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ABSTRACT	
	
Dopamine	is	known	to	be	involved	in	several	important	cognitive	processes,	most	notably	in	

learning	from	rewards	and	in	the	ability	to	attend	to	task-relevant	aspects	of	the	environment.	

Both	of	these	features	of	dopaminergic	signalling	have	been	studied	separately	in	research	

involving	Parkinson’s	disease	(PD)	patients,	who	exhibit	diminished	levels	of	dopamine.	Here,	

we	tie	together	some	of	the	commonalities	in	the	effects	of	dopamine	on	these	aspects	of	

cognition	by	having	PD	patients	(ON	and	OFF	dopaminergic	medication)	and	healthy	controls	

(HCs)	perform	two	tasks	that	probe	these	processes.	Within-patient	behavioural	measures	of	

distractibility,	from	an	attentional	capture	task,	and	learning	performance,	from	a	probabilistic	

classification	reinforcement	learning	task,	were	included	in	one	model	to	assess	the	role	of	

distractibility	during	learning.	Dopamine	medication	state	and	distractibility	level	were	found	to	

have	an	interactive	effect	on	learning	performance;	less	distractibility	in	PD	ON	was	associated	

with	higher	accuracy	during	learning,	and	this	was	altered	in	PD	OFF.	Functional	magnetic	

resonance	imaging	(fMRI)	data	acquired	during	the	learning	task	furthermore	allowed	us	to	

assess	multivariate	patterns	of	positive	and	negative	outcomes	in	fronto-striatal	and	visual	

brain	regions	involved	in	both	learning	processes	and	the	executive	control	of	attention.	Here,	

we	demonstrate	that	while	PD	ON	show	a	clearer	distinction	between	outcomes	than	OFF	in	

dorsolateral	prefrontal	cortex	(DLPFC)	and	putamen,	PD	OFF	show	better	distinction	of	

activation	patterns	in	visual	regions	that	respond	to	the	stimuli	presented	during	the	task.	

These	results	demonstrate	that	dopamine	plays	a	key	role	in	modulating	the	interaction	

between	attention	and	learning	at	the	level	of	both	behaviour	and	activation	patterns	in	the	

brain.	
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INTRODUCTION		
	
Dopaminergic	effects	on	cognition	in	Parkinson’s	disease	(PD)	have	typically	been	investigated	

in	two	separate	domains	that	probe	different	aspects	of	cognition:	1)	changes	in	learning	from	

feedback,	e.g.	probabilistic	classification	[1,2]	or	reversal	learning	tasks	[3],	and	2)	changes	in	

the	ability	to	remain	goal-focused	and	resist	task-irrelevant	information,	e.g.	attentional	

switching	[4,	5,	6]	or	interference	tasks	[7].	These	cognitive	domains	are	known	to	depend	on	

neural	processing	across	several	overlapping	brain	regions;	most	notably	the	dorsolateral	

prefrontal	cortex	(DLPFC)	which	is	central	to	maintaining	focused	attention	[6,	8,	9]	and	

supports	learning	by	holding	associative	relationships	among	events	and	recent	reinforcements	

in	working	memory	[10,	11,	12].	Here,	we	seek	to	develop	a	better	understanding	of	the	

commonalities	across	these	two	domains	in	terms	of	dopaminergic	processing	by	administering	

both	attentional	and	learning	tasks	to	healthy	controls	and	PD	patients	(on	and	off	

dopaminergic	medication).	

	 Dopaminergic	nuclei	in	the	midbrain	fire	differentially	depending	on	the	positive	or	

negative	valence	of	an	outcome,	with	firing	magnitude	representing	the	size	of	a	prediction	

error,	i.e.	the	difference	between	the	expected	value	of	a	chosen	stimulus	and	the	outcome	

received	for	that	action	[13,	14].	These	signals	are	transmitted	to	widespread	brain	regions	via	

several	dopaminergic	pathways,	including	a	nigrostriatal	projection	from	the	midbrain’s	

substantia	nigra	pars	compacta	(SNc)	to	the	striatum,	which	is	involved	in	reward	processing	

[15],	motivation	[16],	and	movement	[17,18].	The	SNc	also	projects	to	several	parts	of	the	

frontal	cortex	[19],	particularly	the	DLPFC.	DLPFC	is	strongly	implicated	in	cognitive	control,	

including	the	control	of	attention	[20],	inhibition	of	actions	or	thoughts	[21,22],	rule	learning	

[5],	and	working	memory	processes	[23].	

	 The	central	role	of	DLPFC	in	cognitive	control	underlies	our	ability	to	stay	focused	and	

resist	distracting	stimuli	or	events	(see	19	for	a	review).	Dopaminergic	modulation	of	the	DLPFC	

is	proposed	to	improve	distractor	resistance	by	stabilizing	task-relevant,	working-memory	

representations	in	the	DLPFC	and	making	them	less	vulnerable	to	new	inputs	[6,	24,	25].	DLPFC	

lesions	in	humans,	as	well	as	ablation	of	analogous	PFC	regions	in	rhesus	monkeys,	were	found	

to	be	accompanied	by	reduced	distractor	resistance	[8,	26].		Studies	on	visual	selective	attention	

also	suggest	that	top-down	modulation	from	the	DLPFC	plays	a	key	role	in	sharpening	feature-	

or	object-based	representations	in	visual	regions	[27,28].	For	example,	impaired	dopamine-

related	distractor	resistance	has	been	associated	with	reduced	connectivity	between	DLPFC	and	

the	visual	regions	important	for	encoding	task-relevant	stimuli	[6].	DLPFC	activation,	as	well	as	

the	connectivity	between	DLPFC	and	fusiform	face	area,	was	found	to	be	perturbed	after	face	

compared	to	scene	distracters	[29].	Thus,	the	fronto-visual	processing	that	is	integral	to	
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maintaining	visual	attention,	at	the	expense	of	distractibility,	is	therefore	likely	to	depend	on	

dopaminergic	mechanisms.		

	 Rewards	are	well-known	to	boost	the	representation	of	visual	stimuli	[30,31],	although	

the	unique	influences	of	attention	and	reward	and	their	interactions	on	visual	processing	have	

proven	difficult	to	tease	apart	[32].	Since	dopamine	signalling	underscores	reinforcement	

learning,	research	has	begun	to	investigate	the	influence	of	dopamine	on	visual	processing.	For	

example,	dopamine	decreases	blood	oxygen	level	dependent	(BOLD)	activity	[33],	and	

modulates	the	representation	of	rewarded	features,	in	visual	cortex	[34].	Furthermore,	

univariate	BOLD	activity	has	been	shown	to	decrease	within	the	representation	of	a	high	

compared	to	low	reward-predicting	cue	in	visual	cortex	[34].	This	suggests	that	dopamine-

driven	prediction	error	signals	may	tag	representations	of	highly	rewarded	features	in	visual	

cortex.	It	is	therefore	likely	that,	similar	to	the	dopaminergic	enhancement	of	visual	attention,	

the	representation	of	rewarded	visual	features	is	also	enhanced	by	dopamine.	This,	however,	

has	yet	to	be	tested	explicitly.		

	 PD	patients	suffer	from	a	depletion	of	dopaminergic	neurons,	leading	not	only	to	the	

motor	deficits	characteristic	of	the	disease,	but	also	to	changes	in	cognitive	functioning,	such	as	

learning	from	feedback	[35,	36,	37].	Replacement	dopamine	medication	in	patients	has	proven	

beneficial	for	certain	cognitive	processes,	such	as	attentional	switching	[4,	38],	but	dopamine-

related	impairments	have	been	observed	in	learning	contexts	[35].	Much	research	suggests	that	

these	impairments	are	driven	by	reduced	learning	from	negative	outcomes	when	patients	are	

on	compared	to	off	medication	[1,35,	37,	39,	40],	although	other	studies	also	report	medication-

related	differences	in	learning	from	positive	outcomes	[41,	42,	43].	Overall,	there	is	general	

consensus	that	increased	dopamine	levels	by	medication	in	PD	leads	to	a	positivity	bias	[37,	44,	

45].		A	recent	study	in	PD	patients	showed	that	when	off	dopaminergic	medication,	patients	

showed	greater	distractibility	than	healthy	controls	[46].	This	suggests	that	distractor-

resistance	is	compromised	by	altered	dopamine	levels	in	PD.	However,	it	is	not	clear	how	

attention,	or	distractibility,	impacts	on	learning	from	feedback	and	the	extent	to	which	these	

effects	are	dopamine	dependent.		

	 Here	we	consider	how	dopamine	levels	in	PD:	1)	influence	the	inhibition	of	task-

irrelevant	distractors	by	measuring	the	extent	of	distractor-resistance	in	a	behavioural	

attentional	capture	task	[47],	2)	alter	the	role	that	these	attentional	effects	may	play	during	a	

reinforcement	learning	task	(see	also	37),	and	3)	affect	neural	representations	of	positive	and	

negative	outcomes	during	learning,	by	assessing	BOLD	activation	patterns	while	participants	

performed	a	reinforcement	learning	task	[2]	in	the	MRI	scanner.	Our	aim	was	to	uncover	

commonalities	in	dopamine-related	indices	of	distractibility	and	learning.	We	first	measured	

levels	of	distractibility	and	assessed	whether	these	play	a	dopamine-dependent	role	in	
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reinforcement	learning	performance.	We	then	used	multivariate	pattern	analysis	(MVPA)	to	

address	whether	fronto-striatal	and	occipital	regions,	known	to	be	involved	in	both	learning	and	

distractor	inhibition,	contain	patterns	that	differentially	code	for	positive	and	negative	

outcomes,	and	whether	these	patterns	are	altered	by	dopamine	levels	in	PD.	

	
	
MATERIALS	AND	METHODS	
	
Participants	
	
Participants	in	this	study	were	recruited	as	part	of	a	larger	project	on	reinforcement	learning	in	

PD,	with	original	results	published	elsewhere	(see	37).	24	patients	with	PD	were	tested	twice,	

once	while	ON	their	standard	schedule	of	dopaminergic	medication	and	once	in	a	clinically-

defined	OFF	state	(>12	hours	withdrawal).	24	age-matched	healthy	controls	(HCs)	were	tested	

once.	All	patients	were	diagnosed	by	a	neurologist	as	having	idiopathic	PD	according	to	the	UK	

Parkinson’s	Disease	Society	Brain	Bank	criteria.	This	study	was	approved	by	the	Medical	Ethical	

Review	committee	(METc)	of	the	VU	Medical	Center,	Amsterdam.	All	participants	provided	

written	informed	consent	in	accordance	with	the	Declaration	of	Helsinki.	See	Supplementary	

Materials	for	information	on	participant	exclusions.	

	
Tasks		
	
Participants	completed	two	experimental	tasks:	a	behavioural	visual	attentional	capture	task	

(based	on	47)	outside	the	MRI	scanner,	and	a	probabilistic	reinforcement	learning	task	(based	

on	[2])	while	in	the	scanner.		

	

Attentional	capture	task	

The	standard	stimulus	display	contained	several	green	circles	and	one	green	diamond,	placed	

on	an	imaginary	circle	equidistant	from	central	fixation	(see	Fig.	1a).	The	total	number	of	

stimuli	(“set	size”)	was	either	five	(small	set	size),	seven	(medium	set	size)	or	nine	(large	set	

size).	In	50%	of	the	trials,	one	of	the	circle	stimuli	was	a	red	distractor.	Each	shape	contained	a	

white	line	element	that	could	be	oriented	either	vertically	or	horizontally	with	equal	probability	

across	trials	and	conditions.	Participants	were	instructed	to	respond	as	fast	as	possible	to	the	

orientation	of	the	line	inside	the	diamond,	by	pressing	the	“z”	key	when	the	line	was	vertical	and	

the	“/”	key	when	the	line	was	horizontal.	There	were	120	trials	per	set	size	across	five	short	

experimental	blocks.	See	Supplementary	Materials	for	further	task	details.	
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Reinforcement	learning	task	

In	the	learning	phase,	three	different	pairs	of	everyday	object	stimuli,	e.g.	shoes,	balls,	leaves	

(denoted	as	AB,	CD	and	EF)	were	presented	in	random	order.	For	each	pair	specific	reward	

probabilities	were	associated	with	the	individual	stimuli,	and	participants	had	to	learn	to	

choose	the	best	option	of	each	pair	based	on	the	positive	or	negative	feedback	provided	(see	Fig.	

1b).	This	contingency	was	80:20	for	the	AB	pair,	indicating	that	the	A	stimulus	would	be	

rewarded	80%	of	the	time	it	was	chosen,	whereas	the	B	stimulus	would	be	rewarded	only	20%	

of	the	time.	The	reward	probabilities	were	70:30	and	60:40	for	the	CD	and	EF	pairs,	

respectively.	See	Supplementary	Materials	for	further	details.	

	

Behavioural	Analyses	
	
Attentional	capture	task	

Distractibility	RTs	(RT	distractor	absent	-	distractor	present	conditions)	and	absolute	RTs	for	

correct	trials	from	the	AC	task	were	analyzed	using	repeated-measures	ANOVA	in	JASP	[48]	and	

linear	mixed-effects	regressions	with	the	lme4	package	in	R	[49,	50].	Repeated-measures	

ANOVAs	were	carried	out	separately	per	group	comparison,	either	as	within-subject	

comparisons	for	PD	ON	vs.	OFF	or	between-group	comparisons	for	PD	ON/OFF	vs.	HC.	See	

Supplemental	Materials	for	further	details	and	Supplementary	Eq.	1	for	the	equation	describing	

the	linear	mixed-effects	regressions.	

	

Reinforcement	learning	and	distractibility	

To	quantify	the	distinct	contribution	of	distractibility	on	learning,	we	carried	out	a	mixed	effects	

logistic	regression	on	all	trial-by-trial	learning	data.	A	similar	analysis	has	previously	been	

carried	out	on	this	data	[37],	however	here	we	also	include	distractibility,	along	with	stimulus	

pair	(AB,	CD,	or	EF),	medication	and	disease	status,	to	address	our	specific	research	questions	

(see	Supplementary	Eq.	2).	The	dependent	variable	encoded	whether	the	better	option	of	the	

stimulus	pair	was	chosen	on	each	trial.	See	Supplementary	Materials	for	further	details.	

	

fMRI	Data	Acquisition	
	
Functional	data	for	the	reinforcement	learning	and	localizer	tasks	were	acquired	using	T2*-

weighted	echo-planar	images	with	BOLD	contrasts.	See	Supplementary	Materials	for	full	details.	

	

fMRI	Localizer	Analysis	
	
Each	fMRI	scanning	session	began	with	a	localizer	run	to	extract	a	visual	region	of	interest	(ROI)	

for	the	MVPA	analysis	(see	below).	Stimuli	in	this	run	were	objects	of	the	same	categories	that	
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were	presented	in	the	subsequent	reinforcement	learning	task	(six	object	categories	per	

session),	obtained	from	the	same	object	database	as	the	task	stimuli	[51].	The	actual	stimuli	

used	in	the	learning	task	were	not	included.	An	object-selective	cortex	(OSC)	ROI	was	taken	as	

those	voxels	that	responded	more	strongly	to	objects	vs.	noise,	within	anatomical	masks	of	the	

superior	and	inferior	lateral	occipital	cortex	(LOC)	(from	the	Harvard-Oxford	Cortical	Structural	

Atlas	of	the	FSL	package).		See	Supplementary	Materials	for	full	details.	

	

fMRI	Single-trial	Analysis	
	
Single-trial	whole-brain	GLM	analyses	were	performed	on	each	participant’s	reinforcement	

learning	fMRI	data	to	obtain	trial-by-trial	brain	activation	patterns.	The	single-trial	regressors	

were	locked	to	the	onset	of	positive/negative	feedback	presented	at	the	end	of	each	trial.	The	

analyses	were	carried	out	using	Nipype’s	FSL	interface	[52].	Full	details	are	provided	elsewhere	

(see	Supplementary	Materials	in	37).	One	notable	difference	between	the	analysis	described	

here	and	that	described	in	[37]	is	that	data	were	unsmoothed	for	the	current	MVPA	procedure.	

Unsmoothed	data	were	used	because	MVPA	analyses	require	as	fine-grained	information	as	

possible	to	more	accurately	classify	brain	representations	of	interest	[53].	These	GLM	analyses	

resulted	in	one	contrast	of	parameter	estimates	(COPE)	for	each	trial	of	every	participant	and	

scanning	session.	

	

Regions	of	Interest	(ROIs)	
	
In	addition	to	the	OSC	ROI	described	above	(created	using	functional	localiser	data),	we	created	

anatomical	masks	for	four	other	relevant	frontal	and	striatal	ROIs	using	the	Harvard-Oxford	

Cortical	Structural	Atlas	in	FSL;	DLPFC	(middle	frontal	gyrus),	caudate	nucleus,	putamen	and	

nucleus	accumbens.		

	
fMRI	Multivariate	Pattern	Analysis	
	
A	supervised	machine	learning	technique	using	MVPA	was	carried	out	with	the	Python-based	

scikit-learn	package	[54].	Classification	of	events	was	done	on	a	per	run	basis,	i.e.	across	each	

learning	run	separately,	and	classification	results	were	averaged	across	runs	per	participant.	

The	MVPA	analysis	allowed	us	to	identify	patterns	in	the	brain	that	can	distinguish	between	

positive	and	negative	feedback.	To	obtain	group	results	per	ROI,	classification	accuracies	and	

number	of	samples	per	participant	were	entered	into	a	univariate	normal-binomial	model	with	

a	variational	Bayes	implementation	using	the	MICP	package	in	the	TAPAS	Matlab	toolkit	[55,	

56].		See	Supplementary	Materials	for	full	details.	
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Fig.	1.	Experimental	tasks.	(A)	A	behavioural	attentional	capture	task	was	performed	outside	the	MRI	
scanner,	to	obtain	a	measure	of	distractibility,	i.e.	the	amount	of	slowing	down	in	no-distractor	compared	
to	distractor	trials.	(B)	In	the	MRI	scanner,	participants	first	performed	a	localizer	task,	during	which	they	
pressed	a	button	if	two	of	exactly	the	same	stimuli	were	presented	sequentially.	Stimuli	consisted	of	
many	pictures	from	the	same	object	categories	as	were	used	in	the	subsequent	reinforcement	learning	
task,	as	well	as	pink	noise	stimuli	presented	within	the	same	central	region	as	the	object	stimuli.	A	
statistical	contrast	between	object	and	noise	trials	provided	voxels	more	involved	in	object-processing.	
Visual	ROI	masks	were	created	on	an	individual	subject	level	using	the	overlap	of	these	voxels	with	the	
lateral	occipital	complex	(LOC),	and	were	labelled	object-selective	cortex	(OSC).	(C)	Reinforcement	
learning	task,	also	performed	in	MRI	scanner	(picture	adapted	from	37).	Participants	learned	to	choose	
the	better	option	of	each	of	three	fixed	stimulus	pairings.	Outcomes	were	probabilistic	with	a	higher	
chance	of	receiving	reward	for	one	stimulus	compared	to	the	other;	reward	contingency	was	80:20	for	
the	easiest	“AB”	pair,	70:30	for	the	“CD”	pair,	60:40	for	the	hardest	“EF”	pair.	
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RESULTS	
	
Attentional	capture:	distractibility	by	task-irrelevant	stimuli	
	
We	first	analysed	RTs	from	the	AC	task,	for	correct	trials	only	(see	Methods).	Absolute	RTs	per	

set	size,	group	and	distractor	condition	are	provided	in	Table	1.	Statistical	comparisons	were	

made	on	a	derivative	of	these	quantities;	distractibility	RT,	which	was	calculated	as	the	within-

participant	difference	between	the	distractor	and	no	distractor	conditions	(within	each	of	the	

ON	and	OFF	medication	sessions	in	PD	patients).	A	higher	value	means	that	a	participant	took	

longer	to	respond	to	the	target	when	a	distractor	was	present	(see	Fig.	2a).		

	 We	carried	out	separate	repeated-measures	ANOVAs	on	these	distractibility	RTs,	per	

group	comparison,	e.g.	PD	OFF	vs.	ON,	PD	OFF	vs.	HC,	and	PD	ON	vs.	HC.	For	the	within-subject	

PD	OFF	vs.	ON	comparison,	medication	status,	set	size,	and	their	interaction	were	included	as	

independent	variables.	We	found	a	main	effect	of	medication	on	distractibility	(F(1,22)=8.53,	

p=.008).		This	suggests	that	PD	OFF	medication	were	more	distractible	than	PD	ON.	There	was	

no	evidence	for	a	main	effect	of	set	size,	nor	a	set	size	*	medication	interaction	effect	(both	

p>.1).	For	the	PD	OFF/ON	vs.	HC	comparisons,	there	was	tentative	evidence	for	a	main	effect	of	

set	size	for	PD	OFF	vs.	HC	only	(F(2,88)	=	2.96,	p=.057).	There	was	no	effect	of	group	and	no	set	

size	*	group	interaction	for	either	comparison	(all	p>.09).		

	 Next,	a	linear	mixed-effects	regression	analysis	was	carried	out	on	correct	trial-by-trial	

log-transformed	RTs	(to	account	for	positive	skewing	of	the	raw	RT	distributions)	across	all	

participants,	to	address	both	fixed	experimental	effects	and	random	within-subject	effects	

within	one	model	(see	Eq.1).	We	found	main	effects	of	distractor	(β	=	.028,	SE	=	.009,	t	=	3.26,	p	

=	0.001)	and	set	size	(β	=	.004,	SE	=	.005,	t	=	6.86,	p	<.001).	There	was	a	group	effect	of	disease,	

i.e.,	HC	vs.	PD	OFF	(β	=	-.012,	SE	=	.006,	t	=	-2.21,	p=0.032).	Finally,	there	was	also	a	significant	

interaction	between	medication	status	and	distractor	condition	(β	=	-.022,	SE	=	.009,	t	=	-2.48,	p	

=	0.013).	This	indicates	that	PD	ON	had	less	AC	than	OFF	when	distracting	stimuli	were	present.	

We	found	no	other	significant	effects.	
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Fig.	2.	Behavioural	results.	A)	Attentional	capture:	RT	as	a	measure	of	attentional	capture	(“resistance”	
to	distraction),	per	HC,	PD	ON	and	PD	OFF	group.	RT	distractibility	is	the	amount	of	slowing	caused	when	
the	distractor	is	present.	B)	Reinforcement	learning:	learning	accuracy,	i.e.	the	percentage	of	trials	for	
each	stimulus	pair	in	which	participants	chose	the	‘better’	option	of	the	pair,	per	group.	This	part	of	the	
figure	is	adapted	from	37.	
	
	
Role	of	distractibility	in	reinforcement	learning	
	
Next	we	characterised	how	distractibility	affects	reinforcement	learning	performance.	We	ran	a	

linear	mixed-effects	regression	on	trial-by-trial	data	from	the	reinforcement	learning	task,	with	

accuracy	in	choosing	the	better	option	of	each	pair	as	the	dependent	variable,	and	mean	

distractibility	across	all	set	sizes	per	participant	included	as	an	independent	variable.	See	

Methods	and	Supplementary	Materials	for	a	full	description	of	the	model,	which	includes	disease	

and	medication	status	as	binary	covariates	(see	Eq.	2	and	37).	Overall	accuracies	in	choosing	the	

best	option	per	stimulus	pair	and	group	can	be	seen	in	Fig.	2b.	As	detailed	elsewhere	(see	37),	

we	found	a	main	effect	of	stimulus	pair	(β	=	0.217,	SE	=	0.078,	z	=	2.78,	Pr(>|z|)	=	0.005),	and	

medication	status	(β	=	0.489,		SE	=0.113,	z	=	4.31,	Pr(>|z|)<.001),		and	both	a	stimulus	pair	*	

medication	interaction	(β	=0.605,	SE	=	0.120	,	z	=	5.06	Pr(>|z|)<001),	and	stimulus	pair	*	

disease	interaction	(β	=.577,	SE	=.140,	z=4.13,	Pr(>|z|)<.001).	Importantly	for	the	current	study,	

we	found	an	interaction	effect	of	medication	status	and	mean	distractibility	RT	on	choice	

accuracy	during	learning	(β	=	-0.606,	SE	=	0.187,	z=-3.24,	Pr(>|z|)	=	0.001).	The	negative	β-

estimate	here	indicates	that	PD	ON	patients	who	showed	less	distractibility	during	the	AC	task	

were	more	accurate	during	the	reinforcement	learning	task.	Furthermore,	results	showed	a	3-

way	interaction	effect	of	medication	status,	mean	distractibility	RT	and	stimulus	pair	(β	=	-

0.700,	SE	=	0.190,	z=-3.68,	Pr(>|z|)	<	.001),	and	a	3-way	interaction	effect	of	disease,	mean	

distractibility	RT	and	stimulus	pair	(β	=	-0.547,	stderr=0.206,	z=-2.66,	Pr(>|z|)	=	0.008).	To	

probe	these	3-way	interactions,	we	carried	out	separate	mixed-effects	regression	models	per	

group	to	assess	whether	the	distractibility	RT*stimulus	pair	interaction	was	present	for	all	
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groups	(Fig.	3).	We	found	a	significant	distractibility	RT*stimulus	pair	interaction	for	the	HC	

group	(β	=	-0.366,	SE	=	0.162,	z	=	-2.26,	p	=	0.024)	and	PD	ON	group	(β	=	-0.50299,	SE	=	

0.14161,	z	=	-3.55,	p	>	.001)	only.	Analysis	of	the	PD	OFF	data	did	not	show	any	evidence	for	this	

interaction	(p>.1).	This	indicates	that	the	lesser	the	degree	of	distractibility	in	HC	and	PD	ON	

participants,	the	better	they	performed	at	the	easiest	relative	to	most	difficult	stimulus	pair	

choice	during	learning.	Lower	dopamine	levels	in	PD	OFF	appear	to	alter	this	relationship.	

	
	
Fig.	3.	Effects	of	distractibility	on	learning.	Interaction	between	level	of	distractibility	(z-scored)	from	
the	AC	task	and	stimulus	pair	(easy	to	difficult)	on	choice	accuracy	during	the	RL	task,	for	HC,	PD	ON	and	
PD	OFF	groups.	Different	patterns	between	PD	OFF	and	each	of	the	HC	and	PD	ON	groups	represent	the	
significant	interaction	effects	of	these	variables.	Errorbars	represent	95%	confidence	intervals.	
	
	

fMRI	multivariate	pattern	analysis	of	positive	vs.	negative	outcomes	during	learning	
	

MVPA	of	each	participant’s	trial-by-trial	BOLD	data	was	carried	out	in	a	priori	ROIs	(see	

Methods	and	Fig.	4).	These	ROIs	were:	visual	OSC	(defined	using	functional	localizer	data),	and	

the	fronto-striatal	regions	DLPFC,	caudate	nucleus,	putamen	and	nucleus	accumbens	(using	

anatomically-defined	masks).	In	all	ROIs	and	groups,	classification	accuracies	were	significant	

for	positive	vs.	negative	outcomes	(all	p<.001).	See	Fig.	4	for	classification	accuracies	per	group	

and	ROI.		
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Fig.	4.	Classification	accuracy	results	per	group	and	ROI.	Functional	and	anatomical	masks	are	
displayed	as	follows:	OSC	(green),	DLPFC	(red),	putamen	(blue),	caudate	nucleus	(yellow),	nucleus	
accumbens	(magenta).	The	OSC	was	based	on	a	functional	localizer	(see	Methods)	and	was	different	per	
participant;	mask	shown	here	is	from	one	sample	participant.	All	other	masks	were	anatomically-defined	
and	were	applied	to	all	participants.	Classification	accuracy	results	presented	are	as	follows;	OSC:	HC	
(72.31%	[68.73,	75.70]),	PD	ON	(68.46%		[64.78,	71.98]),	PD	OFF	(	70.78%	[67.35,	74.05]);	DLPFC:	HC	
(74.44%		[71.15,	77.53]),	PD	ON	(71.92%	[68.49,	75.17]),	PD	OFF	(	70.2%	[66.61,	73.62]);	Putamen:	HC	
(73.32%	[70.21,	76.26]),	PD	ON	(71.3%	[68.01,	74.44]),	PD	OFF	(69.29%	[66.04,	72.40]);	Caudate	
Nucleus:	HC	(71.45%	[67.98,	74.75]),	PD	ON	(68.89%	[65.37,	72.25]),	PD	OFF	(68.72%		[65.05,	72.23]);	
Nucleus	Accumbens:	HC	(62.23%	[58.88,	65.50]),	PD	ON	(60.93%	[57.51,	64.27]),	PD	OFF	(60.22%	
[56.77,	63.60]).	
	

In	OSC,	classification	accuracy	in	HC	was	significantly	higher	than	in	PD	ON	(t(40)	=	2.14,	p	=	

.038).	The	within-PD	subject	comparison	showed	greater	accuracies	in	PD	OFF	than	ON,	which	

was	not	statistically	significant	(t(20)	=	1.93,	p=.068).	There	were	no	significant	differences	in	

HC	vs.	PD	OFF	(p>.1).	

	 In	DLPFC,	we	found	significantly	higher	decoding	accuracy	in	HC	compared	to	PD	OFF	

(t(42)=2.50,	p=.017).	There	were	no	significant	differences	between	HC	and	PD	ON	or	in	PD	

patients	ON	vs.	OFF	medication	(both	p>.1).		

	 In	the	putamen,	we	also	found	significantly	higher	classification	accuracies	in	HC	

compared	to	PD	OFF	(t(43)=2.94,	p=.005).	There	were	no	differences	between	HC	and	PD	ON	

nor	between	PD	ON	and	OFF	(both	p>.1).	Statistical	comparisons	in	the	caudate	nucleus	and	
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nucleus	accumbens	showed	no	pair-wise	significant	differences	between	any	of	the	HC,	PD	ON,	

and	PD	OFF	groups.		

	 We	next	calculated	within-PD	patient	differences	in	classification	accuracy	in	each	of	

these	ROIs	and	carried	out	paired	t-tests	between	fronto-striatal	ROIs	and	the	visual	OSC	ROI.	

Previous	research	has	indicated	a	dopaminergic	role	in	top-down	control	of	visual	regions	[28].	

Here,	we	sought	to	explore	how	relative	information,	i.e.	patterns	of	activation,	in	these	regions	

may	differ	according	to	dopamine	levels	(see	Fig.	5).	We	found	a	significantly	higher	PD	ON-OFF	

difference	in	classification	accuracy	both	in	DLPFC	compared	to	OSC	(t(20)	=	2.99,	p	=	.007;	

DLPFC:	1.72%±	1.77%	SEM;	OSC:	-2.31%±1.71%	SEM)	and	in	the	putamen	compared	to	OSC	

(t(20)	=	3.01,	p	=	.006;	Putamen:	1.76%±1.67	SEM).	There	was	no	significant	dopamine-related	

difference	between	the	caudate	nucleus	and	OSC,	nor	between	the	nucleus	accumbens	and	OSC.	

	 	 	
Fig.	5.	Within-PD	patient	ON	vs.	OFF	classification	accuracy	differences	in	the	DLPFC,	OSC,	and	
putamen.	Error	bars	are	±	1	SEM.	**	represents	significant	differences	between	regions	at	p<.01.	
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DISCUSSION	
	
In	this	study	we	report	on	several	behavioural	and	brain	mechanisms	claimed	to	be	altered	in	

PD,	by	means	of	the	disease	itself	or	by	dopaminergic	medication	used	to	treat	associated	motor	

symptoms.	PD	patients	and	HCs	performed	an	attentional	capture	task,	to	assess	levels	of	

distractibility	by	task-irrelevant	items	in	the	environment,	and	a	reinforcement	learning	task,	to	

describe	how	these	groups	learn	from	the	outcomes	of	actions.		

	 Our	behavioural	results	show	that	PD	ON	demonstrate	a	significantly	greater	ability	to	

resist	distracting	stimuli	than	PD	OFF,	as	indicated	by	reduced	RT	interference	in	the	distractor	

vs.	no	distractor	condition	in	the	AC	task.	We	furthermore	found	that	medication	status	and	

mean	distractibility	RT	interact	to	affect	choice	accuracy	during	learning,	specifically;	PD	ON	

patients	who	showed	less	distractibility	in	the	AC	task	performed	better	in	the	reinforcement	

learning	task.		

	 MVPA	of	functional	neuroimaging	data	from	the	reinforcement	learning	task	shows	a	

medication-related	effect	in	representations	that	distinguish	positive	from	negative	feedback	

across	fronto-striatal	and	visual	brain	regions.	Specifically,	we	found	a	medication-related	

interaction	between	DLPFC	and	OSC,	with	greater	classification	accuracy	in	PD	ON	(vs.	OFF)	in	

DLPFC,	but	greater	accuracy	in	PD	OFF	(vs.	ON)	in	OSC	(see	Fig.	4).	A	similar	interaction	was	

found	between	the	putamen	and	OSC.	This	suggests	that	brain	activations	in	these	fronto-

striatal	regions	are	more	separable	for	positive	compared	to	negative	outcomes	when	PD	

patients	are	ON	medication,	whereas	visual	brain	regions	show	more	separable	outcome	

responses	when	patients	are	OFF	medication.	Higher	classification	accuracies	were	furthermore	

found	in	HC	participants	compared	to	PD	OFF	in	DLPFC	and	the	putamen,	and	compared	to	PD	

ON	in	OSC.	These	results	compliment	the	within-patient	findings	shown	in	Fig.	4.		

	 Our	finding	that	dopaminergic	medication	improves	the	ability	to	resist	task-irrelevant	

(salient)	stimuli	in	the	environment	dovetails	with	theory	and	results	from	previous	research	

describing	the	role	of	dopamine	in	distractor	inhibition	[6,	24,	25,	46,	57,	58].	These	studies	

suggest	that	dopaminergic	effects	on	working	memory,	via	the	excitatory	D1	and	inhibitory	D2	

pathways	in	the	basal	ganglia	and	PFC,	relate	to	improvements	and	impairments	in	the	ability	to	

resist	distracting	input,	respectively	[6].	Prior	research	of	ours	shows	that	reward	magnitude	

plays	a	role	in	distractor	inhibition,	with	an	increase	in	erroneous	saccades	to	distractors	that	

signal	increasing	levels	of	reward	in	the	environment	[59].	This	highlights	the	interplay	

between	(irrelevant)	reward	signals	and	the	ability	to	remain	goal-directed.	Dopamine	in	

fronto-striatal	regions	is	strongly	implicated	in	rewarding	and	motivational	responses	[60].	

Although	the	distractor	stimulus	in	the	current	AC	task	was	not	associated	with	reward,	the	

dopamine-related	improvements	in	PD	patients	show	a	shift	in	this	balance	of	AC	towards	task-

irrelevant	stimuli	vs.	task-relevant	goals,	that	is	likely	mediated	by	these	fronto-striatal	regions.	
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The	relationship	between	AC	and	learning	from	rewards	or	reinforcements	is	further	suggested	

by	our	findings	regarding	the	combined	influence	of	distractibility	(as	indexed	by	overall	RT	

differences	between	distractor	conditions)	and	dopaminergic	medication	on	performance	

accuracy	during	learning.	Investigating	how	the	balance	between	distractibility	and	goal-

directness	in	PD	patients	ON	vs.	OFF	medication	may	shift	in	accordance	with	varying	distractor	

reward	magnitude	in	the	AC	task	is	an	interesting	avenue	for	future	research.	

	 Our	MVPA	findings	align	with	the	suggestion	of	medication-related	changes	in	the	

balance	between	distractibility	and	goal-directedness.	We	show	that	positive	and	negative	

outcomes	can	be	more	easily	distinguished	in	PD	ON	than	OFF	in	two	fronto-striatal	regions,	the	

DLPFC	and	putamen,	whereas	these	events	are	more	easily	decoded	in	PD	OFF	than	ON	in	the	

visual	OSC.	This	provides	some	evidence	for	PD	ON	relying	more	on	information	from	higher-

level	control-	and	reward-related	regions	during	learning,	with	PD	OFF	being	more	visually	

guided	by	lower-level,	salience-related	regions.	This	notion	of	competition	between	top-down	

vs.	bottom-up	processing	has	been	long	discussed	in	the	literature	[61,	62,	63,	64,	65].	OSC	

functional	masks	in	this	study	were	created	on	an	individual	basis,	using	a	functional	localizer	to	

create	an	objects	-	noise	contrast.	Although	this	focuses	on	visual	object-related	regions,	rather	

than	feedback-related	regions,	positive	and	negative	outcomes	can	still	be	easily	classified.	

Several	previous	studies	have	shown	reward-related	signals	in	visual	cortex	[30,	31].	According	

to	reinforcement	learning	theory,	at	the	time	of	the	outcome,	positive	or	negative	feedback	is	

used	to	update	the	value	of	the	chosen	object	[66,	67].	This	presumably	requires	the	integration	

of	the	object	representation	itself	with	the	outcome	and/or	new	object	value.	On	the	basis	of	our	

results	we	speculate	that	reward	binding	to	objects	may	occur	more	at	a	stimulus-driven,	visual	

level	in	PD	OFF	but	more	at	a	conceptual,	reward-driven,	and	working-memory	level	in	fronto-

striatal	regions	in	PD	ON.	It	has	been	shown	that	disrupted	dopamine-related	distractor	

resistance	is	associated	with	reduced	connectivity	between	DLPFC	and	the	visual	regions	

recruited	for	encoding	task-relevant	stimuli	[6].	Interestingly,	dopamine	has	previously	been	

associated	with	a	reduction	of	univariate	activation	in	visual	regions	[33].	Similarly,	reward	

delivery	without	visual	stimulation	leads	to	decreased	univariate	activity	within	reward-

associated	cue	representations	in	visual	cortex	[34].	Although	it	is	not	possible	to	make	direct	

comparisons	between	these	studies	and	our	MVPA	results,	the	current	findings	extend	the	

notion	that	dopamine	and	reward	lead	to	differential	activations	in	visual	regions.	It	is	possible	

that	higher	dopamine	levels	in	PD	ON	reduce	univariate	activity	within	the	representation	of	

positive	outcomes	compared	to	PD	OFF,	thereby	interfering	with	multivariate	patterns	that	may	

more	easily	distinguish	between	positive	and	negative	outcomes.		

	 A	limitation	of	the	current	study	relates	to	the	flexibility	of	MVPA.	Due	to	the	

simultaneous	presentation	of	two	stimuli	on	each	trial,	as	well	as	extremely	large	differences	in	

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.12.294702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.12.294702
http://creativecommons.org/licenses/by-nd/4.0/


choosing	the	better	vs.	worse	option	of	pairs,	e.g.	some	participants	may	only	have	chosen	the	

worst	“B”	option	only	several	times	across	the	whole	experiment,	it	was	not	possible	to	

appropriately	tease	out	individual	stimulus	representations	for	pattern	classification.	An	

examination	of	dopamine-related	differences	in	DLPFC	representations	of	individual	objects	

and	how	these	might	relate	to	distractibility,	e.g.	by	presenting	the	objects	as	distractor	stimuli	

in	a	separate	task,	is	a	compelling	avenue	for	future	research.	

	 In	summary,	the	current	study	examines	the	role	of	dopamine	in	the	interplay	between	

attention	and	learning.	We	provide	evidence	for	dopamine-related	effects	of	attentional	

distractibility	on	reinforcement	learning,	as	well	as	a	dopamine-related	dissociation	of	

multivariate	representations	in	executive	control,	reward-associated	and	stimulus-driven	brain	

regions.	This	application	of	MVPA	is	rare	in	the	field	of	PD	research	and,	when	used	in	

conjunction	with	other	modern	fMRI	pre-processing	methods,	highlights	its	future	potential	in	

distinguishing	event-	or	stimulus-induced	brain	representations	in	PD.	
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Table	1.	RTs	in	the	attentional	capture	task.	Absolute	RTs	are	shown	for	correct	trials	only.	Mean	and	
standard	deviation	(std)	are	provided	across	stimulus	set	size,	group,	and	distractor	conditions.	
	
	

Set	size	/	Group	 HC	 PD	ON	 PD	OFF	
Small		 	 	 	

Distractor	absent	(mean	±	std)	 1005.5	±	179.7	ms	 1150.0	±	254.8	ms	 1166.4	±294.8	ms	
Distractor	present	(mean	±	std)	 1011.6	±	165.7	ms	 1160.4	±	278.3	ms	 1192.2	±288.9	ms	
	 	 	 	

Medium	 	 	 	
Distractor	absent	(mean	±	std)	 1033.9	±159.0	ms	 1182.8	±272.7	ms	 1186.8	±299.5	ms	
Distractor	present	(mean	±	std)	 1070.3	±185.1	ms	 1215.4	±272.8	ms	 1238.0	±289.8	ms	
	 	 	 	

Large	 	 	 	
Distractor	absent	(mean	±	std)	 1064.4	±176.7	ms	 1236.5	±282.6	ms	 1241.8	±317.8	ms	
Distractor	present	(mean	±	std)	 1102.2	±185.8	ms	 1244.0	±263.8	ms	 1308.8	±318.6	ms	
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