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The relationship between the number of available nutrients and community diversity is a 10 
central question for ecological research that remains unanswered. Here, we studied the 11 
assembly of hundreds of soil-derived microbial communities on a wide range of well-12 
defined resource environments, from single carbon sources to combinations of up to 16. We 13 
found that, while single resources supported multispecies communities varying from 8 to 40 14 
taxa, mean community richness increased only one-by-one with additional resources. 15 
Cross-feeding could reconcile these seemingly contrasting observations, with the metabolic 16 
network seeded by the supplied resources explaining the changes in richness due to both 17 
the identity and the number of resources, as well as the distribution of taxa across different 18 
communities. By using a consumer-resource model incorporating the inferred cross-feeding 19 
network, we provide further theoretical support to our observations and a framework to 20 
link the type and number of environmental resources to microbial community diversity. 21 

Uncovering the determinants of community diversity is central in ecology1–3 and microbiome 22 
research4, posing unique challenges to microbial ecologists. Indeed, microbes are the most 23 
abundant form of life on our planet5, the most ancient and the most phylogenetically diverse6. 24 
Surveys of a variety of ecosystems, from oceans7 to the human body8, have revealed that 25 
thousands of different taxa can stably coexist within the same community. Importantly, microbial 26 
communities drive the bulk of global nutrient cycling9, sustain human health10 and modulate the 27 
response of the biosphere to climate change11. Hence, deepening the knowledge of the drivers of 28 
microbial community diversity is pivotal to understand the functioning of Earth’s ecosystems. 29 

Several mechanisms contribute to the diversity of microbial communities, including the spatial 30 
and temporal structure of the environment12, dispersal and bacterial motility13, warfare14,15, and 31 
resource-mediated competition and cooperation16–18. With respect to resources, ecological theory 32 
has mostly focused on the effect of the number of available resources on community diversity 33 
rather than their identity19. In particular, according to the principle of competitive exclusion, the 34 
number of stably coexisting species is predicted to be bounded by the number of available 35 
resources20–22. Despite the wealth of theoretical work on how resources can affect microbial 36 
community diversity, empirical tests of resource-diversity relationships have been limited, 37 
having been explored either in 2-3 species assemblages17 or in enriched cultures grown on 1-2 38 
resources18,23–25. Systematic experiments encompassing a range of resource combinations are still 39 
lacking.  40 

While an empirical test of the relationship between the number of available nutrients and 41 
community diversity remained elusive, bottom-up experiments have implicated cross-feeding as 42 
a major factor influencing the assembly of microbial communities, even in simple environments. 43 
Cross-feeding, whereby metabolic byproducts of one taxa become resources for others26, can 44 
increase niche partitioning, ultimately allowing the coexistence of several taxa even when only a 45 
single source of carbon is provided18,23,25,27. There is also some evidence that the identity of the 46 
supplied resource dictates community composition, as microbial taxa display different resource 47 
preferences and patterns of metabolite excretion23,28. Nevertheless, the manner in which cross-48 
feeding and niche partitioning systematically change with the identity and the number of 49 
supplied resources is still unclear. This lack of knowledge impairs our ability to link variations in 50 
resource availability with shifts in microbial community diversity. 51 

Here, we used a high-throughput experimental protocol and 16S amplicon sequencing to explore 52 
the relationship between microbial community diversity and resource availability in experimental 53 
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microcosms. By growing soil-derived communities in media containing different combinations 54 
of carbon sources (from single resources up to 16), we discovered that community diversity was 55 
high in single resources but then increased only modestly with additional nutrients. These 56 
seemingly contrasting observations reflected the structure of the metabolic network seeded by 57 
the supplied resources. Cross-fed byproducts predicted to originate from each resource via 58 
microbial metabolism were coupled to the richness and composition of single resource 59 
communities. Additionally, a consumer-resource model incorporating the inferred metabolic 60 
network recapitulated the linear increase of community diversity with additional resources. 61 

Results 62 

In order to illuminate how the availability of resources, namely their number and identity, shape 63 
the richness of microbiomes, we assayed the assembly of soil-derived bacterial communities in 64 
laboratory microcosms16,18. We started by inoculating a rich microbial suspension obtained from 65 
a soil sample (Fig. S1) into 75 resource environments, each containing minimal media 66 
supplemented with different combinations of carbon sources, ranging from one to 16 (Fig. 1a, 67 
S2, Table S1). The 16 carbon sources represented a broad range of common soil compounds 68 
(e.g., mannose, xylose, cellulose and hydroxyproline), encompassing both glycolytic (e.g., 69 
simple and complex sugars) and gluconeogenic substrata (e.g., organic acids). We adopted a 70 
daily-dilution protocol, whereby at the end of each 24-hour growth cycle the bacterial cultures 71 
were diluted 1/30x into fresh media. We observed that the majority of microcosms reached 72 
stability after 3 days from the inoculum (Fig. S3). We continued the experiment until day 7 and 73 
measured the final richness as the number of ASVs (amplicon sequence variants) observed 74 
within each community (Fig. S4). 75 

Individually-supplied resources support complex multi-species communities 76 

Consistent with recent experimental studies18,24,29, single-resource communities were remarkably 77 

rich (mean richness = 23 � 2 ASVs, Fig. 1b) and taxonomically diverse (Fig. S5). This is in 78 
contrast with competitive exclusion predicting that the number of species cannot exceed the 79 
number of resources20,30—which, in single carbon sources, would result in no more than one 80 
species surviving. Interestingly, the variability in richness among different resources was also 81 
high—with the average number of ASVs ranging from 8 in citrate to 40 � 4 in cellulose (Fig. 82 
S6, Fig. 1b)—and larger than the variability among replicates of the same carbon source 83 
(ANOVA test, Fresource = 3.4339, p < 0.01). Richness in single carbon sources therefore 84 
depended on resource identity. Community richness did not correlate significantly with the 85 
molecular weight of the supplied resource (Fig. S7), but did correlate with the predicted number 86 
of metabolites which could be generated from the resource through intracellular biochemical 87 
reactions and secreted in the environment (Fig. 1b, see Methods for the details on the prediction 88 
of metabolites based on KEGG31 and MetaCyc32 databases). Notably, the lowest richness was 89 
observed for gluconeogenic substrata (~10 for citrate, fumarate and hydroxyproline), which were 90 
connected to the central metabolic pathway via the TCA cycle, hence resulting in the smallest 91 
metabolite pools. Consistent with previous work, these results highlight the role of cross-feeding 92 
in supporting community diversity33–35. Moreover, they suggest that the extent of cross-feeding 93 
may determine how many species can coexist on single resources. 94 
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Having found large numbers of coexisting species in single resources, we expected that 95 
community diversity would increase rapidly if more resources were provided. As previously 96 
observed in marine bacteria24,25, community composition could potentially correspond to the sum 97 
of the assemblages observed on each nutrient supplied in the mixture. To provide an example, 98 
the expected richness of the community grown on glucose and hydroxyproline (Fig. 1c), each 99 
alone supporting on average 24 and 11 ASVs, would be ~ 30 ASVs, i.e., the sum minus the 100 
number of shared ASVs (union). Alternatively, niche overlap between the taxa found in the 101 
single-resource media36,37 might bring the expected number of species down to the maximum 102 
richness observed in the constituent singles; in the case of glucose + hydroxyproline, 24 ASVs. 103 
However, when we measured the richness of the communities grown in a media supplied with 104 
equal amounts of glucose and hydroxyproline, we found only ~16 ASVs on average, which is 105 
significantly lower than both expectations (Fig. 1c). Yet, our observed richness was remarkably 106 
similar to the mean richness measured in the two constituent single resources (17.5 ASVs), a 107 
trend that was consistent across many two-resource communities (Fig. S8). Contradicting our 108 
expectations based on previous results supporting additivity, we found that community richness 109 
upon combining two carbon resources was approximately the average richness of constituent 110 
single resource environments. 111 

Community diversity increases linearly with the number of supplied resources 112 

Next, we examined the full range of resource combinations included in the experiment. Again, 113 
the richness predicted from the union of constituent singles significantly overestimated the 114 
observed richness (Fig. 1d). The prediction based on the maximum of constituent singles gave an 115 
increase with negative curvature that was not detected in our experiment (Fig. 1d). We found a 116 
similar trend also when we estimated the number of metabolites generated from resource 117 
combinations, with the same approach we used for single carbon sources (Fig. S9). Instead, the 118 
observed average richness increased linearly with the number of supplied carbon sources, at the 119 
constant rate of one to two ASVs for each new added resource (Fig. 1d, slope = 1.4 �  0.1). As a 120 
result, the richness of communities supported by 16 resources was roughly twice the average 121 
richness of single-resource communities. The linear relationship was robust to the exclusion of 122 

low-abundance ASVs—with the slope reduced to 1 � 0.07 when ASVs with relative abundance 123 
below 0.1% were excluded (Fig. S10a)—and coarse-graining at the family level (Fig. S10b). In 124 
addition, as more resources were provided, communities became more even (see Methods and 125 
Fig. S10c, d, S11), without changes in total biomass (Fig. S12). Despite confirming that the 126 
number of supplied resources is an important driver of microbial diversity, the observed one-by-127 
one relation between richness and resource number was difficult to reconcile with the large 128 
diversity found in single resources. Thus, we went back to the single-resource communities to 129 
gain a better understanding of our observations. 130 
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 131 

Figure 1. Microbial community diversity increases slowly with the number of resources despite individual 132 
resources supporting complex multispecies communities. a. Layout of the experiment. We inoculated a rich 133 
microbial suspension obtained from a soil sample into 75 growth media, each supplemented with a different 134 
combination of carbon sources, from single compounds to a mix of 16, while keeping the total carbon 135 
concentration the same (0.1% w/v). Bacterial cultures were grown for 7 days under a regime of daily dilution 136 
and their composition assessed at the single nucleotide resolution using 16S rRNA amplicon sequencing. 137 
Community diversity is measured as richness, i.e., number of AVSs. b. Richness of microbial communities 138 
supported by single carbon sources correlates with the number of metabolites predicted to be generated from 139 
metabolic reactions mapped in the KEGG database (Pearson’s correlation coefficient r=0.75 [95% CI: 0.4-140 
0.91], p<0.001). Colored dots indicate, for each carbon source, the number of ASVs (mean � SEM, N = 3). c. 141 
A representative example of how observed richness in constituent single resources (mean � SEM, N = 3) 142 
compares to the observed richness in two-resource communities (mean � SEM, N = 3) and predictions 143 
calculated as the union (sum without overlapping ASVs, dark violet) or the maximum (light violet) of the 144 
richness in constituent singles (mean � SEM, N from permutations = 9). d. Observed average richness 145 
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(orange dots, mean � SEM, N = 16 for single-resource, 24 for two-resource, 12 for four-resource, six for 146 
eight-resource, 16 for 15-resource and 1 for 16-resource combinations) as a linear function of the number of 147 
supplied carbon sources (solid orange line). Grey jittered dots indicate the average richness for each unique 148 
combination of resources (mean � SEM, N = 3). Intercept = 20.7± 0.8, slope 1.4 ± 0.1 �� �0.001�. In single 149 
resources, the blue and yellow dots correspond to the highest and lowest average richness, measured in 150 
cellulose and citrate, respectively. The predicted trajectory of richness based on the competitive exclusion 151 
principle (dashed dark green line), the union (dashed dark violet line) and maximum (dashed light violet line) 152 
estimates, as described for panel b, are shown for comparison. 153 

Communities are composed of generalists and variable numbers of specialists 154 

First, we measured the resource occupancy of the 275 ASVs observed in single resource media, 155 
i.e., how many single-resource media a given ASV was found in (Fig. 2a, Fig. S13). Based on 156 
resource occupancy, we considered habitat specialists the ASVs that were observed in less than 157 
25% of single-resource media, and habitat generalists those that occupied more than 75% of 158 
single-resource media (Fig. 2a). The majority of ASVs (216 out of 275) were specialists, 159 
whereas very few of them (10) were generalists. Some ASVs (49) displayed an intermediate 160 
occupancy, being present in between four to twelve media. This is reminiscent of natural 161 
communities, in which few taxa are usually universally present across different habitats, while 162 
the majority is found only under specific environmental conditions38–40. Importantly, previous 163 
work has shown that variations in the proportion of generalist and specialists taxa within a 164 
community impact its dynamics41–43. 165 

Next, we inspected the distribution of specialists and generalists within single resources. We 166 
found that species-poor communities, grown on gluconeogenic substrates like citrate, were 167 
dominated by generalist ASVs (often representing > 50% of observed taxa; Fig. 2b, S14a), while 168 
species-rich communities were enriched in specialists (see cellulose in Fig. 2b, S14b). We 169 
noticed that glycolytic substrates, which can produce a much larger metabolite pool before 170 
connecting with the central carbon metabolism, supported communities where more specialists 171 
coexisted with generalists. This suggested a link between the metabolite pool generated from 172 
each supplied resource and its ability to sustain both generalists and specialists in the same 173 
community. 174 

Remarkably, just like ASVs, our predicted metabolic byproducts could also be broken up into 175 
two broad classes. Based on how many single resources could trigger their production, we could 176 
distinguish between common metabolites, present in association with the majority of single 177 
resources (like generalist taxa), and rarer metabolites, present only in association with one or few 178 
resources (like specialists) (Fig. 2c). Metabolites that were commonly produced constituted the 179 
core intermediates of the central metabolic pathway, including the TCA cycle and lower 180 
glycolysis. The rarely produced metabolites, instead, were the intermediates of peripheral 181 
branches of the central pathway. For example, if either citrate or fumarate were provided, we 182 
predicted that the central pathway proceeds in the gluconeogenic direction, generating only 183 
byproducts belonging to the core pool. In contrast, individually-supplied sugars were predicted to 184 
go through a series of reactions before entering the central pathway, ultimately generating both 185 
core and peripheral metabolites (Fig. 2d). It appeared that the number of peripheral metabolites 186 
varied with the position from which the resource entered the “metabolic map”. The parallelism in 187 
the distribution of ASVs and predicted metabolites reinforces the idea that community structure 188 
is coupled to the metabolite pool, and suggests a link between the resource occupancy and 189 
metabolic capability of taxa. 190 
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Figure 2. Experimental communities are composed of generalists and variable numbers of specialists, with 192 
the latter driving the increase in community diversity. a. The 275 ASVs found across all single-resource 193 
communities were classified in generalist, specialists and intermediates depending on their resource 194 
occupancy. The majority of ASVs exhibited a more specialized resource-utilization strategy. b. The richness in 195 
single resource-media is displayed highlighting the mean number of generalist (pink), intermediate (beige) and 196 
specialist (teal) ASVs (mean, N=3, error bars are omitted for clarity). c. The metabolites estimated to be 197 
produced starting from the supplied single resources through cell reactions can be classified in common, 198 
intermediate and rare, based on resource-occupancy as for ASVs. d. The total of metabolites estimated for 199 
each single resource is displayed highlighting the number of common (red), intermediate (light brown) and 200 
rare (blue) metabolites. e. Upper panel. The distribution of the number of metabolic genes retrieved for each 201 
ASV in single resources (see Methods) differs between generalists and specialists (p < 0.01, from Kolmogorov-202 
Smirnov test). Lower panel. The distribution of rRNA operon copy numbers, calculated at the genus level, of 203 
generalist ASVs differs from that of specialist ASVs (p < 0.01, from Kolmogorov-Smirnov test). f. The 204 
specificity score is calculated, for each ASV found in a single resource (target resource), using the number of 205 
multi-resource media containing the target resource in which the ASV was found (X) and the number of media 206 
not containing the target resource in which the ASV is found (Y), as (X – Y)/(X + Y). It ranges from 1, 207 
indicating that the ASV is present only in a combination containing the resource, to -1, implying that the ASV 208 
is always absent when the resource is supplied. A score of 0 is indicative of an ASV showing no specificity for 209 
that particular resource. Bars indicate the mean specificity score � SEM for generalists (pink) and specialists 210 
(teal) (N = 16). Colored dots indicate the mean score for each resource (SEM are omitted for clarity, N varies 211 
for each resource, see Methods). g. The mean number of generalist (pink), intermediate (beige) and specialist 212 
(teal) ASVs for media with the same number of resources is shown as stacked bars. The average number of 213 
ASVs that were not detected in single-resource communities but appeared in other combinations is indicated in 214 
grey. Error bars are omitted for clarity. 215 

We next tested for systematic differences in the metabolic capabilities between generalist and 216 
specialist taxa in our experimental microcosms. Generalist ASVs belonged to the most abundant 217 
families, i.e., Pseudomonadaceae, Enterobacteriaceae and Micrococcaceae (Fig. S13) and 218 
differed metabolically from specialists, e.g., taxa from Cellvibrionaceae. In particular, generalists 219 
were estimated to harbor a larger number of metabolic genes (Fig. 2e upper panel, see Methods 220 
for details on the estimation of gene content) and more copies of the 16S rRNA operon compared 221 
to specialists (Fig. 2e lower panel, see Methods for details on the matching with the number of 222 
copies of the rRNA operon), indicative of faster max growth rates44. Both results are consistent 223 
with studies showing the hallmarks of a generalist life style: flexible metabolism38,45 (indicated 224 
by the number of metabolic genes) and capacity for fast growth (indicated by the 16S rRNA 225 
copy number)46,47. At the same time, several of the taxa classified as generalists are known to 226 
show distinct resource preferences when grown in isolation. For example, Pseudomonads species 227 
dominated in the communities sustained by organic acids, most likely because of their advantage 228 
over other taxa preferring sugars48, but were also present in all the media in which organic acids 229 
could have been generated as byproducts of the glycolytic metabolism of sugars49 (see Fig. S3). 230 
This might indicate that generalists were present in all the communities because the substrates 231 
that they utilize were always generated as byproducts of bacterial metabolism. Indeed, even 232 
habitat generalists show resource preferencies50, such as Pseudomonas spp., which consumes 233 
preferentially acetate and other organic acids23. In contrast, since many sugars and their 234 
intermediates could not be produced via gluconeogenic metabolism51, the survival of the taxa 235 
specializing on them was prevented unless those sugars were externally supplied. Together these 236 
observations are consistent with the idea of habitat generalists and specialists assembling in a 237 
community in relation to the available supplied and cross-fed metabolites.   238 
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The coupling between metabolite pool and community structure observed in single resources 239 
suggested that resource-ASVs associations would be maintained also in multi-resource 240 
environments. In particular, we expected that generalists would be present in all communities, 241 
while specialists would be mostly detected when the favorite substrate was provided or 242 
metabolically generated. To verify these expectations, we calculated a resource-specificity score. 243 
For each ASV present in a single resource (target resource), the resource specificity score was 244 
calculated as the difference between the number of multi-resource media containing the target 245 
resource in which the ASV was found and the number of media not containing the target 246 
resource in which the ASV was found, divided by the total number of media in which the ASV 247 
was found. The score ranged from 1, indicating that the ASV was present only when the target 248 
resource was provided in a combination, to -1, implying that, although the ASV was found in the 249 
single resource, it was always absent when that resource was supplied with others. A score of 0 250 
indicated that an ASV showed no specificity for that resource (Fig. 2f). We found that 251 

specialists’ scores were on average positive across all resources (Fig. 2f, mean score = 0.24 � 252 
0.05), while generalists’ scores were on average nearly zero (0.02 � 0.01). Together, these 253 
findings highlight that (specialist) taxa tend to show resource-specific associations, and that 254 
single resource-ASV associations are maintained even in multi-resource environments. 255 

To verify how resource-ASV associations impacted the resource-diversity relationship, we then 256 
calculated the average number of specialists, generalists and intermediates (as defined based on 257 
single resource occupancy) for each combination of carbon sources. We found that going from 1 258 
to 16 resources, communities went from containing a balanced mixture of generalists and 259 
specialists to being dominated by more specialized ASVs (both specialists and intermediates, 260 
Fig. 2g). Overall, these results point to the consistent coexistence in our experimental 261 
microcosms of distinct groups of bacteria, with more specialized taxa progressively favored by 262 
the supply of additional resources. While this was in line with the expectation that specialists of 263 
each resource should be favored by the higher chances to introduce a glycolytic compound as 264 
more resources were added, it is important to note that, at the same time, several specialist ASVs 265 
were lost and few new ASVs were introduced, especially going from one to two carbon sources 266 
(grey bars in Fig. 2f, S15, these ASVs remained unclassified). 267 

In summary, our experimental results revealed that 1) single resources were able to sustain 268 
multispecies communities, 2) going from one to two resources, community richness did not 269 
significantly increase; 3) overall, the resource-diversity relationship was linear and only 270 
modestly increasing; 4) all experimental communities were composed of both habitat generalists 271 
and specialists and their ratio changed with the number of supplied resources. We also show that 272 
the structure of the metabolite pool, which is the result of the ensemble of metabolic reactions 273 
fueled by the supplied and cross-fed resource(s), is the most likely driver of the observed 274 
manifestations of the resource-diversity relationship. We next asked: can we recapitulate some of 275 
the primary features of our experimental results by incorporating the metabolic network in a 276 
resource-explicit modelling framework?  277 

A resource-explicit model incorporating a realistic metabolic network reproduces our 278 
experimental results  279 

We hypothesized that the metabolic network seeded by the supplied carbon sources could 280 
explain the observed resource-diversity relationship. To test this, we implemented the well-281 
known MacArthur consumer-resource model with cross-feeding19,21,35. In contrast to other 282 
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implementations which used an abstract, randomly-generated cross-feeding network18,35, we used 283 
a realistic network inferred using KEGG and MetaCyc databases (Fig. 3a, see Methods for 284 
details). Note that we used the same network to estimate the possible number of metabolic 285 
byproducts generated from each of the 16 carbon sources in single-resource environments (Fig. 286 
1b). In our model, for simplicity, each species consumed one resource to grow, to approximate 287 
particular resource preferences in different species. It then leaked metabolic byproduct(s) into the 288 
environment, each of which was one step downstream from the consumed metabolite according 289 
to the cross-feeding network (see Methods). Other species could then consume these leaked 290 
metabolites, in turn releasing new by-products into the environment (Fig. 3b). Importantly, 291 

leaked byproducts always comprised a fixed fraction of the consumed resource, resulting in a 292 
progressive decrease in the concentration of metabolic byproducts available to microbes 293 
downstream34,35 (Fig. 3b). Finally, to account for metabolic overflow51–53, we added a small 294 
quantity of TCA intermediates and acetate to all simulated media. Overall, this model 295 
incorporated ecological dynamics and cross-feeding in a realistic fashion while retaining 296 
simplicity. 297 

Simulations of this model reproduced our two most-prominent experimental observations. That 298 
is, we could observe the stable coexistence of many species in single resources (between 19 and 299 
28 species, Fig. S16) yet a modest linear increase in richness with the number of resources (slope 300 
~2, Fig. 3c, Fig. S16). Since the estimated metabolic byproducts came from mapped metabolic 301 
reactions, we already knew that their number increased non-linearly with supplied resources 302 
(Fig. S9). So, how could we get a linear resource-diversity relationship? In our simulations, the 303 
concentration of byproducts varied with two factors: their position in the metabolic network and 304 
the initial concentration of the supplied resources. To mimic our experiment, we maintained a 305 
constant total resource concentration. This resulted in the concentration of each supplied 306 
resource decreasing with the total number of supplied resources in the medium (as 1/R, R being 307 
the number of supplied resources). As we provided more resources, a progressively larger 308 
fraction of byproducts had their steady-state concentrations decrease non-linearly. Byproducts at 309 
very low concentrations could no longer support microbial species, since their growth rates fell 310 
below the dilution rate. Hence, even though the number of metabolites grew non-linearly with 311 
the supplied resources, the metabolites that could support the growth of new species grew much 312 
slower, resulting in a linear increase in diversity in our simulations. 313 

By classifying the species in our simulations based on their resource occupancy (as in the 314 
experiment), our model also predicted a constant number of generalists and an increasing number 315 
of intermediates and specialists with additional resources (Fig. 3c). This is consistent with our 316 
experimental observations (Fig. 2g), and further corroborates the idea that the generalists 317 
observed in our communities were better at taking advantage of core metabolites, while the 318 
specialists that survived were those that were better at competing for rarer metabolites. 319 
Importantly, by implementing our model with a realistic network, we were able to simulate all 320 
the possible combinations of our sixteen resources, even those that we did not experimentally 321 
grow. These simulations showed the same relationship between richness and resource 322 
availability (Fig. 3c), suggesting that the outcome of our experiment would not have changed if 323 
we had included more/different resource combinations. We concluded that the realistic cross-324 
feeding network seeded by the pool of carbon sources in our experiment could explain the 325 
observed relation between microbial community diversity and resource number.  326 
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 327 

Figure 3. A resource explicit model incorporating a realistic metabolic network recapitulates our 328 
experimental results. a. A simplified version of the metabolic map derived from KEGG and MetaCyc 329 
databases is shown, where the carbon sources used in the experiments are highlighted. The metabolic map is 330 
used to build the cross-feeding matrix used in the model. b. Schematic showing the flow of metabolic 331 
byproducts in our model. Colored circles indicate supplied resources; white circles indicate metabolic 332 
byproducts, i.e., metabolites that are downstream from the resource in the metabolic network; colored 333 
microbes indicate different microbial taxa; and arrows indicate leakage of metabolic byproducts, which serve 334 
as resources for other taxa. c. Richness obtained from simulations with all the possible combinations of 16 335 
resources (14,843 conditions in total) is plotted as stacked bars indicating the average number of species for 336 
each category: generalists (pink), specialists (teal) and intermediates (beige). Species in the model are 337 
classified based the number of “media” they survived in, analogously to the distinction applied in the 338 
experiment (Fig. 2). Error bars are omitted for clarity. The total richness increases linearly with the number of 339 
resources (intercept = 22.7, slope = 2).   340 

Discussion 341 

Understanding the relationship between available nutrients and community diversity is central to 342 
both theoretical and experimental ecology. Here, using a high-throughput culture enrichment 343 
approach amenable to mathematical modeling, we provide experimental and theoretical evidence 344 
of how the identity and the number of available resources modulate microbial community 345 
diversity via a network of metabolic cross-feeding interactions. We showed that the richness of 346 
communities grown on single sources of carbon can be predicted from the number of cross-fed 347 
byproducts generated using intracellular metabolic reactions fueled by those resources. In 348 
addition, using this realistic metabolic network as the cross-feeding network in a resource-349 
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explicit model was sufficient to reproduce the observed linear, modest increase of richness with 350 
the number of available resources. 351 

Our results add to the wealth of studies stressing the importance of metabolic cross-feeding as a 352 
pivotal driver of species coexistence54 and its link to the identity of available resources18,27. We 353 
have observed multispecies communities on all compounds provided as single sources of carbon, 354 
including mono-, di- and polysaccharides, sugars alcohols and organic acids. Importantly, we 355 
were able to link the variability in community richness to the identity of the supplied resource by 356 
mapping the metabolic pathways triggered by each resource and estimating the number of 357 
byproducts potentially produced and leaked into the growth media. We are aware that these 358 
predictions do not provide any information on the bio-availability of the metabolic byproducts 359 
and might be biased towards well-characterized bacterial species. Nevertheless, they provide a 360 
simple and tractable way to estimate byproducts using only the structure of an overall metabolic 361 
network. Incidentally, community-scale flux balance simulations on the single-resource 362 
communities in our experiment also predicted a correlation between the number of expected 363 
byproducts and community richness (Fig. S17 and Methods). Further advances in linking the 364 
available byproducts with richness could be provided by targeted metabolomics, a technique 365 
which can assess the relative concentration of the metabolites in a medium, as in ref.51. 366 

Together with the remarkable richness in single resources, the other striking characteristic of our 367 
results was the modest linear increase in community diversity with the number of additional 368 
nutrients. Both these features appeared to stem from the structure of the metabolic network 369 
seeded by the pool of resources included in the experiment. Indeed, implementing this realistic 370 
network in a resource-explicit model was sufficient to recapitulate both features. Another 371 
important ingredient of the model was the concentration of metabolites, which in turn depended 372 
on their position in the metabolic network and the concentration of the supplied resource they 373 
were generated from. Despite its simplifying assumptions (e.g., we used species-independent 374 
growth and leakage rates), our model captured the combined effect of dilution and resource 375 
concentration that might have determined the diversity of our experimental communities. At the 376 
same time, while simulations of our model recapitulate the observed relationship, its theoretical 377 
bases still remain to be fully understood, including an extensive exploration of how the structure 378 
of the metabolic network affects resource-diversity relationships. Other approaches to 379 
complement such theoretical efforts might include experimentally testing the effect of resource 380 
concentration and quantitatively modelling intracellular metabolism, thus also accounting for 381 
metabolic fluxes and redox balances55–59.  382 

The position from which a resource enters the central metabolism affects not only its availability 383 
but also the direction in which metabolic reactions run (i.e., glycolytic or gluconeogenic). We 384 
showed that whether a resource is glycolytic or gluconeogenic was an important predictor of the 385 
diversity and structure of microbial communities, as it dictated the ratio between habitat 386 
generalists and specialists. These results suggest, and a two-parameter regression supports (Fig. 387 
S18), that adding gluconeogenic resources (e.g., organic acids) while keeping the total 388 
concentration of carbon constant may not increase the community diversity. Overall, our results 389 
add to the studies stressing that the position from which a resource enters the central metabolism 390 
eventually determines its use, including diauxic shifts vs. co-utilization60 and tradeoffs between 391 
growth and lag in changing environments51.  392 
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A further indication of the role played by the metabolic network sustained by the supplied 393 
resources came from the striking parallelism that we observed between the structure of 394 
experimental communities and the architecture of the network itself. Just like metabolism 395 
consists of shared (e.g., the TCA cycle) and unique reaction modules (i.e., specific to the 396 
degradation of a particular resource), all experimental communities harbored a core group of 397 
metabolically flexible, faster-growing habitat generalists and variable numbers of taxa associated 398 
with a particular nutrient (habitat specialists). This suggested that the habitat generalists present 399 
in our stabilized microbial communities were “specialists for common nutrients”, i.e., they 400 
preferentially consumed substrates that are commonly produced during bacterial growth. In this 401 
sense, generalists growing on downstream metabolites (e.g., TCA intermediates) depended on 402 
specialists for the production of their favorite substrates. Consistent with this, community flux 403 
balance simulations where we paired a generalist and specialist ASV showed that it was the 404 
specialists that are likely to leak metabolic byproducts used by generalists, and not vice versa 405 
(Fig. S19 and Methods). 406 

Finally, in our experiments, habitat specialists outnumbered generalists on the whole, a pattern 407 
that is commonly observed when natural communities from different locations are compared38. 408 
Surveys of microbiomes across different ecosystems have also highlighted a remarkable level of 409 
determinism in the association between microbiome composition at coarse taxonomic resolutions 410 
(e.g., at the family-level) and availability of nutrients. This feature is recapitulated by other 411 
studies18,61. Here we showed both the persistence of strong taxa-resource associations at the ASV 412 
(Fig. 2f) and the family level, with the relative abundance of several families, comprising 413 
prevalently either generalist or specialist taxa, changing as a function of the relative 414 
concentration of specific resources (see Methods for how we established which resources 415 
influenced the most each family). Specifically, we observed that the relative abundance of 416 
several specialist families decreased drastically or went to zero when the relative concentration 417 
of the “favorite resource” dropped by half (e.g., Cellvibrionaceae, Fig. S20), while the relative 418 
abundance of generalist taxa increased non-linearly with the relative concentration of few 419 
resources, e.g., Pseudomonadaceae with hydroxyproline and fumarate (Fig. S20). The fact that 420 
empirically observed features of natural microbial communities emerge in controlled 421 
experiments suggests that they might reflect the effects of deterministic processes linked to 422 
nutrient availability rather than be generic emergent properties of complex multi-agent systems. 423 

Methods 424 

Growth media preparation 425 

All the chemicals were purchased from Sigma-Aldrich unless otherwise stated. 426 

All bacterial cultures were grown in M9 media (prepared from 5X M9 salts, 1X Trace Metal 427 
Mixture (Teknova) and 1M stock solutions of MgSO4 and CaCl2) supplemented with 0.1 % w/v 428 
of one of 75 carbon source combinations. These combinations include: 16 compounds commonly 429 
available in soil that were provided as single carbon sources (D-(+)-glucose, D-(–)-fructose, D-430 
(+)-xylose, D-(+)-mannose, D-(+)-cellobiose, D-(+)-maltose monohydrate, sucrose, citric acid, 431 
fumaric acid, D-(+)-galacturonic acid monohydrate, D-mannitol, D-sorbitol, glycerol, trans-4-432 
Hydroxy-D-proline, methyl cellulose, starch); 24 random combinations of two of these 433 
resources; 12 random combinations of four resources; 6 random combinations of eight resources; 434 
the 16 combinations containing 15 resources; and all the 16 resources together (see Table S1 for 435 
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the complete list and Fig. S2). The total concentration of carbon was kept the same and resources 436 
were in all instances supplied in equal amounts, that was 100%, 50%, 25%, 12.5%, 6.7% and 437 
6.25% each for single-, two-, four-, eight-, 15- and 16-resource combinations. All solutions were 438 

filter-sterilized with a 0.22 �m filter and kept at 4°C for the duration of the experiment.  439 

Collection of microbial communities from the environment 440 

The soil from which the initial inoculum comes from was sampled from a lawn in Cambridge, 441 
Massachusetts, at a depth of ~15 cm using a sterile corer and tweezers. Once in the lab, a total of 442 
1.5 g of the collected soil was diluted in 20 mL phosphate buffered saline (PBS; Corning), then 443 
vortex at intermediate speed for 30 s and incubated on a platform shaker (Innova 2000; 444 
Eppendorf) at 250 r.p.m. at room temperature. After 1 hour, the sample was allowed to settle for 445 

~5min and the supernatant was filtered with a 100 �m cell strainer (Thermo Fisher Scientific) 446 
and then directly used for inoculation. Both the original soil sample and the remaining 447 
supernatant were stored at -80 °C for subsequent DNA extraction. 448 

Experimental microcosms 449 

Aliquots (7�L) of the supernatant containing the soil microbial suspension were inoculated into 450 
203 �L of growth media in 96-deepwell plates (Deepwell plate 96/500 �L; Eppendorf), for a 451 
total of 231 microcosms (3 replicates for each different resource combinations, except 16-452 
resource combinations that were replicated 9 times). Deepwell plates were covered with 453 
AeraSeal adhesive sealing films (Excel Scientific). Bacterial cultures were grown at 30°C under 454 
constant shaking at 1,350 r.p.m. (on Titramax shakers; Heidolph). To avoid evaporation, they 455 
were incubated inside custom-built acrylic boxes.  456 

Every 24 h, the cultures were thoroughly mixed by pipetting up and down 3 times using the 457 
VIAFLO 96-well pipettor (Viaflo 96, Integra Biosciences; settings: pipette/mix program 458 
aspirating 7 �L, mixing volume 10 �L, speed 6) and then diluted 1/30x into fresh media. We 459 
applied a total of seven daily dilution cycles. At the end of every cultivation day we measured 460 
the optical density (OD600) using a Varioskan Flash (Thermo Fisher Scientific) plate reader. The 461 
remaining bacterial culture was frozen at -80 °C for subsequent DNA extraction. 462 

DNA extraction, 16S rRNA sequencing and analysis pipeline 463 

DNA extraction was performed with the QIAGEN DNeasy PowerSoil HTP 96 Kit following the 464 
provided protocol. The obtained DNA was used for 16S amplicon sequencing of the V4 region. 465 
Library preparation and sequencing, which was done on an Illumina MiSeq platform, were 466 
performed by the MIT BioMicroCenter (Cambridge, Massachusetts).  467 

We used the R package DADA2 to obtain the amplicon sequence variants (ASVs)62 following 468 
the workflow described in Callahan et al.63. Taxonomic identities were assigned to ASVs using 469 
the SILVA version 132 database64. The phylogenetic tree (Fig. S4) was reconstructed using 470 
Randomized Axelerated Maximum Likelihood (RAxML) using default parameters65.  471 

Data analysis 472 

Analysis, unless otherwise stated were conducted in R, version 3.6.166.  473 

Sequencing data was handled using the R package phyloseq67. We obtained an average of 20,613 474 
reads per sample. Sequencing depth did not affect our estimation of community diversity indexes 475 
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(Fig. S4). Richness was calculated as the number of ASVs with abundance larger than 0 found in 476 
each sample. Community diversity was also measured by Shannon Diversity index and Shannon 477 
Entropy index following68,69 (Fig. S10). The significance of differences in richness due to single 478 
supplied resources was tested through ANOVA70 using the package GAD.  479 

Richness predictions 480 

Predictions of how richness would grow with the number of supplied carbon sources were 481 
computed using all the three replicated communities grown on a single resource and all the 482 
possible combinations of single resources (120 combinations of two resources, 1,820 483 
combinations of four, 12,870 combinations of eight, 16 combinations of 15 and one combination 484 
of 16 resources) (Fig. 1D). As an example of the prediction based on the maximum of constituent 485 
singles, the richness of the community grown in a medium containing glucose + hydroxyproline 486 
was obtained by calculating the maximum richness over each couple of replicates (one 487 
containing only glucose and the other containing only hydroxyproline) and subsequently 488 
averaging across all the predicted maxima (in total 9 predicted values). The same procedure was 489 
used for the average of constituent singles. Analogously, for the predictions based on the union 490 
of constituent singles, the richness in glucose + hydroxyproline was predicted by calculating the 491 
number of unique ASVs found in each couple of replicates of constituent singles (i.e., the total 492 
number of ASVs minus the number of overlapping ASVs) and then averaging across all obtained 493 
unions (9 values).  494 

Rank abundance distributions 495 

First, we computed abundance distributions (RADs) for each sample, i.e., each replicate 496 
community grown on a unique combination of carbon sources, by sorting ASVs based on their 497 
relative abundance. Then, we plotted the RADs in a log-linear fashion and fitted a regression line 498 
in order to compare their slopes (Fig. S11A). The absolute value of the slope of the fitted 499 
regression line informs on the abundance distribution of the ASVs in a community. More even 500 
communities usually display smaller slopes (Fig. S11B). Since each community exhibited a 501 
different richness, we normalized the RADS for richness (Fig. S11C) To do this, we used the 502 
RADnormalization_matrix function in the RADanalysis package: from each RAD with an 503 
observed richness, this function generates a “normalized RAD” with a richness corresponding to 504 
the minimum richness observed in the experiment (7 ASVs) by randomly resampling the original 505 
RADs for 10 times71 . In this way, samples with different richness can be compared and changes 506 
in evenness properly assessed.  507 

Definition of generalists and specialists based on single resource occupancy 508 

ASVs found in single resources were classified in three categories based on how many media 509 
containing a single resource they were found in, i.e. they exhibited abundance larger than 0 38,43. 510 
We considered specialists the ASVs that were observed in less than 25% of single-resource 511 
media, i.e., in one, two or three resources. Generalists were those ASVs found in more than the 512 
75% of media, i.e., in 13 or more resources. We defined intermediates the ASVs found between 513 
four and twelve resources. These thresholds were chosen arbitrarily, but the resulted in about ~ 514 
4% generalists and 80% specialists, consistently with proportions of generalists and specialists 515 
observed in natural communities 38,39,43. We chose this simple way of assigning ASVs to 516 
generalist, intermediate and specialist categories over other methods, e.g. as in 24 in order to 517 
leave aside their relative abundance, which was analyzed separately.  518 
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Prediction of possible metabolic byproducts in resource environments 519 

We predicted the possible number of metabolic byproducts that could be produced using the 520 
resources present in each medium using a curated metabolic network. The metabolic network 521 
contained a large set of metabolic reactions encompassing carbohydrate, sugar and amino acid 522 
metabolism extracted from the KEGG database31. We manually curated this large set of reactions 523 
using the MetaCyc database32 in order to limit it to reactions possible by most microbial taxa 524 
common to the soil, such as Pseudomonas. We used this network to estimate all the metabolic 525 
compounds that could be produced as byproducts, starting from the carbon sources available in 526 
each medium. We assumed that a small set of “currency” molecules, such as water, carbon 527 
dioxide and ATP, were always available as reactants when required (full list of currency 528 
molecules: phosphate, oxygen, carbon dioxide, water, H+, ATP, NAD(P)H, Acetyl-CoA, CoA). 529 

To estimate the possible byproducts in each medium, we employed the well-known scope 530 
expansion algorithm72–76. Each reaction in our curated metabolic network consisted of a set of 531 
reactants and resulting products. For each medium, we first asked which reactions could be 532 
performed using only the carbon sources available in the medium (i.e., the current “scope” of the 533 
medium).  We assumed that the products of these reactions could be produced and added them to 534 
the set of reactants – the new scope – for the next step. In the next step, we again asked which 535 
reactions could be performed using the new scope. We added their products to the scope for the 536 
next step. We continued this process, step by step, until we could add no new products to the 537 
scope. The resulting final scope of metabolites, minus the currency molecules provided in the 538 
medium, was our estimated set of possible metabolic byproducts producible in that medium. 539 

Adding some amino acids as currency molecules, mimicking our experimental protocol, yielded 540 
a larger set (~3x) of possible metabolic byproducts for each medium, including many amino 541 
acids and anabolic products. This expanded set of metabolites for each medium was also 542 
correlated with the observed average species richness in that medium (data not shown). 543 

We also tried an alternative approach to estimate the number of metabolic byproducts in single 544 
resource environments, using community-scale flux balance simulations. For each ASV observed 545 
in a single resource environment, we first obtained the phylogenetically closest whole genome 546 
sequence in NCBI’s RefSeq database. For this, we mapped the 16S sequence of each ASV to 547 
complete genomes in the RefSeq database using BLAST77. For each ASV, we chose the genome 548 
that had the highest identity; when multiple genomes matched this criterion, we chose the longest 549 
genome, following similar work78. We then obtained all the mapped genome sequences and 550 
constructed metabolic models for each of them using CarveMe55; we gap-filled all models to 551 
grow on M9 minimal medium supplemented with metal ions, such as iron and copper, which are 552 
present in trace amounts in experimental bacterial growth media. 553 

To estimate the number of metabolic byproducts in each single resource environment, we 554 
performed community-scale metabolic simulations using the package MICOM57. For each 555 
community, we input all the metabolic models for all ASVs detected in that community, and 556 
simulated their growth in the corresponding media. We then counted all metabolites which were 557 
predicted to be exported by each community as the estimated number of byproducts for that 558 
community. For each medium, we averaged the number of byproducts across all three replicate 559 
communities; we used this as our estimated number of byproducts for that medium. 560 

Characterization of the structure of the metabolite pool 561 
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Following the same logic that we used for ASVs, metabolites estimated to be produced through 562 
metabolic reaction starting from single resources were classified in three categories based on the 563 
number of resources that could be produced from. We considered rare metabolites those 564 
observed in less than 25% of single-resource media, i.e., in one, two or three resources. In 565 
contrast, common metabolites were those found in more than the 75% of media, i.e., in 13 or 566 
more resources. Finally, intermediate metabolites were those present in between four and twelve 567 
resources. The chosen thresholds separate the metabolites of the central metabolic pathway 568 
(common metabolites) from the peripheral metabolites belonging to branches descending into the 569 
central pathway (rare and intermediate metabolites). 570 

Inference of rRNA operon copy number for generalist and specialist taxa 571 

To test for signatures of different life-history strategies of the generalist and specialist taxa in our 572 
study, we estimated their 16S rRNA operon copy numbers. We estimated rRNA copy numbers at 573 
the level of both genus and family, separately for generalist and specialist taxa. For each genus 574 
identified, we queried rrnDB79—a database of rRNA operon copy number statistics—for the 575 
median copy number corresponding to the genus. We used this as an estimate for the rRNA 576 
operon copy number of that genus.  577 

Inference of number of metabolic genes for generalist and specialist taxa 578 

To test for metabolic differences between the generalist and specialist taxa in our study, we 579 
estimated the number of metabolic genes in their genomes. Since we did not have either isolates 580 
or assembled genomes corresponding to the observed taxa, we relied on a popular indirect 581 
method of estimating gene content. Namely, for each ASV, we used the reference genome which 582 
was phylogenetically closest to that ASV as a proxy for its genome. For this, we used 583 
PICRUSt280 using default parameters; as an input to the tool, we provided the 16S rRNA 584 
sequences of all 226 generalist and specialist taxa as well as their abundances in each sample. 585 
After running PICRUSt2, we obtained a table of the predicted gene content for each ASV (i.e., 586 
presence/absence of a specific KO number in the KEGG database). We extracted all metabolic 587 
genes from this table by only choosing those KO numbers which had at least one known 588 
metabolic reaction corresponding to them. Doing so resulted in an estimated set of metabolic 589 
genes for each ASV; we used this as an indirect estimate of the metabolic capabilities of each 590 
ASV. 591 

Calculation of the resource-specificity score 592 

We used a resource-specificity score to test if the ASV-resource associations that we observed in 593 
single resources were maintained when the single resource(s) in which the ASV was found was 594 
combined with others. For each ASV present in a single resource (target resource), the resource 595 
specificity score is calculated as the difference between the number of multi-resource media 596 
containing the target resource in which the ASV is found and the number of media not 597 
containing the target resource in which the ASV is found divided by the total number of media in 598 
which the ASV is found (Fig. 2E). This is reminiscent of a preference index, which is a standard 599 
measure in the behavioral sciences. Single resources are excluded from the count. The resource-600 
specificity score ranges from 1, indicating that the ASV is present only when the target resource 601 
is provided, to -1, implying that the ASV is always absent when that resource is supplied with 602 
other resources. A score of 0 is indicative of an ASV showing no specificity for that particular 603 
resource (Fig. 2E).  We calculated a score for each ASV-resource pair, such that each ASV had 604 
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as many scores as the number of single resources is found in. Then, we computed the average of 605 
the scores obtained for each single resource, separating between scores belonging to generalist 606 
and specialist ASVs (Fig. 2E).   607 

Inference of metabolic interactions between generalist and specialist taxa 608 

To estimate whether metabolic interactions between the generalist and specialist taxa in our 609 
communities were likely to be unidirectional or bidirectional, we used SMETANA v.1.056, using 610 
default settings. For each generalist-specialist pair that we experimentally detected in single 611 
resource environments, we used SMETANA on a model community comprising both ASVs (a 612 
generalist and a specialist) using the settings --flavor bigg --exclude inorganic.txt -d. We 613 
explicitly disallowed inorganic molecules such as phosphates, carbon dioxide and metal ions 614 
from being exchanged by using the –exclude option in SMETANA. To consider interaction 615 
directionality, we looked at the donor and receiver of each exchanged metabolite. When there 616 
was only one donor for every exchanged metabolite, we inferred the interaction as unidirectional, 617 
with the direction going from the donor to the receiver of the metabolites. 618 

Detection of family-resource associations using an ensemble tree regression model 619 

We calculated the relative abundance of the most prevalent families (37) in the 75 replicated 620 
bacterial communities and ran an ensemble tree regression model to detect significant patterns of 621 
variations in family abundance due to changes in the relative concentration of resources.  622 

We chose to coarse-grain the abundance data at the family level because, while several ASVs 623 
were lost and others were gained going from one to 16 resources in the growth media, the 624 
families found across all combinations of resources were mostly the same. In addition, we 625 
distinguished between generalist families, i.e., those that contained at least one generalist ASV, 626 
and specialist families, i.e., containing only specialist ASV. Consistent with ASV-level 627 
definition, generalist families displayed higher mean rRNA operon copy number compared to 628 
specialist families.  629 

We employed XGBoost, a gradient boosting framework based on decision trees81. Specifically, 630 
we implemented a regression model for each family in which the input was the relative resource 631 
concentration and the output was the log-transformed relative family abundance. We trained the 632 
model on two replicates by performing leave-one-out crossvalidation of the XGBoost parameters 633 
“max_depth”, “n_estimators” and “learning_rate”82 and tested on the third one with average 634 
mean-squared error across families of 6.05. We applied the Shapley Additive exPlanations 635 
(SHAP)83 to identify the resources that were more important in driving changes in the abundance 636 
of each family. This analysis has been done using Python version 3.8. 637 

Results of this analysis revealed that variations in the abundance all of the 37 families were 638 
driven by one or multiple resources based on their dominant life strategy. To simplify the 639 
visualization of the results we plotted the relative abundance of some representative families as a 640 
function of the concentration of the resources identified by the analysis (Fig. S20). Families 641 
mostly composed of specialist taxa, e.g., Cellvibrionaceae and Bacillaceae, showed abrupt 642 
changes in their abundance with the concentration of the “favorite” resource (Fig. S20). By 643 
contrast, more generalist families, e.g., Pseudomonadaceae and Enterobacteriaceae, exhibited 644 
smooth trends in their abundance with the concentration of multiple resources. 645 

Resource-consumer model with cross-feeding and simulations 646 
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The parallelism between species and metabolite distribution (see Fig. 2) that we observed in our 647 
experiment highlighted that the cross-feeding network is key to understand microbial 648 
communities under each combination of supplied carbon sources. To test this idea, we used a 649 
model encompassing the metabolic network that we obtained from the analysis of KEGG and 650 
MetaCyc databases. This was achieved by a consumer-resource model with cross-feeding18,21,35. 651 
In our consumer-resource model with the realistic metabolic network, we made the following 652 
simplifying assumptions. 653 

First, we assumed that every species consumes only one preferred metabolite. Upon this 654 
assumption, competitive exclusion guarantees that only the best grower in each resource 655 
survives; thus, we implemented only one species for each resource in our simulation as a post-656 
selection pool. This assumption reflected the resource-species association we observed (Fig. 2), 657 
which suggested that the taxa identified as generalists may specialize on core metabolites that are 658 
found everywhere. Also, while many species can consume multiple resources, they may still 659 
grow much faster on the most preferred one. Metabolic strategies such as diauxie also highlight 660 
that growth on the most preferred resource can be a dominant factor for community assembly51.  661 

Second, growth rates, biomass yield, and leakage rates (these quantities are described below) are 662 
universal, independent of species identity. This assumption led to the simplest implementation of 663 
our metabolite network.  664 

Third, we assumed that each species leaked out all the immediate metabolites of the metabolite it 665 
consumes. The list of immediate metabolites that are produced from each metabolite was 666 
obtained from scope expansion analysis. This information is encoded by a cross-feeding matrix 667 

�	��   , which is nonzero when 
�� metabolite immediately leaks ��� metabolite and 0 otherwise. 668 

For simplicity, the nonzero values of �	��  are set to be 1/(number of metabolites produced by 
�� 669 

metabolite).  670 

The scope expansion analyses based on the metabolic reactions mapped in KEGG and MetaCyc 671 
databases identified 96 metabolites that could be produced starting from the supplied carbon 672 
sources. Thus, CF is a 96x96 matrix. The original scope expansion analysis included reactions 673 
where multiple reactants were required to generate products. Since it is impossible to fully 674 
capture such interdependences with a matrix, we assumed that reactions were activated as long 675 
as one or more reactants were present. Also, to mimic the highly connected and cyclic structure 676 
of TCA-cycle, we set each TCA intermediate to generate all other TCA intermediates.  677 

Under these assumptions, we simulated the dynamics of the following model: 678 

�� � �1 � ������� � ���  

�� � ������ � �� � �	������
�

� ����� � ��� 

where ��  is the population of 
�� species, and ��  is the concentration of 
�� metabolite. � is the 679 

leakage rate, �� is the per-capita, per-resource growth rate of 
�� species, delta is the dilution rate 680 

of the chemostat-like environment. �	��   tells whether 
�� metabolite is leaked from ��� 681 

metabolite based on the scope expansion analysis. ��� is the supply resource concentration 682 

corresponding to each combination of supplied carbon sources, controlled by overall scale ��. 683 
For example, when glucose is supplied, ��� �  �� for 
=glucose and 0 otherwise. And when a 684 
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combination of glucose and hydroxyproline is supplied, ��� � �

�
�� for 
=glucose, hydroxyproline 685 

and 0 otherwise. To simulate the effects of metabolic overflow51–53, we supplied a small quantity 686 

(� � 0.2) of TCA intermediates and acetate to all media. 687 

The first equation models the dynamics of population. The first term tells that the growth rate of 688 
each species is proportional to the concentration of the preferred resource. We also assumed that 689 

species can only convert a fraction 1 � � of the preferred resource into biomass, since � is leaked 690 
in the environment as by-product(s). The second term represents dilution as the main driver of 691 
mortality in this chemostat-like system. 692 

The second equation models the dynamics of resources (both supplied and cross-fed). The first 693 
term represents the consumption of the resource by the specialized species. The second term 694 

represents the leakage from upstream resources that cross-feed the 
�� resource. The third term 695 
represents the dilution and external supply of resource in the chemostat system. 696 

We simulated the model dynamics under all possible combinations of 1, 2, 4, 8, 15, and 16 697 

number of supplied resources (14843 combinations total). We chose the parameters � � 0.1, 698 
which is comparable to the dilution we imposed in the experiment, � � 1, �� �  100, and 699 
� � 0.1. In Fig. 3c we show the results of all combinations, while in Fig. S16 we plotted only the 700 

combinations included in the experiment. The simulations were run for 1�	 unit time starting 701 
from initial population set as �
�, and communities reached equilibrium at the end of the 702 

simulations. The population cutoff for survival was set as �
�. Simulations were run in Python 703 
version 3.7.4. 704 

Data availability 705 

Data files and analysis/simulation codes will be available via GitHub upon publication. 16S 706 
Amplicon sequencing data and metadata files have been deposited in the NCBI SRA database 707 
under NCBI BioProject ID PRJNA715195. 708 
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