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1 

Abstract 19 

Many animals inhabiting deep-sea vents are energetically dependent on chemosynthetic 20 

endosymbionts, but how such symbiont community interacts with host, and whether other 21 

nutritional sources are available to such animals remain unclear. To reveal the genomic basis of 22 

symbiosis in the vent snail Alviniconcha marisindica, we sequenced high-quality genomes of the 23 

host and gill campylobacterial endosymbionts, as well as metagenome of the gut microbiome. 24 

The gill endosymbiont has a streamlined genome for efficient chemoautotrophy, but also shows 25 

metabolic heterogeneity among populations. Inter- and intra-host variabilities among 26 

endosymbiont populations indicate the host poses low selection on gill endosymbionts. Virulence 27 

factors and genomic plasticity of the endosymbiont provide advantages for cooperating with host 28 

immunity to maintain mutualism and thriving in changing environments. In addition to 29 

endosymbiosis, the gut and its microbiome expand the holobiont's utilisation of energy sources. 30 

Host-microbiota mutualism contributes to a highly flexible holobiont that can excel in various 31 

extreme environments.   32 
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Introduction 33 

Since the discovery of deep-sea hydrothermal vents in 1977, many intricate symbioses have been 34 

reported between vent-endemic animals and chemoautotrophic microbes. While some 35 

crustaceans such as the shrimp Rimicaris exoculata (Durand et al., 2015; Petersen et al., 2010) 36 

and the squat lobster Shinkaia crosnieri (Watsuji et al., 2015) rely on ectosymbionts living on 37 

their gills or their chaetae for nutrients, annelids in the family Siboglinidae (Dubilier et al., 2008) 38 

and molluscs in several families such as Vesicomyidae and Mytilidae (Dubilier et al., 2008) host 39 

endosymbiotic microbes in their bacteriocytes. Due to their intimate relationships with 40 

endosymbionts, it is generally accepted that in endosymbiosis the host relies entirely on 41 

symbionts for nutrition (Childress and Girguis, 2011; Dubilier et al., 2008).  42 

 43 

Alviniconcha is a genus of chemosymbiotic provannid vent snails, with five species distributed in 44 

the Pacific Ocean and one in the Indian Ocean (Johnson et al., 2015). Among genera in the 45 

superfamily Abyssochrysoidea and those currently assigned to family Provannidae, only 46 

Alviniconcha and its sister genus Ifremeria that live in hydrothermal vents harbour 47 

endosymbionts in the gill epithelia (Beinart et al., 2019). Five species of Alviniconcha have been 48 

reported – four from the Pacific Ocean and one from the Indian Ocean (Johnson et al., 2015). 49 

The Alviniconcha species from the South Pacific are known to harbour both chemoautotrophic 50 

Gammaproteobacteria and Campylobacteria in its gills (Beinart et al., 2019), with the 51 

endosymbiont type and relative abundance varying with differences in vent fluid geochemistry 52 

(Beinart et al., 2012; Sanders et al., 2013). In contrast, A. marisindica from vent fields on the 53 

Central Indian Ridge (CIR) hosts a single ribotype of Campylobacterota endosymbionts 54 

(Miyazaki et al., 2020). Campylobacterota are abundant in vent habitats and also live as 55 

ectosymbionts on polychaete worms, molluscs, and crustaceans (Assié et al., 2016; Campbell et 56 

al., 2006; Goffredi, 2010; Watsuji et al., 2015), but do not commonly assume the role of 57 

intracellular symbionts. Campylobacterota are capable of oxidising sulfur, formate, and 58 

hydrogen to produce energy (Beinart et al., 2019; Miyazaki et al., 2020; Takai et al., 2005), and 59 

mostly rely on the reductive tricarboxylic acid cycle (rTCA) for carbon fixation with the 60 

exception of a bathymodiolin mussel epibiont possessing a complete Calvin–Benson–Bassham 61 

(CBB) cycle (Assié et al., 2020). Depending on the abundance of hydrogen and hydrogen sulfide, 62 
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the Campylobacterota endosymbiont of A. marisindica is capable of shifting between these 63 

reduced compounds as its main energy source (Miyazaki et al., 2020). 64 

 65 

Unlike siboglinid tubeworms and clam Solemya reidi that have lost their gut (Dubilier et al., 66 

2008), Alviniconcha species retained theirs, albeit a much reduced one (Warèn and Bouchet, 67 

1993). Dissection revealed soft biogenic substances and mineral grains inside the snail gut, 68 

indicating it is functionally active (Suzuki et al., 2005). As Alviniconcha hosts endosymbionts in 69 

the gill and has a previously overlooked functional gut, it serves as a good model system to tease 70 

out the complex host-microbiota interactions that are key to our understanding of the adaptations 71 

of these animals to the extreme environments in the deep ocean (McFall-Ngai et al., 2013). Here, 72 

we report comprehensive analyses of the holobiont of Alviniconcha marisindica from a newly 73 

discovered northern Indian Ocean population (Zhou et al., 2019). Through analysing the 74 

symbiont genome and transcriptome, we aim to unravel the chemoautotrophic metabolism of the 75 

symbionts and their machinery for interaction with host, whether such symbiont populations 76 

contain streamlined and heterogeneous genomes that may enable them to utilise diverse 77 

substrates effectively, and how genomic plasticity of such populations provide advantages for 78 

thriving in their deep-sea habitat and interacting with host to establish symbiosis. Through 79 

analysing the host genome and transcriptome, we aim to understand how the host cooperates 80 

with symbionts to maintain mutualism and how the host’s innate immunity has been remodelled 81 

to support the symbiosis. We also test the hypothesis that the gut and its microbiome are likely to 82 

provide nutrients that supplement the nutrition provided by the endosymbionts. Through 83 

dissecting the complex relations among the host, gill endosymbiont and gut microbiome, our 84 

study refine the holobiont concept in chemosymbiotic ecosystems which have enabled many 85 

animals to thrive in the extreme hydrothermal vent environments.  86 

 87 

Results 88 

Hologenome assembly and characterisation 89 

The genome of the snail Alviniconcha marisindica, sequenced using a hybrid approach, is 829.61 90 

Mb in length (N50 = 727.6�kb, genome completeness 96.5%) (Supplementary Table S1 and S2) 91 

with 21,456 predicted gene models (79.5% comparatively annotated) (Supplementary Figure 92 

S1). Comparative analyses among available lophotrochozoan genomes (n = 26; Figure 1A) 93 
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reveal a lack of obvious gene family expansion in the A. marisindica genome. The A. 94 

marisindica genome encodes 737 unique gene families (6.8%; Figure 1B) when compared with 95 

the genomes of a freshwater snail, a vent-endemic chemosymbiont hosting snail in a distant 96 

clade, and a scallop. Analyses of these unique genes reveal an enrichment of genes related to 97 

oxidoreductases, hydrolases, endocytosis, transporters, and signal transduction (Supplementary 98 

Figure S2 A and B). Among the annotated genes, those involved in immune response, substrate 99 

transportation, macromolecular digestion, and absorption are highly expressed in the intestinal 100 

tissue (Supplementary Figure S2C), indicating active functioning of the A. marisindica gut. 101 

 102 

Sequencing a bacterial 16S rRNA gene clone library from the gill tissue revealed over 99% 103 

sequence similarity among the clones, confirming the presence of a single endosymbiont 104 

phylotype in the bacteriocytes. The campylobacterotal endosymbiont genome is 1.47 Mb in 105 

length, located in two scaffolds (98.16% completeness, 0.82% contamination) with 1,429 106 

predicted genes, among which 92.65% were successfully annotated (Figure 2A, Supplementary 107 

Figure S3A). The campylobacterotal endosymbiont genome, here named Sulfurovum 108 

alviniconcha CR, possesses fewer coding sequences than other available whole genomes within 109 

the phylum (Figure 3), but has the highest coding density (97.0%, Table 1) and minimal loss-of-110 

function mutations (Figure 4A), and similar average lengths in coding regions (Supplementary 111 

Figure S4A). There are almost no flagellar or chemotaxis genes in this endosymbiont genome. 112 

When compared with its four Campylobacterota close relatives (Table 1), Sulfurovum 113 

alviniconcha CR lacks many cell envelope biogenesis and non-essential metabolic genes. For 114 

example, genes involved in capsular polysaccharides biogenesis (cps), and genes involved in 115 

partial Citrate cycle (ace and DLAT) which is one of the optional from pyruvate to aceyl-coA are 116 

missing. Sulfurovum alviniconcha CR and its pathogenic relatives lack many DNA-repair genes 117 

(Supplementary Figure S5) that will lead to frequent gene loss, mutation, and recombination 118 

(Kang and Blaser, 2006; Monack et al., 2004). Nevertheless, Sulfurovum alviniconcha CR 119 

genome contains 180 unique orthologues when compared with its four Campylobacterota close 120 

relatives (Table 1, Figure 4B), including those involved in cell wall/membrane/envelope 121 

biogenesis that modify the bacterial surface for immune evasion (e.g. eptA), enzymes related to 122 

oxidoreductases and translocases that promote energy production and conversion in the 123 

endosymbiont (e.g. putA), and extracellular proteases secretion enhancing bacterial virulence 124 
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factors that associated with symbiotic interactions (e.g. aprE and pulD) (Supplementary Figure 125 

S4 B and C). In addition, Sulfurovum alviniconcha CR shares many virulence genes with its non-126 

pathogenic (Sulfurovum species) and pathogenic (Helicobacter and Campylobacter species) 127 

Campylobacterota relatives, such as bacterial virulence factors haemolysin and MviN/MurJ, 128 

intracellular invasion CiaB, and N-linked glycosylation (NLG) with vital roles in infectivity. 129 

 130 

In contrast to harbouring only one dominant phylotype of endosymbiont in the gill, the A. 131 

marisindica gut contains diverse microbiota. Analyses of guts from three snail individuals reveal 132 

169 microbial genera from 38 phyla, with a different composition and relative abundance 133 

compared to those in gastropods that do not rely energetically on endosymbionts (Aronson et al., 134 

2016; Li et al., 2019). For example, the dominant genus in gut microbes of A. marisindica is 135 

Sulfurovum (Supplementary Figure S3B) – a genus of chemoautotrophic Campylobacterota. 136 

Sulfurovum is a minor community in the gut of deep-sea bone-eating snail Rubyspira osteovora 137 

(Aronson et al., 2016) and it is rare in the gut of fresh-water polyphagous snail Pomacea 138 

canaliculata (Li et al., 2019). The multi-taxa associations of gut microbiome in A. marisindica 139 

exhibit a significant non-random co-occurrence pattern (Figure 2B), indicating the effects of the 140 

intestinal microenvironment in shaping microbial community composition. Especially, lactic 141 

acid bacteria, vital for maintaining the gut ecological balance (Koleva et al., 2014), account for at 142 

least ~2.7% of gut microbes in A. marisindica, also shows that the gut microbiome is not 143 

contaminants even if they are in low density (2.61–5.57%) in A. marisindica (Supplementary 144 

Figure S6). 145 

 146 

Diversity and metabolism of the gill endosymbiont 147 

Sequencing 23 isolates from 13 host snails (Table 2) reveals a Sulfurovum alviniconcha CR core- 148 

campylobacterotal genome with 1,001 shared gene families (51.8–73.0% of the predicted 149 

orthologues per isolate genome). Thiosulfate oxidation, oxygen reduction, and key reverse TCA 150 

cycle genes are present in the core-genome. Each isolate represents a subpopulation, the pan-151 

genome of 23 subpopulations contains 2,783 orthologues, of which 1,475 are isolate-specific, 152 

and exhibit high metabolic flexibility, especially along the chemoautotrophic pathways of sulfur 153 

metabolism, hydrogen oxidation, and carbon fixation (Supplementary Figure S7). For example, 154 

the pan-genome contains hydrogen oxidation genes (hydABCDE gene cluster), nitrate reduction 155 
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genes (napA and napD), and genes involved in hydrogen sulfide utilisation (metZ, catalyses the 156 

formation of L-homocysteine from O-succinyl-L-homoserine and hydrogen sulfide). Principal 157 

component and phylogenomic analyses on 941 shared single-copy orthologues of 23 isolates 158 

show that Sulfurovum alviniconcha CR are not clustered by their host individuals 159 

(Supplementary Figure S8). Among 23 isolates, selecting 20 isolates from the anterior and 160 

posterior gills of 10 host snails (Table 2), 20 Sulfurovum alviniconcha CR genomes are obtained 161 

with a total of 190 genomic average nucleotide identity (ANI) values ranging from 98.5% to 99.7% 162 

(Figure 4C). Nevertheless, these isolates belong to the same phylotype but have 28,448 single-163 

nucleotide polymorphisms (SNPs) among them, indicating a high genetic diversity. Based on the 164 

results of genomic ANI and phylogenomic analysis of SNPs, the 20 endosymbiont isolates are 165 

classified into five types (Figure 4C) in a panmictic state among the 10 snails, showing that each 166 

snail hosts genetically diverse endosymbionts and with different types. 167 

 168 

Analysis of the core metabolic genes of Sulfurovum alviniconcha CR genome reveals its 169 

chemolithoautotroph capability, especially in anaerobic oxidation of thiosulfate (sox genes), but 170 

it lacks the sulfide oxidation pathway as indicated by the lack of genes in the dsrAB complex. 171 

The sox multi-enzyme system allows generation of energy from thiosulfate oxidation, and soxX-172 

soxY-soxZ-soxA-soxB genes are highly expressed (among the top 150) in Sulfurovum 173 

alviniconcha CR (Supplementary Figure S9A). The absence of a sulfate/thiosulfate transporter in 174 

Sulfurovum alviniconcha CR genome indicates that it can only use thiosulfate from endogenous 175 

organic sulfur compounds (Figure 5). A previous study shows the gill tissue of A. marisindica 176 

from the Kairei hydrothermal site actively consumed environmental sulfide (Miyazaki et al., 177 

2020), which is consistent with sqr (25th in transcriptome, Supplementary Figure S9A) and cysK 178 

genes in the Sulfurovum alviniconcha CR genome involving in the conversion of sulfide to 179 

polysulfides. In addition, Sulfurovum alviniconcha CR lacks the sulfur globule protein genes 180 

(sgp) for intracellular sulfur storage, indicating this endosymbiont might dependent on 181 

intracellular polysulfides for sulfur storage.  182 

 183 

Host-microbe syntrophic interactions 184 

The tripartite A. marisindica holobiont is supported by their tight metabolic complementarity 185 

(Figure 5). Both Sulfurovum alviniconcha CR and the gut microbiome of the Wocan A. 186 
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marisindica possess typical metabolic pathways for synthesising carbohydrates, amino acids, and 187 

vitamins/cofactors and transporters for supplying these to the host. Sulfurovum alviniconcha CR 188 

uses the rTCA cycle to fix carbon and synthesises 20 amino acids and 4 vitamins/cofactors 189 

(Supplementary Figure S10A). The gut microbiome as a whole possess biosynthetic pathways 190 

for 10 amino acids and 4 vitamins (Supplementary Figure S10A), among them all of the 10 191 

amino acids and 2 of the vitamins are shared with Sulfurovum alviniconcha CR, but the vitamins 192 

thiamine and nicotinate (and its derivative nicotinamide) are unique to the gut microbiome. Four 193 

amino acids and eight vitamins/cofactors cannot be synthesised de novo by either the symbiont 194 

system alone (Supplementary Figure S10B) and their production requires the complementary 195 

metabolic pathways of the host and symbionts to collaborate. For example, only Sulfurovum 196 

alviniconcha CR is capable of synthesising tryptophan yet it lacks genes for tryptophan 197 

metabolism, whereas the host genome contains the full tryptophan metabolic pathway from 198 

tryptophan to quinolinate. The host is further able to use quinolinate as a principal precursor to 199 

synthesise nicotinate and nicotinamide (vitamin B3) (Figure 5). Neither the host nor Sulfurovum 200 

alviniconcha CR alone can synthesise thiamine (vitamin B1), and the host lacks the thiamine 201 

transporter (THTR) for absorbing thiamine extracellularly. However, Sulfurovum alviniconcha 202 

CR can produce the thiamine phosphate precursor and pass it to the host. Thiamine is then 203 

synthesised as indicated by the highly expressed PHO that catalysing the conversion of thiamine 204 

phosphate to thiamine in the gill (Figure 5 and Supplementary Figure S9B). Similarly, the host 205 

cannot synthesise pantothenate but can obtain it from Sulfurovum alviniconcha CR in order to 206 

synthesise coenzyme A (Figure 5). Fatty acids (FAs) are essential nutrients required by most 207 

animals (Pranal et al., 1996). Holo-[carboxylase] serves as a biotin carrier protein and is essential 208 

in the biosynthesis of fatty acids in A. marisindica. Since only Sulfurovum alviniconcha CR can 209 

synthesise biotin (Supplementary Figure S10A), A. marisindica likely uses biotin derived from 210 

its endosymbionts Sulfurovum alviniconcha CR. Although Sulfurovum alviniconcha CR only 211 

possess biosynthetic pathways for saturated FA precursors (Figure 5), they may provide these 212 

precursors to the host, which can continue the FA biosynthesis by using the genes MCH and 213 

fasN, both of which are highly expressed in the gills (Figure 5 and Supplementary Figure S9B).  214 

 215 

Neither Sulfurovum alviniconcha CR nor gut microbiome alone are able to generate all nutrients 216 

needed by the host (Supplementary Figure S10B). For example, the host expresses highly active 217 
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pathways of pancreatic secretion and bile secretion in addition to metabolic pathways of folate 218 

and octadecanoic acid (Figure 5 and Supplementary Figure S9B), among other nutrients that 219 

cannot be synthesised by the host or endosymbiont. Numerous genes responsible for key 220 

hydrolases that are responsible for breaking down macromolecules, and specialised transport 221 

proteins are highly expressed and enriched in the intestine (Supplementary Figure S2C, S11A 222 

and S12A). In addition, the gut microbial enzymes include hydrolases (30.6–34.7%) (Dataset 223 

S1), transferases (26.7–28.2%), and oxidoreductases (9.6–17.4%). Large amounts of multi-224 

exohydrolase complexes in gut microbiome may promote the host’s intestinal nutrient digestion 225 

(Supplementary Figure S9C, Table S3). For example, lactic acid bacteria (LAB) in the gut are 226 

found to possess a major facilitator, sugar transporters and enzymes for utilising large 227 

carbohydrate molecules. The gut microbiome even encodes additional enzymes such as 228 

oligoendopeptidase F (pepF1) and alginate lyase (algL) that can enhance digestion. Importantly, 229 

Campylobacterota in the gut are chemoautotrophic and found to encode the Sox system and 230 

[NiFe]-hydrogenases, and fix carbon with a complete rTCA cycle (Figure 5).  231 

 232 

Strategies of symbiosis maintenance 233 

Sulfurovum alviniconcha CR lacks genes to assemble surface layer proteins (SLPs) or capsular 234 

polysaccharides (CPs). Nevertheless, Sulfurovum alviniconcha CR encodes and actively 235 

expresses transmembrane signalling receptors, lipid A and its modification (Supplementary 236 

Figure S11B). Sulfurovum alviniconcha CR does not encode putative virulence-related proteins 237 

(pag) for Cationic antimicrobial peptides (CAMPs) resistance, but its genome harbours the eptA 238 

gene (Supplementary Figure S11B) involving in bacterial surface charge modification. In 239 

addition, genes encoding various proteases (e.g. subtilisin-like serine proteases) and the type II 240 

secretion system (T2SS) are highly expressed in Sulfurovum alviniconcha CR (Supplementary 241 

Figure S11B), along with Sec and Tat secretory pathways. On the other hand, genes involved in 242 

the assembly of bacterial cloaks (CP, SLP), lipopolysaccharide (LPS), and other surface-243 

associated antigens responsible for bacterial adhesion to the intestinal epithelium and activating 244 

the complement system (Sára and Sleytr, 2000; Futoma-Koloch, 2016) are found in the gut 245 

microbiome. Surface-layer glycoprotein variation in the gut microbiome is evident from the 246 

differential expression of S-layer genes, a type of antigenic variation responding to the lytic 247 

activity of the host immune system (Supplementary Figure S11B). In the gut microbiome of A. 248 
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marisindica, genes encoding for sialate O-acetylesterase (SIAE) are highly expressed 249 

(Supplementary Figure S9C), which indicate their active sialic acid degradation in the gut.  250 

 251 

The host immune system responds differently to Sulfurovum alviniconcha CR and the gut 252 

microbiome. The gills harbour a much higher abundance of bacteria than the gut (Supplementary 253 

Figure S6), but with weaker host immune responses (Figure 6A).  Pattern recognition receptors 254 

(PRRs) are essential in the host’s innate immune system. They can be divided into membrane-255 

bound PRRs and cytoplasmic PRRs. Genes encoding membrane-bound C-type lectin receptors 256 

(CLRs) and cytoplasmic RIG-I-like receptors (RLRs) are more active in the intestine than in the 257 

gills of host invertebrates (Figure 6A). Toll-like receptors (TLRs) recognise structurally 258 

conserved molecules derived from microbes and activate immune responses. Genes encoding an 259 

endosomal TLR13 are highly expressed in the gill tissue, similar to the finding in the symbiont-260 

hosting gills of the vent mussel Bathymodiolus platifrons (Sun et al., 2017). In the gut, however, 261 

membrane-bound TLR2 and TLR6 are more active (Figure 6A). Once the host recognises the 262 

symbionts, the gut and gills take different approaches to deal with the invading symbionts. In the 263 

gut tissue of A. marisindica, the component cascade is activated as indicated by the highly 264 

expressed complement component 1 complex (C1) and complement C3 (C3) (Figure 6A and 265 

6B). In the gill tissue, genes encoding the signal repressor NF-κB1 (NFKB1), negative regulators 266 

(NF-κB inhibitor zeta (NFKBIZ)), and TNFAIP3-interacting protein 1 (TNIP1) of NF-κB 267 

response, all of which involved in attenuation of NF-κB, are highly expressed (Figure 6A). 268 

Genes encoding four members of the GiMAP gene family are also highly expressed in the gill 269 

tissue (Figure 6A). In addition, genes involved in TNF signalling, the MyD88-independent TLR 270 

signalling pathway, and leukocyte differentiation, which related to antimicrobial activity, are 271 

enriched in the gills (Supplementary Figure S12B).  272 

 273 

Discussion 274 

Sulfurovum alviniconcha CR has a relatively compact (1.47-Mbp) and streamlined genome. As 275 

maintaining the symbionts involves costs (Douglas and Smith, 1983; Meyer and Weis, 2012), the 276 

host may prefer a cellularly economised symbiont genome for energetic efficiency (Nicks and 277 

Rahn-Lee, 2017). A small endosymbiont genome may also enhance growth efficiency and 278 

intracellular competitiveness (Moran, 2002). Sulfurovum alviniconcha CR lacks most flagellar or 279 
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chemotaxis genes like its Campylobacterota close relatives from deep-sea sediments (Inagaki et 280 

al., 2004) and mounds (Nakagawa et al., 2007), whereas the Campylobacterota endosymbionts of 281 

Alviniconcha boucheti from Kilo Moana vent field at the Eastern Lau Spreading Centre has 282 

complete flagellar genes but no genes for the chemotactic signaling system (Beinart et al., 2019). 283 

The Campylobacterota endosymbionts of Alviniconcha boucheti are thought to be motile at free-284 

living stage and such motility machinery could be used for finding a host. In this case, the non-285 

motile Sulfurovum alviniconcha CR has a different machinery for adhesion to or interaction with 286 

Alviniconcha marisindica. Several symbioses have shown that motility and chemotaxis are not 287 

indispensable for recruiting symbionts from the environment, for example, some non-motile 288 

sulfate-reducing bacteria and methane-producing archaea in marine sediments use adhesins to 289 

colonise their host (Orphan et al., 2001; Raina et al., 2019). In addition, low-fidelity repair in the 290 

Sulfurovum alviniconcha CR genome increase its mutagenic potential, and such genomic 291 

plasticity has been found in human/animal pathogenic Campylobacterota (Kang and Blaser, 292 

2006; Monack et al., 2004) and deep-sea vent Campylobacterota (Nakagawa et al., 2007), 293 

leading to micro-diversity increasement that confers a competitive advantages enabling bacteria 294 

persist in infections (Kang and Blaser, 2006; Monack et al., 2004) or thriving in ever-changing 295 

environments such as deep-sea vents (Nakagawa et al., 2005; Nakagawa et al., 2007). The 296 

Sulfurovum alviniconcha CR genome has the core of virulence for important animal pathogens, 297 

indicating its infectivity. Even if the Sulfurovum alviniconcha CR genome lacks many genes, it 298 

shows the ability to face with a changing environment, infect the animal host and survive 299 

intracellularly.  300 

 301 

The host selectivity of endosymbionts in Alviniconcha snails is low when compared to other 302 

chemosymbiotic animals such as tubeworms (Beinart et al., 2012; Beinart et al., 2019; Yang et 303 

al., 2020) which may harbour a high diversity (even multiple classes) of endosymbionts with 304 

different types of metabolism within a single host (Beinart et al., 2012). This probably reflects 305 

the combined effect of environment selectivity on the available phylotypes and differences in 306 

vent fluid chemistry (Wang et al., 2017). A rarely discussed anatomical characteristic of the gill 307 

endosymbionts in the Alviniconcha species is that these endosymbionts residing inside 308 

bacteriocytes are present in a state between truly intracellular and extracellular (Endow and Ohta, 309 

1989). Electron microscopy revealed that the vacuoles in bacteriocytes housing the 310 
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endosymbionts are exposed to the ambient seawater through duct-like openings (Endow and 311 

Ohta, 1989). Considering the aggregated distribution of symbionts near the more exposed, outer 312 

surface of the bacteriocytes, the Alviniconcha gill symbionts are in a ‘semi-endosymbiotic’ 313 

condition (Windoffer and Giere, 1997), which likely provides Alviniconcha snails with the 314 

ability to exchange or reacquire gill symbionts according to the local habitat and environment 315 

selectivity through the endocytosis of free-living bacteria. Such ‘semi-endosymbiotic’ condition 316 

provides gill endosymbiont populations with heterogeneous genomes regarding metabolic genes 317 

along the chemoautotrophic pathways that may enable the utilisation of diverse substrates. 318 

Sulfurovum alviniconcha CR is capable of anaerobically oxidising thiosulfate and hydrogen. The 319 

environmental sulfide is conversed to polysulfides in Sulfurovum alviniconcha CR and then 320 

bacterial organic polysulfides such as sulfur-containing amino acids are degraded to produce 321 

intracellular thiosulfate for oxidation to produce cellular energy (Figure 5). This method of 322 

sulfide utilisation and storage is different from those seen in many deep-sea holobionts such as in 323 

siboglinid tubeworms, where the host haemoglobin binds to and transports the sulfides to 324 

endosymbionts for direct oxidation or storage in bacterial sulfur globule proteins (Yang et al., 325 

2020), and in Bathymodiolus mussels, where the host oxidise sulfides and provide a reservoir of 326 

thiosulfate for the endosymbionts’ oxidation (Ponnudurai et al., 2020). We supposed that the 327 

storage of environmental sulfides in Sulfurovum alviniconcha CR’s polysulfides and the 328 

utilisation of thiosulfate degraded from these intracellular sulfur compounds, is more efficient 329 

than those symbionts which use thiosulfate provided by extracellular host tissues.  330 

 331 

The synergistic biosynthesis of nutrients in A. marisindica gives the holobiont a capability of 332 

nutrient production that is controlled by mutual supply of intermediates between the host and the 333 

endosymbionts. Although the semi-endosymbiotic mode of housing the gill endosymbiont 334 

provides Alviniconcha with the ability to utilise a rather wide array of bacteria as gill 335 

endosymbiont (Beinart et al., 2019), it comes at a cost in that some symbiont phylotypes may 336 

lack genes for certain syntrophic interactions. Although the digestive tract is substantially 337 

reduced in the adult snail (Warèn and Bouchet, 1993), A. marisindica has a functioning gut 338 

which contains faecal-like black substances suggesting that this snail ingests food by either 339 

grazing or filter-feeding like A. hessleri from the Mariana Back Arc Basin (Warèn and Bouchet, 340 

1993) and A. marisindica from the Central Indian Ridge (Suzuki et al., 2005). By supplying 341 
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genes and functions that are missing in Sulfurovum alviniconcha CR and the host, the gut 342 

microbiome help ensures the nutritional viability of the holobiont as a whole. For example, 343 

pepF1 and algL genes in the gut microbiome that enhance digestion are lacking in the host snail 344 

and thus provide direct evidence that the gut microbiota has the potential to fulfil the nutritional 345 

demands of the holobiont. Overall, the results show that the gut microbiome has the potential to 346 

provide nutrition benefits to the Alviniconcha snail, an aspect of symbiosis that has been 347 

neglected in previous studies of many deep-sea endosymbiotic holobionts. As the Alviniconcha 348 

species has a semi-endosymbiotic model of gill symbiosis, the endosymbionts have flexible 349 

symbiotic associations with the host, which may at times impose nutritional limits on the 350 

holobiont system. In such situations, the gut likely contributes to keep the holobiont functionally 351 

versatile, ensuring its thriving in vent fields featuring different geochemical environments and 352 

available energy sources. 353 

 354 

Sulfurovum alviniconcha CR lacks two common bacterial physical “cloaks” – SLPs and CPs that 355 

protect intracellular bacteria from host defences but also being recognised by the host as 356 

immunodominant antigens (Zamze et al., 2002; Sára and Sleytr, 2000). The absence of CPs 357 

likely helps Sulfurovum alviniconcha CR enter host cells (Deghmane et al., 2002) and reduces 358 

the risk of polysaccharide recognition by the host immune system (Zamze et al., 2002). In 359 

addition, lipid A modification enzymes and surface signal receptors help bacterial pathogens to 360 

avoid detection by TLRs (Thakur et al., 2019), this may also apply to Sulfurovum alviniconcha 361 

CR. CAMPs are key components of the host’s innate immune response (Le et al., 2017; Noore et 362 

al., 2013). The presence of the eptA gene (Supplementary Figure S11B) involved in surface 363 

charge modification implies that Sulfurovum alviniconcha CR increases its surface positive 364 

charge to repel CAMPs. T2SS enables the transport of various cytoplasmic proteins into 365 

extracellular milieu, including bacterial toxins and degradative enzymes such as proteases and 366 

lipases. Previous study of tubeworm endosymbionts shows that the endosymbiont may use serine 367 

proteases to modulate the host’s immune response by diminishing the function of host signal 368 

proteins (Yang et al., 2020). Sulfurovum alviniconcha CR may use a similar strategy. Surface 369 

antigenic molecules of Sulfurovum alviniconcha CR are distinct from the gut microbiome, 370 

indicating its host-specific immune-evasion mechanisms. In gut tissues, the mucus layer is the 371 

interface between the gut flora and the host, and sialic acids are prominent carbohydrates of the 372 
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intestinal mucus layer (Schroeder, 2019). Thus sialic acid breakdown of the gut microbiome 373 

indicates the way of intestinal bacterial encroachment and survival. Such differences in 374 

interaction with the host can lead to the establishment of different animal-microbe associations 375 

(Koropatnick et al., 2004).  376 

 377 

Accordingly, the A. marisindica host has distinct recognition profiles for Sulfurovum 378 

alviniconcha CR and the gut microbiome (Figure 6A). After being recognised by the host, the 379 

invading symbionts will be controlled by the host’s different corresponding strategies. The 380 

component cascade is activated in the gut which attack the microbe's cell membrane and 381 

eliminate microbes to control bacterial infections (Janeway et al., 2001) (Figure 6B). In the gills, 382 

potential attenuation of NF-κB are important as they grant the invaded cells additional protection 383 

(Burns et al., 2017; Best et al., 2019), and four members of the GiMAP gene family play critical 384 

roles in constraining and compartmentalising pathogens within cells (Weiss et al., 2013; Hunn et 385 

al., 2011). In addition, genes responsible for the majority of antimicrobial activity are enriched in 386 

the gills (Supplementary Figure S12B). In this case, the gill tissue shows a strong potential to 387 

constrain the intracellular symbionts and resist environmental invasion, which also indicate the 388 

ability of Sulfurovum alviniconcha CR to evade these host antimicrobial activities at the free-389 

living stage. The weak host immune responses in the gills (Figure 6A) indicate Sulfurovum 390 

alviniconcha CR are more adept at evading recognition by the host immune system or inhibiting 391 

activation of the host immune system. Overall, the results show that Sulfurovum alviniconcha 392 

CR may have evolved an immunomodulation mechanism that they modulate the cell’s outermost 393 

layer and release proteins enabling them to effectively evade recognition by the host immune 394 

system. In addition, the semi-intracellular position of Sulfurovum alviniconcha CR may allow it 395 

to avoid areas of high lysosomal activity in host cells that are part of the host self-defence 396 

mechanism (Endow and Ohta, 1989). The balance between the host’s immune activity and 397 

bacterial counter-defence contributes to the complexity of the persistent symbioses.  398 

 399 

We show, through hologenomic and holotranscriptomic analyses, that the Alviniconcha 400 

marisindica holobiont is more complex than previously recognised, being a tripartite system with 401 

the host snail and gill endosymbiont additionally supported by functional gut microbiome. The 402 

relative importance of each partner in A. marisindica may fluctuate depending on the immediate 403 
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availability of resources impacting the interplay downstream, as has been shown for other 404 

invertebrate symbioses (Morris et al., 2019; Belda et al., 1993). We unravel complex interactions 405 

among symbiotic parties in the A. marisindica holobiont, which deepen our understanding of the 406 

adaptation of many dominant chemosymbiotic holobionts that rely on gill endosymbionts for 407 

nutrition and also retain a functional gut, such as Alviniconcha’s sister genus Ifremeria 408 

(Windoffer and Giere, 1997), peltospirid snails (Chen et al., 2018), and Bathymodiolus mussels 409 

(Page et al., 1991). 410 

 411 

Materials and Methods 412 

Sample collection and nucleic acid preparation 413 

Alviniconcha marisindica individuals were collected from a water depth of 2,919 m at the 414 

Wocan vent site on the Carlsberg Ridge (CR) of the northwestern Indian Ocean (60.53°E, 415 

6.36°N) (Supplementary Figure S13). Sampling was conducted using the human occupied 416 

vehicle (HOV) Jiaolong onboard the research vehicle Xiangyanghong 9 on March 19, 2017. 417 

Snails were placed into an insulated bio-box with a closed lid using a manipulator to minimise 418 

changes in water temperature. Jiaolong took approximately 2.5 hours to return to deck. Once the 419 

snails were onboard the research vessel, all specimens were immediately flash-frozen in liquid 420 

nitrogen and then transferred to a -80oC freezer for storage. The morphological observation and 421 

molecular taxonomy of snail samples were shown in Supplementary Note 1. 422 

 423 

The frozen snails were thawed in RNAlater® (Invitrogen, USA) on ice, dissected with different 424 

tissues fixed separately in RNAlater®, and then prepared for nucleic acid extraction. A single 425 

specimen of Alviniconcha marisindica from Wocan was used for the holobiont genome assembly. 426 

The foot and neck muscles were used for host genomic DNA extraction, and the endosymbiont-427 

harbouring gills were used for endosymbiont DNA extraction. A total of three snail individuals, 428 

including the one used for identifying the host genome, were dissected into 7–10 tissue types 429 

each with RNA extraction performed on the different tissues. The gills of 10 other individuals 430 

were divided into anterior and posterior parts, and the DNA of these 20 parts were extracted 431 

separately for metagenome sequencing. The intestines of the three individuals were dissected for 432 

total DNA and RNA extraction for the gut microbiome, and the gills of these individuals were 433 

also dissected for total RNA extraction (Supplementary Note 1). Genomic DNA (gDNA) was 434 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.295170doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.13.295170
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

15

extracted using the E.Z.N.A.® Mollusc DNA Kit (Omega Bio-tek, Georgia, USA) and then 435 

purified using Genomic DNA Clean & ConcentratorTM-10 Kit (Zymo Research, CA, USA) 436 

according to the manufacturer’s protocol. Total DNA of the gills and that of the intestines were 437 

extracted using the same protocol. Total RNA was extracted using Trizol (Invitrogen, USA) 438 

from different tissues following the manufacturer’s protocol and prepared for RNA-Seq. Nucleic 439 

acid quality was evaluated using agarose gel electrophoresis and a BioDrop µLITE (BioDrop, 440 

Holliston, MA, US), and nucleic acid concentrations were quantified using a Qubit fluorometer 441 

v3.0 (Thermo Fisher Scientific, Singapore). 442 

 443 

Library construction and sequencing  444 

Genomic DNA was aliquoted and submitted to three sequencing platforms: Illumina, PacBio 445 

Sequel, and Oxford Nanopore Technologies (ONT). A library with a 350�bp insert size was 446 

constructed from gDNA following the standard protocol provided by Illumina (San Diego, CA, 447 

USA). After paired-end sequencing of the library at Novogene (Beijing, China), approximately 448 

50 Gb of Illumina NovaSeq reads with a read length of 150 bp were generated. Illumina 449 

sequencing of total DNA from the gills and that of total DNA from the intestines were conducted 450 

similarly, with approximately 50 Gb of reads generated from each gill sample for endosymbiont 451 

genome assembly, approximately 6–8 Gb of reads generated from each of 20 gill filaments for 452 

symbiont genetic diversity analysis, and approximately 12 Gb of reads generated from each of 453 

three intestine specimens for metagenome analysis (see overview of sequencing data in 454 

Supplementary Note 2).  455 

 456 

For preparation of the single-molecule real-time (SMRT) DNA template for PacBio sequencing, 457 

the gDNA was sheared into large fragments (10�kb on average) using a Covaris® g-TUBE® 458 

device and then concentrated using AMPure® PB beads. DNA repair and purification were 459 

carried out according to the manufacturer’s instructions (Pacific Biosciences). The blunt adapter 460 

ligation reaction was conducted on purified end-repair DNA, and after purification DNA 461 

sequencing polymerases became bound to SMRTbell templates. Finally, the library was 462 

quantified using a Qubit fluorometer v3.0. After sequencing with the PacBio Sequel System at 463 

the Hong Kong University of Science and Technology (HKUST) and Novogene, approximately 464 

72�Gb of long reads were generated, with reads less than 4 kb in length discarded.  465 
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 466 

For ONT sequencing, a total of 3–5 μg of gDNA were used for the construction of each library 467 

following the ‘1D gDNA selecting for long reads (SQK-LSK109)’ protocol from ONT. Briefly, 468 

gDNA was repaired and end-prepped as per standard protocol, before it was cleaned up with a 469 

0.4× volume of AMPure XP beads. Adapter ligation and clean-up of the cleaned-repaired DNA 470 

were performed as per the standard protocol and the purified-ligated DNA was eluted using 471 

elution buffer. The DNA library was mixed with sequencing buffer and loading beads before it 472 

was loaded onto the SpotON sample port. Finally, sequencing was performed following the 473 

manufacturer’s guidelines using the FLO-MIN106 R9.4 flow cell coupled to the MinIONTM 474 

platform (ONT, Oxford, UK). Raw reads were base-called according to the protocol in 475 

MinKNOW and written into fastq files, and 9.8�Gb of long reads were generated with reads less 476 

than 4Kb discarded. MinION sequencing of total DNA from one gill specimen was conducted 477 

using the same procedures, generating 3.5 Gb of reads for endosymbiont genome scaffolding 478 

(see details of PacBio and ONT library construction in Supplementary Note 2). Illumina reads 479 

from gDNA were used for the genome survey of the Wocan Alviniconcha marisindica, and 480 

PacBio and ONT reads were used for the genome assembly (Supplementary Note 3).  481 

 482 

For eukaryotic transcriptome sequencing of different tissues, a 250–300 bp insert cDNA library 483 

of each tissue was constructed after removing the prokaryotic RNA and sequenced on the 484 

Illumina NovaSeq platform at Novogene to produce 150 bp paired-end reads. Since the RNA of 485 

gills includes the sequences from both the host and the symbiont, another 250–300 bp insert 486 

strand-specific library of each gill specimen was constructed using Ribo-Zero™ Magnetic Kit to 487 

sequence both eukaryotic and microbial RNA. Therefore, two sets of transcript sequencing data 488 

were produced for the gills, one for both the host and the symbiont, and the other for only the 489 

host. The meta-transcriptome sequencing of the intestine was conducted using the same methods. 490 

Approximately 5–10 Gb of reads were generated from each tissue.  491 

 492 

de novo hybrid assembly of the host genome 493 

Trimmomatic v0.39 (Bolger et al., 2014) was used to trim the Illumina adapters and low-quality 494 

bases (base quality ≤ 20). The genome size of A. marisindica was estimated to be 809.1�Mb 495 

using the 17-mer histogram generated (Supplementary Note 3) and the genome heterozygosity 496 
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was evaluated as 0.88% using GenomeScope (Vurture et al., 2017). Several genome assembly 497 

pipelines were applied to assemble the genome with PacBio and ONT reads, including PacBio-498 

only approaches (e.g. minimp2+miniasm (Li, 2016) and wtdbg2 (Ruan and Li, 2019)) and 499 

PacBio-ONT hybrid approaches (e.g. MaSuRCA version 3.2.8 (Zimin et al., 2013), FMLRC 500 

(Wang et al., 2018) + smartdenovo (Ruan, 2018) and FMLRC (Wang et al., 2018) +wtdbg2 501 

(Ruan and Li, 2019)). The detailed settings of each assembly pipeline are shown in 502 

Supplementary Note 3.  503 

 504 

A comparison of the assembly statistics of different pipelines (Supplementary Note 3) showed 505 

that the FMLRC+wtdbg2 assembly was the best and therefore this assembly was used in the 506 

downstream analyses. The assembly was carried out as follows: the ONT reads were 507 

concatenated with PacBio reads and error corrected with Illumina reads using FMLRC (Wang et 508 

al., 2018). This hybrid error correction method was selected based on previous benchmarking 509 

analysis on the available tools using Illumina reads for correction of PacBio/ONT long reads (Fu 510 

et al., 2019). The corrected long reads were then assembled using wtdbg2 using the setting “-x 511 

preset2” (Ruan and Li, 2019). Bacterial contamination was removed from the assembly using a 512 

genome binning method in MetaBAT 2 (Kang et al., 2015) and MaxBin 2.0 (Wu et al., 2016) 513 

(Supplementary Note 3). The Illumina reads were mapped to the clean assembly with Bowtie2 514 

(Langmead and Salzberg, 2012), and only uniquely mapped reads were retained. The resultant 515 

sorted .bam file was used to correct errors in the assembly using Pilon v1.13 (Walker et al., 516 

2014). Two rounds of error correction were performed. Redundant genomic assembled contigs 517 

from highly heterozygous regions were then removed using Redundans (Pryszcz and Gabaldón, 518 

2016) with the settings of “--identity 0.8 --minLength 5000”. 519 

 520 

Quality check of the assembled host genome 521 

We monitored the genome assembly completeness and redundancy using the metazoan 522 

Benchmarking Universal Single-Copy Orthologs (BUSCOs) v4.0.6 pipeline against the 523 

Metazoan dataset (Simão et al., 2015). A total of 921 out of the 954 searched BUSCO groups 524 

(96.5%) were complete in the assembled genome, and only 2.3% BUSCOs were missing, 525 

suggesting a high level of completeness of the de novo assembly (Supplementary Table S1). 526 
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QUAST v5.0.2 (Gurevich et al., 2013) was used to check genome assembly quality with PacBio 527 

and ONT reads (Supplementary Table S2). 528 

 529 

Annotation of the host genome 530 

The Wocan Alviniconcha host genome annotation pipeline generally followed a previously 531 

published procedure (Sun et al., 2017). Briefly, the repeat content and the transposable elements 532 

were predicted and classified using the RepeatMasker pipeline (Smit and Hubley, 2010) which 533 

searched against the known repeat library in Repbase and also the species-specific repeat library 534 

constructed by RepeatModeler (Supplementary Note 4). 535 

 536 

Two versions of transcriptome assembly, i.e. the de novo assembled version and the genome-537 

guided version, were independently assembled using Trinity v2.8.5 (Grabherr et al., 2011) and 538 

concatenated. Sequences with similarity over 0.97 were clustered with cd-hit-est (Li and Godzik, 539 

2006). Maker v3.0 (Cantarel et al., 2008) was used to annotate the genome. In the first round of 540 

Maker annotation, only the transcriptomic evidence was used, and only a gene model with an 541 

annotation edit distance (AED) score less than 0.01 (Supplementary Figure S1) and predicted 542 

protein length over 200 amino acids was reported. The resultant genome annotation .gff file was 543 

used to train another de novo gene predictor, Augustus v3.3 (Stanke and Morgenstern, 2005). 544 

The gene model with only one exon with an incomplete open reading frame and inter-genic 545 

sequences less than 3 Kb was removed. The rest of the bona-fide gene models were used to train 546 

Augustus. In the second round of Maker, evidence from three different sources, i.e. the 547 

transcriptome, proteins from the Swiss-Prot database, and Augustus, were merged using 548 

EvidenceModer (Haas et al., 2008). The merged data was also integrated using Maker. 549 

 550 

Gene functions were determined by using BLASTp to align the candidate sequences with NCBI 551 

non-redundant (NR) and Swiss-Prot protein databases with the settings of “-evalue 1e-5 -552 

word_size 3 -num_alignments 20 -max_hsps 20”. Blast2GO® (Götz et al., 2008) together with 553 

EggNOG mapper (Huerta-Cepas et al., 2017) was applied to assign Gene Ontology (GO) terms 554 

and clusters of orthologous groups (COGs) to the protein sequences via GO and EggNOG 555 

databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Automatic Annotation 556 

Server (KAAS) (Kanehisa and Goto, 2000) was used to conduct the KEGG pathway annotation 557 
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analysis via the bidirectional best hit method. The Pfam database was searched using profile 558 

hidden Markov models (profile HMMs) (with an e-value of 0.001) to classify the gene families 559 

(El-Gebali et al., 2019). 560 

 561 

Host gene family identification and phylogenomic analysis 562 

A total of 26 lophotrochozoan genomes were analysed for clues to the gene family evolution 563 

(Supplementary Note 4). Orthologs among all species were deduced via the OrthoMCL pipeline 564 

(Li et al., 2003) with the BLASTp threshold set to 1e-5. Only single-copy genes in at least two-565 

thirds of the taxon sampled (i.e. in at least 18 species) were used in the phylogenetic tree analysis, 566 

resulting in 492 orthologous groups. Protein sequences within each orthologue was aligned using 567 

MUSCLE with the default settings; spurious sequences and poorly aligned sequences were 568 

trimmed using TrimAL v1.4 (Capella-Gutiérrez et al., 2009). The final alignment of each 569 

orthologue was concatenated with partition information for the phylogenetic analysis using 570 

RaxML v8.2.11 (Stamatakis et al., 2005) with the GTR + Γ model. The MCMCTree v4.7 (Reis 571 

and Yang, 2011) was used for tree dating. The root calibration point was set to 590 Ma in 572 

MCMCTree, and the LG+Γ model of evolution was selected. Time frame constraints imposed to 573 

calibrate the topology tree generated from RAxML are shown in Supplementary Note 4. The 574 

MCMCTree was run for 1.0 × 107 generations, sampling every 1.0 × 103 and discarding 20% of 575 

the samples as burn-in. Gene family expansion/contraction analysis was performed using CAFÉ 576 

v3.1 (Han et al., 2013). Only a family level with P<0.01 and P<0.01 deduced by the Viterbi 577 

method was considered to be expanded or contracted. 578 

 579 

Microbial metagenome assembly, annotation, and functional analysis 580 

For microbial metagenome assembly of the gill, Trimmomatic v0.39 (Bolger et al., 2014) and 581 

FastUniq (Xu et al., 2012) were used to trim the Illumina reads and remove duplicates. The 582 

bacterial abundance of gill metagenomic sequences was deduced using Kaiju (Menzel et al., 583 

2016) based on the subset of the NCBI BLAST nr database containing all proteins belonging to 584 

Archaea, Bacteria, and Viruses. The clean reads were assembled using metaSPAdes v3.13.1 585 

(Bankevich et al., 2012) with k-mer sizes of 21, 33, 55, 77, 99, and 127 bp, and the products 586 

were pooled. Contigs potentially belonging to the campylobacterotal endosymbiont genome were 587 

separated from its host genome using a genome binning method as described in previous studies 588 
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(Albertsen et al., 2013; Yang et al., 2020) (Supplementary Note 5). A genome of presumably 589 

parasitic Mollicutes was removed (Supplementary Figure S3A). Contigs of the endosymbiont 590 

genome were further determined using MetaBAT 2 (Kang et al., 2015) and MaxBin 2.0 (Wu et 591 

al., 2016), assessed using CheckM v1.1.2 (Parks et al., 2015), and further scaffolded using 592 

SSPACE-LongRead v1.1 (Boetzer and Pirovano, 2014) and npScarf (Cao et al., 2017) by adding 593 

ONT long reads. The newly assembled scaffolds were binned again using the above pipeline. 594 

GapFiller v1.10 (Boetzer and Pirovano, 2012) and Gap2Seq v3.1 (Salmela et al., 2016) were 595 

used to fill the gaps in the binned endosymbiont genome. CheckM v1.1.2 (Parks et al., 2015) was 596 

used to estimate the completeness and potential contamination of the binned genome. Coding 597 

sequences (CDS) in the genome of the Alviniconcha endosymbiont were predicted and translated 598 

using Prodigal v2.6.3 (Hyatt et al., 2010). Gene function annotation of the predicted protein 599 

sequences followed the same pipeline as that described above for the host snail (Supplementary 600 

Note 5). The protein sequences were annotated based on GO, EggNOG, KEGG and Pfam 601 

databases. 602 

 603 

For the gut metagenome assembly, reads were trimmed and duplicates removed as described 604 

above. The host’s interference in the analysis of intestinal content was minimised by removing 605 

reads that were aligned with the host genome using Bowtie2 (Langmead and Salzberg, 2012) 606 

before the assembly. The remaining reads were assembled using metaSPAdes v3.13.1 607 

(Bankevich et al., 2012) with the same settings as above. The abundance and systematic 608 

classification of intestinal metagenomic microbial sequences were carried out using Kaiju 609 

(Menzel et al., 2016) (Supplementary Figure 3B and 6B). Network analysis of intestinal 610 

microbes was conducted based on their relative abundance. To reduce the complexity of the 611 

datasets, relative abundances higher than 0.01% were retained for the construction of the 612 

network. All pairwise Spearman’s rank correlations were calculated in the R package “picante”. 613 

Only robust (r>0.8 or r<-0.8) and statistically significant correlations (P<0.01) are shown in the 614 

network. Network visualisation and modular analysis were conducted in Gephi v0.9.2. Prodigal 615 

v2.6.3 (Hyatt et al., 2010) was used to predict and translate the coding sequences in the intestinal 616 

metagenome, and BLASTp was then used to align the candidate sequences with the NCBI NR 617 

protein database. The systematic assignment of each protein was imported to MEGAN v5.7.0 618 

(Huson et al., 2011) using the lowest common ancestor (LCA) method with the parameters of 619 
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Min Score 50, Max Expected 0.01, Top Percent 5, and LCA Percent 100. Based on the 620 

systematic results, the microbial protein sequences were selected for further gene functional 621 

analysis, following the gene annotation pipeline described above. Blast2GO® (Götz et al., 2008) 622 

and EggNOG mapper (Huerta-Cepas et al., 2017) were applied to assign GO and COG terms to 623 

the intestinal prokaryotic protein sequences. KAAS (Kanehisa and Goto, 2000) was used to 624 

annotate the KEGG meta-pathway of intestinal flora using the single-directional best hit (SBH) 625 

method. All the annotated information of intestinal flora was in Dataset S2; the potential function 626 

and interaction of gut microbiome were shown in Supplementary Note 6. 627 

 628 

Phylogenomic analysis and genomic comparison of the endosymbiont 629 

A total of 120 single-copy orthologous genes found in all genomes of nine Deltaproteobacteria 630 

(outgroup) and 111 campylobacterotal representatives by Proteinortho6 (Lechner et al., 2011) 631 

(BLAST threshold E = 1 × 10-10) were retained for phylogenomic analysis. Sequences of each 632 

orthologue were aligned using MUSCLE and trimmed using TrimAL (Capella-Gutiérrez et al., 633 

2009). The final alignment of each orthologue was concatenated with partition information for 634 

the phylogenetic analysis using RaxML v8.2.11 (Stamatakis et al., 2005) with the GTR + Γ 635 

model. The gill endosymbiont of the Wocan Alviniconcha marisindica was compared with the 636 

endosymbiont of Lamellibrachia tubeworm (Patra et al., 2016), the epibiont of the giant 637 

tubeworm Riftia pachyptila (Giovannelli et al., 2016), and two free-living Campylobacterota 638 

(Giovannelli et al., 2016; Nakagawa et al., 2007) from deep-sea hot vents (Table 1), which were 639 

clustered within the same clade (Figure 3). Whole-genome ANI of orthologous gene pairs shared 640 

between two microbial genomes was calculated using fastANI (Jain et al., 2018) with the default 641 

settings. A Venn web tool (http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to 642 

illustrate the shared and unique orthologous genes among the five Campylobacterota 643 

representatives (Figure 4b). Orthologous genes only present in the Wocan A. marisindica 644 

endosymbiont were classified as its unique genes. Orthologous genes that were present in all the 645 

other four reference genomes but not in the endosymbiont of Alviniconcha were classified as 646 

reduced genes (Supplementary Note 7). In addition, an HMM-based approach delta-bitscore 647 

(Wheeler et al., 2016) was used to identify loss-of-function mutations in shared orthologous 648 

genes of the five Campylobacterota (Dataset S3, Supplementary Note 7). 649 

 650 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.13.295170doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.13.295170
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

22

In addition to the above genomic comparisons, a total of 23 metagenome sequences were 651 

obtained from 13 Wocan A. marisindica snails. A genome binning method was used following 652 

the pipeline described in previous sections to assemble and extract another 22 endosymbiont 653 

genomes and the ANI among these 23 endosymbiont genomes was calculated (Jain et al., 2018) 654 

(Table 2 and Supplementary Note 8). The core genome shared across all 23 endosymbiont 655 

genomes was obtained using Proteinortho6 (Lechner et al., 2011) (BLAST threshold E = 1 × 10-656 
10). The pan genome including isolate-specific genes were also detected. In addition, we also 657 

captured genome-wide variation of endosymbionts by comparing variations present in two parts 658 

of the gills (anterior and posterior) in each snail individual, across multiple snails 659 

(Supplementary Note 8). Selecting from the above 23 genomes, SNPs among 20 endosymbiotic 660 

isolates of the anterior and posterior gills from 10 snail individuals were called by aligning clean 661 

high-quality Illumina reads from each gill sample with a complete reference genome using the 662 

novel high-accuracy pipeline BactSNP (Yoshimura et al., 2019), in a single step. Pseudo 663 

genomes of input isolates were obtained. For each isolate, all contigs in the pseudo genome were 664 

concatenated into one sequence and submitted to phylogeny analysis using RaxML v8.2.11 665 

(Stamatakis et al., 2005) under the GTR + CAT model.  666 

 667 

Quantification of gene expression level 668 

For host transcriptome sequencing data, the raw reads of each tissue were trimmed with 669 

Trimmomatic v0.39 (Bolger et al., 2014), the gene expression level in each tissue was expressed 670 

in transcripts per million (TPM) with Salmon (Patro et al., 2017), and the number of read counts 671 

for genes was also included in the quantification results. For meta-transcriptome sequencing data 672 

of the symbionts, the same pipeline was followed, with a Salmon index built for the transcripts of 673 

symbionts obtained and translated from their genome data. The trimmed reads were then 674 

quantified directly against this index and expressed in TPM using Salmon (Patro et al., 2017). In 675 

addition, using this quantification method, the gene expression levels of the gills were produced 676 

from two sets of RNA sequencing data of the gills (one is a meta-transcriptome dataset including 677 

both the host and symbionts, and the other is a eukaryotic transcriptome including only host 678 

transcripts). The consistency of gene expression levels for the gills from these two sets of 679 

sequencing data also confirmed the accuracy of our transcript-level quantification in the host and 680 

its symbionts.  681 
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 682 

Differentially expressed genes were determined by DESeq2 using the normalisation method of 683 

Loess, a minimum read count of 10, and a paired test (n = 5). A gene was considered specifically 684 

expressed in a particular tissue based on its expression levels compared across all other tissue 685 

types (paired-test method). Genes overexpressed with over twofold changes and false discovery 686 

rate (FDR) < 0.05 when compared with other tissue types were considered to be highly expressed 687 

(Dataset S4). WEGO (http://wego.genomics.org.cn/cgi-bin/wego/index.pl) was used to plot GO 688 

annotations of highly expressed genes in the different selected tissues. Statistically 689 

overrepresented GO terms in the different tissues were identified through topGO package in R 690 

session (Alexa and Rahnenführer, 2009). The GO enrichment network is visualised using the 691 

Cytoscape application (Shannon et al., 2003). Differentially expressed genes of different tissues 692 

were shown in Supplementary Note 9. 693 

 694 

Data availability 695 

All raw sequencing data generated in the present study are available from NCBI via the 696 

accession numbers SRR11781614–SRR11781681, and BioSample accessions SAMN14907812–697 

SAMN14907827. The data generated in the present study have been deposited in the NCBI 698 

database as BioProject PRJNA632343. All software commands used in the host genome 699 

assembly are given in the Supplementary Information. The assembled transcriptome, predicted 700 

transcripts, and proteins are openly available from Dryad (DOI: XXX). 701 
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Figure Legends 1172 

Figure 1. Genomic comparisons and gene family analyses across Lophotrochozoa. (A) 1173 

Genome-based phylogeny of selected taxa showing the position of Alviniconcha marisindica 1174 

among lophotrochozoans and divergence times among molluscan lineages. Error bars indicate 95% 1175 

confidence levels. (B) Venn diagram depicting unique and shared gene families among four 1176 

lophotrochozoan genomes. 1177 

 1178 

Figure 2. Gill endosymbionts and intestinal microbiome of Alviniconcha marisindica from 1179 

the Wocan vent field. (A) Circle diagram showing an overview of genome information of the 1180 

binned endosymbiont based on COG annotation. (B) Correlation-based network of intestinal 1181 

bacteria genera (relative abundance ≥ 0.5%) from three A. marisindica individuals. The network 1182 

analysis displays the intra-associations within each sub-community and inter-associations 1183 

between sub-communities. Node size is proportional to the number of connections (i.e. degree of 1184 

connectivity). Connection between nodes represents strong (Spearman correlation 1185 

efficiency >0.8 (yellow) or <-0.8 (blue)) and significant (p-value <0.01) correlation. The same 1186 

colour of nodes shows their highly modularised (clustered) property within the network. 1187 

 1188 

Figure 3. Genome-based phylogeny of campylobacterotal representatives. The position of 1189 

the Alviniconcha marisindica endosymbiont among Campylobacterota belongs to the family 1190 

Sulfurovaceae and marked in red. Nine deltaproteobacterial species are used to root the tree. 1191 

Different lifestyles of the selected taxa are indicated by squares of different colours (purple: free-1192 

living, red: endosymbiont, yellow: epibiont, and green: pathogen/other). The right histogram 1193 

indicates the size of each genome. The colour of a column represents the size range (grey: >2.0 1194 

Mb, dark blue: <2.0 and ≥1.5 Mb, red: <1.5 Mb). The line chart in orange indicates the number 1195 

of coding sequences (CDS) of each genome. Circles of different colours are used to indicate 1196 

different ranges of GC content in % (red: ≥38.0, yellow: ≥33.0 and <38.0, green: ≥28.0 and 1197 

<33.0, black: <28.0). The genome size of the A. marisindica endosymbiont is the smallest among 1198 

whole genomes within the phylum, and its GC content is slightly lower than those of the four 1199 

closest relatives in the same clade. 1200 
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Figure 4. Genomic comparisons and gene family analyses of the Wocan Alviniconcha 1202 

marisindica endosymbiont and four closely related members of Campylobacterota. (A) The 1203 

loss-of-function genes of the A. marisindica endosymbiont shown in different COG categories 1204 

obtained via pairwise comparison with genomes of the other four Campylobacterota members. 1205 

The histogram on the left presents the result of comparing the A. marisindica endosymbiont with 1206 

the other four campylobacterotal bacteria. The A. marisindica endosymbiont has significantly 1207 

fewer mutated genes than do the references. (B) Venn diagram depicting unique and shared gene 1208 

families among the five campylobacterotal genomes. (C) SNP-based phylogeny on the whole-1209 

genome level of 20 endosymbiotic isolates from 10 A. marisindica individuals showing the inter- 1210 

and intra-individual relationships of A. marisindica endosymbionts. The genomic ANIs among 1211 

these 20 isolates obtained via pairwise comparisons are shown in the heat map. The number in 1212 

the name of each isolate represents the host individual, and the capital A and B represent the 1213 

anterior and posterior parts of the gills, respectively. 1214 

 1215 

Figure 5. Overview of metabolic pathways of the Alviniconcha marisindica holobiont from 1216 

the Wocan vent field. Metabolic pathways of different organisms including the gill 1217 

endosymbiont, intestinal microbiome, and the A. marisindica host are presented in different 1218 

colours (blue: gill endosymbiont, red: A. marisindica host, orange: intestinal microbiome, and 1219 

grey: missing genes/pathways). Similarly, metabolites from different sources are also shown in 1220 

different colours (blue: from gill endosymbiont, red: from A. marisindica itself, and orange: from 1221 

intestinal food or microbiome). The compensation mechanism is revealed by the host’s 1222 

collaborating with its symbionts to synthesise nutrients or their mutually using important 1223 

metabolic intermediates. The combination of endogenous and exogenous energy sources is 1224 

shown here to explain the adaptive mechanism of the entire A. marisindica holobiont. 1225 

 1226 

Figure 6. Symbiosis constraints of the Alviniconcha marisindica holobiont. (A) Heat map of 1227 

the transcriptional activity of genes involved in host innate immunity in the foot, neck, mantle, 1228 

intestine, and gill tissues showing distinct immune-expression profiles regulated by the two types 1229 

of symbionts in the A. marisindica snail. Each grid in the heat map represents an identified gene. 1230 

The colour represents the gene expression level (based on normalised TPM values of the selected 1231 

tissues). The annotated gene names and their functional classifications are listed on the top side. 1232 
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(B) Symbiosis model of the A. marisindica holobiont with two different symbiotic constraints 1233 

and interactions with the external environment. All pattern recognition receptors (PRRs) and 1234 

pathogen-associated molecular patterns (PAMPs) shown here are identified from the genome and 1235 

transcriptome data. SLPs, surface layer proteins; LPS, lipopolysaccharide; CPS, capsular 1236 

polysaccharides; SIAE, sialate O-acetylesterase; PGRPs, peptidoglycan recognition proteins; 1237 

TLRs, toll-like receptors; C1q, complement component 1q; T2SS, type II secretion system. 1238 

  1239 
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Table 1. Comparison of general genomic features of Sulfurovum alviniconcha CR and references. 1240 

Name Lamellibrachia 
satsuma 

Sulfurovum 
lithotrophicum Sulfurovum riftiae Sulfurovum sp. 

NBC37-1 
Sulfurovum 
alviniconcha CR 

INSDC JQIX00000000.1 CP011308.1 LNKT00000000.1 AP009179.1 — 

Size (Mb) 2.00 2.22 2.37 2.56 1.47 

GC (%) 39.7 44.3 45.6 43.9 37.1 

Protein 1,852 2,148 2,317 2,481 1,386 

tRNA 37 44 45 44 40 

Gene 2,019 2,227 2,432 2,583 1,429 

Percentage 

coding (%) 
91.7 96.5 95.3 96.1 97.0 

Pseudogene 126 23 62 46 — 

Habitat Trophosome Sediments Tube Sulfide mound Gills 

Depth (m) ~112 1,033 2,500 1,000 2,919 

Genome data — Sulfurovum alviniconcha CR: this study; the endosymbiont of Lamellibrachia 1241 

satsuma: Patra AK et al., 2016; Sulfurovum lithotrophicum: Inagaki F et al., 2004; Sulfurovum 1242 

riftiae: Giovanneli et al., 2016; Sulfurovum sp. NBC37-1: Nakagawa et al., 2007. 1243 
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Table 2. General genomic features of the binned endosymbionts of Alviniconcha marisindica 1245 

extracted from 23 metagenome datasets of gill filaments.  1246 

Individual 
Sample 
No. Gill part 

Genome 
size (Mb) 

Contig 
No. 

GC 
(%) CDS 

Completeness 
(%) 

Contamination
(%) 

38I-DV129-2 1 random 1.47 2 37.09 1,386 98.16 0.82 

38I-DV129-3 2 random 1.31 153 37.49 1,396 96.11 3.89 

38I-DV129-16 3 random 1.33 77 37.41 1,384 96.31 1.43 

38I-DV129-14-1 
4-B posterior 1.76 298 37.77 1,734 99.18 2.25 

4-A anterior 1.75 291 37.49 1,745 99.18 2.66 

38I-DV129-14-2 
5-B posterior 1.55 126 37.71 1,524 98.36 2.05 

5-A anterior 1.85 257 37.44 1,816 99.59 3.69 

38I-DV129-19-1 
6-B posterior 1.75 306 37.82 1,722 99.18 1.30 

6-A anterior 1.39 62 37.25 1,394 98.77 1.43 

38I-DV129-19-2 
7-B posterior 1.72 149 37.66 1,676 99.18 1.23 

7-A anterior 1.76 288 37.67 1,759 98.77 0.82 

38I-DV129-20 
8-B posterior 1.55 172 37.92 1,525 97.95 2.46 

8-A anterior 1.60 207 37.64 1,612 98.57 2.87 

38I-DV131-1 
9-B posterior 1.46 176 37.79 1,493 98.36 1.23 

9-A anterior 1.58 143 37.76 1,540 97.95 2.05 

38I-DV131-3 
10-B posterior 1.43 134 37.59 1,445 97.95 2.05 

10-A anterior 1.55 138 37.77 1,528 98.77 2.05 

38I-DV131-8 
11-B posterior 1.45 109 37.45 1,541 97.54 2.46 

11-A anterior 1.53 117 37.83 1,484 98.77 1.64 

38I-DV131-9-1 
12-B posterior 1.38 59 37.25 1,409 97.95 0.61 

12-A anterior 1.55 143 38.00 1,499 97.13 1.23 

38I-DV131-9-2 
13-B posterior 1.39 68 37.81 1,430 98.16 1.02 

13-A anterior 1.43 154 37.31 1,438 97.54 2.25 
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Figure 1. 1249 
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Figure 2. 1251 
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 1252 

Figure 3. 1253 
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Figure 4. 1255 
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Figure 5. 1257 
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Figure 6. 1259 
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