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Abstract

Ecological data are increasingly collected over vast geographic areas using arrays of digital sensors. 

Camera trap arrays have become the ‘gold standard’ method for surveying many terrestrial mammals 

and birds, but these arrays often generate millions of images that are challenging to process. This 

causes significant latency between data collection and subsequent inference, which can impede 

conservation at a time of ecological crisis. To address this, machine learning algorithms have been 

developed to improve data processing speeds, but these models are not considered accurate enough for 

fully automated labeling. Here, we present a new approach to building and testing a high performance 

machine learning model for fully automated labeling of camera trap images. As a case-study, the model

classifies 26 Central African forest mammal and bird species (or groups). The model was trained on a 

relatively small dataset (c.300,000 images) but generalizes to fully independent data and outperforms 

humans in several respects (e.g. detecting ‘invisible’ animals). We show how the model’s precision and

accuracy can be evaluated in an ecological modeling context by comparing species richness, activity 

patterns and occupancy derived from machine learning labels with the same estimates derived from 

expert labels. Results show that fully automated labels can be equivalent to expert labels when 

calculating these widely-used ecological metrics. We provide the user-community with a multi-

platform user interface for running the model offline, and conclude that high performance machine 

learning models can fully automate labeling of camera trap data. 

Significance statement

Large-scale ecological monitoring can be used to detect ecosystem change. Ecological sensors such as 

camera traps are deployed across large spatial and temporal scales to monitor species and communities.

Camera trap data are often vast (millions of images) and manual processing times cause significant 

latency between data collection and ecological inference. Existing machine learning models can reduce 

processing times but are rarely used in fully automated workflows for ecological analyses, mainly 

because users lack confidence in the model’s precision and accuracy. Here, we show a new, high 

performance machine learning model can be used to make ecological inference that is equivalent to 

using manually generated, expert labels. These results pave the way for large-scale, fully automated 

biodiversity monitoring and forecasting using camera trap arrays.
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Introduction

The urgent need to understand how ecosystems are responding to rapid environmental change has 

driven a ‘big data’ revolution in ecology and conservation (1). High resolution ecological data are now 

streamed in real-time from satellites, Global Positioning System tags, bioacoustic detectors, cameras 

and other sensor arrays. The data generated offer considerable opportunities to ecologists, but chal-

lenges such as data processing, data storage and data sharing cause latency between data gathering and 

ecological inference (i.e. creating derived ecological metrics, testing ecological hypotheses and quanti-

fying ecological change), sometimes in the order of years or more. Overcoming these challenges could 

open the gateway to ecological ‘forecasting’, where directional changes in ecological processes are de-

tected in real time and near-term responses are predicted effectively using an iterative data gathering, 

model updating and model prediction approach (2). 

Digital camera traps or wildlife ‘trail cams’ have revolutionized wildlife monitoring and are now the 

‘gold standard’ for monitoring many medium to large terrestrial mammals (3). Animals and their be-

havior are identified in images either by manual labeling, using citizen science platforms (4) or, more 

recently, by using machine learning models (5–7). Machine learning models can at minimum separate 

true animal detections from non-detections (8) or in the most advanced examples identify species, 

count individuals and describe behavior (5). These recent advances in machine learning have increased 

the speed at which camera trap data are analyzed but, in all cases we are aware of, the outputs (e.g. 

species labels) are not used to make ecological inference directly. Instead, machine learning models are

typically used as a ‘first pass’ to identify and group images belonging to individual species for full or 

partial manual validation at a later stage, or to cross-validate labels from citizen science platforms (7). 

This can substantially reduce manual labeling effort but many hundreds or thousands of photos might 

still need to be labeled manually. Thus, although machine learning models are reducing manual data 

processing times, ecologists are not yet comfortable using the outputs (e.g. species labels) as part of a 
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completely automated workflow. This is despite the development of advanced machine learning mod-

els that classify species in camera trap images with accuracy that matches or exceeds humans (5, 6).

One significant challenge limiting the application of machine learning models to camera trap data is 

that models rarely generalize well to completely out-of-sample data (i.e. data from new, spatially and 

temporally independent studies), particularly when used to classify animals to species level (9). Models

can quickly learn the features of specific camera ‘stations’ (the spatial replicate in camera trap studies) 

such as the general background instead of learning features of the animal itself. This problem is further 

amplified by the fact that rare species in the training data might only ever appear at a limited number of

camera stations, so training and validation data are rarely independent. Various approaches can be used

to reduce these biases, such as carefully ensuring that training and validation data are independent (e.g. 

by using data from multiple studies), and by using data augmentation such as adding noise to training 

data in the form of image transformations. Until the problem of generalization can be overcome, ma-

chine learning models for classifying camera trap images will remain an important tool for reducing 

manual labeling effort, but they will not achieve their full potential for creating fully automated pipe-

lines for data analysis.

Machine learning models also have the potential to be deployed inside camera trap hardware in the 

field at the ‘edge’ (i.e. on micro-computers installed inside hardware that collects data), with summa-

rized results (e.g. species labels) transmitted in real-time via a Global System for Mobile Communica-

tions networks or via satellite (3). In geographically remote areas or time-sensitive situations (e.g. law 

enforcement) this would greatly reduce the latency between data capture and interpretation, and reduce 

the expense and effort required to collect data in remote regions by removing the need to transfer data-

heavy images across wireless networks. However, before ‘smart’ cameras become a reality, it is essen-

tial that users understand how uncertainty in machine learning model predictions might impact derived 

ecological metrics and analyses, which are often sensitive to biases (e.g. false positives in occupancy 
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models). To achieve this, there is a need to develop workflows that test the performance of machine 

learning models in an ecological modeling context that goes beyond simple measures of precision and 

accuracy.

Ideally, if machine learning models had 100% precision and accuracy (e.g. for species identification), 

camera trap data could be collected, labeled automatically using the model and the results used to di-

rectly calculate ecological metrics or as variables in ecological models. However, the reality is that ma-

chine learning models are imperfect. It is therefore uncertain what levels of precision and accuracy are 

needed to meet the requirements of ecological analyses. This is particularly the case for the spatial and 

temporal analayses of animal distributions in camera trap data, which require specialized ecological 

models (e.g. occupancy models) that account for imperfect detection (10).

In this paper, we describe the approach used to build a new high-performance machine learning model 

that identifies species in camera trap images (26 species/groups of Central African forest mammals and

birds) that generalizes to spatially independent data.  To evaluate how well the machine learning model

labeling precision and accuracy performs in an ecological modeling context, we (1) evaluate how un-

certainties in the precision and accuracy of machine learning labels affect ecological inference (derived 

metrics of species richness, activity patterns and occupancy) compared to the same metrics calculated 

using expert, manually generated labels, and (2) propose a workflow to ‘ground truth’ the performance 

of machine learning models for camera trap data in an ecological modeling context. We discuss the im-

plications of these results for making fully automated ecological inference from camera trap data using 

the outputs of machine learning models. We also provide the user community with an easily installed, 

open-source graphical user interface that needs no understanding of machine learning to run the model 

offline on both camera trap images and videos.
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Methods

Data preparation

As a case study, the model was developed for classifying terrestrial forest mammals and birds in Cen-

tral Africa (see Table S1 for further details on species and groups), where camera traps are now fre-

quently deployed over large spatial scales to survey secretive birds and mammals in remote and inac-

cessible landscapes (11–13).   Training data were obtained from multiple countries and sources (c.1.6 

million images; reduced to n = 347120 images after data processing; Table 1). Each source used differ-

ent camera trap models (Reconyx, Bushnell, Cuddeback, Panthera Cams) and images were diverse in 

resolution, quality (e.g. sharpness, illumination) and color. Individual studies also used different field 

protocols for camera deployment but all were focused on detecting terrestrial forest mammals, with 

cameras installed on trees approximately 30 - 40 cm above ground level. The exception to this was data

from (14) who installed cameras at a height of approximately 1 m for the primary purpose of detecting 

forest elephants Loxodonta cyclotis. Camera trap configuration was set to be highly sensitive in some 

cases and images were often captured in a series of rapid, short bursts (e.g. taking 10 images consecu-

tively). This resulted in long sequences of very similar images, for example showing an animal walking

in front of the camera (Figure S1).

Table 1. Sources of training data used to train the machine learning model for classifying species in 

camera trap images, sorted by number of images provided. The final subset of data used to train the 

model was n = 347120 images (see later).

Source Country Reference n images

Anabelle Cardoso Gabon (14) 102418

Kelly Boekee Cameroon - 123954

Cisquet Kiebou Opepa Republic of Congo - 60393

Joeri Zwerts Cameroon - 36027

Laila Bahaa-el-Din Gabon (15) 16558

Stephanie Brittain Cameroon - 7770
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It was important to account for image sequences when selecting a validation set during the model train-

ing phase, since there was a risk of highly similar images being present in both the training and valida-

tion sets. To address this issue, the training and validation split was performed based on image meta-

data (timing of images and image source) to identify unique ‘events’ and camera locations that were 

not replicated across the training and validation split (5). This solution posed a challenge for maintain-

ing class balances in the training and validation sets, but it reduced the risk non-independent training 

and validation sets.  A total of 27 classes were used to train the model, which were mostly mammals or 

mammal groups (n = 21), birds (n = 4), humans (n = 1) and ‘blank’ images (i.e. no mammal, bird or 

human). Details of taxonomy and justification for species groups are in Table S1.

Issues identified in the training data

Our ‘real-life’ training data had not been pre-processed or professionally curated for the purposes of 

training machine learning models and naturally contained errors that arise from hardware faults, human

error and different approaches to manual species labeling by experts. We identified three primary 

sources of error. The first was over-exposed images (a hardware fault) where the image foreground was

‘flooded’ by the flash (usually at night), making the image appear mostly white. Animals in these 

images were sometimes partially visible and could be classified by a skilled human observer, despite 

the loss of color information, texture and other detail. However, over-exposed images presented a 

challenge for the machine learning model because white dominated the image regardless of the species.

The second main source of error was caused by under-exposed images. This error was revealed after 

inspecting model outputs during the training phase, and showed that highly under-exposed images 

appeared almost entirely or entirely black to a human observer, but the machine learning model was 

capable of using information in the image to detect and correctly classify the species (Figure 1). 
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Figure 1. (a) Raw image from the dataset, labeled by experts as "blank", but classified by the machine 

learning model with high certainty as a red duiker. (b) The same image as in (a), but manually 

brightened by narrowing the displayed color spectrum, reveals a red duiker is present and the model 

was correct.

The final source of error in the training data was mis-labeled images (e.g. confusing similar species, 

such as chimpanzee Pan troglodytes and gorilla Gorilla gorilla) and using different approaches to 

labeling, for example one data source combined all primates into ‘monkey’, whereas other data sources

separated apes from other primates.

We used an iterative approach to address these issues that consisted of model training, validation, error 

correction (correcting mis-labeled images in the training data) and model updating. In particular, we 

carefully inspected images that appeared to be incorrectly labeled by the model, but which were labeled

with high confidence. This approach revealed hidden problems in the data, such as the presence of 

animals in under-exposed images that would have otherwise led us to underestimate the model’s 

performance.
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Machine learning model

We chose the established ResNet50 architecture to build the model (16). Transfer learning was used to 

speed up training and we used weights pre-trained on the ImageNet dataset. We identified species using

the entire image frame without using bounding boxes and used basic augmentation (horizontal flips, ro-

tations, zoom, lighting and contrast adjustments, and warps) during training, but not during model vali-

dation. We used one-cycle policy training (17) and trained using progressive resizing in two stages. De-

tails on the training scheme and implementation can be found in our GitHub repository (https://github.-

com/Appsilon/gabon_wildlife_training). It is worth noting that most of the training approaches and 

many of the mechanisms we used to enhance training were taken directly or almost directly from the 

fast.ai Python library (https://github.com/fastai), exemplifying how exceptionally robust the library is. 

We trained the models on various virtual machines equipped with GPU processing units, run on Google

Cloud Platform with resources granted by a Google Cloud Education grant.

Out-of-sample test data

One of the major limitations to model performance for camera trap images is the ability to generalize 

predictions to new, independent camera stations, i.e. unique locations with different backgrounds not 

seen during model training (9). Since our objective was to create a model that could generalize well to 

new study sites, we tested the final model’s performance using a new out-of-sample dataset that was 

completely spatially and temporally independent from the data used to train the model. These out-of-

sample data consisted of images from 227 camera stations surveyed between 16 January 2018 and 4 

October 2019 in central and southern Gabon in closed canopy forest. Cameras also differed from the 

models used in the training data (Panthera Cams V4 and V5), but field protocols were similar and cam-

eras were placed approximately 30 cm above the ground on a tree at a distance of c. 3 – 5 m perpendic-

ular to the center of animal trails. Single-frame images were captured using medium sensitivity set-

tings, and images were separated by a minimum of 1 s. The aim of the study was to survey the small-
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to-large mammal community, with a particular focus on great apes (Pan troglodytes, Gorilla gorilla), 

forest elephants Loxodonta cyclotis, leopard Panthera pardus and golden cat Caracal aurata. These 

data (n = 23868 images, median 75, range 1 - 545 images per station) were manually labeled by an ex-

pert (co-author CO).

Summary of model’s general performance

To allow general comparison of our model’s performance with other similar models in the literature (5–

7) we calculated top-one and top-five accuracies using the out-of-sample data. Top-one accuracy is the 

percent of expert labels that match the top-ranking label generated by the machine learning model. 

Top-five accuracy calculates the percent of expert labels that match any of the top five ranking machine

learning generated labels. Top-one accuracy for the overall machine learning model was 77.63% and 

top-five accuracy was 94.24% (Table S2; Figures S2 & S3). After aggregating labels of similar species 

that were frequently mis-classified by the model into a reduced set of 11 classes, top-one and top-five 

accuracies increased to 79.92% and 95.99%, respectively (Figure S4). The model can classify around 

4000 images (c.0.5 MB in size) per hour using an Intel® Core™ i7-8665U CPU @ 1.90GHz × 8 and 

the model can operate 24/7 if necessary. For comparison, based on our experience, manual labeling can

be done at speeds ranging from 125 to 500 images per hour depending on the quality of the images and 

if images are captured in sequences (which can be faster to label manually).

We also compared the precision and recall for each species from our optimal model (see later, Table 2) 

with precision and recall for the same species reported for the model used by the WildlifeInsights web-

platform (www.wildlifeinsights.org). This global project uses a deep convolutional neural network 

trained using Google’s Tensorflow framework and a training dataset of 8.7M images, comprising 614 

species.
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Comparing derived ecological metrics using machine learning labels and expert labels

We calculated three common ecological metrics for the out-of-sample data (raw species richness at in-

dividual camera stations, activity patterns for four focal species, and occupancy for four focal species) 

separately using the manually generated, expert labels and the machine learning generated labels. 

Species richness (the number of species in a discrete unit of space and time) can be used to quantify 

temporal and spatial changes in biodiversity. Although other measures of species diversity exist, we 

chose this simple metric because it is widely used in the ecology literature despite its limitations. Activ-

ity patterns describe the diel activity patterns of focal species (18) and are typically calculated to under-

stand fundamental life history traits and behavior such as temporal niche partitioning. Occupancy mod-

els are hierarchical models commonly fitted to camera trap data because they can account for imperfect

detection (which rarely equals 1) to estimate the conditional probability that a site is ‘occupied’ by a 

species given it was not detected (10). Covariates such as measures of vegetation cover can be included

in both the detection and occupancy component models. These models are relatively complex, and 

small changes in detection histories (presence or absence of a species during a discrete time interval), 

false positives or false negatives can dramatically affect results (19). We therefore predicted that occu-

pancy estimates obtained using machine learning generated labels would compare poorly with esti-

mates using expert, manually generated labels.

The four focal species used for calculating activity patterns and occupancy were African golden cat, 

chimpanzee, leopard and African forest elephant. These species were chosen because they were the 

focus of the camera trap survey that generated the out-of-sample test data and because they are 

conservation priority species in Central Africa. We also initially included western lowland gorilla but 

we had too few unique captures of this species (only seven of 227 stations having > 5 captures) to fit 

either activity pattern models or occupancy models. 
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Thresholding and overall model performance

All three metrics derived from machine learning labels were re-calculated using a threshold approach, 

where labels were excluded if the model’s predicted confidence was below a given threshold. The 

thresholds tested ranged from 0 (no threshold) to 90%, increasing in 10% intervals. For each of the 

three ecological metrics, we then re-calculated results using the machine learning labels and compared 

these with results from the expert labeled dataset using various statistical measures (see later). We also 

calculated the effect of removing data on sample size, top-one balanced accuracy and top-five accuracy

for the overall model, and on four standard measures of model precision and accuracy (precision, re-

call, F1 score, and balanced accuracy for each species using the confusionMatrix function in the 

caret R package (20). 

Estimated species richness from machine learning generated labels and expert labels was compared 

using linear regression fitted by least squares. Species richness from expert labels was used as the 

predictor variable and species richness from machine learning labels was used as the response. For each

threshold, we evaluated how well species richness from machine learning labels correlated with expert 

labels by calculating the slope coefficient and variance explained (R2).

Diel activity patterns were calculated for all four focal species using the fitact function (200 boot-

strap replicates from the model) using the activity R package (18, 21). For each species and threshold 

combination, we tested if there was a significant difference in diel activity (proportion of 24 h day ac-

tive) estimated by machine learning labels and expert labels using the compareAct function, expect-

ing no difference using an alpha level of 0.05.

Single season, single species occupancy models were fitted using the occu function from the un-

marked R package (22). Detection histories were collapsed to five-day occasion lengths as a compro-
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mise between achieving model stability and ensuring an adequate number of replicates for each site. In 

the detection component model, we included Elevation (m), Date (first day of the five day occasion 

length) and Date2 (to allow for non-linear, seasonal changes in detection) as covariates. In the occu-

pancy component model, Elevation (m), Distance to the Nearest River (m), Distance to the Nearest 

Road (m) and mean distance to the Nearest Village (m) were included as continuous predictors without 

interactions. All covariates were mean-centered and scaled by 1 SD to prevent convergence issues. We 

did not perform model selection and predicted occupancy for the 227 camera stations using the full 

model. We then compared occupancy predictions (n = 227 camera stations) for no threshold (i.e. using 

all data), and the nine thresholds using linear regression fitted by least squares as described previously 

for the species richness comparison.

Results

Effect of thresholding on overall model performance

Regardless of the threshold used, top-five accuracy for the overall model predictions on the out-of-

sample data were consistently close to or above 95% (Figure 2). To achieve a top-one balanced 

accuracy of 90% or more for the overall model, a threshold of ≥ 70% confidence was required and > 

25% of the data were discarded (Figure 2). With a threshold of 70% confidence (i.e. excluding labeled 

images below 70% confidence), top-one balanced accuracies for 16 of the 27 classes were > 90% and a

further five were > 75% (Table 2). Top-one balanced accuracies for the remaining seven classes ranged

from 50% to 70% (Table 2). All other measures of accuracy and precision at all thresholds are in Table 

S3 and Figure 3 shows the confusion matrix for the out-of-sample data after excluding labels below 

70% confidence (see Figure S5 for the confusion matrix of aggregated labels after thresholding).
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Figure 2. Relationship between threshold level to accept top label, % of data discarded and overall top-

five and top-one balanced accuracy (+/-  95% CI) for predictions on out-of-sample test data.

Table 2. Precision, recall, accuracy, F1 score and prevalence (%s) for the 27 classes (Table S1) in the 

out-of-sample test data after removing labels with a predicted confidence < 70%. Species are sorted 

from lowest to highest balanced accuracy. For comparison, the precision and recall for the model used 

by the wildlifeinsights.org web platform are given in brackets. Orange indicates our model performed 

worse than the WildlifeInsights model for a given species, and purple indicates our model performed 

better. Note that this comparison should be interpreted with caution. Ideally, we would run the 

WildlifeInsights model on our out-of-sample test data, but data sharing restrictions prevented this. 

Where our species or groups could not be compared with an equivalent class on WildlifeInsights this is 

indicated as no equivalent class (NE). If precision and recall cannot be estimated because of 

insufficient training and validation data this is indicated as ‘needs more data’ (NMD). 

Species Precision % Recall % F1 Prevalence Balanced Accuracy

Civet_African_Palm NMD (NMD) NMD (NMD) NA NA NA

Gorilla NMD (NMD) NMD (NMD) NA 0.4 50

Rail_Nkulengu 0.0 (47.2) 0.0 (48.6) NA NA 50

Guineafowl_Crested
a 100 (99.8) 5.3 (91.2) 10 0.1 52.6
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Mandrillus 83.9 (96.1) 29 (72.3) 43.1 1.8 64.5

Blank 98.1 (98.3) 40.3  (78.7) 57.1 3.6 70.1

Buffalo_African 97.5 (91.1) 55.7 (73.6) 70.9 1.2 77.8

Bird 11.2 (NE) 60.0 (NE) 18.9 0.1 79.7

Chevrotain_Water 100 (NMD) 67.4 (NMD) 80.6 0.2 83.7

Guineafowl_Black 70.6 (79.6) 72.7 (79.5) 71.6 0.2 86.3

Cat_Golden 96.0 (NMD) 78.0 (NMD) 86.1 1 89

Pangolin 94.1 (NMD) 80.0 (NMD) 86.5 0.1 90

Duiker_Yellow_Backed 97.5 (88.8) 83.8 (72.3) 90.2 2.9 91.9

Human 78.4 (84.8) 87.4 (75.2) 82.6 4 93.2

Chimpanzee 83.5 (87) 88.4 (71.4) 85.9 2.2 94

Monkey 70.7 (NE) 92.0 (NE) 80 2.9 95.4

Mongoose 83.5 (NMD) 91.0 (NMD) 87.1 0.4 95.5

Rat_Giant 68.2 (76) 93.8 (75.8) 78.9 0.1 96.9

Duiker_Red
b 95.9 (95.6) 96.5 (79.6) 96.2 30.8 97.3

Duiker_Blue 90.04 (98.2) 97.0 (65.7) 93.6 17.6 97.4

Hog_Red_River 97.0 (82.7) 95.7 (84.7) 96.3 6.5 97.7

Squirrel 85.9 (98.6) 95.8 (67.6) 90.6 0.9 97.8

Leopard_African 92.8 (85.2) 96.0 (61.4) 94.4 2.2 97.9

Elephant_African 91.9 (94.4) 98.4 (84.2) 95.1 19.3 98.2

Porcupine_Brush_Tailed 93.9 (89.4) 98.9 (42.1) 96.3 0.5 99.4

Genet 95.3 (89.2) 99.3 (65.6) 97.2 0.8 99.6

Mongoose_Black_Footed 92.9 (NMD) 100 (NMD) 96.3 0.1 100

a
Used precision and recall for similar Guttera plumifera from WildlifeInsights 

b
Used precision and recall for Cephalophus callipygus from WildlifeInsights
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Figure 3. Confusion matrix (% correct labels for each species/group) showing model performance on 

out of sample test data after excluding labels below a confidence threshold of 70% (each row is 

normalized independently). Figure S6 shows the confusion matrix with absolute numbers.

376

377

378

379

380

381

382

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.09.12.294538doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.12.294538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Species richness

Species richness estimated by machine learning labels and expert labels was strongly correlated at all 

thresholds used (Figure 4). There was a general tendency for species richness to be underestimated by 

machine learning as the threshold increased, and the slope of the relationship was close to 1 with no 

threshold.

Figure 4. Relationship between species richness at each camera station (n = 227) predicted by the 

machine learning model (y-axis) and species richness predicted from expert labels (x-axis) for no 

threshold and the nine thresholds used after predicting on the out-of-sample test data. The dotted line 

shows where a 1:1 relationship would fit the data.
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Activity patterns

Above a threshold of 70% there was no significant difference between diel activity patterns estimated 

by machine learning labels and expert labels for all four focal species in the out-of-sample test data 

(Figure 5; Table S4).

Figure 5. Estimated activity patterns for the four focal species in the out-of-sample test data using 

machine learning labels (orange; n  = 18078 observations after excluding labels below 70% 

confidence) and expert labels (blue; n = 23868 observations).
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Occupancy models

As expected, occupancy estimates made using machine learning labels were sometimes inconsistent 

with those made using expert labels, and thresholding had a dramatic impact on inference in some 

cases (Figure 6). For golden cat and leopard, which are predicted with high accuracy and precision by 

our machine learning model, occupancy estimates from machine learning labels and expert labels were 

highly correlated at all thresholds (Figure S8). African elephant occupancy estimates using machine 

learning labels improved dramatically as the threshold increased, but chimpanzee occupancy estimates 

from machine learning labels were consistently uncorrelated with those estimated using expert labels 

(Figure 6).

Figure 6. Relationship between estimated occupancy probability for n = 227 camera stations (points) 

from machine learning (ML) labels (y-axis) and expert labels (x-axis) for the four focal species after 

discarding labels below a 90% threshold of predicted confidence. Plots for all thresholds tested are 

shown in Figure S8.

Discussion

Machine learning models have the potential to fully automate labeling of camera trap images without 

the need for manual validation. This would allow ecologists to rapidly process data and use the outputs 

(e.g. species labels) directly in ecological analyses, but it has been uncertain how this can be achieved. 
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In particular, models published to date do not evaluate their predictive performance in an ecological 

modeling context (5–7, 9). Here, we compared ecological metrics calculated on an out-of-sample test 

dataset using machine learning labels with the same metrics calculated using expert, manually gener-

ated labels. Using our new, high performance species classification model that generalizes to out-of-

sample data, we show machine learning labels can be used in a fully automated workflow that removes 

the need for manual validation prior to conducting ecological analyses.

We used an established architecture for the machine learning model. However, other more recent archi-

tectures could yield further increases in performance. The ResNeXt (23), the ResNeSt (24) and the Ef-

ficientNet (25) families of network architectures are particularly worth exploring in this context. An-

other avenue of possible further improvement is to use an approach based on a sequence of models. 

One natural step is to first detect a bounding box for an animal with a localisation model (26) and later 

classify only the content found in that box. Independently, another step can be introduced where a 

model is trained to first identify an aggregated species class (comprised of species that share similar 

characteristics; e.g. see Figure S4), and later dedicated models are trained to identify the individual 

species within these aggregated classes.

We used a relatively small training set (c.300,000 images here vs 3.2 million in (5) and 8.7M used by 

(27)) and a large number of individual classes, yet our model achieved high precision and accuracy 

even when tested on completely out-of-sample data, which is considered a significant challenge for the 

field (9, 26). We believe this encouraging result can be explained both by the machine learning ap-

proaches used (e.g. the fast.ai framework and image augmentation), and because forest camera traps in 

the tropics are often deployed in very similar settings, with animals captured at a predictable distance 

from the camera (usually on a path) with a general background of green and brown vegetation. This is 

in contrast to camera trap images from more open habitats, where animals are detected across a wide 

range of distances and backgrounds (9). On the other hand, informational richness in the background of
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photos taken in forest settings poses a significant challenge to machine learning models as well as hu-

man experts, as illustrated in Figure 7.

Figure 7. An image correctly classified as nkulengu rail by our machine learning model but marked as 

blank by an expert. The bird is visible slightly right of center. The dark beak is pointing left and most 

of the body is hidden behind branches and leaves. A section of its characteristic red legs is visible 

between the leaves. The model used features from the beak and head region to identify the bird (see 

Figure S9).

Thresholding improved the overall performance of the model and its performance for individual 

species. In our tests we ‘discarded’ labels with low confidence but these data could equally be 

classified manually if sample sizes were small. It is important to note, however, that this additional 

effort to manually label low confidence images would not have improved inference in our example 

ecological analyses, with the exception of chimpanzee occupancy estimates. Chimpanzee images had 
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the lowest measure of precision among the four focal species, which suggests that true detection events 

were probably missed frequently, resulting in false negatives (Figure S2). Species that were classified 

with the highest precision and accuracy were either relatively unique in their shape, color and pattern 

(e.g. African leopard, the ‘Genet’ group) or were well represented in the training data. We recommend 

that users of our model in Central Africa use a threshold of 70% to accept labels and have created an 

offline, multi-platform software tool that can label large batches of images or videos, and display 

simple maps of species presence/absence and species richness. The software also outputs the labels in a

format that can be used for calculating activity patterns or for use in occupancy models. We do not 

fully automate these analyses at present (in part because of logistical constraints and delays caused by 

the COVID19 pandemic), but  we anticipate these features will be integrated into future releases.

If machine learning models can fully automate labeling of camera trap images, the first question likely 

to be posed by most ecologists is ‘Should we?’. Camera trap images contain a wealth of information 

beyond species identity that would be missed using our model such as behavior, demography, individ-

ual phenotype and body condition. A trained model is also limited to detecting and classifying the 

species in the training dataset, and by definition cannot detect new species. Some machine learning 

models can already classify behavior (5) and other future models will achieve this and much more. In 

our opinion fully automated labels can and should be used in ecological analyses, but only after valida-

tion (and re-validation) from an ecological perspective, and to answer clearly defined questions. Each 

use-case will also differ in the benefits that can be gained from fully automated analysis. A conserva-

tion manager with tens of thousands of images collected on a rolling basis might accept a trade-off be-

tween increased speed of data analysis and having to discard images with uncertain labels, but a scien-

tist testing hypotheses for peer-reviewed publication might prefer to view all of the images manually. 

We recommend that in all cases models should be validated on a continual basis using sub-sampled 

data to detect potentially new or hidden biases. Model accuracy could change if field protocols or envi-
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ronmental conditions change in unexpected ways (e.g. heavy snowfall in temperate zones). However, 

during model evaluation we found that expert labels in the training and validation data were also never 

themselves ‘perfect’, and perhaps high performance machine learning models offer a more consistent 

means of analyzing camera trap data than manual labeling because biases are predictable and can be 

quantified explicitly.

Camera traps are commonly used worldwide by conservation practitioners whose  normal scope of 

work  might not allow sufficient time for the  handling, processing, and  analyzing of large quantities of

digital data. The authors personally know of several large camera trap databases that have not been an-

alyzed years after data collection ended, often because of a lack of resources or technical expertise. 

New web-based platforms for ecological data are seeking to address this problem by allowing users to 

upload data to the cloud where it is stored and analyzed using machine learning models (27, 28), but a 

lack of fast internet access can be a barrier to using such platforms and our offline application can fill 

this important gap. The next generation of camera traps will also have embedded machine learning 

models following the current rise in edge-computing technology. Together, edge and cloud computing 

will open the door to national and international real-time ecological forecasting at unprecedented spa-

tial and temporal scales. We anticipate that the model, software and validation workflow presented here

could revolutionize how camera trap data are processed and analyzed, and conclude that high perfor-

mance machine learning models can be used for fully automated labeling of camera trap data for eco-

logical analyses.
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Table S1. Species taxonomy, label descriptions and justification for species/class groups

Species class Scientific name Justification 
Civet_African_Palm Nandinia binotata -
Gorilla Gorilla gorilla gorilla -
Rail_Nkulengu Himantornis haematopus -
Guineafowl_Crested Guttera pucherani -
Mandrillus Mandrillus sphinx -
Blank No animal or human
Buffalo_African Cyncerus cafer nanus -
Bird Any other bird
Chevrotain_Water Hymenoschus aquaticus -
Guineafowl_Black Agelastes niger -
Cat_Golden Caracal aurata -
Pangolin Identifies any pangolin but trained mainly on Smutsia 

gigantea
Duiker_Yellow_Backed Cephalophus silvicultor -
Human Homo sapiens -
Chimpanzee Pan troglodytes -
Monkey Any guenon, colobus or mangabey
Mongoose Marsh mongoose Atilax paludinosus or long-nosed 

mongoose Herpestes naso
Rat_Giant Cricetomys emini -
Duiker_Red Cephalophus sp. Any of the red Cephalophus sp. duikers
Duiker_Blue Philantomba monticola -
Hog_Red_River Potamochoerus porcus -
Squirrel Any squirrel but most training data are Protoxerus stangeri
Leopard_African Panthera pardus -
Elephant_African Loxodonta cyclotis -
Porcupine_Brush_Tailed Atherurus africanus -
Genet Genetta sp. Most training data are Genetta servalina
Mongoose_Black_Footed Bdeogale nigripes -
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Table S2. Measures of precision, accuracy and prevalence (%s) for the 27 species/groups (see Table S1

for further details on species groups) in the out-of-sample test data.

Species class Precision Recall F1 Prevalence Balanced Accuracy

Bird 6.4 35.6 10.9 0.3 67

Blank 96.3 31.2 47.1 13.1 65.5

Buffalo_African 90.6 43.3 58.6 1.6 71.6

Cat_Golden 86.5 68.1 76.2 1.1 84

Chevrotain_Water 96.2 37.3 53.8 0.6 68.7

Chimpanzee 65.3 74.5 69.6 2.4 86.8

Civet_African_Palm 9.1 100 16.7 < 0.1 100

Duiker_Blue 73.1 91.3 81.2 14.9 92.7

Duiker_Red 87.5 91.8 89.6 26 93.6

Duiker_Yellow_Backed 88.7 71.2 79 2.9 85.5

Elephant_African 83 95 88.6 15.9 95.6

Genet 87.3 93.8 90.4 0.7 96.8

Gorilla 50 15.7 23.9 0.8 57.8

Guineafowl_Black 22.1 60.4 32.3 0.2 80

Guineafowl_Crested 100 16.1 27.8 0.1 58.1

Hog_Red_River 89.9 89.6 89.8 5.9 94.5

Human 51.5 79.9 62.6 3.6 88.6

Leopard_African 87 85.9 86.4 2 92.8

Mandrillus 73.5 26.1 38.6 2.7 62.9

Mongoose 48.2 80.4 60.3 0.4 90

Mongoose_Black_Footed 72.5 64.4 68.2 0.2 82.2

Monkey 59.9 81 68.9 2.9 89.7

Pangolin 76.7 62.2 68.7 0.2 81.1

Porcupine_Brush_Tailed 86.6 83.3 84.9 0.6 91.6

Rail_Nkulengu 0 0 0 0 50

Rat_Giant 39 88.5 54.1 0.1 94.2

Squirrel 59.9 78.2 67.8 1 88.8
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Table S3. Precision, recall, F1 score and prevalence (%s) for the 27 species/groups (see Table S1 for 

further details on species groups) in the out-of-sample test data at all thresholds used (10 – 90% confi-

dence).

Species class Threshold Precision Recall F1 Prevalence Balanced Accuracy
Bird 10 0.064 0.356 0.109 0.003 0.670
Blank 10 0.963 0.312 0.471 0.131 0.655
Buffalo_African 10 0.906 0.433 0.586 0.016 0.716
Cat_Golden 10 0.865 0.681 0.762 0.011 0.840
Chevrotain_Water 10 0.962 0.373 0.538 0.006 0.687
Chimpanzee 10 0.653 0.745 0.696 0.024 0.868
Civet_African_Palm 10 0.091 1.000 0.167 0.000 1.000
Duiker_Blue 10 0.731 0.913 0.812 0.149 0.927
Duiker_Red 10 0.875 0.918 0.896 0.260 0.936
Duiker_Yellow_Backed 10 0.887 0.712 0.790 0.029 0.855
Elephant_African 10 0.830 0.950 0.886 0.159 0.956
Genet 10 0.873 0.938 0.904 0.007 0.968
Gorilla 10 0.500 0.157 0.239 0.008 0.578
Guineafowl_Black 10 0.221 0.604 0.323 0.002 0.800
Guineafowl_Crested 10 1.000 0.161 0.278 0.001 0.581
Hog_Red_River 10 0.899 0.896 0.898 0.059 0.945
Human 10 0.515 0.799 0.626 0.036 0.886
Leopard_African 10 0.870 0.859 0.864 0.020 0.928
Mandrillus 10 0.735 0.261 0.386 0.027 0.629
Mongoose 10 0.482 0.804 0.603 0.004 0.900
Mongoose_Black_Footed 10 0.725 0.644 0.682 0.002 0.822
Monkey 10 0.599 0.810 0.689 0.029 0.897
Pangolin 10 0.767 0.622 0.687 0.002 0.811
Porcupine_Brush_Tailed 10 0.866 0.833 0.849 0.006 0.916
Rail_Nkulengu 10 0.000 0.000 NA 0.000 0.500
Rat_Giant 10 0.390 0.885 0.541 0.001 0.942
Squirrel 10 0.599 0.782 0.678 0.010 0.888
Bird 20 0.063 0.352 0.107 0.003 0.668
Blank 20 0.966 0.316 0.476 0.128 0.657
Buffalo_African 20 0.906 0.433 0.586 0.016 0.716
Cat_Golden 20 0.865 0.688 0.767 0.011 0.844
Chevrotain_Water 20 0.961 0.380 0.544 0.005 0.690
Chimpanzee 20 0.659 0.745 0.699 0.024 0.868
Civet_African_Palm 20 0.111 1.000 0.200 0.000 1.000
Duiker_Blue 20 0.734 0.915 0.814 0.149 0.928
Duiker_Red 20 0.877 0.919 0.898 0.261 0.937
Duiker_Yellow_Backed 20 0.888 0.714 0.792 0.029 0.856
Elephant_African 20 0.830 0.951 0.886 0.160 0.957
Genet 20 0.893 0.938 0.915 0.007 0.969
Gorilla 20 0.482 0.148 0.227 0.008 0.574
Guineafowl_Black 20 0.225 0.604 0.328 0.002 0.800
Guineafowl_Crested 20 1.000 0.161 0.278 0.001 0.581
Hog_Red_River 20 0.900 0.896 0.898 0.059 0.945
Human 20 0.524 0.800 0.633 0.036 0.886
Leopard_African 20 0.872 0.861 0.866 0.020 0.929
Mandrillus 20 0.735 0.263 0.388 0.027 0.630
Mongoose 20 0.516 0.804 0.628 0.004 0.900
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Species class Threshold Precision Recall F1 Prevalence Balanced Accuracy
Mongoose_Black_Footed 20 0.763 0.674 0.716 0.002 0.837
Monkey 20 0.601 0.814 0.691 0.029 0.899
Pangolin 20 0.821 0.622 0.708 0.002 0.811
Porcupine_Brush_Tailed 20 0.866 0.853 0.859 0.005 0.926
Rail_Nkulengu 20 0.000 0.000 NA 0.000 0.500
Rat_Giant 20 0.386 0.880 0.537 0.001 0.939
Squirrel 20 0.608 0.782 0.684 0.010 0.888
Bird 30 0.065 0.377 0.111 0.003 0.681
Blank 30 0.968 0.329 0.491 0.112 0.664
Buffalo_African 30 0.911 0.446 0.599 0.016 0.722
Cat_Golden 30 0.885 0.708 0.787 0.011 0.853
Chevrotain_Water 30 0.980 0.403 0.571 0.005 0.702
Chimpanzee 30 0.683 0.762 0.720 0.024 0.876
Civet_African_Palm 30 0.200 1.000 0.333 0.000 1.000
Duiker_Blue 30 0.754 0.921 0.829 0.152 0.934
Duiker_Red 30 0.888 0.922 0.905 0.268 0.940
Duiker_Yellow_Backed 30 0.909 0.726 0.807 0.029 0.862
Elephant_African 30 0.840 0.955 0.894 0.164 0.960
Genet 30 0.904 0.950 0.926 0.007 0.974
Gorilla 30 0.519 0.153 0.237 0.008 0.576
Guineafowl_Black 30 0.283 0.604 0.386 0.002 0.800
Guineafowl_Crested 30 1.000 0.161 0.278 0.001 0.581
Hog_Red_River 30 0.911 0.902 0.907 0.061 0.948
Human 30 0.551 0.802 0.653 0.037 0.888
Leopard_African 30 0.887 0.872 0.879 0.020 0.935
Mandrillus 30 0.764 0.266 0.395 0.026 0.632
Mongoose 30 0.599 0.828 0.695 0.004 0.913
Mongoose_Black_Footed 30 0.763 0.829 0.795 0.002 0.914
Monkey 30 0.612 0.831 0.705 0.029 0.908
Pangolin 30 0.815 0.667 0.733 0.001 0.833
Porcupine_Brush_Tailed 30 0.858 0.858 0.858 0.005 0.929
Rail_Nkulengu 30 0.000 0.000 NA 0.000 0.500
Rat_Giant 30 0.449 0.917 0.603 0.001 0.958
Squirrel 30 0.645 0.801 0.715 0.010 0.898
Bird 40 0.078 0.423 0.132 0.002 0.706
Blank 40 0.976 0.352 0.518 0.090 0.676
Buffalo_African 40 0.929 0.473 0.627 0.015 0.736
Cat_Golden 40 0.905 0.722 0.803 0.011 0.860
Chevrotain_Water 40 0.977 0.452 0.618 0.004 0.726
Chimpanzee 40 0.725 0.788 0.755 0.024 0.890
Civet_African_Palm 40 0.200 1.000 0.333 0.000 1.000
Duiker_Blue 40 0.791 0.934 0.857 0.157 0.944
Duiker_Red 40 0.904 0.930 0.917 0.279 0.946
Duiker_Yellow_Backed 40 0.924 0.751 0.829 0.030 0.875
Elephant_African 40 0.860 0.962 0.908 0.170 0.965
Genet 40 0.921 0.950 0.935 0.007 0.975
Gorilla 40 0.528 0.119 0.195 0.007 0.559
Guineafowl_Black 40 0.375 0.600 0.462 0.002 0.799
Guineafowl_Crested 40 1.000 0.161 0.278 0.001 0.581
Hog_Red_River 40 0.930 0.911 0.920 0.063 0.953
Human 40 0.593 0.811 0.685 0.038 0.895
Leopard_African 40 0.897 0.903 0.900 0.020 0.951
Mandrillus 40 0.795 0.288 0.422 0.025 0.643
Mongoose 40 0.704 0.835 0.764 0.004 0.917
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Species class Threshold Precision Recall F1 Prevalence Balanced Accuracy
Mongoose_Black_Footed 40 0.800 0.903 0.848 0.001 0.951
Monkey 40 0.632 0.856 0.727 0.029 0.920
Pangolin 40 0.880 0.733 0.800 0.001 0.867
Porcupine_Brush_Tailed 40 0.888 0.904 0.896 0.005 0.951
Rail_Nkulengu 40 0.000 0.000 NA 0.000 0.500
Rat_Giant 40 0.537 0.917 0.677 0.001 0.958
Squirrel 40 0.715 0.843 0.774 0.010 0.920
Bird 50 0.084 0.450 0.142 0.002 0.720
Blank 50 0.981 0.378 0.546 0.072 0.689
Buffalo_African 50 0.938 0.503 0.655 0.014 0.751
Cat_Golden 50 0.923 0.741 0.822 0.011 0.870
Chevrotain_Water 50 0.974 0.500 0.661 0.004 0.750
Chimpanzee 50 0.753 0.824 0.787 0.024 0.909
Civet_African_Palm 50 0.500 1.000 0.667 0.000 1.000
Duiker_Blue 50 0.825 0.945 0.881 0.162 0.953
Duiker_Red 50 0.920 0.939 0.930 0.288 0.953
Duiker_Yellow_Backed 50 0.942 0.773 0.849 0.029 0.886
Elephant_African 50 0.879 0.968 0.921 0.177 0.969
Genet 50 0.932 0.962 0.947 0.008 0.981
Gorilla 50 0.583 0.107 0.181 0.006 0.553
Guineafowl_Black 50 0.492 0.638 0.556 0.002 0.818
Guineafowl_Crested 50 1.000 0.138 0.242 0.001 0.569
Hog_Red_River 50 0.946 0.922 0.934 0.064 0.959
Human 50 0.646 0.827 0.725 0.039 0.904
Leopard_African 50 0.902 0.921 0.912 0.021 0.959
Mandrillus 50 0.816 0.292 0.430 0.023 0.645
Mongoose 50 0.775 0.868 0.819 0.004 0.934
Mongoose_Black_Footed 50 0.903 0.933 0.918 0.001 0.967
Monkey 50 0.654 0.879 0.750 0.029 0.932
Pangolin 50 0.913 0.724 0.808 0.001 0.862
Porcupine_Brush_Tailed 50 0.902 0.953 0.927 0.005 0.976
Rail_Nkulengu 50 0.000 0.000 NA 0.000 0.500
Rat_Giant 50 0.625 0.909 0.741 0.001 0.954
Squirrel 50 0.758 0.888 0.818 0.010 0.943
Bird 60 0.103 0.552 0.174 0.002 0.772
Blank 60 0.985 0.399 0.568 0.052 0.699
Buffalo_African 60 0.957 0.545 0.694 0.013 0.772
Cat_Golden 60 0.935 0.768 0.844 0.011 0.884
Chevrotain_Water 60 0.970 0.582 0.727 0.003 0.791
Chimpanzee 60 0.809 0.848 0.828 0.023 0.921
Civet_African_Palm 60 0.500 1.000 0.667 0.000 1.000
Duiker_Blue 60 0.870 0.960 0.912 0.169 0.965
Duiker_Red 60 0.943 0.952 0.948 0.298 0.964
Duiker_Yellow_Backed 60 0.962 0.802 0.875 0.029 0.901
Elephant_African 60 0.897 0.975 0.934 0.186 0.975
Genet 60 0.943 0.980 0.961 0.008 0.990
Gorilla 60 0.583 0.065 0.118 0.006 0.533
Guineafowl_Black 60 0.614 0.711 0.659 0.002 0.855
Guineafowl_Crested 60 1.000 0.087 0.160 0.001 0.543
Hog_Red_River 60 0.962 0.942 0.952 0.065 0.970
Human 60 0.714 0.850 0.777 0.039 0.918
Leopard_African 60 0.916 0.945 0.930 0.022 0.971
Mandrillus 60 0.809 0.276 0.411 0.021 0.637
Mongoose 60 0.794 0.895 0.842 0.004 0.947
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Species class Threshold Precision Recall F1 Prevalence Balanced Accuracy
Mongoose_Black_Footed 60 0.900 1.000 0.947 0.001 1.000
Monkey 60 0.680 0.898 0.774 0.029 0.942
Pangolin 60 0.905 0.731 0.809 0.001 0.865
Porcupine_Brush_Tailed 60 0.923 0.970 0.946 0.005 0.985
Rail_Nkulengu 60 0.000 0.000 NA 0.000 0.500
Rat_Giant 60 0.633 0.950 0.760 0.001 0.975
Squirrel 60 0.810 0.938 0.869 0.009 0.968
Bird 70 0.112 0.600 0.189 0.001 0.797
Blank 70 0.981 0.403 0.571 0.036 0.701
Buffalo_African 70 0.975 0.557 0.709 0.012 0.778
Cat_Golden 70 0.960 0.780 0.861 0.010 0.890
Chevrotain_Water 70 1.000 0.674 0.806 0.002 0.837
Chimpanzee 70 0.835 0.884 0.859 0.022 0.940
Civet_African_Palm 70 NA NA NA 0.000 NA
Duiker_Blue 70 0.904 0.970 0.936 0.176 0.974
Duiker_Red 70 0.959 0.965 0.962 0.308 0.973
Duiker_Yellow_Backed 70 0.975 0.838 0.902 0.029 0.919
Elephant_African 70 0.919 0.984 0.951 0.193 0.982
Genet 70 0.953 0.993 0.972 0.008 0.996
Gorilla 70 0.000 0.000 NA 0.004 0.500
Guineafowl_Black 70 0.706 0.727 0.716 0.002 0.863
Guineafowl_Crested 70 1.000 0.053 0.100 0.001 0.526
Hog_Red_River 70 0.970 0.957 0.963 0.065 0.977
Human 70 0.784 0.874 0.826 0.040 0.932
Leopard_African 70 0.928 0.960 0.944 0.022 0.979
Mandrillus 70 0.839 0.290 0.431 0.018 0.645
Mongoose 70 0.835 0.910 0.871 0.004 0.955
Mongoose_Black_Footed 70 0.929 1.000 0.963 0.001 1.000
Monkey 70 0.707 0.920 0.800 0.029 0.954
Pangolin 70 0.941 0.800 0.865 0.001 0.900
Porcupine_Brush_Tailed 70 0.939 0.989 0.963 0.005 0.994
Rail_Nkulengu 70 0.000 0.000 NA 0.000 0.500
Rat_Giant 70 0.682 0.938 0.789 0.001 0.969
Squirrel 70 0.859 0.958 0.906 0.009 0.978
Bird 80 0.151 0.786 0.253 0.001 0.891
Blank 80 0.986 0.363 0.530 0.023 0.681
Buffalo_African 80 1.000 0.596 0.747 0.010 0.798
Cat_Golden 80 0.962 0.839 0.896 0.009 0.919
Chevrotain_Water 80 1.000 0.750 0.857 0.002 0.875
Chimpanzee 80 0.875 0.919 0.897 0.019 0.958
Civet_African_Palm 80 NA NA NA 0.000 NA
Duiker_Blue 80 0.932 0.981 0.956 0.183 0.982
Duiker_Red 80 0.973 0.975 0.974 0.315 0.981
Duiker_Yellow_Backed 80 0.988 0.885 0.934 0.028 0.942
Elephant_African 80 0.940 0.991 0.965 0.203 0.987
Genet 80 0.949 1.000 0.974 0.008 1.000
Gorilla 80 0.000 0.000 NA 0.003 0.500
Guineafowl_Black 80 0.769 0.690 0.727 0.002 0.845
Guineafowl_Crested 80 1.000 0.067 0.125 0.001 0.533
Hog_Red_River 80 0.980 0.971 0.975 0.065 0.985
Human 80 0.853 0.892 0.872 0.040 0.943
Leopard_African 80 0.952 0.974 0.963 0.023 0.987
Mandrillus 80 0.888 0.305 0.454 0.014 0.652
Mongoose 80 0.829 0.944 0.883 0.004 0.972
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Species class Threshold Precision Recall F1 Prevalence Balanced Accuracy
Mongoose_Black_Footed 80 1.000 1.000 1.000 0.001 1.000
Monkey 80 0.756 0.928 0.833 0.029 0.959
Pangolin 80 1.000 0.824 0.903 0.001 0.912
Porcupine_Brush_Tailed 80 0.935 0.989 0.961 0.005 0.994
Rail_Nkulengu 80 NA NA NA 0.000 NA
Rat_Giant 80 0.737 0.933 0.824 0.001 0.967
Squirrel 80 0.879 0.979 0.926 0.008 0.989
Bird 90 0.220 0.900 0.353 0.001 0.949
Blank 90 1.000 0.320 0.484 0.011 0.660
Buffalo_African 90 1.000 0.647 0.785 0.008 0.823
Cat_Golden 90 0.980 0.897 0.937 0.007 0.949
Chevrotain_Water 90 1.000 0.833 0.909 0.001 0.917
Chimpanzee 90 0.914 0.922 0.918 0.016 0.960
Civet_African_Palm 90 NA NA NA 0.000 NA
Duiker_Blue 90 0.957 0.990 0.973 0.196 0.989
Duiker_Red 90 0.984 0.984 0.984 0.317 0.988
Duiker_Yellow_Backed 90 0.994 0.912 0.952 0.026 0.956
Elephant_African 90 0.961 0.994 0.977 0.218 0.991
Genet 90 0.957 1.000 0.978 0.007 1.000
Gorilla 90 NA 0.000 NA 0.002 0.500
Guineafowl_Black 90 0.864 0.826 0.844 0.002 0.913
Guineafowl_Crested 90 NA 0.000 NA 0.001 0.500
Hog_Red_River 90 0.986 0.982 0.984 0.063 0.990
Human 90 0.918 0.923 0.920 0.040 0.960
Leopard_African 90 0.973 0.979 0.976 0.025 0.989
Mandrillus 90 0.900 0.298 0.448 0.010 0.649
Mongoose 90 0.855 0.967 0.908 0.004 0.983
Mongoose_Black_Footed 90 1.000 1.000 1.000 0.001 1.000
Monkey 90 0.811 0.952 0.876 0.028 0.973
Pangolin 90 1.000 0.813 0.897 0.001 0.906
Porcupine_Brush_Tailed 90 0.934 1.000 0.966 0.005 1.000
Rail_Nkulengu 90 NA NA NA 0.000 NA
Rat_Giant 90 0.846 0.917 0.880 0.001 0.958
Squirrel 90 0.938 0.981 0.959 0.007 0.990
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Table S4. Difference in proportion of day (24 h) active for each species and threshold combination 

showing standard error (SE), Wald test statistic (W) and p value (p).

Species Threshold Difference SE W p
Elephant_African 0.00 0.08 0.03 5.97 0.01
Leopard_African 0.00 0.16 0.08 3.99 0.05
Cat_Golden 0.00 0.06 0.09 0.42 0.52
Chimpanzee 0.00 0.05 0.03 2.92 0.09
Elephant_African 0.10 0.08 0.04 5.47 0.02
Leopard_African 0.10 0.16 0.08 4.26 0.04
Cat_Golden 0.10 0.06 0.09 0.45 0.50
Chimpanzee 0.10 0.05 0.03 2.71 0.10
Elephant_African 0.20 0.08 0.03 6.04 0.01
Leopard_African 0.20 0.16 0.08 4.15 0.04
Cat_Golden 0.20 0.06 0.09 0.38 0.54
Chimpanzee 0.20 0.04 0.03 2.33 0.13
Elephant_African 0.30 0.08 0.03 6.44 0.01
Leopard_African 0.30 0.16 0.08 4.53 0.03
Cat_Golden 0.30 0.04 0.09 0.20 0.66
Chimpanzee 0.30 0.04 0.03 2.07 0.15
Elephant_African 0.40 0.07 0.03 4.15 0.04
Leopard_African 0.40 0.16 0.08 4.08 0.04
Cat_Golden 0.40 0.08 0.10 0.67 0.41
Chimpanzee 0.40 0.04 0.03 1.91 0.17
Elephant_African 0.50 0.05 0.03 2.64 0.10
Leopard_African 0.50 0.17 0.08 4.48 0.03
Cat_Golden 0.50 0.09 0.09 0.96 0.33
Chimpanzee 0.50 0.04 0.03 1.77 0.18
Elephant_African 0.60 0.04 0.03 1.64 0.20
Leopard_African 0.60 0.15 0.08 3.53 0.06
Cat_Golden 0.60 0.06 0.10 0.44 0.50
Chimpanzee 0.60 0.04 0.03 1.52 0.22
Elephant_African 0.70 0.04 0.03 1.21 0.27
Leopard_African 0.70 0.15 0.08 3.08 0.08
Cat_Golden 0.70 0.10 0.10 1.00 0.32
Chimpanzee 0.70 0.03 0.03 1.36 0.24
Elephant_African 0.80 0.03 0.03 0.69 0.41
Leopard_African 0.80 0.16 0.08 3.86 0.05
Cat_Golden 0.80 0.15 0.10 2.14 0.14
Chimpanzee 0.80 0.03 0.03 0.93 0.33
Elephant_African 0.90 0.02 0.03 0.57 0.45
Leopard_African 0.90 0.16 0.08 4.51 0.03
Cat_Golden 0.90 0.16 0.10 2.70 0.10
Chimpanzee 0.90 0.03 0.03 1.09 0.30
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Figure S1. Three example photos taken from a burst of 10 images, showing a porcupine Atherurus 

africanus walking in front of the camera.
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Figure S2. Confusion matrix showing model performance on out of sample test data (each row is 

normalized independently). Figure S7 shows the confusion matrix with absolute numbers.
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Figure S3. Histograms showing the frequency distribution (normalized density) of label confidence 

from the machine learning model for the 27 classes in the out-of-sample test data.
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Figure S4. Confusion matrix showing model performance for an aggregated set of 11 classes.
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Figure S5. Confusion matrix showing model performance for an aggregated set of 11 classes after 

removing labels with a predicted confidence < 70%
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Figure S6. Confusion matrix showing model performance on out of sample test data after excluding 

labels below a confidence threshold of 70% (with absolute numbers). Figure 3 shows the confusion 

matrix with each row normalized independently.
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Figure S7. Confusion matrix showing model performance on out of sample test data (absolute 

numbers). Figure S2 shows the confusion matrix with each row normalized independently.
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ABOVE: Figure S8. Relationship between estimated occupancy probability for n = 227 camera 

stations (points) from machine learning (ML) labels (y-axis) and expert labels (x-axis) for the four 

focal species at each threshold (row) from 0 to 90%, in 10% intervals.

Figure S9. The image from Figure 9 with an added layer illustrating the most important regions of the 

image for the model when identifying the nkulengu rail. The brightest spot (yellow) near the center of 

the image encompasses a part of the bird’s beak and head, which apparently were crucial during identi-

fication. We used the Grad-CAM (1) technique to create this image.
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