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Kuba Nowak2, Pawe l B lażej1,*, Ma lgorzata Wnetrzak1, Dorota Mackiewicz1, Pawe l
Mackiewicz1

1 Department of Bioinformatics and Genomics,Faculty of
Biotechnology,University of Wroc law, ul. Joliot-Curie 14a, Wroc law,
Poland
2 Faculty of Mathematics and Computer Science, University of Wroc law,
ul. Joliot-Curie 15, Wroc law, Poland

*pawel.blazej@uwr.edu.pl

1 Abstract

Reprogramming of the standard genetic code in order to include non-canonical amino
acids (ncAAs) opens a new perspective in medicine, industry and biotechnology. There
are several methods of engineering the code, which allow us for storing new genetic
information in DNA sequences and transmitting it into the protein world. Here, we
investigate the problem of optimal genetic code extension from theoretical perspective.
We assume that the new coding system should encode both canonical and new ncAAs
using 64 classical codons. What is more, the extended genetic code should be robust to
point nucleotide mutation and minimize the possibility of reversion from new to old
information. In order to do so, we follow graph theory to study the properties of
optimal codon sets, which can encode 20 canonical amino acids and stop coding signal.
Finally, we describe the set of vacant codons that could be assigned to new amino acids.
Moreover, we discuss the optimal number of the newly incorporated ncAAs and also the
optimal size of codon blocks that are assigned to ncAAs.

2 Introduction 1

The standard genetic code (SGC) is a set of rules according to which 64 codons are 2

assigned to 20 canonical amino acids and stop coding signal. Thanks to that, genetic 3

information can be stored in DNA and transmitted into the protein world. It is clear 4

that the SGC is redundant because there are 18 amino acids encoded by more than one 5

codon, i.e. 2, 3, 4 and 6 codon blocks or boxes. Therefore, it seems reasonable to reduce 6

this redundancy in order to extended the genetic code. Thanks to that, we could use 7

the spare codons for introducing new genetic information into the canonical coding 8

system. The inclusion of non-canonical amino acids (ncAAs) in the code can allow us 9

for production of new artificial proteins with novel functionality. This approach is very 10

promising for synthetic biology and can find many applications in medicine, industry 11

and biotechnology. 12

There are several approaches to the problem of the SGC extension [Chin, 2014]. The 13

first one is stop-codon suppression [Noren et al., 1989,Chin, 2017, Italia et al., 14

2017,Young and Schultz, 2018]. In this method, stop translation codons, for example 15
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UAG, are used to encode new ncAAs. This technique needs a modified aminoacyl-tRNA 16

synthetase that charges a tRNA molecule with the ncAA. However, this approach has 17

several drawbacks. For example, we can extend the SGC by only up two new amino 18

acids, because one of the three stop codons must be left to act as a termination signal of 19

translation [Ozer et al., 2017]. What is more, the newly added ncAAs could compete 20

with translation release factors, which may have an impact on the quality of the protein 21

synthesis. The second method is related to programmed frameshift suppression. In this 22

approach, four-base codons (quadruplets) are used to incorporate new ncAAs [Hohsaka 23

et al., 1996,Anderson et al., 2004,Neumann et al., 2010]. Generally, these codons are 24

composed of a rarely used classical codons with an additional base. These structures are 25

decoded by a modified tRNAs containing four-base anticodons. It should be noted that 26

the competition between tRNAs reading classical codons and respective quadruplet 27

codons can decrease the efficiency of the whole procedure. The third method postulates 28

the extension of the standard genetic code by using selected synonymous codons and 29

depletion of their corresponding tRNAs, which are pre-charged with ncAAs [Iwane 30

et al., 2016]. This method enables significant increasing the number of ncAAs by using 31

of multiple codon boxes. However, the using of the current synonymous codons can 32

disturb the translation and protein folding because of change in codon usage and speed 33

of protein synthesis [Plotkin and Kudla, 2011]. Other approach is based on using one 34

pair of unnatural nucleotides [Ishikawa et al., 2000,Ohtsuki et al., 2001,Yang et al., 35

2007,Kimoto et al., 2009,Malyshev et al., 2009,Dien et al., 2018,Hamashima et al., 36

2018]. Thereby it is possible to generate up to 152 new codons to which ncAAs can be 37

assigned. Thanks to that, new genetic information does not interfere with the natural 38

system because it does not involve the canonical codons. 39

A theoretical approach in the extension of the SGC has been recently proposed 40

by [B lażej et al., 2020]. The authors analysed how to extend the SGC up to 216 codons 41

generated by six-letter nucleotide alphabet, including besides four canonical bases also 42

one pair of new bases. The model of the code assumes the gradual addition of the 43

codons to minimize the consequences of point mutations. In this paper, we would like to 44

investigate other theoretical aspects of the standard genetic code extension using 64 45

canonical codons. Following the redundancy of the SGC, we focused on finding the rules 46

of the SGC expanding via optimal partition of codon boxes. In our first step, basing on 47

the methodology incorporated from graph theory, we found the minimal set of codons 48

that encode the whole canonical information that is at the same time the most robust 49

to lose this information via point mutations. Therefore, we could divide the set of all 64 50

codons into two subsets: the first one encoding classical repertoire of amino acids and 51

the second one that is composed of potentially vacant codons. Moreover, we studied 52

some scenarios of optimal codon reassignments that cause creating a new extended 53

coding system. 54

3 Preliminaries 55

We would like to discuss some properties of the SGC using the methodology of graph 56

theory. This approach was successfully used in many problems related to the standard 57

genetic code optimality, in which the SGC is represented as a partition of selected 58

graph [B lażej et al., 2018a,B lażej et al., 2019b]. Some rules of the optimal genetic code 59

enlargement using the extended nucleotide alphabet were presented [B lażej et al., 2020]. 60

We started our considerations with describing the graph that represents relationships 61

between all possible 64 codons in terms of point mutations. Similarly to [B lażej et al., 62

2018a,B lażej et al., 2019b,B lażej et al., 2020], let G(V,E) be a graph, in which V is the 63

set of vertices representing all possible 64 codons, whereas E is the set of edges between 64

these vertices. We say that two codons u, v ∈ V are connected by the edge e(u, v) ∈ E 65
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if and only if the codon u differs from the codon v in exactly one position. The 66

graphical representation of G is given in the Figure 1. 67
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Figure 1. The representation of the graph G(V,E), in which the set of all
vertices V is composed of 64 codons, whereas the set of edges E is induced
by all possible point mutations that might occur in codons. Clearly, G is
regular and the degree of each vertex is equal to nine. We do not take into
account any additional properties of the mutational process, hereby G is also
unweighted and undirected.

Clearly, G is an unweighted and regular graph. Interestingly, E represents all 68

possible single point mutations, which may occur between codons in protein coding 69

sequences. It should be noted that here we do not take into account any additional 70

properties of the mutational process, e.g. different probability (weight) of individual 71

nucleotide substitutions. 72

Following graph theory, every possible genetic code, including its extension, induces
a partition C of the set V into l ≥ 21 disjoint non-empty subsets S. Therefore, we can
introduce the following, unique representation:

C = {S1, S2, . . . , Sl : Si ∩ Sj = ∅, S1 ∪ S2 ∪ . . . ∪ Sl = V }.

In the papers [B lażej et al., 2018a,B lażej et al., 2019b,B lażej et al., 2020], the authors 73
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investigated the properties of the optimal partition of the graph G in terms of the set 74

conductance. Here, we apply a similar characteristics, i.e. the k-size conductance and 75

the average conductance of set collection, which were defined below. 76

Definition 1. For a given graph G, let S be a subset of V . The conductance of S is
defined as:

φ(S) =
E(S, S̄)

vol(S)
,

where E(S, S̄) is the number of edges of G crossing from S to its complement S̄ and 77

vol(S) is the sum of all degrees of the vertices belonging to S. 78

The set conductance φ(S) has an interesting interpretation. Let us assume that S is 79

a codon block encoding a selected amino acid. Then, φ(S) give us an information about 80

the robustness level of this amino acid to point mutations that change it other amino 81

acid. In other words, it is a measure of losing information in the system. This 82

observation rises immediately the question about the minimum set conductance for sets 83

with a given size k. It is particularly interesting in the context of the optimal encoding 84

of genetic information by a block of codons. In order to study this property, we used the 85

following definition. 86

Definition 2. The k-size-conductance of the graph G, for k ≥ 1, is defined as:

φk(G) = minS⊆V,|S|=kφ(S) .

The last characteristic, called the average conductance of set collection, allow us to 87

evaluate the general quality of genetic code under study. 88

Let us define the average conductance. 89

Definition 3. Let S be a set collection that fulfils the following property:

S = {S1, S2, . . . , Sl : Si ∩ Sj = ∅, S1 ∪ S2 ∪ . . . ∪ Sl ⊆ V }.

The average conductance of S is defined as:

Φ(S) =
1

|S|
∑
S∈S

φ(S) .

It is easy to notice that Φ(S) is a generalisation of the average code conductance 90

presented in [B lażej et al., 2018a]. In fact, if |S| = 21 and S1 ∪ S2 ∪ . . . ∪ Sl = V are 91

codon blocks created according to the SGC rules, then Φ(S) is the average code 92

conductance for the standard genetic code. Clearly, the average conductance of set 93

collection gives us a general information about the properties of all codon blocks 94

Si, i = 1, 2, . . . , l which constitute S. 95

These characteristics appeared to be very useful in studying the structural properties
of genetic codes. However, they require a fast and effective method for determining the
optimal φk(G) for k ≥ 1. Fortunately, the graph G possesses many interesting
properties, which were discussed in [B lażej et al., 2018a,B lażej et al., 2020]. First of all,
G can be represented as a Cartesian graph product, i.e.

G = K4 ×K4 ×K4 ,

where K4 is a 4-clique with the set of vertices corresponding to nucleotides {A,U,G,C}. 96

This property allows us to characterise the set of vertices reaching the minimal set 97

conductance from all possible subsets with a given size k. The following proposition 98

presented in [B lażej et al., 2018a] is a natural consequence of the Theorem 1 given 99

by [Bezrukov, 1999]. 100
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Proposition 1. Let us consider a linear order of the set of vertices of 4-clique K4, for
example A > C > G > U , and let Ok be a collection of the first k vertices of a graph
K4 ×K4 ×K4 = G in the lexicographic order. Then we get:

φ(Ok) ≤ φ(A) ,

where A ⊆ K4 ×K4 ×K4, |A| = k, for any k ≥ 1. Therefore, the following equations
hold for any k ≥ 1:

φ(Ok) = φk(G) .

As a result, each sequence of k, 1 < k < 64 vertices of G sorted according to a given 101

lexicographic order can reach the minimum of the set conductance over all possible set 102

of vertices with the size k. We used the notation Ok in the whole paper to denote the 103

general set of codons in the lexicographic order. We described the order of codons when 104

it was necessary (Tab. 1). Thanks to that, we avoided a complicated and redundant 105

notation. 106

It should be noted that including all possible linear orders of the set {A,U,G,C} 107

and also all possible orders of codon positions {1, 2, 3}, there are exactly 144 different 108

lexicographic orders which can be introduced to G. 109

4 Results and discussion 110

We began our investigation with describing the smallest set of codons encoding all 20 111

amino acids and stop coding signal, which still preserves the canonical codon 112

assignments and is simultaneously optimal in terms of the set conductance φ. Then, 113

using the complement set of vacant codons, we discussed some scenarios of 114

reprogramming the standard genetic code. Particularly, we would like to investigate 115

properties of some extensions of the SGC under the less restrictive assumptions. In this 116

case, we used the average conductance of the set collection Φ as a measure of the quality 117

of a given genetic structures, i.e. codon blocks. Finally, we studied the specific way of 118

code reprogramming that includes the general structure of the standard genetic code. 119

The requirements imposed on the genetic code in this approach assume its 120

robustness to changes causing the loss of genetic information. This assumption follows 121

the adaptation hypothesis, which claims that the SGC evolved to minimize harmful 122

consequences of mutations or mistranslations of coded proteins [Woese, 1965,Sonneborn, 123

1965,Epstein, 1966,Goldberg and Wittes, 1966,Haig and Hurst, 1991,Freeland and 124

Hurst, 1998,Freeland et al., 2000,Gilis et al., 2001]. Although this code did not turn out 125

perfectly optimized in this respect [B lażej et al., 2018a,B lażej et al., 2016,Massey, 126

2008,Novozhilov et al., 2007,Santos et al., 2011,Santos and Monteagudo, 127

2017,Wnetrzak et al., 2018,B lażej et al., 2018b,B lażej et al., 2019b,Wnetrzak et al., 128

2019], it shows a general tendency to error minimization in the global scale. This 129

property is better exhibited by its alternative versions [B lażej et al., 2018c,B lażej et al., 130

2019a], which occurred later in the evolution. Therefore, the analysis of the genetic code 131

extension in this context seems to be a natural consequence of its evolution. 132

4.1 The smallest set of codons encoding canonical information 133

It is well known that the standard genetic code is redundant, which means that a 134

smaller number of codons is enough to encode all 20 canonical amino acids and one stop 135

translation signal. Theoretically, we can randomly select more than 1.51 ∗ 1080 genetic 136

codes but many of them will not effectively function in biological systems, which can 137

require all 20 canonical amino acids and one stop translation signal as well as some 138

specific relationships between codons. In the selection, we assume that the chosen 139
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codons have amino acid assignments as in the SGC. Therefore, it seems reasonable to 140

postulate some conditions that must be met by these minimalistic genetic codes. In this 141

work, we assume that the codon sets must fulfill some properties in terms of the set 142

conductance φ. This assumption has a sensible biological meaning because this measure 143

represents the ratio of non-synonymous mutations, which change a given amino acid or 144

stop codon to other, to all possible point mutations. The small value of φ indicates that 145

the code is resistant to change in the coded information. 146

Following Proposition 1, we get that the first k-codons ordered in lexicographic order
Ok constitute the set with the minimum set conductance φ over all possible sets of
codons with the size k (Tab. 1 ). In consequence, it is the most resistant structure

Table 1. The example of the set Ok for k = 8, which is a sequence of the first eight
codons taken in a selected lexicographic order. According to Proposition 1 this set is
characterized by the minimal set conductance over all sets with the size of k = 8. The
codons have assigned encoded amino acids as in the standard genetic code.

codon amino acid
AAA Lys
AAC Asn
AAG Lys
AAU Asn
ACA Thr
ACC Thr
ACG Thr
ACU Thr

against loosing information stored in this set for 1 < k < 64. This property poses a
question about the minimum number of codons k such that there exists a set Ok

composed of codons that encode 20 amino acids and stop translation signal. In order to
deal with this problem, we denote Ck as the set of k lexicographically ordered codons
that encode 21 canonical items. Moreover, for the selected set Ck, we define a collection
of sets:

Ck = {S1, S2, . . . , S21, Si ∩ Sj = ∅, S1 ∪ S2 ∪ . . . ∪ S21 = Ck},

where Sl, l = 1, 2, . . . , 21 is a non-empty set of codons encoding genetic information 147

according to the standard genetic code rules. Here, we tested all possible Ck induced by 148

all 144 orders. As a result, we obtained that k = 28 is the minimal size of codons set for 149

which there exists a well defined Ck, i.e. codons belonging to C28 encode 20 amino acids 150

and stop coding signal. In fact there are two lexicographic orders, the first is induced by 151

a linear order between nucleotides U < G < A < C and an order between codon 152

positions 1 < 2 < 3. The second is generated by a linear order G < U < A < C between 153

nucleotides and an order between codon positions 1 < 2 < 3. We found that the first 28 154

ordered codons using these two rules encode all 21 items. Table 2 and Table 3 include 155

representations of 64 codons in the classical standard genetic code table showing the 156

structure of the optimal C28 codon set. All codons belonging to Ck are marked in red. 157

We also presented the names of encoded items, which induces at the same time the set 158

collection Ck. 159

In the next step, we test the quality of Ck, k = 28, . . . , 63 structure in terms of the 160

average conductance of set collection Φ. It is clear that Ck is generated by the 161

lexicographically ordered set of codons and the canonical codon assignments. Using Φ, 162

we can compare different genetic code structures generated by different lexicographic 163

orders for the same number of codons k. Figure 2 presents a relationship between Φ(Ck) 164

and k = 28, 29, . . . , 64 calculated for two lexicographic orders, for which we found the 165

smallest coding set C28 (blue and orange lines). The lower bound calculated over 144 166
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Table 2. The set C28 containing exactly 28 codons (red). These codons were chosen
according to a lexicographic order induced by the linear order of nucleotides U < C <
A < G and the order of codon positions 1 < 2 < 3. The encoded 20 canonical amino
acids and the stop translation signal by the collection of codon sets C28 is also shown.

UUU Phe UCU UAU Tyr UGU Cys
UUC UCC UAC UGC
UUA UCA UAA UGA
UUG Leu UCG Ser UAG Stop UGG Trp
CUU Leu CCU CAU His CGU Arg
CUC CCC CAC CGC
CUA CCA CAA CGA
CUG Leu CCG Pro CAG Gln CGG Arg
AUU Ile ACU AAU Asn AGU Ser
AUC ACC AAC AGC
AUA ACA AAA AGA
AUG Met ACG Thr AAG Lys AGG Arg
GUU Val GCU GAU Asp GGU Gly
GUC GCC GAC GGC
GUA GCA GAA GGA
GUG Val GCG Ala GAG Glu GGG Gly

orders is shown for comparison (green line). As we can see, in all considered cases Φ 167

decreases with the number of codons involved in the set. They all reach the maximum 168

at k = 28, which is equal Φ(C28) = 0.91, and the minimum for all set collections at 169

k = 64, equal to Φ(C64) = 0.81. It should be noted that Φ(C64) is equal to the average 170

code code conductance calculated for the standard genetic code and discussed in [B lażej 171

et al., 2018a]. What is more, two lexicographic orders that generate the respective 172

smallest codon sets C28, generally do not induce the optimal collections of sets 173

Ck, k > 28 in terms of Φ. In other words, it is not possible to generate a set collection 174

Ck for each k = 29, . . . 64 using lexicographic orders shown in Table 2 and Table 3 that 175

would be minimal in terms of Φ. 176

4.2 Reprogramming of the standard genetic code 177

Using the results presented in section 4.1, we get that for every k ≥ 28, the set Ck

induces its own complement, namely the set C ′k of vacant codons. They can be
reprogrammed to encode new non-canonical amino acids. From mathematical
perspective, new genetic information would be encoded by 1 ≤ n ≤ 64− k codon blocks
which constitute a partition of the set C ′k. In consequence, we introduced a set
collection of n codon blocks:

C′k(n) = {S1, S2, . . . , Sn, Si ∩ Sj = ∅, S1 ∪ S2 ∪ . . . ∪ Sn = C ′k} , (1)

where each Si, i = 1, . . . n is a non-empty set of codons that encodes the same genetic 178

information. Moreover, let us denote by C(n, k) an extended genetic code that encodes 179

exactly n new ncAAs and uses a set Ck, k ≥ 28 to maintain canonical genetic 180

information. It is easy to see that every C(n, k) is a partition of the graph G. What is 181

more, C(n, k) has a unique representation: 182

C(n, k) = Ck ∪ C′k(n), (2)

for any k ≥ 28. This observation appeared to be very useful in a further testing of 183

the properties of the extended genetic code. First of all, it is possible to calculate 184
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Table 3. The set C28 containing exactly 28 codons (red). These codons were chosen
according to a lexicographic order induced by the linear order of nucleotides G < U <
A < C and the order of codon positions 1 < 2 < 3. The encoded 20 canonical amino
acids and the stop translation signal by the collection of codon sets C28 is also shown.

UUU Phe UCU Ser UAU Tyr UGU Cys
UUC UCC UAC UGC
UUA UCA UAA UGA
UUG Leu UCG UAG Stop UGG Trp
CUU Leu CCU Pro CAU His CGU Arg
CUC CCC CAC CGC
CUA CCA CAA CGA
CUG Leu CCG CAG Gln CGG Arg
AUU Ile ACU Thr AAU Asn AGU Ser
AUC ACC AAC AGC
AUA ACA AAA AGA
AUG Met ACG AAG Lys AGG Arg
GUU Val GCU Ala GAU Asp GGU Gly
GUC GCC GAC GGC
GUA GCA GAA GGA
GUG Val GCG GAG Glu GGG Gly

Φ(C′k(n)), i.e. the average conductance of the set collection encoding ncAAs. 185

Additionally, Φ(C(n, k)) gives us a general overview on the properties of the extended 186

genetic code. Furthermore, using equation 2 we can measure the structural differences 187

between the canonical Ck and the extended C′k(n) set collection. In order to do so, we 188

introduced a balance measure B defined in the following way: 189

B(C(n, k)) =
Φ(C′k(n))

Φ(Ck)
, 28 ≤ k ≤ 63 . (3)

The balance function B has a natural interpretation and takes positive values. B < 1 190

indicates that C′k(n) possesses better structural properties in terms of the average 191

conductance than Ck, whereas B > 1 means that the set collection Ck, i.e. canonical 192

genetic information has better properties in terms of Φ. From our point of view, the 193

value of B around one is the most interesting because it suggests a similar robustness to 194

point mutations of codon blocks for both set collections. 195

4.2.1 The optimal codon blocks structures encoding ncAAs 196

Here, we discuss several features of set C′k(n), k ≥ 28, n = 1, . . . , 64− k, which is a 197

collection of n codon blocks composed of vacant codons C ′k. The problem which arose 198

immediately in this study was related to the potential optimality of C′k(n). As was 199

mentioned in the previous section, we can describe the quality of each C′k(n) using the 200

average conductance of the set collection Φ. However, this measure itself does not give 201

us any information about that the real optimality of a studied code because there are, 202

in general, many possible set collections for the fixed k and n that differ in Φ values. 203

Therefore, we decided to find a lower bound on the values of Φ(C′k(n)) for the fixed 204

k ≥ 28 and n = 1, . . . 64− k. It could be done using the representation 1 of C′k(n) as 205

well as the definition 2 of the k-size conductance and a simple observation that for every 206

C′k(n), we have: 207

Φ(C′k(n)) =
1

n

n∑
i=1

φ(Si) ≥
1

n

n∑
i=1

φ|Si|(G) . (4)

8/16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.09.12.294553doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.12.294553


Figure 2. The relationship between Φ(Ck) and k = 28, 29, . . . , 64 calculated
for two lexicographic orders, for which we found the smallest coding set C28

(blue and orange lines). The lower bound calculated over 144 orders is shown
for comparison (green line).

Therefore, for every C′k(n), there exists a lower bound on the average conductance of 208

the set collection imposed on C ′k. What is more, these optimal collections are composed 209

of the best codon blocks in terms of the k-size conductance. This feature give us a 210

general overview on the optimal structures of the standard genetic code extensions 211

including the selected number n of ncAAs. 212

Following the property 4, we found all possible lower bounds for every k ≥ 28 and 213

n = 1, 2, . . . 64− k. Figure 3 presents their graphical representations. As we can see, the 214

lower bound on Φ(C′k) increases with the partition size n for all considered k ≥ 28. 215

This relationship shows an interesting course in some cases, e.g. for k = 28 (Fig. 4), 216

the curve of the lower bound increases with n but slows down substantially for n close 217

to n′ = 9 and then blow up again for n > n′. We can explain this fact by comparing the 218

properties of the optimal C ′k(n) partition for n = 1, 2, . . . , 36. We realized that for 219

n ≤ n′, there is no set of the size lower than four, whereas these sets appear for n > n′. 220

It should be noted that the k-size conductance is decreasing with k, especially for 221

k = 1, 2, 3. Therefore, if a set collection contains a group of size that is lower than four 222

then the average conductance of the set collection calculated for this partition is 223

generally higher in comparison to the collections that are composed of codon blocks 224

with the size greater or equal than four. This fact could explain the presence of the Φ 225

minimum for n > n′. This phenomenon is also observed for 28 ≤ k ≤ 52 for respective 226

changing point n′. 227

4.3 The balanced extended genetic code 228

As mentioned in the previous section, we can describe the optimal genetic code 229

structure, in terms of the minimum of Φ(C′k(n)), which encode ncAAs for the respective 230

n and k. However, according to the representation 2, the extended genetic code is in 231
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Figure 3. The lower bound of the average conductance Φ(C′k(n)) calculated for
the set collection C′k(n) in relation to the number n of potential codon blocks
which would encode new genetic information. The minimum of Φ(C′k(n)) was
found over all possible partitions of the set C ′k containing k ≥ 28 vacant
codons in exactly n = 1, . . . , 64− k disjoint codon blocks.

fact composed of Ck, which encodes the canonical information and C′k(n), which encodes 232

exactly n ncAAs. Following the definition of Ck, we get that the number of connections 233

between these two parts of the code is as small as possible, which may causes a low 234

probability of potential reversion between the new and old information. It is very useful 235

from experimental point of view, when we want to keep the information about the 236

canonical amino acids and the stop translation, and simultaneously not lose the new 237

information encoded in the vacant codons. However, this property does not include any 238

information about properties of codon groups. On the other hand, the average code 239

conductance Φ(C(n, k)) calculated for the whole system give us only a general overview 240

of the quality of codon blocks. In this context, the balance measure B appears to be 241

especially useful in studying properties of codon groups belonging to Ck and Ck(n). 242

Thanks to that, we can compare the quality of coding system for the new and old 243

information. 244

In this work, we tested the balance in the case when C′k(n) attained lower bound of 245
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Φ(C′k(n)). Figure 5 presents the balance values B calculated for the respective k and n. 246

As we can see, the extended genetic code is extremely unbalanced for small n, i.e. 247

B < 1, which indicates that C′k(n) have in general a better codon blocks structure in 248

comparison to respective Ck in terms of the average conductance. In all considered cases 249

B increases with the number of newly incorporated ncAAs. Moreover, in some cases, it 250

is possible to find a balanced codes for which B are around one. What is more, the 251

number of newly included ncAAs, required to obtain the balanced code, is in some cases 252

quite large. For example, in the case of k = 28, possible balanced genetic codes are 253

obtained for n = 28, 29, 30. This result shows in fact a huge redundancy level of the 254

standard genetic code. 255

5 Conclusions 256

The redundancy of the standard genetic code suggests that this coding system can be 257

extended. In literature, we can find several approaches to this problem. These findings 258

encouraged us to start studying the issue of the optimal extension of the standard 259

genetic code from theoretical perspective. In this paper, we proposed a method of 260

genetic code extension using graph theory approach. Following this methodology, we 261

described the smallest set of codons still encoding 21 canonical items (20 amino acids 262

with one stop translation signal) and characterizing by the minimal set conductance for 263

its size. This property provides the smallest number of connections between codons in 264

the restricted code and the set of vacant codons, which can be assigned to new genetic 265

information. Thanks to that, we minimized the possibility of reversion between these 266

two parts of the code. What is more, we investigated the optimal structure of codon 267

blocks that encode new information and finally we found the lower bounds for the 268

optimal structure of codon blocks assigned to potential ncAAs. In addition, the 269

introduced balance measure allows us for finding extended genetic codes balanced in 270

terms of the average conductance. 271

It should be noted that the results presented here require some theoretical 272

assumptions. First of all, we proposed a general approach, which does not take into 273

account properties of coded amino acids or other compounds associated with the newly 274

added codons. Secondly, we need exactly 64 types of tRNAs, which can be used to 275

decode unambiguously respective codons. Nevertheless, it seems reasonable to 276

investigate the problem of possible extensions of the standard genetic code starting from 277

the general foundations. Interestingly, using these assumptions, we found several 278

interesting limitations on the number of codons required to encode canonical 279

information and also on the codon blocks which would encode new information. 280
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Figure 4. The minimum of the average set conductance Φ(C ′28) (blue line)
in relation to the number n of potential codon blocks which would encode
new genetic information. The minimum of Φ was found over all possible
partitions of the set C ′28 containing 36 vacant codons in exactly n disjoint
codon blocks. The red dashed line shows the minimum of the average set
conductance calculated for n = 9. As we can see, n = 9 is a deflection point,
in which the rate of the curve increase is changing.
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Figure 5. The balance B calculated for respective k and n under the as-
sumption that C′k(n) attains the lower bound of Φ(C′k(n)). As we can see, the
extended genetic code is in general strongly unbalanced for small n i.e. the
number of newly incorporated ncAAs, in comparison to the code encoding
20 canonical amino acids and one stop translation signal.
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