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Group-level studies do not capture individual differences in network organization, an important
prerequisite for understanding neural substrates shaping behavior and for developing interventions
in clinical conditions. Recent studies have employed “fingerprinting” analyses on functional con-
nectivity to identify subjects’ idiosyncratic features. Here, we develop a complementary approach
based on an edge-centric model of functional connectivity, which focuses on the co-fluctuations of
edges. We first show whole-brain edge functional connectivity (eFC) to be a robust substrate that
improves identifiability over nodal FC (nFC) across different datasets and parcellations. Next, we
characterized subjects’ identifiability at different spatial scales, from single nodes to the level of
functional systems and clusters using k-means clustering. Across spatial scales, we find that het-
eromodal brain regions exhibit consistently greater identifiability than unimodal, sensorimotor, and
limbic regions. Lastly, we show that identifiability can be further improved by reconstructing eFC
using specific subsets of its principal components. In summary, our results highlight the utility of
the edge-centric network model for capturing meaningful subject-specific features and sets the stage
for future investigations into individual differences using edge-centric models.

INTRODUCTION

Over the past several decades, the field of neuroimag-
ing has leveraged powerful computational methods to de-
velop standardized, population-level descriptions of brain
morphology and functional organization [1, 2]. These ap-
proaches have facilitated group-level and cross-sectional
comparisons of brains [3, 4], enhancing our knowledge
of the functional and neuroanatomical underpinnings of
cognition [5, 6], brain development [7, 8], and neuropsy-
chiatric disease [9]. However, these efforts have em-
phasized group-level effects at the expense of individual
brains, whose organization is personalized and idiosyn-
cratic [10–12].

Recently, several important studies have begun to shift
focus away from group-level analyses and onto single sub-
jects [13, 14]. The aim of this line of research is to build
comprehensive maps of individuals’ brains [11, 12, 15, 16],
with the hope that inclusion of personalized details will
add clarity to brain organization, brain-behavior rela-
tionships [17–21], and inform treatment of neuropsychi-
atric disorders by helping design more efficacious and tar-
geted interventions [22, 23].

One particular strand of this research focuses on map-
ping the features of brain networks that are idiosyncratic
to individuals. Like fingerprints, these features are ca-
pable of distinguishing one person’s brain from that of
another [14, 24]. Brain network fingerprints serve as reli-
able substrates of individuals [14, 25] that are stable over
time [26–28], across subsets of FC data [29], and across
acquisition sites [30]. In addition, identifiable character-
istics have shown clinical diagnostic potential [31] and
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have proven useful for the classification of individual be-
haviors and cognitive states [32, 33].

To date, most fingerprinting analyses have focused on
features derived from brain networks in which nodes rep-
resent positioned electrodes [34] or brain regions [14, 35].
Recently, we proposed an alternative model of brain con-
nectivity that focuses on interactivity among a network’s
connections (or “edges”) [36–39]. We refer to these pat-
terns as edge functional connectivity (eFC). Adopting an
edge-centric perspective has been fruitful in other scien-
tific disciplines, e.g. in uncovering the overlapping com-
munity structure of complex biological and social net-
works [40, 41]. Similarly, eFC has provided a new win-
dow into studying the organization of brains, including
the overlapping community structure [36] and how par-
ticipation of functional systems vary across communities
[38]. However, it remains unclear how eFC compares with
traditional nodal functional connectivity (nFC) in terms
of its ability to convey individual-specific information.

Here, we extend connectome-based fingerprinting to
edge-centric networks. Using functional imaging data
from two independently acquired datasets (the Midnight
Scan Club[15] and the Human Connectome Project [42];
MSC and HCP, respectively), we compare the perfor-
mance of whole-brain nFC and eFC on subject identi-
fication, demonstrating that with sufficient amounts of
data, eFC enables greater and more robust identifiabil-
ity than nFC. Next, we investigated the system- and
node-level drivers of the improved identifiability in eFC,
focusing on system-specificity using a “leave-one-node-
out” approach. We found system nodes and edges as-
sociated with heteromodal brain systems to be the pri-
mary drivers of subject identification. Finally, we tested
whether it was possible to optimize identifiability by re-
constructing eFC and nFC using a restricted set of princi-
pal components. We found that reconstructed eFC signif-
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FIG. 1. Schematic of differential identifiability in eFC. All panels from this figure were generated using data from the
Midnight Scan Club dataset. (a) To illustrate the calculation of node and edge FC (nFC and eFC, respectively), consider four
nodes: i, j, u, and v. nFC is defined as the pairwise correlation of regional activity. For nodes i and j, nFC is calculated by first
z-scoring each nodes’ time series, computing the element-wise product, and averaging these values (panels (b) and (c); top).
The same operation could be carried out for nodes u and v. eFC is calculated by first generating co-fluctuation time series
for pairs of nodes. This involves computing their element-wise product, but omitting the averaging step (panel (b); bottom).
Each co-fluctuation time series is defined for a pair of nodes. eFC is calculated as the temporal similarity (e.g. correlation,
cosine similarity, etc.) of pairs of co-fluctuation time series ((c); bottom).(d) To calculate differential identifiability, (e) we
extract the upper triangle elements of subjects’ eFC matrices and compute the spatial correlation of those elements, resulting
in subject-by-subject similarity matrix. (f ) Differential identifiability, Idiff is calculated as the mean within-subject similarity
minus the mean between-subject similarity.

icantly outperformed that of reconstructed nFC in terms
of its optimized identifiability. Our work sets the stage
for future studies to use eFC to develop network-based
biomarkers for tracking inter-individual differences in be-
havior, development, and disease diagnosis.

RESULTS

In this report, we systematically evaluate eFC and nFC
in terms of differential identifiability and discuss their
similarities and differences at regional (node) and sub-
systems (group of nodes) levels. Throughout this section,
we analyze data from two high-quality independently ac-
quired datasets: the Midnight Scan Club (MSC; [15, 28]),
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FIG. 2. Subject identification of eFC and nFC and effect of scan length. All panels from this figure were generated
using data from the Midnight Scan Club dataset with 200 node Schaefer parcellations. (a) Idiff of nFC and eFC for single
scans (darker color) and for maximally concatenated scans (lighter color). (b) Idiff of eFC and nFC by scan length. The
black dotted line (800 time points) indicates the length of the time series in which eFC significantly outperforms nFC. Thick
blue and orange lines are the average Idiff s for 100 iterations and thin lines indicate each iteration’s Idiff by scan length. (c)
Subjects’ scans plotted using multi-dimensional scaling for nFC. (d) Subjects’ scans plotted using multi-dimensional scaling
for eFC. Each subject’s scan corresponds to a color on the colorbar between panels c-d.

which consists of ten participants scanned ten times each,
and 100 unrelated subjects scanned two times each from
the Human Connectome Project (HCP; [42]).

Identifiability using edge functional connectivity

Subject identification can be quantified using the mea-
sure “differential identifiability”, or Idiff , which is cal-
culated as the mean within-subject similarity minus the
mean between-subject similarity of connectivity matri-
ces [35]. Existing subject identification applications have
relied on connectivity patterns derived from nFC and
thus the idiosyncratic characteristics of eFC remains un-
known. In this section we compare the identifiability
of cortex-wide nFC and eFC and its dependence on the
amount of data available.

First, we compared cortex-wide eFC and nFC in terms
of subject identifiability. Briefly, this entailed estimating
nFC and eFC separately for each of the 100 resting-state
fMRI scans (10 subjects; 10 scans each) in the Midnight
Scan Club dataset, and generating similarity matrices
for each connectivity modality as the Pearson correlation
between the upper triangle elements of subjects’ nFC or
eFC matrices (Fig. 1e). We then estimated differential
identifiability from these similarity matrices (Fig. 1f ).

We found that eFC outperformed nFC, yielding greater
values of Idiff when using whole brain derived func-
tional networks (Fig. 2a). Similar results were also found
when using different parcellations and in an independent
dataset (Fig. S1). To visualize the within- and between-
subject similarity, we used multi-dimensional scaling to
project subjects and their scans into a two-dimensional
space that approximately preserves the pairwise distance
relationships encoded in the nFC and eFC similarity ma-
trices (Fig. 2b-c). We note that these plots are for the

purposes of visualization, only.
In the previous analysis, we calculated eFC and nFC

using approximately 30 minutes of data (the duration
of scan session in the MSC dataset). Next, we tested
whether subject identifiability was modulated by scan
length, i.e. whether the value of Idiff varied as a func-
tion of the amount of data available [30, 43]. To test this,
we created shorter or longer “sessions” by either divid-
ing the existing runs into shorter, contiguous segments,
or by concatenating data from multiple scans to form
longer sessions. We varied the duration of artificial scan
sessions in increments of 100 samples, starting with 100
and ending with 4000. This entire sampling procedure
was repeated 100 times. We found that with fewer than
500 time points (approximately 20 minutes) Idiff was
greater for nFC than eFC (p < 10−6, t − test); Fig. 2a.
However, at 800 time points (approximately 30 minutes),
eFC began to significantly outperform nFC (p < 10−4;
t−test); Fig. 2b. We report similar results using different
parcellations and datasets (Fig. S1).

Our results using eFC are in line with previous research
where identifiability was increased with extended scan
length using conventional nFC [30, 35]. Collectively, our
findings indicate that, given sufficient amounts of data
(approximately 30 minutes), eFC enables a more robust
identification of subjects across sessions than nFC.

Regional drivers of cortex-wide eFC identifiability

In the previous section, we found that eFC improved
cortex-wide identifiability over nFC given a sufficient
number of samples. In this section, we wanted to pin-
point the brain regions that contributed to this improve-
ment. To do this, we use a “leave-one-node-out” method
to measure the relative impact that each brain region had
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FIG. 3. Nodal contribution to identifiability in eFC. (a) To assess regional contributions to Idiff , we calculated the
change in Idiff after removing all edges incident upon each of the N = 200 nodes. Here, we show the change in Idiff projected
onto the cortical surface. (b) We plotted the relative impact of each node’s removal prior to eFC calculation on Idiff by brain
systems. (c) Excluding entire system’s nodes prior to eFC construction reveals that specific systems contribute positively or
negatively to Idiff and that (d) compared to random removal of matching numbers of nodes, have significantly different results
on Idiff (Bonferroni-corrected p-values; * = p < 0.003, ** = p < 0.0006, *** = p < 0.00006). For visualization we inverted the
∆Idiff to −∆Idiff , which quantifies the relative effect of a node’s removal on the overall Idiff . If a removal of a node results
in reduced Idiff , this node’s contribution to identifiability would be considered as “increasing Idiff”.

on subject identification. We then summarized these re-
sults by grouping nodes according to canonical brain sys-
tems and assessing, statistically, the contribution of each
system to the overall identifiability.

In order to trace identifiability in eFC back to brain re-
gions, we first calculated the difference in Idiff estimated
using an intact brain (all 200 nodes) with the Idiff esti-
mated after iteratively removing individual nodes, one at
a time. We also performed a similar analysis using edges
instead of nodes, the results of which are reported in
Fig. S2. We found that, when removed, cortical areas lo-
cated in the control and temporoparietal network regions
yielded decreased differential identifiability while removal
of regions associated with somatomotor, limbic, and vi-
sual networks increased identifiability (Fig. 3a; note that
for the sake of visualization, we invert the sign of ∆Idiff ).
All nodes were also grouped according to their systems
visualizing each node’s contribution to subject identifia-
bility (Fig. 3b). Each node’s contribution was measured

as the difference in Idiff without a particular node and
subtracting the Idiff calculated from all 200 nodes. For
example, in Fig. 3b, removing a single node from the con-
trol A system (represented as a single yellow dot) prior
to eFC construction would result in a reduction in Idiff ,
which we plot here as having a “positive” effect on Idiff .
In contrast, removing a single node from the limbic sys-
tem yields an increase in Idiff , hence we plot as a “neg-
ative” effect on Idiff .

Next, we tested which system’s nodes significantly in-
fluenced identifiability compared to random removal of
matching numbers of nodes (Fig. 3c - d). Nodes were
randomly reassigned to systems by randomly permuting
system labels (10,000 iterations). We found that when re-
moving nodes from the control A, control B, dorsal atten-
tion A, salience ventral network B, and temporoparietal
networks significantly decrease identifiability than when
randomly removing matching numbers of nodes (thus,
the relatively positive effect of these systems in panel
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Fig. 3d). Also, we found that excluding nodes from lim-
bic, somatomotor A and B, and central and peripheral
visual networks significantly increase identifiability com-
pared to randomly removing matching numbers of nodes
(thus, the relative negative effect of these networks to
Idiff in panel Fig. 3d).

In summary, we used a leave-one-node-out approach to
uncover the regional drivers of whole-brain identifiability.
We found that the inclusion of frontoparietal and supe-
rior temporal regions help increase identifiability, while
somatomotor, limbic, and visual regions lead to reduc-
tions in identifiability. These results on system-level iden-
tifiability largely agree with prior research using conven-
tional, node-centric functional connectivity [14, 44, 45],
localizing idiosyncrasies of brain network organization to
a specific subset of systems.

Identifiability of systems and clusters in eFC

In the previous sections, we demonstrated that given
an fMRI scan of sufficient duration eFC outperforms nFC
in subject identification and that heteromodal brain re-
gions compared to unimodal, contribute to higher iden-
tifiability. Here, we continued our investigation into the
drivers of cortex-wide identifiability, focusing on the con-
tributions of each functional brain system in eFC to iden-
tifiability. In this section, we aim to answer the questions:
How do edges from single systems contribute to identifi-
ability? How do clusters of edges perform in identifiabil-
ity?

To address these questions, we first estimated Idiff
using only connections associated with specific brain sys-
tems. In the case of nFC, this means calculating identi-
fiability using only edges whose stub nodes are assigned
to the same brain system [46]. We performed a similar
operation using eFC using edge pairs subjected to the
requirement that all four nodes associated with the two
edges that comprise an eFC entry were assigned to the
same system. In general, we found that system-specific
Idiff for eFC and nFC was highly correlated (R = 0.9578,
p < 10−8); Fig. 4b). We found that the greatest levels
of Idiff were associated with temporoparietal, control
A, and dorsal attention networks (Fig. 4a). In contrast,
edge pairs in eFC that are solely from somatomotor B
and default mode B networks were found to have lower
Idiff (see Fig. S3 for system-level similarity matrices).
We note that these single-system edge pairs represent
only a small fraction (< 1%) of the eFC matrix and that
the eFC incorporates a broader repertoire of edge pairs,
some of which involve nodes originating in four distinct
systems. Subject similarity matrices for single systems
are included in Fig. S2.

To investigate Idiff of edge pairs whose nodes origi-
nate in different systems, we clustered the eFC matrices
using a standard k-means algorithm, varying the num-
ber of clusters from k = 2 to k = 20. We then repeated
the clustering algorithm to create a representative clus-

ter of the dataset for each k and calculated the Idiff
for each cluster. Here, we found that the mean eFC of
a cluster was not correlated with its Idiff (R = 0.050,
p = 0.474; Fig. 4c). On the other hand, the variability of
eFC weights within a block was positively correlated with
Idiff (R = 0.482, p < 10−12; Fig. 4d). What systems
might be responsible for driving high levels of Idiff? To
address this question, we calculated how frequently each
system was represented within a given cluster, and, sepa-
rately for each brain system, calculated the correlation of
this frequency with Idiff . In general, we found that the
presence of control, dorsal attention, and temporopari-
etal nodes in a cluster is positively correlated with it’s
Idiff . In contrast, the presence of nodes in limbic and
sensorimotor systems (somatomotor and visual) are as-
sociated with reduced Idiff (Fig. 4e).

Collectively, these results suggest that in eFC, higher
order cognitive systems, e.g. control, attention, and de-
fault mode networks, contribute to enhance subject iden-
tifiability, while sensorimotor and limbic networks reduce
identifiability. As in the previous section, these results
are in line with previous analyses using nFC demonstrat-
ing that similar systems and regions promote enhanced
identifiability [14, 44]. Furthermore, our results suggest
that the intrinsic heterogeneity and variability of connec-
tion weights may be an underlying factor explaining why
certain systems are associated with higher or lower levels
of identifiability.

Reconstructed eFC using PCA improves subject
identifiability

Throughout this manuscript, we have focused on cal-
culating Idiff using the full eFC matrix or specific sub-
sets of its edge-edge connections. As a final analysis,
we wanted to test whether we could improve differential
identifiability by optimally reconstructing eFC using a
relatively small number of its principal components.

Previous research has used principal component anal-
ysis (PCA) of nFC to enhance identifiability [30, 35].
Briefly, this procedure entails concatenating nFC (or in
this case, eFC) from all subjects and scans into a sin-
gle matrix, decomposing this matrix into its principal
components (PCs), and reconstructing eFC by gradually
including more and more of its PCs (in ascending or-
der of their eigenvalues). With each reconstruction, we
calculated the Idiff with added PCs using each scan’s re-
constructed eFC. Here, we apply this technique to both
nFC and eFC from the MSC dataset.

Using this reconstruction method, we found that Idiff
could be improved for both nFC and eFC. In both nFC
and eFC, Idiff peaked at k = 10 components (cor-
responding to the number of subjects) and eFC out-
performed nFC in subject identification (peak value of
Idiff = 35.27 compared to Idiff = 21.17; Fig. 5b,e).
Why, then, do the number of PCs match the number of
subjects when optimizing for identifiability? First, we
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FIG. 4. System- and cluster-level characteristics of edge functional connectivity (eFC). The within- versus between-
subject similarity of eFC in the MSC dataset shows variance of identifiability across systems and high correlation to the
identifiability of systems using FC. Panel (a) shows the within subject minus between subject similarity of eFC for systems for
10 rsfMRI scans from 10 subjects. Panel (b) shows the high correlation between identifiability in eFC and nFC by systems.
(c) Idiff was not correlated with the average values of eFC in each cluster but in (d) the standard deviation of eFC values of
eFC in each cluster significantly correlated with Idiff . The bootstrapped 95% confidence interval is shaded in grey. (e) The
correlation of 16 canonical brain systems to Idiff of eFC clusters.

tested the effect of scans per subject on the number of
PCs for maximizing identifiability. When testing for two
scans per subject with 100 subjects Fig. S4c and with
randomly selected two scans per subject with 10 subjects
Fig. S4a, the number of PCs required for optimizing iden-
tifiability matched the number of subjects in the dataset.

Next, we investigated the PC coefficients that improve
(PC = 1 - 10) or reduce (PC = 11 - 100) identifiability.
The first prinicipal component (PC1), mathematically,
explains the largest variance of eFC values across scans
and subjects. PC1 was the only component whose coef-
ficients were uniformly positive (Fig. S5). The next nine
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FIG. 5. PCA reconstruction for differential identifiability optimization with eFC and FC (a) Scan-to-scan similarity
(Pearson correlation) matrix of eFC used as the input data for PCA. (b) Optimal Idiff measured when PC = 10; red dotted
line = Idiff orig. (c) Reconstructed output eFC matrix for maximal Idiff using 10 PCs. (d) Scan-to-scan similarity (Pearson
correlation) matrix of nFC used as the input data for PCA. (e) Optimal Idiff measured when PC = 10, red dotted line = Idiff
orig. (f ) Reconstructed output nFC matrix for maximal Idiff using 10 PCs.

coefficients (PC2 - PC10) expressed “blocky” patterns
that correspond to single subjects (Fig. S5), while this
pattern was absent in PC11 - PC100 (Fig. S6).

In agreement with previous reports [35, 47], our re-
sults demonstrate that subject identification can be im-
proved by selectively retaining a subset of components
that match the number of subjects in the dataset. We
show that the magnitude of improvement is considerably
greater using eFC compared to nFC, suggesting that eFC
may better capture personalized and idiosyncratic fea-
tures compared to nFC [31, 48].

DISCUSSION

Here, we applied subject identification to a novel, edge-
centric network representation of the human cerebral cor-
tex. We found that given sufficient scan length, eFC

exhibits greater levels of differential identifiability than
nFC, an improvement that we linked to contributions
made by brain regions in association cortex. Finally, we
used a dimension-reduction and reconstruction method
to show that the relative improvement in identifiability
enjoyed by eFC could be further enhanced, highlighting
the potential for eFC to be used in future studies.

Edge functional connectivity enhances subject
identifiability

Central to this paper is the observation that eFC re-
sults in improved subject identification relative to con-
ventional node-based connectivity, nFC. Whereas nFC
measures the similarity of activity between two brain
regions – a first-order correlation [49] – eFC measures
the similarity of co-fluctuations between edge pairs – a
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higher-order correlation [36]. Understanding the higher-
order organization of networks has proven useful in other
disciplines [40, 41, 50, 51]. Here, adopting an edge-centric
perspective allows us to link higher-order brain network
organization with subject specific features.

We asked whether the eFC – a higher-order reconstruc-
tion – leads to improved identification of subjects. That
is, if we were to examine the identifiability of whole brain
nFC and eFC, would eFC allow us to more accurately
identify a single subject based on their connectivity data?
We also asked whether identification using eFC would
be impacted by scan length and amount of data? In
general, we found that given sufficient amounts of data,
eFC outperformed nFC in terms of identifiability. These
results held across two datasets and two different par-
cellations, suggesting that higher-order network struc-
ture carries important subject-specific information and
that idiosyncratic features of networks are hence bet-
ter captured via an edge-centric viewpoint. These ob-
servations both challenge and expand current knowledge
of subject identification and precision network mapping
[14, 15, 28, 35, 48]. Future investigation is required for
understanding the relationship between scan length and
higher-order brain representations [49].

Heteromodal regions drive subject identification

Which brain regions drive the subject specificity of
eFC? Are there particular regions of the brain that make
a subject more or less identifiable? To answer these ques-
tions, we analyzed subject identifiability on three differ-
ent scales. First, we analyzed each node’s contribution to
Idiff using a “leave-one-node-out” approach. We found
that when removing certain nodes prior to constructing
the eFC matrices, resulted in significantly reduced or in-
creased Idiff . In particular, nodes and edges from higher-
order systems lead to significant reductions in Idiff , while
those associated with sensorimotor and limbic regions
yielded increased identifiability when removed prior to
eFC construction. These findings support earlier find-
ings in nFC in which brain regions supporting higher-
order function drive subject identification compared to
regions of unimodal function [14]. We suspect the over-
lapping character of heteromodal versus unimodal brain
regions as an explanation of this result. Future research
can answer questions such as whether inter-subject id-
iosyncrasies and brain regions involved are modulated by
the fMRI’s task.

Next, we asked whether higher and lower Idiff is at-
tributable to edge pairs from a single canonical brain sys-
tem [46]. To address this question, we estimated subjects’
eFC matrices separately from edge pairs constructed us-
ing only one of sixteen brain systems. We found that
identifiability from single-system eFC and nFC were sig-
nificantly positively correlated and that edges forming
stubs from heteromodal brain regions tended to have
higher Idiff . In other words, the cohesive edge pairs

within single systems are likely not driving eFC’s im-
proved Idiff observed globally. Rather, it suggests that
edges falling between different brain networks may be
driving the improved Idiff in eFC compared to that of
nFC.

The number of vertices and connections in eFC and
nFC matrices diverge by orders of magnitude. To match
their dimensionality and ensure a fairer comparison, we
clustered nFC and eFC matrices into the same number
of communities. We found that the variance of connec-
tions within eFC clusters was positively correlated with
subject identification, which the average weight of those
connections were not. We also found that clusters con-
taining edges whose stubs originated in heteromodal sys-
tems resulted in greater levels of identifiability compared
to clusters composed of edges associated with unimodal
brain systems. These results are in agreement with find-
ings from nFC studies [14, 45] and with more recent stud-
ies involving clusters of eFC [38]. Our findings suggest
that variability of connection weights within systems and
clusters may be an important feature driving the efficacy
of connectome fingerprinting and identifiability.

Collectively, our findings suggest that subject identi-
fication is driven by heteromodal regions from higher-
order brain systems. These observations have clear im-
plications for generating robust network biomarkers with
subject-specific information, while reducing the amount
of required data to its subset. More importantly, our
results demonstrate that clusters of eFC with high vari-
ance, which maybe undermined in group-level analyses,
may be useful in determining subject-specific character-
istics or in personalized medical treatment. Also, this
study leaves clues for future research on task-specific
biomarkers to further specify the effect of tasks dur-
ing fMRI acquisition on identifiability and to maximize
subject-specific characteristics without requiring scans of
prohibitive length, especially for vulnerable and clinical
populations [12]. Lastly, clustering eFC matrices showed
potential as a method of dimensionality reduction that
is robust across subjects. Future work is necessary to
clarify clusters or subsets of edges that are robust for
group-level and subject-level brain networks.

Principal Component Analysis highlights
idiosyncrasies in eFC

Here, we followed recent nFC studies and applied PCA
to eFC data, effectively reducing eFC to a small set of
principal components [30, 35]. We found that selectively
reconstructing eFC using only those components that ex-
plained the greatest variance resulted in improved sub-
ject identifiability, far beyond the improvements when an
identical procedure was applied to nFC data. This sug-
gests that given the exactly same fMRI BOLD data, we
can extract enhanced subject-level fingerprints from eFC
data.

Interestingly, the number of PCs required to optimize
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eFC’s subject identifiability matched the number of sub-
jects in two independently acquired datasets. These re-
sults parallel previous research using nFC for subject
identification [35]. Our results additionally show that
this is robust despite a single subject having more than
one test-retest pair of rsfMRI scans. Why, then, do the
number of PCs match the number of subjects when op-
timizing for identifiability? To address this question, we
analyzed the coefficients of PCs that increase (PC =
1-10) versus those that decrease (PC = 11-100) iden-
tifiability. The first principal component, mathemati-
cally, should explain the largest variance of eFC values
across scans. This was the only PC out of 100 that
had a consistently positive value. Also, only PCs 2 to
10 showed significant “blockiness” for specific subject’s
scans. One possibility is that the first PC explains group-
level eFC variance, the underlying group-level eFC fea-
tures, whereas PCs 2 to 10 tend to explain subject-level
eFC variance. We speculate that the number of blocky
PCs are N−1 (N = number of subjects) since every sub-
ject can be identified with N − 1 PCs via the process of
elimination. These results provide further evidence that
eFC can be a valuable framework when investigating and
improving subject identifiability with linear transforma-
tion algorithms such as PCA. However, future work is
necessary to disseminate the precise features of these PCs
and alternative dimensionality reduction methods such
as factor analysis or CCA [52, 53] should be explored for
Idiff optimization.

Future directions

Our results present exciting possibilities for future
studies. Here, we used a previously-defined measure of
identifiability. However, this measure can be mislead-
ing in some cases. For instance, Idiff can still take on
high values if most subjects exhibit high levels of self-
similarity, even if the remaining subjects exhibit poor
self-similarity [27, 35, 54, 55]. Future work should in-
vestigate alternative measures for quantifying the per-
formance of subject identification procedures.

Other possibilities for future studies include applying
predictive modeling to eFC and delineating those compo-
nents of eFC that maximize subject idiosyncrasies while
reducing the amount of data required [56]. In addition,
similar optimization approaches could be used to study
individual differences in cognitive, developmental, and
disease states based on features extracted from eFC [22].

Limitations

An overarching limitation associated with eFC is that
linking it back to individual brain regions is challeng-
ing. Each connection in the eFC matrix always involves
four nodes (two edge-edge connections), and allocating
its properties to any one brain region or cognitive system

is, in most cases, not possible. Here, we circumvented
this complication by measuring the effect of a node’s
removal (equivalent to 199 edges in a 200 node parcel-
lation) from the resulting eFC’s identifiability and only
accounting for edge pairs derived from single systems.
While these approaches attempt to locate edges to brain
regions, future work is necessary to determine a robust
method in tracing eFC elements back to specific locations
in brain.

A second limitation concerns the measure of “differ-
ential identifiability,” which accounts for both within-
subject and between-subject similarity. However, we
acknowledge alternative measures of identifiability such
as calculating the subject identification accuracy of FC-
FC correlations [14], ROC (receiver operating character-
istic) curve accuracies [27], and using a Nearest Cen-
troid Classification for each subject in graph embedding
representations[55]. Nonetheless, we focused our analy-
ses using Idiff since this approach methodologically ex-
tends a popular identification approach [14] while ac-
counting for “common features” shared across subjects
[35]. However, other methods for measuring identifia-
bility and comparing fMRI data should also be investi-
gated and developed to further understand idiosyncrasies
in edge-centric FC.

A final limitation concerns the procedure for estimat-
ing edge clusters and utilizing its results. Here, we use
a k-means algorithm to partition edges into a group-wise
fixed number of clusters based on the eFC similarity. The
benefit of this approach to estimating edge clusters is
that this algorithm is computationally efficient and can
be calculated using a distance metric. Given the ex-
tensive list of alternative methods for clustering [57–59],
other algorithms must be investigated for detecting edge
clusters. Also, between-cluster edges may act as bridges
between functional systems that further explain idiosyn-
crasies and behavioral associations [38]. However, we add
that our analyses exclude between-cluster edges and fo-
cus on within-cluster edges. Future studies should in-
vestigate the effects of varying clustering algorithms and
study the effect of within-cluster versus between-cluster
edges on individual differences.

MATERIALS AND METHODS

Datasets

The Midnight Scan Club (MSC) dataset [15] included
rsfMRI from 10 adults (50 female, age = 29.1 ± 3.3).
The study was approved by the Washington University
School of Medicine Human Studies Committee and Insti-
tutional Review Board with the informed consent from
all subjects. 12 scans from each subject were acquired on
separate days starting from midnight. Per each subject,
10 rsfMRI scans were collected with a gradient-echo EPI
sequence(run duration = 30 min, TR = 2200ms, TE =
27ms, flip angle = 90◦) with the participant’s eyes open
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while recording eyetracking to monitor for prolonged eye
closure (for assessing drowsiness). Images were collected
on a 3T Siemens Trio.

The Human Connectome Project (HCP) dataset [60]
included resting state functional data (rsfMRI) from 100
unrelated adult subjects (54% female, mean age = 29.11
± 3.67, age range = 22-36).These subjects were selected
as they comprised the “100 Unrelated Subjects” (U100)
released by the Human Connectome Project. The study
was approved by the Washington University Institutional
Review Board and informed consent was obtained from
all subjects. Subjects underwent four 15 minute rsfMRI
scans over a two day span. A full description of the imag-
ing parameters and image preprocessing can be found in
[61]. The rsfMRI data was acquired with a gradient-echo
EPI sequence (run duration = 14:33 min, TR = 720ms,
TE = 33.1ms, flip angle = 52◦, 2mm isotropic voxel res-
olution, multiband factor = 8) with eyes open and in-
structions to fixate on a cross. Images were collected on
a 3T Siemens Connectome Skyra with a 32-channel head
coil.

Image Preprocessing

MSC Functional Preprocessing

Functional images in the MSC dataset were pre-
processed using fMRIPrep 1.3.2 [62], which is based
on Nipype 1.1.9 [63]. The following description of
fMRIPrep’s preprocessing is based on boilerplate dis-
tributed with the software covered by a “no rights re-
served” (CCO) license. Internal operations of fMRIPrep
use Nilearn 0.5.0 [64], ANTs 2.2.0, FreeSurfer 6.0.1, FSL
5.0.9, and AFNI v16.2.07. For more details about the
pipeline, see the section corresponding to workflows in
fMRIPrep’s documentation.

The T1-weighted (T1w) image was corrected for in-
tensity non-uniformity with N4BiasFieldCorrection [65,
66], distributed with ANTS, and used as T1w-reference
throughout the workflow. The T1w-reference was then
skull-stripped with a Nipype implementation of the ants-
BrainExtraction.sh workflow, using NKI as the tar-
get template. Brain surfaces were reconstructed us-
ing recon-all [67], and the brain mask estimated previ-
ously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived seg-
mentations of the cortical gray-matter using Mindboggle
[68]. Spatial normalization to the ICBM 152 Nonlin-
ear Asymmetrical template version 2009c [69] was per-
formed through nonlinear registration using antsRegis-
tration, using brain-extracted versions of both T1w vol-
ume and template. Brain tissue segmentation of cere-
brospinal fluid (CSF), white-matter (WM) and gray-
matter(GM) was performed on the brain-extracted T1w
using FSL’s fast [70].

Functional data was slice time corrected using AFNI’s
3dTshift and motion corrected using FSL’s mcflirt.

Fieldmap-less distortion correction was performed by
co-registering the functional image to the same sub-
ject. T1w image with intensity inverted constrained
with an average fieldmap template, implemented with
antsRegistration. This was followed by co-registration
to the corresponding T1w using boundary-based registra-
tion with 9 degrees of freedom. Motion correcting trans-
formations, field distortion correcting warp, BOLD-to-
T1w transformation and T1w-to-template (MNI) warp
were concatenated and applied in a single step using
antsApplyTransforms using Lanczos interpolation. Sev-
eral confounding timeseries were calculated based on
this preprocessed BOLD framewise displacement (FD),
DVARS and three region-wise global signals. FD and
DVARS are calculated for each functional run, both us-
ing their implementations in Nipype. The three global
signals are extracted within the CSF, the WM, and the
whole-brain masks. The resultant NIFTI file for each
MSC subject used in this study followed the file nam-
ing pattern: * spaceT1w descpreproc bold.nii.gz.

HCP Functional Preprocessing

Functional images in the HCP dataset were mini-
mally preprocessed according to the description pro-
vided in [61]. Briefly, these data were corrected for
gradient distortion, and motion, and then aligned to
a corresponding T1-weighted (T1w) image with one
spline interpolation step. This volume was further cor-
rected for intensity bias and normalized to a mean
of 10000. This volume was then projected to the
32k fs LR mesh, excluding outliers, and aligned to a
common space using a multi-modal surface registration
[71]. The resultant CIFTI file for each HCP subject
used in this study followed the file naming pattern:
* REST{1,2} {LR,RL} Atlas MSMAll.dtseries.nii.

Image Quality Control

All functional images in the MSC and HCP datasets
were retained. The quality of functional images in the
MSC were assessed using fMRIPrep’s visual reports and
MRIQC 0.15.1 [62]. MSC data was visually inspected for
whole brain field of view coverage, signal artifacts, and
proper alignment to the corresponding anatomical image.
All time series data were visually inspected as well.

Functional Networks Preprocessing

Parcellation Preprocessing

A functional parcellation designed to optimize both lo-
cal gradient and global similarity measures of the fMRI
signal[46] (Schaefer200) was used to define 200 areas on
the cerebral cortex. These nodes are also mapped to the
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Yeo canonical functional networks [72]. For the HCP
dataset, the Schaefer200 is openly available in 32k fs LR
space as a CIFTI file. For the MSC dataset, a Schae-
fer200 parcellation was obtained for each subject using a
Gaussian classifier surface atlas[73] (trained on 100 unre-
lated HCP subjects) and FreeSurfer’s mris ca abel func-
tion. These tools utilize the surface registrations com-
puted in the recon-all pipeline to transfer a group average
atlas to subject space based on individual surface curva-
ture and sulcal patterns. This method rendered a T1w
space volume for each subject. For use with functional
data, the parcellation was resampled to 2mm T1w space.
This process could be repeated for other resolutions of
the parcellation (i.e. Schaefer100).

Functional Network Preprocessing

Each preprocessed BOLD image was linearly de-
trended, band-pass filtered (0.008 - 0.08 Hz) [74], con-
found regressed and standardized using Nilearn’s sig-
nal.clean, which removes confounds orthogonally to the
temporal filters [75]. The confound regression employed
[76] included 6 motion estimates, time series of the mean
CSF, mean WF, and mean global signal, the deriva-
tives of these nine regressors, and the squares of these
18 terms. Furthermore, a spike regressor was added for
each fMRI frame exceeding a motion threshold (MSC
= 0.5mm framewise displacement, HCP = 0.25mm root
mean squared displacement). This confound strategy has
been shown to be a relatively effective option for reduc-
ing motion-related artifacts [74]. Following preprocessing
and nuisance regression, residual mean BOLD time series
at each node were recovered.

Edge graph construction

eFC can be calculated by acquiring the regional time
series data and their z-scores. Next, for all pairs of brain
regions, we calculate the element-wise product of their
z-scored time series. This returns the “edge time series”
that represent the magnitude of co-fluctuation for pairs of
brain regions which can be correlated across time as the
Pearson correlation coefficient. Lastly, the scalar prod-
uct between pairs of edge time seires is calculated and
repeated over all pairs of edges to create an edge-by-edge
matrix, which are normalized to the interval [-1, 1].

Differential Identifiability

The functional connectome’s identifiability or finger-
printing is based on the assumption that a single subject’s
connectivity profile should be, more similar within the
same subject across scans and sessions than between dif-
ferent subjects. Previous research using the conventional

functional connectome [14] showed that, robust identi-
fication of an individual is possible using sample FC to
find the “target” FC of the subject in a pool of subject
FCs with Pearson correlation analyses. Prior research on
quantifying individual differences in functional connec-
tivity include calculating the geodesic distance [77] and
Pearson correlation across individual’s scans [35]. While
the geodesic distance approach also provides a summary
measure of the inter-scan differences, we adopt the quan-
tification metric by Amico et al. [35], which takes into
consideration the covariance and standard deviation of
the eFC and FC matrices. This metric is called the dif-
ferential identifiability (Idiff ) derived from the “identi-
fiability matrix”, i.e. the matrix of correlations (Pear-
son) between subjects’ FCs. The Idiff is calculated by
quantifying self-identifiability or Iself and substracting
between subject similarity or Iothers, represented as the
diagonal and off-diagonal elements of the identifiability
matrix (Fig.1b). Differential identifiability (Idiff ) of a
group of subjects can be summarized as the following:

Idiff = (Iself − Iothers) ∗ 100 (1)

which is the difference of average within-subject sim-
ilarity and average between-subjects similarity of FCs.
A high value of Idiff in a dataset will have higher sub-
ject identifiability and the optimization of identifiability
is reduced to maximizing Idiff .

To test for reproducibility and the effect of parcella-
tions, we repeated the analysis with 100 unrelated sub-
jects from the HCP dataset [60]. Both datasets were
tested for effects of numbers of parcellations by mea-
suring differential identifiability in 100 and 200 node
datasets (Fig. S1).

Tracing identifiability to brain regions by a
leave-one-node-out approach

In the previous section, we described the procedure
for calculating Idiff , a measure known to quantify
the relative similarity of scans within versus between
subjects[43]. In this section, we test which brain regions
reduce subject identification when removed from the cal-
culation of eFC, compared to when measuring Idiff with
the entire eFC matrix. In addition, we test whether re-
moval of specific brain systems significantly reduce Idiff
compared to using the whole-brain eFC.

The direct connection between eFC’s edge-edge pair
co-fluctuation and a brain region can somewhat be an
arbitrary procedure since there can be up to
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combinations of brain regions in a sin-

gle edge pair in eFC. To avoid making assumptions that
edge pairs’ weights are linearly related to the edge pair
strength, we adopt a leave-one-node-out approach prior
to eFC matrix construction. The effect of removing a
node prior to eFC construction was calculated by sub-
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tracting the Idiff of the single-node-removed eFC from
the whole-brain Idiff (Fig. S3a-b).

Next, we examined the effect of each functional brain
system, and if removed, the difference in Idiff measured
from eFC. Analogous to the single node removal approach
earlier, we removed single systems (i.e. all nodes from a
single system) and measured the effect on Idiff by sub-
tracting this result from the whole-brain Idiff (Fig. 3c-
d). We did not control for the difference in number
of nodes (i.e. entire brain = 200 nodes, single-system-
removed ≈ 190 nodes) since the effect of the total number
of nodes to Idiff is unclear.

Single system edge pairs identifiability

The benefit and caveat of the leave-one-node-out ap-
proach is that it removes all edge pairs involving a
particular node or system due to eFC’s overlapping
characteristic[36]. Therefore, we were still unclear of the
effects of a purely single system due to this character-
isic. In order to determine the Idiff a single-system, we
extracted the edge pairs that include nodes only from a
particular system4a and measured the Idiff . The analo-
gous approach was applied to nFC, which included node-
pairs from the nFC which include nodes from a single
system. The single-system level node-pairs were com-
pared to that of edge pairs from eFC (Pearson correla-
tion). Also, subject similarity matrices using edge pairs
from single systems are included in (Fig. S2).

K-means clustering for identifiability

The eFC matrices used here have approximately a
squared dimensionality of components compared to the
conventional nodal FC matrices. While the higher dimen-
sionality of eFC may provide insight into the relationship
of it’s components (the edge-edge communications) that
is not directly shown in FC matrices, clustering the com-
ponents of the eFC matrices present a computational
challenge. This is especially the case if the number of
partitions of the matrix is unknown and is left for ex-
ploration. To address this issue and cluster the eFC, we
have applied a simple two-step clustering procedure that
operates on a low-dimensional representation of the eFC
matrix.

First, we performed an eigendecomposition of the eFC
matrix, retaining the top 50 eigenvectors. These eigen-
vectors were rescaled to the interval [-1, 1] by divid-
ing each eigenvector by its largest magnitude element.
Then we simply clustered the rescaled eigenvectors using
a standard k-means algorithm with Euclidean distance.
We varied the number of communities, k, from k = 2 to
k = 20, repeating the clustering algorithm 250 times at
each values. We retained as a representative partition,
the one with the greatest overall similarity to all other
partitions.

In our third analysis, we observed clusters of k = 2 to
20 using a standard k-means clustering. We found clus-
ters’ Idiff to positively correlate with variance in eFC
but found no correlation with the average eFC. Also,
our results reveal clusters with higher Idiff were com-
posed of nodes in association brain regions rather than
nodes of sensorimotor, limbic brain regions. Combined,
our results suggest that by capitalizing on clusters which
convey a more diverse repertoire of eFC values and with
nodes from association systems, we may generate clus-
ters, or subsets of edge pairs, that robustly maximize
subject identification while reducing the amount of re-
quired data[29].

Principal Component Analysis

Principal component analysis (PCA) is a widely used
statistical method [78] that allows exploration of the un-
derlying structure of the data. PCA transforms a set of
observed data with potentially correlated variables into a
set of linearly uncorrelated variables called principal com-
ponents. These principal components are then ranked in
a descending order that explains the most to least vari-
ance of the data. We adopted principal component anal-
ysis to directly compare eFC’s identifiability performance
to that of nFC, which has been explored by Amico et al.
[35].

First, the number of principal components are matched
with the number of functional connectomes of the
dataset. This allows for the decomposition from PCA,
by definition, to account for 100% of the variance in the
data. The PCs from PC = 2 to 20 were ranked by their
explained variance in a descending order. Individual’s
nFC and eFC were then reconstructed as a function of
the number of components included based on the ratio-
nale that group-level information is carried in high vari-
ance components and subject-level information is con-
veyed in less higher variance components. Therefore, af-
ter extracting the main principal components, each indi-
vidual’s connectivity matrix were reconstructed based on
the mean and linear recombination of a select number of
PCs that maximized Idiff .

Next, we controlled for the effect of number of scans
per individual, which affects the total scan duration or
amount of data per subject (Fig. 2a-b). From the MSC
dataset, we randomly selected two out of ten scans per
subject as the test-retest scans for the PCA-derived Idiff
maximization with 1000 iterations. In both eFC and
nFC, Idiff optimized with ten PCs, which match the
number of subjects in the dataset. Also, we randomly
sampled 10 subjects out of 100 to test if Idiff optimizes
at the number of subjects regardless of the individuals.
From the HCP dataset, we randomly selected ten sub-
jects out of 100 with two scans per subject. In each of
the 1000 iterations, the Idiff for each PC was plotted for
visualization (Fig. S3c-d).

In both the MSC and HCP dataset, we found the num-
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ber of subjects to match the number of principal compo-
nents in which Idiff is maximized in the reconstructed
eFC and nFC matrices. To determine the potential driver
of this result, we decomposed each PC’s coeffcients for
each scan Fig. S5, Fig. S6, Fig. S7, Fig. S8. For PCs 2 to
10, each subjects’ coefficients were tested against that of
the other subjects’ (t− test with Bonferroni-correction).
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and B. Mǐsić, Social cognitive and affective neuroscience
14, 47 (2019).

[21] B. A. Seitzman, C. Gratton, T. O. Laumann, E. M. Gor-
don, B. Adeyemo, A. Dworetsky, B. T. Kraus, A. W.
Gilmore, J. J. Berg, M. Ortega, et al., Proceedings of the
National Academy of Sciences 116, 22851 (2019).

[22] C. Gratton, B. T. Kraus, D. J. Greene, E. M. Gordon,
T. O. Laumann, S. M. Nelson, N. U. Dosenbach, and
S. E. Petersen, Biological Psychiatry (2019).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.291898doi: bioRxiv preprint 

https://db.humanconnectome.org/app/template/Login.vm
https://openneuro.org/datasets/dx000224/versions/1.0.1
https://doi.org/10.1101/2020.09.13.291898


14

[23] D. V. Demeter, L. E. Engelhardt, R. Mallett, E. M. Gor-
don, T. Nugiel, K. P. Harden, E. M. Tucker-Drob, J. A.
Lewis-Peacock, and J. A. Church, iScience 23, 100801
(2020).

[24] C. Horien, D. Scheinost, and R. T. Constable, in Con-
nectomics (Elsevier, 2019) pp. 63–81.

[25] D. Kliemann, R. Adolphs, J. M. Tyszka, B. Fischl, B. T.
Yeo, R. Nair, J. Dubois, and L. K. Paul, Cell reports
29, 2398 (2019).

[26] C. Horien, X. Shen, D. Scheinost, and R. T. Constable,
Neuroimage 189, 676 (2019).

[27] M. Jalbrzikowski, F. Liu, W. Foran, L. Klei,
F. J. Calabro, K. Roeder, B. Devlin, and
B. Luna, bioRxiv (2020), 10.1101/812719,
https://www.biorxiv.org/content/early/2020/04/01/812719.full.pdf.

[28] C. Gratton, T. O. Laumann, A. N. Nielsen, D. J. Greene,
E. M. Gordon, A. W. Gilmore, S. M. Nelson, R. S. Coal-
son, A. Z. Snyder, B. L. Schlaggar, et al., Neuron 98, 439
(2018).

[29] L. Byrge and D. P. Kennedy, Network Neuroscience 3,
363 (2019).

[30] S. Bari, E. Amico, N. Vike, T. M. Talavage, and J. Goñi,
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FIG. S1. Differential identifiability (%) across varying number of nodes across datasets. Differential identifiability
from nFC versus eFC was compared across two independently acquiured datasets - Midnight Scan Club (MSC) and Human
Connectome Project (HCP) - using 100 and 200 node parcellations.
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FIG. S2. −∆Idiff of “leave-one-edge-out” analysis Relative Idiff post removal of an edge from each scan’s eFC matrix.
Edges from the eFC matrices have been re-ordered by the corresponding stub’s system
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FIG. S3. Subject similarity matrix from single-system edge pairs Subject similarity matrices calculated by Pearson
correlations of single-system derived edge pairs (all 4 nodes from a single system) from eFC.
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FIG. S4. Differential identifiability (%) from reconstructed matrices with varying numbers of principal com-
ponents and number of scans per subject ( a) Idiff across PC = 2 ˜ 20 in eFC of randomly selecting two scans per
subject from the MSC dataset. (b) Idiff across PC = 2 ˜ 20 in nFC of randomly selecting two scans per subject from the
MSC dataset. (c) Idiff across PC = 2˜ 20 in eFC of randomly selecting ten subjects (two scans per subject; HCP). (d) Idiff
across PC = 2 ˜ 20 in nFC of randomly selecting ten subjects (two scans per subject; HCP). All panels display 100 iterations
of randomization. Red-dotted lines indicate the Idiff from the original matrices; blue lines indicate the average Idiff across
randomly permuted iterations; black lines indicate the Idiff for each PC per randomly permuted iteration.
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FIG. S5. Coefficients for Principal Components 1 to 10 in MSC 100 node eFC X-axes for all subplots are coefficients
for each scan and Y-axes are the coefficients. Red-dotted lines indicate separation for each subject (10 scans per subject) and
black lines indicate where coefficient equals zero. Asterisks on coefficients are for coefficients with p < 0.0005 (Bonferroni-
corrected).
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FIG. S6. Coefficients for Principal Components 11 to 40 in MSC 100 node eFC. Red-dotted lines used for
separating subjects’ scans.
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FIG. S7. Coefficients for Principal Components 41 to 70 in MSC 100 node eFC. Red-dotted lines used for
separating subjects’ scans.
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FIG. S8. Coefficients for Principal Components 71 to 100 in MSC 100 node eFC. Red-dotted lines used for
separating subjects’ scans.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.291898doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.13.291898

	Subject identification using edge-centric functional connectivity
	Abstract
	Introduction
	Results
	Identifiability using edge functional connectivity
	Regional drivers of cortex-wide eFC identifiability
	Identifiability of systems and clusters in eFC
	Reconstructed eFC using PCA improves subject identifiability

	Discussion
	Edge functional connectivity enhances subject identifiability
	Heteromodal regions drive subject identification
	Principal Component Analysis highlights idiosyncrasies in eFC
	Future directions
	Limitations

	Materials and Methods
	Datasets
	Image Preprocessing
	MSC Functional Preprocessing
	HCP Functional Preprocessing
	Image Quality Control

	Functional Networks Preprocessing
	Parcellation Preprocessing
	Functional Network Preprocessing

	Edge graph construction
	Differential Identifiability
	Tracing identifiability to brain regions by a leave-one-node-out approach
	Single system edge pairs identifiability
	K-means clustering for identifiability
	Principal Component Analysis

	Author Contributions
	DATA AVAILABILITY
	CODE AVAILABILITY
	Acknowledgments
	References


