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Highlights 

 We propose a new approach to deriving calibration recommendations for 

system models 

 Approach is based on analyzing calibration in multi-model simulation 

exercises  

 Resulting recommendations are holistic and anchored in actual practice 

 We apply the approach to calibration of crop models used to simulate 

phenology 

 Recommendations concern: objective function, parameters to estimate, 

software used 

Abstract 

Calibration, the estimation of model parameters based on fitting the model to experimental 

data, is among the first steps in many applications of system models and has an important 

impact on simulated values. Here we propose and illustrate a novel method of developing 

guidelines for calibration of system models. Our example is calibration of the phenology 

component of crop models. The approach is based on a multi-model study, where all teams 

are provided with the same data and asked to return simulations for the same conditions. All 

teams are asked to document in detail their calibration approach, including choices with 

respect to criteria for best parameters, choice of parameters to estimate and software. Based 

on an analysis of the advantages and disadvantages of the various choices, we propose 

calibration recommendations that cover a comprehensive list of decisions and that are based 

on actual practices.  

 

Keywords: calibration recommendations, system models, parameter estimation, phenology 
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1 Introduction 

Calibration is an important part of the modelling process, since it enables the numerical 

model results and their reliable use in model applications. It is undertaken in many fields that 

use system models, including environmental models (Jakeman et al., 2006), hydrological 

models (Badham et al., 2019), atmospheric models (Steele and Werndl, 2013), models of pest 

and disease dynamics (Donatelli et al., 2017), and agricultural models (Seidel et al., 2018). 

Essentially, model calibration adjusts model parameters to reduce the error between the 

model results and the measured data. The majority of simulation studies involve some type of 

calibration prior to model application. Calibration is often necessary because parameter 

values are usually not universally valid, as explained by Fath and Jorgensen (2011) in the 

context of ecological models, and as explained in the context of crop models, based on 

statistical principles (Wallach, 2011). Calibration of nonlinear models is a major area of study 

in statistics (Seber and Wild, 1989; Sen and Srivastava, 1990), but system models have 

several features which make calibration particularly challenging (Wallach et al., 2019). 

Firstly, system models often have a large number of parameters, often many more than the 

number of observed data, which means calibration of all parameters is not possible. So one 

must decide which parameters to estimate (Doherty and Hunt, 2009; Necpálová et al., 2015). 

Even when one estimates a subset of the model parameters, there is often a problem of 

equifinality, meaning that various different combinations of parameter values can give the 

same results, and so calibration does not lead to unique parameter values (Beven and Freer, 

2001). Furthermore, system models usually simulate multiple different variables which can 

be compared with observed data, leading to the problem of combining information about the 

fit of the different variables into a single criterion for calibration, or possibly of defining 

multiple criteria (Wöhling et al., 2013b). Software used for the calibration is an additional 

problem. Often one ‘externally’ couples the existing model software to calibration software 

(Buis et al., 2015; He et al., 2010; Hunt et al., 1993), but this can require substantial effort. As 

a result, calibration for crop models is often done by manual trial and error without using an 

automated routine (Seidel et al., 2018), though this could also be a deliberate choice to exert 

more supervision over the calibration. 

In response to these and other difficulties, there have been numerous studies published 

concerning calibration recommendations for system models in multiple disciplines. One type 
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of study focuses on a particular model; it identifies the most important parameters in that 

model, and explains how they can be estimated from data (Ahuja et al., 2011). Other studies 

have focused on the implementation of a Bayesian approach or on the comparison of 

frequentist and Bayesian approaches (Gao et al., 2020; Jansen and Hagenaars, 2004; Sexton 

et al., 2016; Van Oijen et al., 2005), on numerical methods of seeking best parameter values 

(Bhar et al., 2020; Franchini and Galeati, 1997; Madsen et al., 2002), on the choice of 

parameters to estimate (Angulo et al., 2013), on the definition of multiple objective functions 

as a way of handling multiple simulated responses (Efstratiadis and Koutsoyiannis, 2010) or 

on which observed data to use for calibration (Hunt et al. 2001). There do not seem to be 

calibration recommendations based on a holistic view of model calibration for system 

models, such that the recommendations cover the full range of decisions that calibration 

involves, and that are based on actual practice. A holistic treatment is of importance, because 

potentially any or all of the decisions involved in the calibration process might have an 

important impact on the results. It is important to base recommendations on the range of 

actual practices, to ensure that a wide range of feasible approaches is considered.  

The specific system models considered here are crop models, which consist of a set of 

mathematical equations representing physically based or (semi)empirical processes that 

describe plant development and growth as well as soil conditions as affected by weather, soil 

characteristics and crop management. Crop models are widely used to study, understand, and 

optimize crop production in current and future environments (Ewert et al., 2015; Keating and 

Thorburn, 2018; Tsuji et al., 1998). In our study, we focus specifically on the use of crop 

models to simulate crop phenology i.e. the cycle of biological events in plants, because 

matching the phenology of crop varieties to the climate in which they grow is a critical crop 

production strategy (Hunt et al., 2019; Rezaei et al., 2018, 2015). In general, the simulation of 

crop phenology is an essential part of crop models and implemented as a phenological model 

component (or submodel) in the crop model. In many crop modelling studies, the focus is 

specifically on simulating phenology (Gao et al., 2020; Kawakita et al., 2020; Wu et al., 

2017) but also calibration of crop models using just phenological observations can be a first 

step in crop simulation studies (Kimball et al., 2019; Li et al., 2015). Modeling plant 

phenology is also important in understanding ecosystem response to global warming (Piao et 

al., 2019) 
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The objective of the present study is to define a novel approach to developing 

recommendations for calibration of system models, and to apply it to derive 

recommendations for calibration of phenology simulation using crop models. The approach 

considers the full range of decisions involved in the calibration process and is based on 

information about the actual choices made by multiple modeling groups. The proposed 

approach involves three steps. First, one or more multi-model simulation studies are 

organized, where all participating modeling teams are given the same data for calibration and 

asked to provide simulated values for the same outputs using their usual calibration 

technique. Secondly, each team is asked to complete a detailed questionnaire about the 

choices made for each calibration decision. This provides information about the range of 

choices that are made in practice. Finally, the advantages and disadvantages of the different 

choices for each calibration decision are analyzed, which provides the basis for a set of 

recommended practices.  

2 Materials and Methods 

This study is based on two multi-model simulation studies. The studies were organized within 

the framework of the Agricultural Modeling Intercomparison and Improvement Project 

(AgMIP, Rosenzweig et al.; 2013). The co-leaders of the calibration activity designed the 

studies as a way of obtaining information on crop model calibration practices, when the 

objective is simulation of crop phenology. They invited crop modeling groups to participate 

by announcements on the AgMIP website and in messages to the mailing lists of several 

widely used models. All modeling groups that asked to participate were accepted.  

We use here the term “model structure” to designate a specific set of model equations. The 

model structures used by the participants are listed in Supplementary Table S1. We speak of 

modeling group to designate the group of researchers that implemented the model structure in 

a specific case. The modeling group was responsible for determining all aspects of the 

calibration procedure and also for choosing the values of fixed parameters, i.e. those not 

determined by calibration. Twenty-seven modeling groups participated in the first simulation 

study, based on data from wheat fields in France. Twenty-six of those groups, and two 

additional groups, participated in the second simulation study, based on data from wheat 

fields in Australia. Thus overall 29 different groups participated in at least one of the studies. 
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The modeling groups are identified as M1-M29 and the same identifier is used for the same 

modeling group working with the French and Australian data. The name of the model 

structure used by each group is not given, since this might give the erroneous impression that 

the calibration approach and simulation results are specific to that model structure, while in 

fact they depend on both the model structure and the decisions made by the modeling group. 

Three of the model structures, coded as S1, S2, and S3, were used by multiple groups. 

Structure S1 was used by four (French dataset) or three (Australian dataset) groups, structure 

S2 by three groups and structure S3 by two groups. Comparisons within these three groups 

provide information about the variability as to calibration approach between different 

modeling groups calibrating the same model structure. 

Figure 1 shows schematically the flow of information in the multi-model exercises. In each 

study, participants were given the input data usually required for running a crop model, 

namely daily weather data, information on crop management, and information on soil 

characteristics, for multiple environments. An “environment” refers to a specific combination 

of site and sowing date. The modeling teams were also given data on wheat phenology from a 

subset of those environments for calibration (the “calibration” environments) and asked to 

provide simulated phenology for the remaining environments, the “evaluation” environments.  

The observations in the French dataset were for days from sowing to two phenological stages, 

namely beginning of stem elongation (growth stage 30 on the BBCH and Zadoks scales) and 

middle of heading (growth stage 55 on the BBCH and Zadoks scales) (Table 1). These two 

stages are of practical importance because they can easily be determined visually and are 

closely related to the recommended dates for the second and third N fertilizer applications in 

France. Observed data were provided for two varieties, namely Apache and Bermude. In all 

cases, the modeling groups used the same calibration approach for both varieties. Therefore, 

in this study we only report a single calibration approach for each modeling group for the 

French dataset. The modeling groups were asked to provide simulated values for those same 

two growth stages for the evaluation environments. 

The Australian dataset resulted from measurements for the Zadoks growth stage (Zadoks et 

al., 1974), that were recorded every two weeks in each environment. The data were 

interpolated, to give days from sowing to every integer Zadoks stage from the first to the last 
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observed stage, which were the data provided to each modeling group for the calibration 

environments. For the evaluation environments, participants were asked to provide the 

simulated values for the number of days from sowing to stages Z30 (Zadoks stage 30, 

pseudostem, i.e. youngest leaf sheath erection), Z65 (Zadoks stage 65, anthesis half-way, i.e. 

anthers occurring half way to tip and base of ear), and Z90 (Zadoks stage 90, grain hard, 

difficult to divide). These stages are often used for management decisions or to characterize 

phenology. 

At no point did the participants have access to the evaluation data. Furthermore, none of the 

sites or years represented in the evaluation environments occurred in the calibration 

environments. Thus this was a rigorous evaluation of how well the modeling groups were 

able to simulate wheat phenology for new environments. Details for the evaluation results are 

provided in (Wallach et al. (2021b, 2021a). The prediction errors are also summarized in 

Supplementary Table S7. 

 

 

Figure 1 Schematic diagram of the two multi-model simulation studies 
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Table 1. Description of datasets. The French dataset was repeated for two varieties 

(Apache and Bermude). The numbers shown represent the days from sowing to the 

indicated stages on BBCH or Zadoks scale. An environment corresponds to a specific 

combination of site and sowing date.  

Dataset Calibration data Evaluation data 

 Number of 

environments 

Observed or 

interpolated 

phenological stages 

Number of 

environments 

Observed or 

interpolated 

phenological 

stages 

French 

 (repeated for 

varieties Apache 

and Bermude) 

14 BBCH30, BBCH55 8 BBCH30, 

BBCH55 

Australian 

(variety Janz) 

24 Each integral 

Zadoks stage from 

first to last observed 

Zadoks stage 

18 Z30, Z65, Z90 

 

 

In both simulation exercises, each participating modeling group was asked to calibrate the 

model in their “usual” way, using the calibration data provided. Each group was also asked to 

complete a questionnaire, detailing how the calibration was conducted (Table 2). The 

questions were chosen to cover as completely as possible the full set of the decisions that are 

associated with the calibration approach, and to provide information about the underlying 

reasoning for the choice of modeling approach (see questions 3 and 6). 
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Table 2 The questions related to calibration approach in the questionnaire filled out by 

all participating groups. The full questionnaire is presented in Supplementary Table S2.  

1. How many parameters did you estimate (i.e. change from initial default values)? 

2. Which parameters did you estimate (please give the name and a short explanation and 

units of each)? 

3. Why did you choose those particular parameters to calibrate? Why that number of 

parameters to estimate (i.e. why not more or fewer parameters)? 

4. Which of the measured variables did you use for calibration (e.g. both date of stem 

elongation and of heading)?  

5. Describe your calibration approach. For example, did you define a criterion to 

minimize, like    
14

2 2

, 30 , 30 , 55 , 55

1

obs sim obs sim

i BBCH i BBCH i BBCH i BBCH

i

y y y y


   
    i.e. the total sum of 

squared errors for days to BBCH30 and BBCH55, where 14 is the number of training 

environments. The variables specified in response to question 6, and no others, should 

appear here.  

6. Did you set lower and upper limits to the parameter values, or use other prior 

information about the parameter values? If so, please give the values for each 

parameter. How did you decide on those limits or that prior distribution?  

7. What software did you use to find the values of the parameters? 

8. Did you estimate parameter uncertainty? If so, please give the uncertainty values for 

your parameters (for example, standard deviation for each parameter), and indicate 

how you estimated the uncertainty. 

For details on how each model structure simulates phenology, see the references for each 

structure in Supplementary Table S1. Here, we provide only a short overview, with emphasis 

on the parameters involved. The basic output of phenology simulation is days from sowing to 

various phenological stages or between various phenological stages. The number and identity 

of simulated stages varies with the model, and may include both observable stages (for 

example anthesis) and stages that are model constructs (for example, start of linear phase of 

grain filling). The most important inputs that determine spring wheat phenology are daily 

temperature and photoperiod (Aslam et al., 2017), while for winter wheat it is also important 

to include the process of vernalization, i.e. the effect of low winter temperatures on 
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development (Li et al., 2013). Most model structures take into account all three factors, 

though not all factors affect the development rate at all stages of development. Some 

structures take into account only temperature, or temperature and either photoperiod or 

vernalization. Most model structures take temperature into account by calculating thermal 

time, calculated most simply as the sum of the daily temperature above some threshold 

temperature (a parameter). In other models the daily contribution to degree days may have a 

plateau above some optimal temperature (a parameter), or decline above the optimum 

temperature at some rate (a parameter) or be some more complex function of temperature 

(Kumudini et al., 2014; Wang et al., 2017). The parameters of the temperature response curve 

may differ at different stages in the development cycle. Wheat is a long-day plant, which 

flowers earlier in longer days. Often phenology response to photoperiod is modeled using two 

parameters, a threshold photoperiod below which development rate increases with increasing 

photoperiod and a sensitivity coefficient, which describes the rate of increase, though other 

functions, with other parameterizations, are also used. Vernalization is described as a period 

of low temperatures, which must be experienced before the plant can flower. Vernalization 

parameters can include the upper limit for temperature to count as vernalizing, and the 

required number of vernalizing days. To determine the day of occurrence of a given stage, 

most models have an internal counter of physiological time, which often is based on degree 

days modulated by photoperiod. When this counter attains some predetermined value specific 

to the stage in question, which is a model parameter, that stage is deemed to have been 

attained. Some models also relate development to the rate of leaf appearance (called the 

phyllochron, a parameter) or rate of tillering. Several models account for cold or drought 

stress in the simulation of the development rate. If the development rate depends on drought 

stress, then it is sensitive to the parameters in the model that determine soil water content and 

soil-plant water dynamics. In other models, phenology is independent of the model 

parameters that determine growth and soil dynamics.  

3 Results 

The decisions required for calibration can be divided into three groups. I) decisions related to 

the criterion that defines the best parameter values, II) decisions related to the choice of 

parameters to be estimated, and III) decisions related to the numerical calculation of the best 

parameter values. The more detailed decisions within each group are shown in Figures 2-4, 
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which also indicate the choices made by the participating modeling groups and the number of 

groups that made each particular choice. Details for each individual modeling group are 

shown in Supplementary Tables S3, S4, and S5 for choices concerning the criterion of best 

parameter values, the parameters to estimate, and the algorithm and software, respectively.  

 

Figure 2 The calibration decisions related to the criterion for best parameter values, 

and the choices made by multiple modeling groups in two studies. The numbers in 

parentheses are the numbers of groups that made the indicated choice for the French 

and Australian data sets, respectively. Choices recommended here are underlined. 
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Figure 3 Possible choices of underlying basis for choosing the parameters to estimate, 

and the choices made by multiple modeling groups in two studies. The numbers in 

parentheses are the numbers of groups that made the indicated choice for the French 

and Australian data sets, respectively. The choice recommended here is underlined. 

 

Figure 4 Algorithm type for calculating the parameters, and the choices made by 

multiple modeling groups in two studies. The numbers in parentheses are the numbers 

of groups that made the indicated choice for the French and Australian data sets, 

respectively. Choices recommended here are underlined. For software choices, see 

Supplementary table S6. 
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3.1 Criterion for best parameters 

A first calibration decision in this category is which variables to use in the criterion that 

defines the best parameter values, and in particular whether to use only those variables for 

which predictions are sought, or also additional observed variables. By variable, we mean the 

type of data. For example, days to flowering and days to heading would be two different 

variables. The French dataset only had observations for two variables, namely days to 

phenological stages BBCH30 and BBCH55 (see Table 1), and groups were requested to 

report the simulated values for those same two variables, for both the calibration and 

evaluation environments. Thus, it was a logical consequence that for almost all groups the 

criterion of best parameters included observations of both those variables. Two groups (M9 

and M18) used model structures that did not simulate the number of days to stage BBCH30, 

so these groups only used a subset of the observed variables (i.e. the observations of days to 

stage BBCH55) in the criterion defining best parameters. The Australian dataset, on the other 

hand, had many observed variables (i.e., days to many phenology stages), while evaluation 

was based just on simulated days to three stages (Z30, Z65, and Z90). Here, the choice of 

variables to include in the criterion was not so straightforward. For the Australian dataset 

about 40% of the groups used only the variables to be simulated (days to Z30, Z65, and Z90 

or a subset if the model structure did not simulate all those variables), while about 60% of the 

modeling groups included other observed variables in the criterion of best parameters. 

Different groups that used the same model structure did not necessarily make the same choice 

here. Considering structure S1, used by groups M2, M3, and M4 and the Australian dataset, 

all three groups used minimum sum of squared errors as the criterion defining the best 

parameter values. However, group M2 included additional variables in addition to the 

variables to be simulated in their sum of squared errors. Group M3 used only squared errors 

for Z65 and Z90, and group M4 used squared errors for Z30, Z65, and Z90. 

A second decision concerns the definition of error. Almost all groups expressed error in terms 

of days to reach a specified stage (Table S3). However, it is also possible to express error in 

terms of phenological stage. In the simplest case, suppose that a model structure calculates 

Zadoks stage each day (i.e., the internal counter each day is directly or is translated into a 

value for Zadoks stage). Suppose that for a particular environment it is observed that stage 

Z30 is attained on day 45, but the simulated day is 40. The error in days is 5 days. Suppose 
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that the simulated stage on day 45 is Z33.4. Then the error in terms of development stage is 

30-33.4=-3.4. For the French dataset all groups calculated error in days, but for the Australian 

dataset three groups expressed error in terms of development stage rather than days. 

A third decision is whether to use a frequentist or Bayesian perspective. If a frequentist 

perspective is chosen, one must define the mathematical form of the objective function. F a 

Bayesian perspective is chosen, one must define the form of the likelihood and the prior 

distributions for the parameters. The large majority of groups followed a frequentist 

approach, where the estimated parameter values are those values that minimize some measure 

of error between the simulated and observed values (Table S3). Most of the frequentist 

groups sought to minimize the sum of squared errors, where the sum is over calibration 

environments and over all variables included in the criterion. This is the ordinary least 

squares (OLS) criterion. One (French data) or four (Australian data) groups used a different 

measure of distance between observed and simulated values, namely the sum of root mean 

squared errors for the different variables, or a weighted sum of squared errors. Two groups 

chose to minimize the sum of absolute errors. This is the least absolute value criterion (LAV). 

Four groups for the French dataset, and the same four groups for the Australian dataset, did 

not define an explicit objective function to be minimized, but rather sought parameter values 

to give a “best fit” to the data, where “best fit” was determined visually or by some subjective 

combination of mean squared error, R², or other fit metrics. Groups using the same model 

structure did not necessarily make the same decisions. For example, among the three groups 

that used model structure S2, for the Australian dataset, one used the OLS criterion and two 

had no explicit objective function. 

Another decision for the frequentist perspective is whether to fit all the observed variables in 

a single calculation step or to use multiple steps, adjusting parameters to different variables in 

each step. Almost all groups estimated all parameters simultaneously (Table S3). However, 

two (French data) or four (Australian data) groups estimated parameters in more than one 

step, fitting for example three parameters to the BBCH30 data in the French dataset, and then 

fixing those parameters at their estimated values and fitting another parameter to the 

BBCH55 data. Again, groups using the same model structure did not always make the same 

decisions. For example, among the two groups that used model structure S3, for the 
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Australian dataset, group M23 estimated all parameters simultaneously, while group M24 

estimated parameters in two steps.  

Of the total of six Bayesian calibrations (two for the French dataset, four for the Australian 

dataset), three assumed a normal distribution of errors and one a Student’s t distribution. One 

group worked with the concentrated likelihood, which replaces the model variance for each 

variable by its maximum likelihood value. For the Bayesian groups, parameters were 

assumed to have either uniform or truncated normal prior distributions.  

No group took correlations of errors for different variables in the same environment into 

account. That is, all groups treated all the errors as though they were independent. Only two 

groups (M19, M21, see Table S3) took into account the possibility of different error variances 

for different variables, M21 by using the method of concentrated likelihood (Seber and Wild, 

1989) and M19 by dividing the likelihood for each variable by the number of observations of 

that variable. 

3.2 Choice of parameters to estimate 

Each model structure is parameterized differently, so it is not possible to directly compare 

names of parameters between model structures. It is, however, possible to identify the role of 

estimated parameters in the model and base the comparison between groups on that. Details 

related to the choice of parameters by each group are given in Supplementary Table S4.  

Most groups estimated at least some parameters that concern the physiological time required 

to attain one or more phenological stages. Fifteen groups for both datasets estimated one or 

more parameters related to vernalization, and 13 groups for both datasets estimated one or 

more parameters related to photoperiod sensitivity. A smaller number of groups estimated 

parameters related to the temperature response function (for example minimum temperature 

or optimum temperature for development) or to tillering or leaf appearance rate 

(phyllochron). Two groups for each dataset estimated parameters related to the effect of stress 

on the development rate, and two (French dataset) or three (Australian dataset) groups 

estimated parameters related to time to emergence.  

The number of estimated parameters ranged from one to nine for the French dataset and from 

two to ten for the Australian dataset. In most cases, the choice of parameters to estimate was 
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based on expert opinion, but four groups for each dataset combined expert opinion with data-

based information (for example, testing various combinations of parameters to see which 

gives the best fit). Five (French dataset) or four (Australian dataset) groups based the choice 

of parameters to estimate on sensitivity analysis. We have identified the use of expert 

knowledge and data-based choice of parameters to estimate as two separate categories, but it 

should be noted that expert knowledge by itself usually adapts the choice of parameters to 

estimate to the data, at least to some extent. This can be seen from the fact that almost every 

group that based the choice of parameters on expert knowledge estimated a different (and in 

most cases larger) set of parameters based on the Australian dataset, with more observed 

variables, than based on the French dataset (Figure 5).  
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Figure 5 Number of parameters estimated by each modeling group, for the French and 

Australian datasets. The modeling groups that used model structures S1-S3 are 

identified.  

 

Unlike the specific choices of parameters to estimate, the underlying basis for choosing 

parameters to estimate is applicable in general for system models. It is thus these choices that 

are shown in Figure 3. There were important differences even between groups using the same 

model structure. Consider for example structure S2. The three groups that used this model 
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structure (M7, M12, and M13) estimated respectively four, three, and two parameters for the 

French dataset and nine, four, and two parameters for the Australian dataset. Two of those 

groups based the choice on expert opinion, while group M7 made a partially data-driven 

choice.  

3.3 Numerical methods 

The basic decision here is the algorithm to use for estimating the parameters (Figure 4). A 

second, practical decision is the software to use to implement that algorithm. The choices 

made by each modeling group are shown in Supplementary Table S5, and information about 

the specific software used is given in Supplementary Table S6. Among the groups that chose 

a frequentist approach, slightly over half used trial and error to search for the optimal 

parameter values. In some of those cases, available software was used as an aid, but the final 

values were found by simply trying different parameter values. The remaining half was split 

between groups that used a derivative-free search algorithm, usually an algorithm designed to 

find a global optimum, and those that used a gradient-based algorithm. Many different 

software solutions were used, including multi-purpose software packages as well as software 

written expressly for calibration of that particular model structure. Four groups (French data) 

or six groups (Australian data) used a Markov-Chain Monte-Carlo (MCMC) algorithm to 

estimate the posterior distribution, using various software packages. That included one group 

that used an MCMC algorithm though the objective was to minimize the sum of absolute 

errors. The groups that used the same model structure, in general, did not use the same 

algorithm and software. For example, considering the two groups using model structure S3, 

group M23 used a combination of global and local search algorithms and available software 

packages, while group M24 used trial and error and no software packages. 

3.4 Level of error 

Supplementary Table S6 shows mean absolute error (MAE), where the average is over the 

calibration data or over the evaluation data, for each modeling group, for the French and 

Australian datasets. The error results have previously been published (Wallach et al., 2021b, 

2020). MAE can be quite different, even for different groups using the same model structure. 

For example, four modeling groups used model structure S1 for the French dataset, and had 

MAE for the calibration data of 3.9, 4.9, 6.8 and 12.8 days, respectively.  
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4 Discussion 

There is substantial variability in calibration approach between modeling groups, even 

between groups that use the same model structure. Thus, a first overall conclusion is that we 

are far from having a consensus on how to calibrate crop models, even for a given model 

structure and dataset, and even for the relatively simple case which focuses just on 

phenology. In the following, we discuss the advantages and drawbacks of each choice for 

each calibration decision, and on that basis make recommendations for good practices. We do 

not base these recommendations on the levels of error of the different modeling groups, 

because there is no simple relation between calibration approach and resulting error. 

Differences in error could be due to differences in model structure, to differences in 

parameter values for those parameters not estimated by calibration, as well as to differences 

in any or all of the calibration decisions made by the individual groups. 

4.1 Criteria for best parameters 

A major calibration decision is the list of observed variables (here observed development 

stages) to include in the criterion of best fit. From a modeling point of view, using as many 

variables as possible for fitting the model reduces the risk of “getting the right answer for the 

wrong reason”, i.e. getting a good fit for some variables while other variables, that describe 

other aspects of system behavior, are poorly simulated (Meyer Oliveira et al., 2021; Wang et 

al., 2011). Fitting the model to more variables will reduce the aspects of the system that could 

unknowingly be poorly simulated. This is important, since the same calibrated model might 

be used for more than one specific purpose. More generally, process-based crop models are 

argued to be meaningful tools for understanding crop growth and production in response to 

climate variability and change (Keating and Thorburn, 2018), particularly as they cover 

interconnections of different system variables in their structures (Ewert et al. 2015). 

Calibration using multiple observed variables should improve the representation of these 

interconnections. From a statistical point of view, more data in general leads to predictors 

with smaller variance, which argues for using all the available data. However, this assumes 

that the model is correctly specified in the statistical sense, meaning that model errors have 

expectation zero for all values of the explanatory variables. It has been argued that crop 
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models are most likely statistically incorrectly specified, and as a result, the best parameters 

for predicting one variable may be different than the best parameters for predicting a different 

variable (Wallach, 2011). In that case, using additional variables in the objective function 

may degrade predictive accuracy for the variables of primary interest. This was found to be 

the case in the study of Guillaume et al. (2011). In fact, it has been suggested that the 

differences in calibration results using different observed variables could be a diagnostic tool 

for model structural errors (Wöhling et al., 2013a). If, however, one is willing to assume that 

statistical misspecification is not too extreme, then it seems worthwhile to include as many of 

the observed variables as possible in the objective function, so here this is the recommended 

practice. This does not imply that all variables should have equal weight in the criterion for 

best parameters. Statistical theory shows that if different variables have different error 

variances, then that should be taken into account.  

Most groups defined error as the difference between the simulated and observed days to reach 

a given phenological stage, but in a few cases error was defined as the difference between the 

simulated development stage and the observed stage, on the day of observation. This option 

requires that the model include some internal counter whose observed and simulated values at 

observed phenological stages are known, but this is often the case. It has been argued that the 

problem of minimizing errors is much better behaved numerically when errors are in terms of 

development stage rather than days (Wallach et al., 2018). On the other hand, one is usually 

interested in how large the error is in days so this is a more intuitive error measure. 

Furthermore, this does not require that the model have an internal measurement of 

development stage. We suggest then to measure error in days.  

For the groups that adopted a frequentist perspective, the large majority framed the problem 

as an ordinary least squares (OLS) problem. Two modeling groups chose parameters by 

minimizing the sum of absolute errors, which has been argued to have advantages over OLS, 

as it is less sensitive to outliers (Willmott and Matsuura, 2005). However, if evaluation is 

based on squared error, then OLS is the more logical choice and is recommended. Four 

groups did not have an explicit objective function. One obvious disadvantage of this approach 

is its subjectivity, adding uncertainty in the definition of best-fit to other uncertainties in 

calibration. A second disadvantage is that one cannot automate the search for the best 

parameters.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2021. ; https://doi.org/10.1101/2020.09.12.294744doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.12.294744
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

23 

 

In most cases, a single objective function, combining all errors, was used. In a few cases, 

however, parameters were fitted sequentially (first to one variable then to the next etc.). This 

sequential technique has often been recommended for full crop models (L.R. Ahuja et al., 

2011; Anothai et al., 2008). This simplifies the mechanics of finding the best parameter 

values, but it will lead to sub-optimal results with respect to an overall objective function. If 

the objective is to minimize the total sum of squared errors, for example, the best parameter 

values are those that minimize exactly that objective function. Necpálová et al. (2015) 

similarly recommended simultaneous estimation even for multiple observed variables, for an 

ecosystem biogeochemical model. 

A few groups chose a Bayesian rather than a frequentist perspective. There are fundamental 

differences between frequentist and Bayesian approaches (Berger and Bayarri, 2004). 

However, for the practical prediction problem here, there are also important similarities. A 

major difference is that the Bayesian approach focuses on the posterior distribution, which is 

a distribution of predicted values, while the frequentist approach focuses on point predictions, 

i.e. one single predicted value. Here, however, all groups were asked for point predictions, so 

the groups that used Bayesian approach had to choose a single result from the posterior 

distribution. In all cases, they chose the parameter values that maximized the posterior 

distribution, which then plays the same role as the objective function for the frequentist 

approach. Another important difference is that for the Bayesian approach the prior 

information about parameter values is included in the calculation, while this is not in general 

included in a frequentist approach. However, in almost all cases here, the frequentist 

approach included lower and upper bounds on the parameter values (table S5), which is also 

based on prior information. In fact, a Bayesian approach with normal likelihood and uniform 

priors leads to exactly the same criterion for best fit, namely minimum squared error subject 

to the constraints on the parameters, as OLS with bounds on the parameter values.  

If the main objective is to obtain a point predictor, then we suggest using a frequentist 

approach, since adopting a Bayesian approach and calculating a posterior distribution may 

require unnecessarily long calculation times. If one is also interested in uncertainty 

information, as it is often the case, then a Bayesian approach has advantages as far as 

parameter uncertainty is concerned, since the posterior distribution is directly a representation 

of the uncertainty in the parameter vector. However, it is important to keep in mind that 
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parameter uncertainty is only part of overall uncertainty, and in fact it has been found in 

several cases that parameter uncertainty is quite a bit less than structure uncertainty (Zhang et 

al., 2017).  

In almost all cases, the calibration approach was directly based on regression methods in 

statistics, either frequentist or Bayesian. This seems logical, insofar as these statistical 

methods have desirable properties. However, these properties in general require that certain 

assumptions be satisfied. The standard assumptions for the OLS method are that the model 

errors be independent and identically distributed, with expectation 0 (Seber and Wild, 1989; 

Sen and Srivastava, 1990). For the Bayesian methods, one must make explicit assumptions 

about the distribution of errors, including whether all errors have the same distribution and 

whether errors for different variables are correlated. In the case of crop models, with multiple 

observed variables in each environment, the assumptions of independent identically 

distributed errors with expectation 0 are not likely to be satisfied (Wallach et al., 2019). Most 

obviously, errors for different variables in the same environment (e.g., days to development 

stages Z30 and Z65) may be correlated, since any particularities of the environment affect all 

variables for that environment. Furthermore, the errors for different variables may have 

different variances, which violates the assumption that all errors have the same distribution. 

No group took correlations of errors into account and only two groups took into account the 

possibility of different variances for errors of different variables.  

In general, it would be worthwhile to go a step further in applying statistical methods, beyond 

employing standard techniques, in order to examine whether the standard assumptions about 

model error are satisfied. To detect unacceptably large violations of the standard assumptions, 

one should examine the model residuals (observed minus simulated values) after calibration, 

as is standard procedure in regression (see for example NIST/SEMATECH, 2013). One 

should examine overall bias of model residuals, which should be zero, the variances of 

residuals for different variables, which should be similar, and correlations between residuals 

for different variables in the same environment, which should be small.  

Only phenology data were available in the datasets here, and thus all errors had the same 

units (days or phenological stage). In cases where variables with different units are observed, 

for example days to phenological stages and yield, it is meaningless to simply combine 
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errors. In that case, a first step could be to divide all simulated and observed values by an 

estimated standard deviation of error for that variable, as in weighted least squares (Seber and 

Wild, 1989). Then all errors would be unitless and could be combined. However, it would 

still be important to test residuals after calibration.  

4.2 Choice of parameters to estimate  

Of particular interest is the rationale behind the choice of parameters to estimate, and what 

this implies for the adaptation of the choice of parameters to the dataset. In most cases, the 

choice of parameters to estimate was based on “expert knowledge” of the model. To some 

extent, this takes into account the dataset. However, expert knowledge only takes the amount 

and type of observed data into account approximately. An alternative, which we recommend, 

would be to formally consider the choice of parameters to estimate as a problem of model 

selection, where the selection is of the subset of parameters to estimate by calibration, while 

the other parameters retain their default values. For example, one could use the Akaike 

Information Criterion (AIC; Akaike (1973)), which has been widely used for model choice in 

ecology (Burnham et al., 2011) to choose the parameters to estimate. The use of a model 

selection rule would automatically adapt the choice of parameters to estimate to the 

calibration dataset. Consider, for example, the question of whether or not to estimate 

parameters related to water stress for those models that include effects of water stress on 

phenology. A model selection rule would include such a parameter if it had a relatively large 

effect on improving the fit to the calibration data, and would not include it otherwise. 

However, given the large number of possible parameters to estimate, it would probably be 

necessary to combine expert knowledge, in order to choose a fairly small number of 

candidate parameters, with a formal model selection criterion.  

All parameters that are not estimated using the calibration data retain their default values, and 

this, in general, concerns the majority of model parameters. While some parameters will not 

have an effect on the simulated values, many others will have an effect. It is clear, then, that 

the choice of these default values is extremely important, and should reflect whatever 

information one has about the cultivars and environments of interest. The choice of default 

values probably merits more attention than it usually receives. 
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4.3 Algorithmes and software 

There are several disadvantages to the trial and error approach which was used by somewhat 

over a third of groups. it is time-consuming, it is likely to end in a non-optimal solution, 

especially if several parameters are estimated, and it cannot be replicated for example to 

estimate prediction error using cross-validation.  

A wide range of algorithms and software was used by the remaining groups. The problem of 

choosing a calibration algorithm and software to search for optimal parameter values has 

received much attention in the field of hydrological modeling (Skahill and Doherty, 2006). 

Gradient based algorithms are, in general, very efficient, but may converge to a local rather 

than global optimum (Blasone et al., 2006). Also, simulated values are often non-continuous 

functions of the parameters. As a result, it may not be possible to calculate a gradient. 

Removing the discontinuities may be possible, but at the price of detailed intervention in the 

model code (Liu et al., 2018). Global search algorithms, such as a grid search or genetic 

algorithms, may avoid converging to a local optimum but in general require many more 

model runs. A third possibility is a gradient-free search algorithm such as the simplex method 

(Nelder and Mead, 1965), which seems to be a good choice for calibration of crop models.  

There is calibration software that has been developed specifically for some crop models 

(Buddhaboon et al., 2018; Buis et al., 2015; Hunt et al., 1993), and also some software that is 

designed to be easily coupled to any model (Doherty et al., 2010). Coupling parameter 

estimation software to a crop model is not simple and so modeling groups tend to use 

available software or even no software rather than developing new calibration software 

themselves. This implies that for the improvement of calibration approaches for crop models 

it is not sufficient to propose guidelines for good calibration practices. For the guidelines to 

be effective, they must include software solutions that can be used by any model.  

4.4 Summary of recommendations 

Based on an analysis of calibration approach by multiple modeling groups, we propose the 

following guidelines for calibration of the phenology component of crop models. Before 

calibration, one should pay careful attention to the choice of default values for all parameters. 

If the objective is, as here, to make point predictions, then a frequentist approach to 

calibration is fully justified. One can use an OLS criterion initially, based on errors in units of 
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days, but the statistical assumptions underlying OLS should be checked by analyzing 

residuals after calibration. The choice of parameters to estimate should be adapted to the 

available data, for example using the AIC criterion. However, the choice of parameters also 

requires knowledge of the model and the environments studied, as well as of the reliability of 

the data. This suggests that a fully automatic calibration procedure may not be advisable. For 

the calculations, a derivative free but efficient search algorithm like the simplex is 

recommended. These recommendations are specific to calibration of the phenology 

component of crop models, but many of them are no doubt more widely applicable.  

5  Conclusions 

Calibration of crop models involves multiple decisions, which can be grouped into choice of 

criteria for defining the best parameter values, choice of parameters to estimate and choice of 

algorithm and software. Different modeling groups make quite different decisions, even for 

modeling groups using the same model structure. It seems that we are far from having a 

consensus on how to calibrate crop models, even in the relatively simple case with only 

phenology data, which emphasizes the need for calibration guidelines such as those suggested 

here. 

In developing recommendations for calibration in other fields, we suggest that a procedure 

similar to ours could be of interest. This consists of obtaining detailed information about 

calibration procedure from multiple groups, for a specific calibration problem, covering as far 

as possible the full set of calibration decisions. The recommendations are then based on 

analyzing the advantages and disadvantages of the different choices that are made. In this 

way, one obtains recommendations that cover a wide range of the decisions that calibration 

requires, and that are anchored in actual practice. 
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