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Abstract 1 

To invest effort into any cognitive task, people must be sufficiently motivated. Whereas 2 

prior research has focused primarily on how the cognitive control required to complete 3 

these tasks is motivated by the potential rewards for success, it is also known that 4 

control investment can be equally motivated by the potential negative consequence for 5 

failure. Previous theoretical and experimental work has yet to examine how positive and 6 

negative incentives differentially influence the manner and intensity with which people 7 

allocate control. Here, we develop and test a normative model of control allocation 8 

under conditions of varying positive and negative performance incentives. Our model 9 

predicts, and our empirical findings confirm, that rewards for success and punishment 10 

for failure should differentially influence adjustments to the evidence accumulation rate 11 

versus response threshold, respectively. This dissociation further enabled us to infer 12 

how motivated a given person was by the consequences of success versus failure. 13 

 14 

Author Summary 15 

From the school to the workplace, whether someone achieves their goals is determined 16 

largely by the mental effort they invest in their tasks. Recent work has demonstrated 17 

both why and how people adjust the amount of effort they invest in response to 18 

variability in the rewards expected for achieving that goal. However, in the real world, 19 

we are motivated both by the positive outcomes our efforts can achieve (e.g., praise) 20 

and the negative outcomes they can avoid (e.g., rejection), and these two types of 21 

incentives can motivate adjustments not only in the amount of effort we invest but also 22 

the types of effort we invest (e.g., whether to prioritize performing the task efficiently or 23 
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cautiously). Using a combination of computational modeling and a novel task that 24 

measures voluntary effort allocation under varying incentive conditions, we show that 25 

people should and do engage dissociable forms of mental effort in response to positive 26 

versus negative incentives. With increasing rewards for achieving their goal, they 27 

prioritize efficient performance, whereas with increasing penalties for failure they 28 

prioritize performing cautious performance. We further show that these dissociable 29 

strategies enable us to infer how motivated a given person was based on the positive 30 

consequences of success relative to the negative consequences of failure.  31 
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Introduction 32 

People must regularly decide how much mental effort to invest in a task, and for how 33 

long. When doing so, they weigh the costs of exerting this effort against the potential 34 

benefits that would accrue as a result [1,2]. These benefits include not only the positive 35 

consequences of success (e.g., money or praise) but also the negative consequences 36 

of failure (e.g., criticism or rejection). Prior work suggests that people likely vary in the 37 

extent they are motivated by the prospect of achieving a positive outcome versus 38 

avoiding a negative outcome [3,4]. For example, some students study diligently to earn 39 

praise from their parents while others do so to avoid embarrassment. The overall 40 

salience of these incentives will determine when and how a given person decides to 41 

invest mental effort (i.e., engage relevant cognitive control processes [5], including 42 

when they choose to disengage from effortful tasks [6,7]). However, while a great deal 43 

is known about how people adjust cognitive control in response to varying levels of 44 

potential reward [5,8,9], much less is known about how they similarly adjust to varying 45 

levels of potential punishment, nor the types of control allocation strategies that are 46 

most adaptive under these two incentive conditions.  47 

 48 

Previous research has examined how control allocation varies as a function of the 49 

reward for performing well on a task, such that participants generally perform better 50 

when offered a greater reward [10–14]. For instance, when earning rewards during a 51 

cognitive control task (e.g., Stroop) is contingent on both speed and accuracy, 52 

participants are faster and/or more accurate as potential rewards increase [11,15–17]. 53 

While studies have examined how motivation to avoid negative outcomes influence 54 
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cognitive control [18–22], a challenge of interpreting these mixed behavioral patterns is 55 

that participants deploy a variety of behavioral strategies as potential punishments 56 

increase [22,23]. Past work has demonstrated that these strategies, such as increased 57 

task processing (e.g., attentional focus) or adjusting decision thresholds, can be linked 58 

to different forms of control adjustment (e.g., prioritizing speed versus accuracy; [24–59 

27]). However, it remains unknown whether participants selectively deploy different 60 

forms of control adjustments when incentivized under distinct incentive regimes (i.e., to 61 

avoid poor performance versus achieve good performance).  62 

 63 

Recent theoretical work helps to frame predictions regarding when and how people 64 

might vary their control allocation in response to different forms of incentives [1]. For 65 

instance, normative accounts of physical effort allocation have proposed that animals 66 

and humans vary the intensity of their effort (e.g., motor vigor) to maximize their net 67 

reward per unit time (reward rate [28–31]). We have recently extended this framework 68 

to describe how people determine the appropriate allocation of cognitive control in a 69 

given situation. Specifically, we have suggested that people select the amount and 70 

type(s) of cognitive control that maximize the overall rate of expected rewards, while 71 

minimizing expected effort costs. The difference between these two quantities, referred 72 

to as the Expected Value of Control (EVC), indexes the extent to which the benefits of 73 

control outweigh its costs [1,2,32] (see also [33]). 74 

 75 

The EVC model has been successful at accounting for how people vary the intensity of 76 

a particular type of control (e.g., attention to a target stimulus/feature) to achieve greater 77 
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rewards [34,35]. However, limitations in existing data have prevented EVC from 78 

addressing how the type of control being allocated should depend on the type of 79 

incentive being varied. One limitation, noted above, is the dearth of research on how 80 

people adjust control to positive versus negative incentives. A second potential 81 

limitation is that most existing studies examine how performance varies over a fixed set 82 

of trials (e.g., 200 total trials completed over the course of an experiment). The maximal 83 

expected reward is determined by the number of trials in the task, which could limit the 84 

underlying drive to maximize reward rate. A stronger test of reward rate maximization, 85 

and one that is arguably more analogous to real-world effort allocation, would allow 86 

participants to perform as much or as little of the task as they like over a fixed duration 87 

[36], to tighten the link between reward rate and overall expected reward.  88 

 89 

In the current study, we developed a novel paradigm in which participants perform 90 

consecutive trials of a control-demanding task (the Stroop task) over a fixed time 91 

interval. We examined how the amount and type(s) of control allocated to this task 92 

varied under different incentive types (reward vs. punishment) and different magnitudes 93 

of those incentives (small vs. large). Across two experiments, participants demonstrated 94 

distinct patterns of task performance in the two incentive conditions: faster responses 95 

for increasing rewards, slower but more accurate responses for increasing punishment. 96 

We show that these patterns are consistent with normative predictions of a control 97 

allocation model that maximizes reward rate while minimizing effort costs. The model 98 

predicts that rewards versus punishments favor divergent control strategies: higher 99 

reward promotes faster information processing to maximize (correct) response rate, 100 
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whereas higher punishment promotes greater caution to minimize potential errors. 101 

Within the framework of a drift diffusion model (DDM), our normative model predicts that 102 

participants will respond to increases in reward level by both increasing their evidence 103 

accumulation rate (drift rate) and lowering their response threshold, whereas they will 104 

respond to increases in punishment level by primarily increasing their threshold. Model 105 

fits to behavioral data across both studies confirmed these predictions.  106 

 107 

Our model’s ability to make divergent predictions about the influence of incentives on 108 

the joint allocation of two forms of control (i.e., across drift rate and threshold) enabled 109 

us to make further inferences based on each participant’s unique behavioral profile. 110 

Specifically, by estimating how these DDM parameters varied together across 111 

conditions, we were able to infer how sensitive that participant might have been to 112 

reward and punishment to generate the pattern of behavior that they did. Collectively, 113 

this work demonstrates a compelling novel method for inferring variability in how people 114 

evaluate costs and benefits when deciding when and how much to allocate cognitive 115 

control.  116 
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 117 

 

Figure 1. Interval-Based Incentivized Cognitive Control Task. At the start of each 

interval, a visual cue indicates the amount of reward (monetary gain) for correct 

responses and the penalty amount (monetary loss) for incorrect responses within that 

interval. Participants can complete as many Stroop trials as they want within that interval. 

The cumulative reward over a given interval is tracked at the bottom of the screen. Correct 

responses increase this value, while incorrect responses decrease this value. At the end 

of each interval, participants are told how much they earned. The upper right inset shows 

the cues across the four conditions. 

Results 118 

Participants (N=32) performed a task in which they were given fixed time intervals 119 

(between 8 and 12 seconds long) to perform as many trials as they wanted of a 120 

cognitively demanding task (Stroop task; Figure 1). They received monetary reward for 121 
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each correct response within a given interval, and incurred a monetary loss (penalty) for 122 

each incorrect response. The magnitude of reward and penalty ($0.01 or $0.10) were 123 

independently varied across intervals, and were cued prior to the start of each interval.  124 

Behavioral Performance 125 

We found that when participants were expecting a larger reward for each correct 126 

response, they completed more trials correctly in a given interval compared to when 127 

they were expecting smaller rewards (F(1,31)=28.72, p<0.001; Figure 2A, Table 1). 128 

Variability in punishment magnitude appeared to have the opposite influence on 129 

behavior. When participants were expecting a larger punishment for each incorrect 130 

response, they completed fewer correct trials in a given interval than when they were 131 

expecting smaller punishments (F(1,31)=23.11, p<0.001; Figure 2B). We also observed a 132 

trending interaction between reward and punishment (F(1,29)=3.77, p=0.062) whereby 133 

the reward-related improvements in interval-level performance were enhanced in high-134 

punishment compared to low-punishment intervals.  135 

 136 
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Figure 2. Effects of reward and punishment on overall task performance. A) With 

increasing expected reward, participants completed more correct responses per second 

within a given interval (left), which reflect faster responding on correct trials (top right) 

without any change in overall accuracy (bottom right). B) With increasing expected 

punishment, participants instead completed fewer trials per second over an interval, 

reflecting slower and more accurate responses. Error bars reflect 95% CI. n.s.: p>0.05; ***: 

p<0.001 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 
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Table 1. Mixed Model Results for Correct Responses per Second 145 

*: p<0.05, **: p<0.01, ***: p<0.001  146 

 147 

  Correct Responses Per Second 

Predictors Estimates S.E. P-Value 

Age -0.036 0.031 0.238 

Female - Male 0.075 0.032 0.020* 

High Penalty - Low Penalty -0.026 0.005 <0.001*** 

High Reward - Low Reward 0.038 0.007 <0.001*** 

Average Congruence -0.015 0.005 0.001** 

Reward ⨉ Penalty -0.009 0.005 0.052 

Number of Subjects 32 

Observations 2469 

Marginal R2 / Conditional R2 0.093 / 0.551 

 148 

When separately examining how incentives influenced speed and accuracy, we found 149 

an intriguing dissociation that helped account for the inverse effects of reward and 150 

punishment on the number of correct responses per second. We found that larger 151 

potential rewards induced responses that were faster (F(1,28)=31.83, p<0.001) but not 152 

more or less accurate (Chisq(1)=0.26, p=0.612; Figure 2A, Table 2). By contrast, larger 153 

potential punishment induced responses that were slower (F(1,30)=35.28, p<0.001) but 154 

also more accurate (Chisq(1)=26.73, p<0.001; Figure 2B). These results control for trial-155 

to-trial differences in congruence, which, as expected, revealed faster (F(1,31)=115.28, 156 

p<0.001) and more accurate (Chisq(1)=4.13, p=0.042) responses for congruent stimuli 157 

compared to incongruent stimuli. Although there were no significant two-way 158 
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interactions between incentives and congruency on performance, we observed a 159 

significant three-way interaction between reward, penalty, and congruence 160 

(Chisq(1)=6.24, p=0.013) specific to accuracy. Together, these data suggest that 161 

participants applied distinct strategies for engaging cognitive control across reward and 162 

punishment incentives. 163 

 164 

Table 2. Mixed Model Results for Log-Transformed Reaction Time and Accuracy 165 

*: p<0.05, **: p<0.01, ***: p<0.001 166 

 167 

  Log-transformed RT Accuracy 

Predictors Estimates S.E. P-Value Odds Ratios S.E. P-Value 

Age 0.014 0.007 0.066 0.941 0.117 0.623 

Female - Male -0.023 0.007 0.002** 1.234 0.155 0.095 

High Penalty - Low Penalty 0.014 0.002 <0.001*** 1.381 0.082 <0.001*** 

High Reward - Low Reward -0.012 0.002 <0.001*** 1.028 0.039 0.464 

Trial Congruence (Cong-Incong) -0.020 0.002 <0.001*** 1.105 0.050 0.028* 

Reward ⨉ Penalty -0.003 0.001 0.015* 1.014 0.042 0.729 

Penalty ⨉ Congruence 0.001 0.001 0.353 1.043 0.038 0.256 

Reward ⨉ Congruence -0.001 0.001 0.432 1.044 0.039 0.249 

Reward ⨉ Penalty ⨉ Congruence 0.000 0.001 0.543 1.097 0.041 0.012* 

Number of Subjects 32 32 

Observations 27509 28785 

Marginal R2 / Conditional R2 0.056 / 0.255 0.055 / 0.150 
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Reward Rate-Optimal Control Allocation: Normative Predictions 168 

To generate predictions about performance on the Stroop task, we parameterized the 169 

tasks as a process of noisy evidence accumulating towards one of two boundaries 170 

(correct vs. error), using the drift diffusion model (DDM) [34,37]. We hypothesized that 171 

two of the DDM parameters that determine performance on a given trial are the rate of 172 

evidence accumulation (drift rate, 𝑣) and the decision threshold (𝑎). As the drift rate 173 

increases, the likelihood of a correct response increases (error rate decreases), and 174 

responses are faster. As the threshold increases, responses are also more likely to be 175 

correct but are slower (Figure 3A; [31]. As we describe below, a key prediction is that 176 

adjustments in these parameters may underlie divergent strategies for cognitive control 177 

allocation. 178 

 179 

Previous theoretical and empirical work has shown that participants can adjust 180 

parameters of this underlying decision process to maximize the rate at which they are 181 

rewarded over the course of an experiment [31,38]. This reward rate (𝑅𝑅) is determined 182 

by a combination of performance metrics (response time and error rate [𝐸𝑅], [31]) and 183 

the incentives for performance (i.e., outcomes for correct vs. incorrect responses): 184 

 185 

𝑅𝑅 =
𝑅 × (1 − 𝐸𝑅) − 𝑃 × 𝐸𝑅

𝐷𝑇 + 𝑁𝐷𝑇 	186 

 187 

Here, the numerator (expected reward) is determined by the likelihood of a correct 188 

response (1 − 𝐸𝑅), scaled by the reward for a correct response (𝑅), relative to the 189 

likelihood of an error (𝐸𝑅), scaled by the associated punishment (𝑃) [39]. The 190 
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denominator (response time) is determined by the time it takes to accumulate evidence 191 

for a decision (decision time [𝐷𝑇]) as well as additional time to process stimuli and 192 

execute a motor response (non-decision time [𝑁𝐷𝑇]). 193 

 194 

To correctly respond to a Stroop trial (i.e., name stimulus color), participants need to 195 

recruit cognitive control to overcome the automatic tendency to read the word [40,41]. 196 

Building on past work [31,38,39], we can use the reward rate formulation above to 197 

identify how participants should normatively allocate control to maximize the reward rate 198 

(Figure 3B-C). To do so, we make three key assumptions. First, we assume that 199 

participants performing our task choose between adjusting two strategies for increasing 200 

their reward rate: (1) increasing attentional focus on the Stroop stimuli (resulting in 201 

increased drift rate toward the correct response), and (2) increasing their threshold to 202 

require more evidence accumulation before responding. Second, we assume that 203 

participants seek to identify the combination of these two DDM parameters that 204 

maximize reward rate. Third, we assume that increasing the drift rate incurs a nonlinear 205 

cost, which participants seek to minimize. The inclusion of this cost term is motivated by 206 

previous psychological and neuroscientific research [1] and by its sheer necessity for 207 

constraining the model from seeking implausibly high values of drift rate (i.e., as this 208 

cost approaches zero, the reward-rate-maximizing drift rate approaches infinity, as 209 

shown in Figure 3B). While a quadratic cost term was chosen a priori based on previous 210 

work [33,42], follow-up analyses (See Supplementary Results 1) indicated that the 211 

predictions made by this quadratic function are also more consistent with our data than 212 

those for a linear (i.e., absolute) function. 213 
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 214 

𝑅𝑅 =
𝑅 × (1 − 𝐸𝑅) − 𝑃 × 𝐸𝑅

𝐷𝑇 + 𝑁𝐷𝑇 − 𝐸 × 𝑣!	215 

 216 

In this formula, 𝐸represents the weight of effort cost. Since the optimal drift rate and 217 

threshold are determined by the ratios 𝑅/𝐸 and 𝑃/𝐸, the magnitude of effort costs is 218 

held constant (𝐸 = 1) for the reward rate optimization process, putting reward and 219 

punishment into units of effort cost. With this modified form of reward rate, the optimal 220 

drift rate is well-constrained (Figure 3C). 221 

 

 

 

Figure 3. The influence of DDM parameter settings on estimates of reward rate. A) 
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The expected error rate (𝐸𝑅) and decision time (𝐷𝑇) can be estimated as a function of 

drift rate and threshold. B-C) Reward rate is traditionally defined as a function of expected 

error rate, scaled by the value of correct vs. incorrect responses, and the overall response 

time (the combination of decision time and decision-unrelated processes [31]). The 

combination of drift rate and threshold settings that maximizes reward rate (black dots) 

differs depending on whether drift rate is assumed to incur an effort cost or not. Without 

a cost (B), it is always optimal to maximize drift rate. With a cost (C), drift rate and 

threshold must both fall within a more constrained set of parameter values. Parameters 

for (B-C): 𝑅 = 5,𝑃 = 5,𝑁𝐷𝑇 = 0.4𝑠. (D) As the reward for each correct response increases 

(from 8 to 20), the optimal joint configuration of drift rate and threshold (black dot) moves 

primarily in the direction of increasing drift rate. As the penalty for an incorrect response 

increases (from 5 to 625), this optimal configuration moves in the direction of increasing 

threshold. 

 222 

Using this formulation of reward rate (𝑅𝑅), we can generate predictions about the 223 

allocation of cognitive control (the combination of drift rate and threshold) that would be 224 

optimal under different reward and punishment conditions. To do so, we varied reward 225 

and punishment values and, for each pair, identified the pair of drift rate and threshold 226 

that would maximize reward rate. As reward increases, the model suggests that the 227 

optimal strategy is to increase the drift rate. As punishment increases, the optimal 228 

strategy is to increase the threshold (Figure 4A). These findings indicate that the 229 

weights for rewards and punishments jointly modulate the optimal strategy for allocating 230 

cognitive control and that these two types of incentives focus on distinct aspects of the 231 

strategy. Specifically, they predict that people will tend to increase drift rate the more 232 
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they value receiving a reward for a correct response. In contrast, people will adjust their 233 

threshold depending on how much they value receiving a reward for a correct response 234 

(decrease threshold) and receiving a punishment for an incorrect response (increase 235 

threshold). 236 

Reward Rate-Optimal Control Allocation: Empirical Evidence 237 

To test whether task performance was consistent with the predictions from our 238 

normative model, we fit behavioral performance on our task (reaction time and 239 

accuracy) with the Hierarchical Drift Diffusion Model (HDDM) package [43]. A 240 

systematic model comparison showed that the best-fitting parameterization of this 241 

model for our task allowed both drift rate and threshold to vary with trial-to-trial 242 

differences in congruency, reward level, and/or penalty level (Figure 4B; also see 243 

Supplementary Results 2). Critically, the parameter estimates from this model were 244 

consistent with predictions of our reward rate-optimal DDM (Figure 4C-E). Consistent 245 

with normative predictions, we found that reward and punishment exhibited dissociable 246 

influences on DDM parameters, such that larger rewards increased drift rate and 247 

decreased threshold, whereas larger punishment promoted a higher threshold. These 248 

findings control for the effect of congruency on DDM parameters (with incongruent trials 249 

being associated with lower drift rate and higher threshold). Taken together, our 250 

empirical findings are consistent with the prediction that participants are optimizing 251 

reward rate, accounting for potential rewards, potential punishments, and effort costs. 252 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.09.11.294157doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.294157
http://creativecommons.org/licenses/by-nd/4.0/


17 

 

Figure 4. Normative and empirically observed estimates of incentive effects on 

DDM parameters. A) Combinations of drift rate and threshold that optimize (cost-

discounted) reward rate, under different values of reward and penalty. B) We fit our 
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behavioral data to different parameterizations of the DDM, with drift rate and/or threshold 

varying with reward, penalty, and/or congruence levels. The best-fitting model varied both 

DDM parameters with all three task variables. C) Estimated combination of drift rate and 

threshold for four conditions in the experiment. Error bars reflect s.d. D-E) Consistent with 

predictions based on reward-rate optimization (D, cf. panel A), we found that larger 

expected rewards led to increased drift rate, where as larger expected penalties led to 

increased threshold (E, cf. panel C). To a lesser extent, we found a decreased threshold 

with higher expected rewards. Error bars reflect 95% CI. *: p<0.05; ***: p<0.001. See also 

Figure S5. 

Inferring Individual Differences in Sensitivity to Reward and Punishment  253 

Our findings show that performance varies as a function of expected reward and 254 

punishment, and that these performance changes are consistent with a normative 255 

model according to which participants are maximizing reward and minimizing effort 256 

costs. However, both our model predictions and empirical findings also show that 257 

performance alone is insufficient to determine to what extent a participant was driven by 258 

a given incentive. For instance, faster performance could result from a participant being 259 

more sensitive to rewards, less sensitive to penalties, or both. The same is even true for 260 

estimates of individual model parameters within each of these conditions - our model 261 

predicts that a more reward-sensitive participant will lower their threshold than a less 262 

reward-sensitive participant, but that the same would be true for participants less vs. 263 

more sensitive to penalties. However, a key feature of our normative model is that it 264 

predicts how people will jointly configure control over drift rate and threshold based on 265 

their expected reward rate in a given condition, and predicts unique combinations of 266 
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these DDM parameters under a given level of expected reward and penalty (Figure 4A). 267 

As a result, we can examine how participants move across this two-dimensional space 268 

as their rewards and penalties vary (Figure 5A), in order to make more robust 269 

inferences about the extent to which their performance was driven by each of these 270 

incentives. In other words, we can “reverse-engineer” how sensitive that participant had 271 

been to the rewards and penalties associated with performance on our task.  272 

 273 

To accomplish this, we used inverse reward-rate optimization to infer the individualized 274 

subjective weights of reward and punishment across the four task conditions based on 275 

participants' estimated DDM parameters. For each task condition, we first estimated the 276 

drift rate (𝑣) and threshold (𝑎) for each individual. We then calculated the partial 277 

derivatives of reward rate (𝑅𝑅) with respect to these condition-specific estimates of 𝑣 278 

and 𝑎. By setting these derivatives to 0 (i.e., optimizing the reward-rate equation), we 279 

can calculate the sensitivity to reward and punishment (𝑅2 and 𝑃2) that make the 280 

estimated DDM parameters the optimal strategy (Figure 5C). This workflow can be 281 

summarized as follows: 282 

 283 

 284 

 285 

To validate this approach, we simulated DDM parameters under different combinations 286 

of reward and penalty sensitivities (𝑅 and 𝑃), and tested whether we could recover the 287 

ground-truth parameters based on simulated data. We were able to successfully 288 
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recover both of these parameters (Supporting Information 5; correlation between 289 

simulated and recovered values: 𝑟 = 0.99 for 𝑅, and 𝑟 = 0.93 for 𝑃), confirming that our 290 

estimation approach can be effective at inferring individual’s subjective valuation of 291 

reward and punishment when determining cognitive control adjustments. 292 

 293 

A repeated-measures ANOVA on our estimates of 𝑅 and 𝑃 (log-transformed) revealed a 294 

main effect of incentive magnitude (F(1,251)=12.64, p=4.5e-4), with larger 𝑅2 on high-295 

reward intervals (t(31)=4.9, p=3.2e-5) and larger 𝑃2 on high-punishment intervals 296 

(t(31)=4.72, p=4.8e-5). We also observed a main effect of valence, such that estimates of 297 

𝑃2 were higher than estimates of 𝑅2 (F(1,251)=603.70, p<2e-16). The ANOVA also revealed 298 

a significant interaction between valence and magnitude (F(1,251)=7.47, p=0.007; see 299 

Figure 5D), such that 𝑃2 estimates differed more across punishment levels than 𝑅2 300 

estimates differed across reward levels. These asymmetric effects of rewards and 301 

punishment on reward rate are consistent with research on loss aversion [44] and error 302 

aversion [45].  303 

 304 
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Figure 5. Inference of sensitivity to reward and penalty based on DDM estimates 

and reward rate optimization model. A) Estimated group-level reward-rate optimal 

combinations of drift rate and threshold for the four conditions in the experiment. Error 

bars reflect s.d. B) To infer the sensitivity to reward and penalty for a given individual, we 

invert this reward-rate optimization procedure, estimating the set of reward and penalty 

weights (𝑅 and 𝑃) that best accounts for that person's pattern of behavior in a given 

condition. C-D) The resulting estimates of sensitivity to reward and penalty recapitulate 

our experimental manipulation, with higher sensitivity to reward in the high vs. low reward 

condition, and higher sensitivity to penalty for the high vs. low penalty condition. Panel C 

shows summary statistics across individual participants. Panel D shows a summary of 

individual-level contrasts between sensitivity to high vs. low reward and penalty. Error 

bars reflect s.e.m. **: p<0.01; ***: p<0.001. Parameter recovery validates subjective 

weight estimates (see Figure S7). 
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Replication and extension of Study 1 findings in an independent sample   305 

To verify the robustness of our observed dissociation between reward effects on drift 306 

rate and penalty effects on threshold, we recruited a separate group of participants 307 

(N=65) to perform our task. To further investigate whether these effects generalize 308 

beyond two levels of reward and penalty, we also included an intermediate level of 309 

reward and penalty between the two extremes previously tested. The magnitude of 310 

reward and punishment in each interval was therefore selected independently from 311 

three possible levels: 1 cent (Low), 5 cents (Medium) and 10 cents (High). The selected 312 

reward and punishment are then combined into a cue indicating these incentive levels.  313 

 314 

This second study replicated the dissociable behavioral patterns observed in Study 1. 315 

Consistent with the previous study, we found that participants were faster (F(2,64)=13.91,  316 

p<0.001) but similarly accurate (Chisq(2)=2.23, p=0.317) with higher levels of reward, 317 

resulting in an overall higher number of correct responses per second as expected 318 

reward increased (F(2,70)=12.28, p<0.001; Figure 7A). Also consistent with Study 1, 319 

participants were slower (F(2,63)=8.49, p<0.001) but more accurate (Chisq(2)=15.21, 320 

p<0.001) with higher levels of punishment, resulting in fewer correct responses per 321 

second (F(2,64)=4.30, p=0.018; Figure 7B). Response rates under Medium levels of 322 

reward and penalty were intermediate to response rates under Low and High levels of 323 

those respective variables.  324 
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Figure 6. Effects of reward and punishment on overall task performance (A,B) and 

parameters of drift diffusion model (C) in Study 2. A) With increasing expected reward, 

participants completed more correct responses per second within a given interval (Left), 

which reflect faster responding on correct trials (top right) without any change in overall 

accuracy (bottom right). B) With increasing expected punishment, participants instead 

completed fewer trials per second over an interval, reflecting slower and more accurate 

responses. C) Drift rate increases with higher expected reward while threshold increases with 

higher expected punishment. Error bars reflect 95% CI. n.s.: p>0.05; *: p<0.05; **: p<0.01; ***: 

p<0.001. 

 325 

When fitting Study 2 data with our best-fitting model from Study 1, we replicate the 326 

normatively predicted dissociation observed in that study. Reward exerted a significant 327 

positive influence on drift rate (p<0.001) and negative influence on threshold (p=0.013). 328 

Penalty exerted a significant positive influence on threshold (p=0.008) but not drift rate 329 

(p=0.47). These findings are consistent with the predictions from the reward rate 330 

optimization model.  331 
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Discussion  332 

We investigated divergent influences of reward versus punishment on cognitive control 333 

allocation, and the normative basis for these incentive-related control adjustments. 334 

Participants performed a self-paced cognitive control task that offered the promise of 335 

monetary rewards for correct responses and penalized monetary losses for errors. We 336 

found that higher potential rewards led to faster but equally accurate responding 337 

(resulting in increased monetary earnings), whereas higher potential punishment led to 338 

more accurate but slower responding (thus earning less reward but avoiding 339 

punishment). We showed that these dissociable patterns of incentive-related 340 

performance could be accounted for by two distinct strategies (adjustment of the 341 

strength of attention vs. response threshold), which are differentially optimal (i.e., 342 

reward rate maximizing) in response to these two types of incentives. 343 

 344 

Our findings build on past research on reward rate maximization that has shown that 345 

people flexibly recruit cognitive control to maximize their subjective reward per unit time 346 

[30,31,35]. Our current experiments build on this research in several important ways. 347 

First, we apply this reward rate optimization model to performance in a self-paced 348 

variant of a cognitive control task. Second, we model and experimentally manipulate the 349 

incentive value for a correct versus incorrect response. Third, we incorporate the well-350 

known cost of cognitive effort [1,46] into the reward rate optimization model (see below). 351 

Finally, we used our model to perform reverse inference on our data, identifying the 352 

subjective weights of incentives that gave rise to performance on a given trial. 353 

 354 
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 355 

We showed that adjustments of threshold and drift rate can vary as a function of task 356 

incentives, which then drive adaptive adjustments in cognitive control. Notably, 357 

achieving this result required us to build in the assumption that increases in drift rate 358 

incur a cost, an assumption that is grounded in past research on mental effort [1,33]. In 359 

the absence of this cost, our reward rate model predicts that individuals should maintain 360 

a maximal drift rate across incentive conditions, which is inconsistent with our findings. 361 

However, while we have ruled out the possibility that drift rate is costless, the precise 362 

form of its cost function remains an open question. Follow-up simulations show that our 363 

assumed quadratic cost function -- which was motivated by previous research into 364 

cognitive effort discounting [47,48] -- offers a smoother objective function than linear or 365 

exponential alternatives (Figure S3), but all three of these cost functions make 366 

qualitatively similar predictions for our current task. We have also left open the question 367 

of whether and how a cost function applies to increases in response threshold. While 368 

there is reason to believe that threshold adjustments may incur analogous effort costs to 369 

attentional adjustments, in part given the control allocation mechanisms they share 370 

[2,32,34,49–51], threshold adjustments already carry an inherent cost in the form of a 371 

speed-accuracy tradeoff. It therefore wasn't strictly necessary to incorporate an 372 

additional effort cost for threshold in the current simulations (Figure S4), though it is 373 

possible such a cost would provide additional explanatory power under a different task 374 

design. Future work should investigate potential differences in these cost functions 375 

across these and other common control signals.  376 

 377 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2020.09.11.294157doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.11.294157
http://creativecommons.org/licenses/by-nd/4.0/


26 

While our modified reward rate optimization model was able to accurately characterize 378 

how reward and punishment incentives influenced cognitive control allocation in our 379 

task, a critical next step will be to examine the degree to which these findings 380 

generalize to other tasks and incentive schemes, and to refine the model accordingly. 381 

For instance, in addition to testing the form that different control cost functions take, 382 

future work can clarify how people discount time when optimizing this reward function. 383 

Our model assumes that people discount time in a multiplicative fashion (i.e., as the 384 

denominator for reward), which is a standard assumption in models of reward rate 385 

optimization [31,38]. However, we cannot rule out an alternative possibility that they are 386 

instead discounting time additively, as is assumed by models that treat time as an 387 

opportunity cost of effort [35,52], because these models are likely to make similar 388 

predictions with respect to drift and threshold optimization in our current study. 389 

Identifying and testing tasks that differentiate between these predictions holds value for  390 

bridging these two lines of research in the service of better understanding effort 391 

allocation.  392 

 393 

Another open question is whether people weigh the incentives for a correct response 394 

differently depending on whether these incentives are positive or negative. In our study, 395 

correct responses were only associated with potential rewards (positive reinforcement), 396 

but a key prediction of our model is that people should adjust their control configuration 397 

similarly (i.e., increase drift rate, lower threshold) when correct responses instead avoid 398 

a negative outcome (negative reinforcement), though perhaps to different degrees. Our 399 

approach thus offers promise for disentangling the roles of incentive valence (positive 400 
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vs. negative) and incentive type (reinforcement vs. punishment) in motivated control 401 

[53]. 402 

 403 

More generally, it will be important to test whether similar drift and threshold 404 

adjustments occur across other cognitive control tasks that carry a similar structure to 405 

this one, and to extend our optimization approach to tasks that require different forms 406 

of multivariate control configuration, such as distributing attention across multiple 407 

stimuli or features [54,55]. Broadening the applications of this approach to a wider array 408 

of control signals will also provide a critical step towards understanding how people 409 

distribute their cognitive effort across a multitude of tasks in real-world settings. Along 410 

these lines, a simplifying assumption of our current approach was that people assume 411 

reward rate is constant within a given task environment. While this assumption was 412 

reasonable given the parameters of our task (i.e., where incentives were explicitly cued 413 

and pseudorandomized), a crucial next step will be to examine how people dynamically 414 

reconfigure control as they learn from feedback that the expected rewards and 415 

penalties in their environment are changing. Research has shown that people 416 

dynamically adjust their response threshold in both decision-making tasks [56] and 417 

cognitive control tasks [30,57] as they learn to expect greater rewards. It remains to be 418 

tested how these cognitive control adjustments are distributed across both threshold 419 

and drift rate with changes in both reward and punishment, as well as with individual-420 

specific [58,59] and context-specific [60] differences in learning from these positive and 421 

negative outcomes.  422 

 423 
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Interestingly, research into how people learn differentially from positive versus negative 424 

outcomes is that these learned values also differentially influence a person’s 425 

confidence on a given task, with negative feedback resulting in lower confidence in 426 

one’s performance on both perceptual and value-based choice tasks [61,62] Given the 427 

connections that have been separately drawn between confidence and adjustments of 428 

response threshold  [63,64], these findings converge with our own observations of 429 

increasing threshold in the face of higher expected punishment. Thus, an important 430 

direction for future work will be to examine how metacognitive experiences associated 431 

with our task vary with experienced incentives and potentially serve to moderate 432 

subsequent control adjustments.  433 

 434 

Finally, our combined theoretical and empirical approach enabled us to quantify 435 

individual differences in how participants subjectively valued expected rewards and 436 

punishments based solely on their task performance. We found that people weighed 437 

punishments more heavily than rewards, despite the equivalent currency (i.e., amounts 438 

of monetary gain vs. loss). This finding is consistent with past work on loss aversion [44] 439 

and motivation to avoid failure [45,65], and more generally, with the findings that distinct 440 

neural circuits are specialized for processing appetitive versus aversive outcomes 441 

[66,67]. While our approach to estimating these individual differences is exploratory and 442 

requires further validation across different tasks and incentive schemes (such as those 443 

noted above), we believe that it holds promise for understanding how people vary in 444 

their motivation to succeed and/or avoid failure in daily life [21,68–72]. Not only can this 445 

method help to infer these sensitivity parameters for a given individual implicitly (i.e., 446 
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based on task performance rather than self-report), it can also provide valuable insight 447 

into the cognitive and computational mechanisms that underpin adaptive control 448 

adjustments, and when and how they become maladaptive (e.g., for individuals with 449 

anxiety, depression, or schizophrenia) [73–78]. 450 

Materials and Methods 451 

Participants 452 

Study 1 453 

We collected 36 participants online through Amazon’s Mechanical Turk. We limited the 454 

sample to participants located within the United States, but did not put any other 455 

restrictions on demographics (e.g., race). Participants gave informed written consent 456 

and received cash ($3 to $6, depending on their performance and task contingencies) 457 

for participation. The study was approved by Brown University’s Institutional Review 458 

Board. 459 

 460 

4 participants were excluded for either not understanding the task properly (based on 461 

their responses to quiz questions after the instructions) or having mean accuracy below 462 

60% and mean reaction times outside of 3 standard deviations of the mean reaction 463 

time of all the participants. The remaining 32 participants (Gender: 31% Female; Age: 464 

35±10 years) were included in all of our analyses. 465 

 466 

 467 

Study 2 468 
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We collected 71 participants online through Amazon’s Mechanical Turk. Participants 469 

gave informed written consent and received cash ($3 to $6, depending on their 470 

performance and task contingencies) for participation. The study was approved by 471 

Brown University’s Institutional Review Board. 472 

 473 

6 participants were excluded for either not understanding the task properly (based on 474 

their responses to quiz questions after the instructions) or having mean accuracy below 475 

60% and mean reaction times outside of 3 standard deviations of the mean reaction 476 

time of all the participants. The remaining 65 participants (Gender: 45% Female; Age: 477 

38±9 years) were included in all of our analyses. 478 

Incentivized Cognitive Control Task 479 

Study 1 480 

We designed a new task to investigate cognitive control allocation in a self-paced 481 

environment (Figure 1). During this task, participants are given fixed time intervals (e.g., 482 

10 seconds) to perform a cognitively demanding task (Stroop task), in which they have 483 

to name the ink color of a color word. There were four possible ink colors (red, yellow, 484 

green and blue) across four possible color words (‘RED’, ‘YELLOW’, ‘GREEN’, ‘BLUE’). 485 

Participants were instructed to press the key corresponding to the ink color of each 486 

stimulus. The ink color could be congruent (e.g., BLUE) or incongruent (e.g., BLUE) 487 

with the meaning of the word. Responding to incongruent stimuli has been shown to 488 

require an override of their more automatic tendency to respond based on the word 489 

meaning. The overall ratio of congruent versus incongruent trials was 1:1. Participants 490 

could perform as many Stroop trials as they wanted and were able during each interval, 491 
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with a new trial appearing immediately after each response. Due to this self-paced 492 

design, the proportion of congruent trials could vary slightly across intervals. To 493 

discourage participants from developing a trial-counting strategy (e.g., aiming to 494 

complete 10 responses per interval), the duration of intervals varied across the session 495 

(i.e., ranging from 8 to 12 seconds). 496 

 497 

Participants were instructed that they would be rewarded for correct responses and 498 

penalized for incorrect responses. At the start of each interval, a visual cue indicated the 499 

level of reward and punishment associated with their responses in the subsequent 500 

interval. We varied reward for correct responses (+1 cent or +10 cents) and punishment 501 

for incorrect responses (-1 cent or -10 cents) within each subject, which leads to four 502 

distinct conditions (Figure 1). Each participant performed 20 intervals per condition. 503 

During the interval, participants could complete as many Stroop trials as they would like. 504 

Below each Stroop stimulus, a tracker indicated the cumulative amount of monetary 505 

reward within that interval. After each interval, participants were informed how much 506 

they earned. To ensure that each interval was evaluated independently, participants 507 

were informed (veridically) that 8 out of the 80 intervals in the main task were randomly 508 

selected and the total money earned in these selected intervals would be part of their 509 

final payment. The experiment was implemented within the PsiTurk framework [79].  510 

 511 

Before the main task, participants performed several practice sessions. First, they 512 

practiced the mapping between keyboard keys and colors (80 trials). Then they 513 

completed practice for the Stroop task (60 trials). Participants then practiced the Stroop 514 
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task in the self-paced setting (4 intervals). In a final practice block, participants were 515 

introduced to the visual cues and practiced the self-paced intervals with these visual 516 

cues (12 intervals). 517 

 518 

Study 2 519 

The task in Study 2 has a similar structure compared to Study 1. The major difference 520 

between tasks was that the magnitude of reward and penalty was selected from three 521 

possible levels (1 cent, 5 cents and 10 cents) instead of binary levels in Study 1, such 522 

that there exist 9 distinct conditions in the experiment (3 levels of reward by 3 levels of 523 

punishment, Figure 6). Same with Study 1, the condition was cued prior to the start of 524 

each interval. 525 

Analyses 526 

Study 1 527 

With this paradigm, we can analyze performance at the level of a given interval and at 528 

the level of responses to individual Stroop stimuli within that interval. We analyzed 529 

participants' interval-level performance by fitting a linear mixed model (lme4 package in 530 

R; [80] to estimate the correct responses per second as a function of contrast-coded 531 

reward and punishment levels (High Reward = 1, Low Reward = -1, High Punishment 532 

=1, Low Punishment = -1) as well as their interaction. The models controlled for age, 533 

gender, and proportion of congruent stimuli, and using models with maximally specified 534 

random effects [81].  535 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡/𝑠𝑒𝑐𝑜𝑛𝑑	 ∼ 𝑎𝑔𝑒	 + 	𝑔𝑒𝑛𝑑𝑒𝑟	 + 𝑟𝑒𝑤𝑎𝑟𝑑	 ∗ 	𝑝𝑒𝑛𝑎𝑙𝑡𝑦	 + 𝑚𝑒𝑎𝑛	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 536 
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To understand how the incentive effects on overall performance are composed of the 537 

influences on speed and accuracy, we separately fit linear mixed models to trial-wise 538 

reaction time (correct responses only) and accuracy, controlling for the stimuli 539 

congruency. We performed analysis of variance on the fitted mixed models to test the 540 

overall effects of reward and punishment. 541 

𝑙𝑜𝑔(𝑅𝑇	𝑓𝑜𝑟	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 	∼ 𝑎𝑔𝑒	 + 	𝑔𝑒𝑛𝑑𝑒𝑟	 + 𝑟𝑒𝑤𝑎𝑟𝑑	 ∗ 	𝑝𝑒𝑛𝑎𝑙𝑡𝑦	 ∗ 	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 542 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 ∼ 𝑙𝑜𝑔𝑖𝑡(𝑎𝑔𝑒	 + 	𝑔𝑒𝑛𝑑𝑒𝑟	 + 𝑟𝑒𝑤𝑎𝑟𝑑	 ∗ 	𝑝𝑒𝑛𝑎𝑙𝑡𝑦	 ∗ 	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒) 543 

We parameterized participants' responses in the task as a process of noisy evidence 544 

accumulating towards one of two boundaries (correct vs. error) using the Drift Diffusion 545 

Model (DDM). The DDM is a mechanistic model of decision-making that decomposes 546 

choices into a set of constituent processes (e.g., evidence accumulation and response 547 

thresholding), allowing precise measurement of how different components of the choice 548 

process (e.g., RT and accuracy) are simultaneously optimized [37]. We performed 549 

hierarchical fitting of DDM parameters using the HDDM package [43]. In the DDM 550 

model, the drift rate and threshold depend on trial type (congruent or incongruent), 551 

reward level and/or penalty level. The selection of predictors for drift rate and threshold 552 

is based on the model comparison using DIC. We fixed the starting point at the mid-553 

point between the two boundaries as there was no prior bias toward a specific response 554 

in the task. The non-decision time was fitted as a free parameter.  555 

 556 

We characterized the optimal allocation of cognitive control as the maximization of the 557 

reward rate [31] with modification for effort cost. Based on qualitative comparisons 558 

between predictions of different cost functions (Figures S3-S4), we chose to express 559 
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these cost functions as a quadratic function of drift rate and to assume no cost on 560 

increases in threshold, but note that alternate formats of each of these cost functions 561 

yield qualitatively similar predictions for all of our key findings (see Supporting 562 

Information 2). With the effort-discounted reward rate, we make predictions about the 563 

influences of incentives on control allocation by numerically identifying the optimal drift 564 

rate and threshold under varying reward and punishment. To validate our normative 565 

prediction, we fit accuracies and RTs across the different task conditions with a DDM 566 

[43], which allowed us to derive estimates of how a participant's drift rate and threshold 567 

varied across different levels of reward and punishment. We performed model 568 

comparison based on deviance information criterion (DIC; lower is better) to identify the 569 

best model for the behavioral data. Based on the assumption that participants' cognitive 570 

control allocation optimizes the reward rate, we inferred participants' subjective weights 571 

of reward and punishment from the estimated drift rate and threshold. 572 

 573 

Study 2 574 

We performed linear mixed model analysis on the participants' interval-level 575 

performance with reward and punishment levels coded with sliding-difference contrast 576 

so that the two contrasts represent the difference between two consecutive reward or 577 

punishment levels (Medium - Low, High - Medium). We separately fit linear mixed 578 

models to trial-wise reaction time (correct responses only) and accuracy, controlling for 579 

the stimuli congruency. 580 

 581 
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We fit participants’ responses with the DDM using three-level polynomial contrast 582 

coding to obtain the linear and nonlinear patterns of incentive effects on DDM 583 

parameters. The coefficients in these contrasts were then transformed back to the DDM 584 

parameters under each condition. 585 

 586 

All human data are available on OSF at link https://osf.io/24ud5/. 587 

All code written in support of this publication is publicly available at 588 

https://github.com/Jasonleng/RewardPenaltyPaper. 589 
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