD, STSdp, IFSp and Area 45 for the auditory, visual,1030

multi-sensory, frontal and language groups respectively.

Fig. S6. Predicted and measured response time-series of the ‘median’ predictive accuracy (R) voxel across ROIs
of different functional groups. Vertical dashed lines mark the boundary of clip segments in the held-out movie.

1031
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Group-level prediction accuracy: held-out set1032

To test the generality of the models, we further compared model predictions against the group-1033

averaged response of a held-out group within HCP comprising 20 novel subjects distinct from1034

the 158 individuals used in the training set, on the same independent held-out movie.1035

Noise ceiling estimation: For the held-out group, we obtain the noise ceiling by considering1036

variability across subjects. Here, the noise ceiling was computed as the correlation coefficient1037

between the mean measured response for the independent test movie across all 158 subjects1038

in the training set and the group-averaged response computed over the 20 new subjects. This1039

metric captures the response component shared across independent groups of subjects and thus1040

reflects the upper bound achievable by a group-level encoding model. We employ this noise1041

ceiling for comparison against the prediction accuracy of the model on the held-out group of1042

subjects (Figure S7).1043

The models accurately predicted cortical responses evoked by the independent test movie as1044

measured in the independent subject population (Figure S7, S8), with the best performing1045

model (Audiovisual-20sec) even achieving close to perfect predictivity relative to the “noise1046

ceiling” in certain multi-sensory sites such as the posterior STS (Figure S7(A), (G)). Here, the1047

noise ceiling was computed as the correlation coefficient between the mean neural response in1048

the independent test movie, across all 158 subjects in the training set and the group-averaged1049

response computed over the 20 new subjects. This metric captures the response component1050

shared across independent subject populations and thus reflects the upper bound achievable by1051

a group-level encoding model. These results clearly indicate that inclusion of temporal history1052

and multi-sensory information pushes the prediction accuracies closer to their upper bound, as1053

also evidenced by a higher slope of the linear model fit on their corresponding data points. Fur-1054

ther, voxels that truly approach the noise ceiling are predominantly associated with the auditory1055

group of regions as broadly characterized within the HCP MMP parcellation. Interestingly, we1056

find that this regional distribution of predictivity against noise ceiling holds even for subject-1057

specific responses and not just the group-averaged responses, as described in the next section1058

and shown in Figure S9.1059

Subject-level prediction accuracy: held-out set1060

For each participant in our independent subject group (N = 20), we computed the correlation1061

coefficient (R) between the predictions of the best performing model (Audiovisual-20sec) and1062

the subject-specific fMRI response corresponding to the independent movie. We further contrast1063

this cortical map of prediction performance against another map computed as the voxel-wise1064

correlation coefficient between the mean neural response across all 158 training subjects and the1065

respective subject-specific response on the independent movie. The latter places an upper bound1066

on the predictivity of each voxel as achievable by any group-level model. Here, we present the1067

results for 5 subjects with mean prediction accuracy (un-normalized) within the stimulus-driven1068

cortex in the ith percentile with i ∈ {0.01, 25, 50, 75, 99.9}. The results (Figure S9) suggest that1069
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Fig. S7. Model performance on held-out group of subjects. (A) Pearson’s correlation coefficient (R) between the
model predictions and group-averaged response of an independent subject group comprising 20 subjects, on the
held-out test movie, normalized by the voxel-specific noise ceiling. (B) Predictivity against the noise ceiling for
all voxels with high “synchrony” across training movies (>0.5) (see Supplementary Information for details). This
gives a total of 52,954 highly “synchronous” voxels that are colored based on their association with auditory and
visual groups. This hue assignment of each voxel was derived from the coloration of the corresponding ROI in the
multi-modal HCP parcellation. Each dot in the scatterplot represents an individual voxel. Bivariate kernel density
estimates are overlaid on top of the scatterplot as contours to depict the probability distribution of observations
(prediction accuracy/noise ceiling pair at every voxel). 40
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Fig. S8. Quantitative evaluation metrics for all the proposed models on the independent held-out population
comprising 20 novel subjects. (B)-(F) depict prediction accuracy (R) for all the proposed models across major
groups of regions as identified in the HCP MMP parcellation (A). Predictive accuracy of all models is summarized
across (B) auditory, (C) visual, (D) multi-sensory, (E) language and (F) frontal areas. Box plots depict quartiles and
swarmplots depict mean prediction accuracy of every ROI in the group. For language areas (Group 4), left and right
hemisphere ROIs are shown as separate points in the swarmplot because of marked differences in the prediction
accuracy. Statistical significance tests (results indicated with horizontal bars) are performed to compare 1-sec
and 20-sec models of the same modality (3 comparisons) or uni-modal against multi-modal models of the same
duration (4 comparisons) using paired t-test (p-value < 0.05, Bonferroni corrected) on mean prediction accuracy
within ROIs of each group.
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Fig. S9. Comparison of voxel-level prediction accuracies (R) against subject-specific noise ceiling for 5 repre-
sentative subjects from the held-out set. The subjects were chosen such that their mean prediction accuracy (un-
normalized) within the stimulus-driven cortex lied in the ith percentile with i ∈ {0.01, 25, 50, 75, 99.9}. Surface
maps with white background in (A)-(E) depict raw correlation coefficients between model (Audiovisual-20sec)
predictions and subject-specific response on the held-out movie whereas maps on gray background indicate the
respective subject-specific noise ceiling. Only significantly correlated voxels (p<0.05, FDR corrected) are colored
on the surface.

the model can successfully capture the response component that individual subjects share with1070

the population.1071
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