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Abstract 
 
Purpose 
 
Diffusion weighted MRI imaging (DWI) is often subject to low signal-to-noise ratios (SNRs) and artifacts. 
Recent work has produced software tools that can each correct an individual problem, but these tools have 
not been combined with each other or with quality assurance (QA). Thus, a single integrated pipeline is 
proposed to perform DWI preprocessing and tensor fitting with a spectrum of tools and produce an 
intuitive QA document. 
 
Methods 
 
The proposed pipeline is built around the FSL, MRTrix3, and ANTs software packages to perform DWI 
denoising; inter-scan intensity normalization; susceptibility-, eddy current-, and motion-induced artifact 
correction; slice-wise signal drop-out imputation; and tensor fitting. For QA, each operation is visualized 
alongside qualitative analyses, gradient and fractional anisotropy verifications, and a tensor goodness-of-
fit analysis.  
 
Results 
 
Raw DWI data were preprocessed and quality checked with the proposed pipeline and demonstrated 
improved SNRs; physiologic intensity ratios; corrected susceptibility-, eddy current-, and motion-induced 
artifacts; imputed signal-lost slices; and improved tensor fits. The pipeline identified incorrect gradient 
configurations and file-type conversion errors and was shown to be effective on externally available 
datasets.  
 
Conclusion 
 
The proposed pipeline is a single integrated pipeline that combines established diffusion preprocessing 
tools from major MRI-focused software packages with intuitive QA. 
 
Keywords 
 
diffusion weighted imaging, DTI, preprocessing, denoising, distortion correction, quality assurance 
 
Introduction 
 
Diffusion weighted MRI imaging (DWI) is a powerful and noninvasive way of ascertaining the 
microstructural makeup of the brain (1). It forms the basis for many neurological studies including those 
investigating autism (2,3), aging (4,5), multiple sclerosis (6,7), and schizophrenia (8,9). It also forms the 
basis for studies of the structural human connectome (10) and has been increasingly used in context of 
neurosurgical planning and outcomes (11–14). 
 
However, DWI images are often subject to low signal-to-noise ratios (SNRs) and a multitude of artifacts 
(15). The echo planar imaging acquisitions normally used to acquire DWI images can result in 
susceptibility-induced and eddy current-induced distortions as well as slice-wise signal drop-out (16). 
Imaging the brain repeatedly to acquire volumes along different gradient directions can result in long 
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acquisition times and increased subject movement. This can cause significant inter-volume motion 
artifacts (16). Acquisitions with “prescan” turned on can result in different gain settings within a session. 
This can cause the intensity distributions of DWI scans to violate their expected physical relationships. 
Intensity distributions of the same shell should be roughly equivalent and those of larger shells should be 
lower in intensity than those of smaller shells (15). 
 
DWI image file formats present an additional opportunity for data corruption because they must store 
gradient configurations (b-values and b-vectors) in addition to voxel-wise intensities and coordinate space 
transformations. The scanner-based DICOM file format stores gradient information in the file header, but 
the processing-based NIFTI file format cannot. Thus, NIFTI files require separate “bval” and “bvec” text 
files to store this information. Converting DICOMs to NIFTIs can corrupt the data (17). For instance, 
some converters will reorder the volumes by shell or b-value while others do not. This can result in a 
mismatch between the NIFTI volumes and the gradients in the “bval” and “bvec” text files if the latter are 
not also reordered.  
 
Fortunately, previous work in the field has resulted in many powerful tools across many software packages 
that can help correct these issues. MRTrix3’s dwidenoise performs Marchenko-Pastur PCA denoising on 
DWI images which has been shown to significantly improve the quality of subsequent analyses (18–20). 
FSL’s topup corrects susceptibility-induced distortions (21,22). The Synb0-DisCo deep learning 
framework creates a synthetic b = 0 s/mm2 volume of infinite bandwidth from T1 images. This volume 
can be used with topup when the typically necessary forward and reverse, or “blip-up and blip-down”, 
phase encoded DWI images are not otherwise available (23). FSL’s eddy corrects eddy current-induced 
distortions and motion artifacts and imputes slices with signal drop-out (24,25). Eddy also rotates gradients 
to better align them with DWI signals. Last, MRTrix3’s dwigradcheck determines the optimal DWI 
gradient configuration, defined as the gradient axis order and sign permutation that yields the highest 
average whole-brain streamline length (26).  
 
As currently implemented, these tools exist in separate software packages and to date have not been 
integrated into one single DWI preprocessing pipeline. Additionally, there are only a few dedicated tools 
designed to perform intuitive quality assurance (QA) on the preprocessing operations and integrity of the 
data as a whole. One such QA pipeline, built by Lauzon et al. in 2013, analyzes the quality of DWI data 
and details the results in an intuitive document for user review. However, it was designed prior to the 
release of many of these preprocessing tools and thus does not perform extensive distortion correction 
(27). Another pipeline, DTIPrep, does not integrate susceptibility-induced distortion correction into its 
QA process and requires users learn to use its custom QA software in order to understand its results (28). 
Last, FSL's eddyqc performs QA on eddy (29) and details the results in an output document, but does not 
provide integration with or QA of other tools. Thus, herein we propose PreQual, a single pipeline designed 
to fill this gap. In summary, we leverage these powerful software tools from a variety of packages and 
combine them to produce preprocessed DWI and diffusion tensor imaging (DTI) outputs ready for further 
analysis. In addition, we produce a QA report that details the efficacy of each preprocessing step and 
supplies high-level QA on the final preprocessed data output by the pipeline. 
 
Methods 
 
We built PreQual around the MRTrix3 (30), FSL (31), and ANTs (32) software packages, MRI-focused 
tools popular in the field, in order to perform integrated preprocessing, artifact correction, and intuitive 
QA (Figure 1).  
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Figure 1. Overview of the PreQual pipeline and QA document. The pipeline takes as input raw DWI data, denoises them, 
normalizes their intensities, concatenates them, and corrects for artifacts. If no complementary (i.e., forward and reverse) phase 
encoded images are supplied, PreQual uses Synb0-DisCo to perform susceptibility-induced distortion correction. The pipeline 
fits the preprocessed DWI data to a tensor to produce a DTI output. QA checks on each preprocessing step and high-level QA 
checks on the final outputs of the pipeline are then performed. These results are presented in a QA report. All preprocessing 
steps except for distortion correction and tensor fitting are optional and can be turned off per user preference. 
 
Raw DWI Inputs 
 
We take a series of raw DWI images as input into the pipeline along with a phase encoding axis and a 
configuration file. We envision the input images to be from the same acquisition session, phase encoded 
along the same axis. We define the axis as the image dimension along which phase encoding occurred. In 
the configuration file, we require the user to input the directions along the axis in which the images were 
encoded and their corresponding readout times. The phase encoding schemes of each image (i.e., axis, 
direction, and readout time) are required for susceptibility-induced distortion correction with FSL’s topup 
(21,22).  
 
We note that the supplied phase encoding axis of the inputs may not always correctly correspond to the 
expected anatomical axis. For instance, DWI images phase encoded along the anterior to posterior axis 
and oriented radiologically (right-anterior-superior) or neurologically (left-anterior-superior) would be 
encoded along the second dimension. Yet, if the image is oriented differently and anterior to posterior 
phase encoding is expected, the user may need to indicate a different dimension for the phase encoding 
axis. Thus, for QA, we check that the supplied axis and direction for each image translates to the expected 
anatomical axis and direction using each image’s coordinate transformation. We visualize triplanar slices 
of the raw data alongside these interpretations for users to verify the presence of susceptibility-induced 
distortions along the anatomical axes (Supplementary Figure 1). 
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Denoising 
 
We individually denoise each input image using the Marchenko-Pastur PCA technique as implemented in 
MRTrix3 (18–20). For QA, we calculate the median intra-brain voxel-wise SNR for the non-diffusion 
weighted b = 0 s/mm2 volumes (Supplementary Figure 7). We define SNR in alignment with FSL’s eddy, 
as 𝜇!"#$%/𝜎!"#$% or the mean voxel-wise intensity divided by its standard deviation. When only one b = 0 
s/mm2 volume is available, we report the SNR as “Not a Number”. 
 
Normalization 
 
We correct the denoised input images for inter-scan gain differences. To achieve this, for the 𝑘th input 
image, we take the average b = 0 s/mm2 volume, 𝑉&, and mask the result with FSL’s brain extraction tool 
(bet) (33). We then determine a multiplicative scale factor, 𝑠&, such that the histogram intersection, 𝐼, 
between the intra-mask intensity histogram, ℎ, of 𝑉& scaled by 𝑠& and that of the first image is maximized. 
When 𝑘 = 1, 𝑠' = 1. When 𝑘 > 1, we calculate 𝑠& by performing optimization on the negated problem 
(Eq. 1) with the downhill simplex algorithm with 10 initial guesses evenly spaced between 0.5 and 1.5 
(34). 
 

 𝑠& = argmin
(!

−𝐼3ℎ(𝑠&𝑉&), ℎ(𝑉')7 (1) 

 
During each iteration of the algorithm, we calculate the histograms ℎ(𝑠&𝑉&) and ℎ(𝑉') with 100 bins from 
𝑎 to 𝑏 where 𝑎 = min(𝑉', 𝑠&𝑉&), the minimum intra-mask intensity between the two average b = 0 s/mm2 
volumes, and 𝑏 is the corresponding maximum. To complete normalization, we intensity-scale all 
volumes, diffusion-weighted or otherwise, of the 𝑘th image by 𝑠& for all 𝑘. For QA, we report the 
calculated scale factors and plot of the average b = 0 s/mm2 intensity histograms of each image before and 
after normalization (Supplementary Figure 2). 
 
Artifact Correction 
 
Following normalization, we concatenate the images and perform artifact correction. First, we correct 
susceptibility-induced distortions using FSL’s topup tool (21,22). We generate the topup acquisition 
parameters file using the input phase encoding schemes provided and then run topup on all the b = 0 s/mm2 
volumes from all input scans. Typically, topup requires complementary (i.e., both forward and reverse or 
“blip-up” and “blip-down”) phase encoded images. In the event that the user does not supply 
complementary images, we use Synb0-DisCo to create a susceptibility-corrected synthetic b = 0 s/mm2 
volume of infinite bandwidth for topup instead (23). When we run Synb0-DisCo, we require that the user 
input a T1 image of the same subject into the pipeline, and we visualize triplanar views of the T1 and 
synthetic b = 0 s/mm2 volume in the output QA document (Supplementary Figure 3). 
 
Following topup, we use FSL’s eddy with a brain mask estimated by bet on the averaged topup output to 
correct for eddy current-induced distortions, inter-volume motion, and slice-wise signal drop-out (24,25). 
During this process, eddy also performs rotation of the gradients to best suit the DWI signals and is 
configured to estimate the voxel-wise SNR across b = 0 s/mm2 volumes and contrast-to-noise ratio (CNR) 
for each diffusion-weighted shell. Eddy defines SNR as 𝜇!"#$%/𝜎!"#$%, or the mean voxel-wise value 
divided by its standard deviation. Eddy defines CNR as 𝜎)*/𝜎+$(,-./%, or the voxel-wise standard 
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deviation of the Gaussian process predicted by eddy divided by that of the residuals. A final brain mask is 
calculated with bet (33). This results in the pipeline’s final preprocessed DWI data. 
 
For QA of the artifact correction steps, we take a combined quantitative and qualitative approach. First, 
we use the final mask to calculate the median intra-mask SNR for b = 0 s/mm2 volumes and CNR for each 
diffusion weighted shell. We display these ratios alongside five central triplanar slices of each 
corresponding shell-wise averaged preprocessed volume (Supplementary Figure 7). This provides a 
quantitative metric for SNR for the denoising step as well as qualitative verification of artifact correction. 
In addition, we plot the eddy-calculated inter-volume rotation, translation, and displacement alongside a 
plot indicating the slices eddy imputed due to signal drop-out (Supplementary Figure 5). 
 
Tensor Fitting 
 
We fit the preprocessed DWI volumes to a tensor model using an iterative reweighted least-squares 
estimator as implemented in MRTrix3 (35). This produces the final preprocessed DTI output of the 
pipeline (36). We convert the DTI output to fractional anisotropy (FA) and mean diffusivity (MD) scalar 
maps (37). For QA, we visualize the tensor glyphs (Supplementary Figure 8) as rendered in MRTrix3 (38) 
and five central triplanar slices of the FA and MD maps in the output document (Supplementary Figure 
9).  
 
Gradient Analysis 
 
To determine whether the DWI gradient directions are properly oriented, we calculate the optimal 
permutation of the preprocessed DWI gradient directions output by eddy. We define optimality as it is 
defined in MRTrix3: the permutation of gradient sign and axis order that produces the highest average 
whole-brain streamline length (26). We plot the optimal preprocessed gradient permutation, the 
preprocessed gradient directions as output by eddy, and the original input gradient directions 
(Supplementary Figure 6) in the output QA document. We also visualize triplanar slices of the tensor 
glyphs (Supplementary Figure 8). We expect properly oriented gradients to be identifiable with this 
visualization, as the preprocessed and optimal gradients would overlap and produce physiologically 
oriented tensors.  
 
Fractional Anisotropy Analysis 
 
As a quality check on the preprocessed DTI data, we calculate the average FA value for all 48 white matter 
regions of interest (ROIs) defined by the Johns Hopkins ICBM DTI 81 white matter atlas (39–41). We 
deformably register the atlas to the subject’s FA image space using the ANTs software package (42) to 
isolate each region and its average FA value. For QA, we plot these values along with an overlay of the 
atlas on the subject’s FA map. The former allows users to verify FA congruence with expected physiologic 
values, and the latter allows users to check the registration process (Supplementary Figure 10). 
 
Chi-Squared Analysis 
 
To measure the goodness-of-fit of the tensor model, we perform a modified pixel-wise chi-squared 
analysis as described by Lauzon et al. on the preprocessed DTI data (27). We constrain this analysis to the 
brain parenchyma in order to avoid analyzing tensors fit to background or CSF that would produce invalid 
chi-squared values. To mask the parenchyma, we erode the final mask calculated on the preprocessed 
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DWI data with a radius of one pixel and remove the CSF. To identify the CSF, we calculate a CSF mask 
for each shell-wise averaged volume of the preprocessed DWI data with FSL’s fast tool (43). We then 
generate an overall CSF probability mask by performing a voxel-wise average across shells and setting a 
threshold at 15%. For each slice in each volume, we divide the intra-parenchyma sum squared error of 
tensor fit by the sum squared intensity of the slice to calculate the goodness-of-fit (27). For QA, we 
visualize the chi-squared values in the QA document (Supplementary Figure 5).  
 
Mask Quality Assurance 
 
In order to quality check the mask used for eddy, the final preprocessed mask used for median SNR and 
CNR calculation, and the parenchyma mask used for the chi-squared analysis, we plot their contours. 
Specifically, we overlay them on triplanar views of the first b = 0 s/mm2 volume of each raw input image 
and that of the preprocessed DWI output (Supplementary Figure 4). 
 
Study Overview 
 
We evaluate the efficacy of each pipeline stage by running the pipeline on one of two DWI datasets 
acquired on a Phillips 3T scanner at Vanderbilt University. The first dataset, Dataset A, was taken from 
one subject scanned repeatedly on the same scanner over the course of three sessions, one session each 
consecutive day. Each session consisted of 6 sets of scans. Each set of scans consisted of one 3-direction 
b = 1000 s/mm2 image phase encoded in the anterior to posterior direction (APA), one 96-direction b = 
1000 s/mm2 image phase encoded in the posterior to anterior direction (APP), one 96-direction b = 1500 
s/mm2 APP image, one 96-direction b = 2000 s/mm2 APP image, one 96-direction b = 2500 s/mm2 APP 
image, and one 96-direction b = 3000 s/mm2 APP image. The second dataset, Dataset B, was taken from 
another subject scanned once. It consists of a 6-direction b = 1000 s/mm2 APA image and one 60-direction 
b = 2000 s/mm2 APP image. All images were deidentified and all scans were acquired only after informed 
consent under supervision of the project Institutional Review Board.  
 
To study the denoising step, we calculate changes in SNR of the preprocessed DWI data with and without 
denoising. To study the normalization step, we introduce artificial inter-scan gain differences and observe 
how the pipeline corrects them. To study the artifact correction step, we qualitatively visualize 
representative volumes that display the DWI data before and after artifact correction. To study the gradient 
analysis, we improperly orient the input gradients by negating them in the second dimension and visualize 
how the pipeline identifies this error. To study one use case of the FA analysis, we corrupt the input DWI 
data by shuffling the order of the image volumes without shuffling their corresponding gradients to 
simulate failed file-type conversion and observe how the pipeline identifies this error. To study the chi-
squared analysis, we perform the same tensor fit on the raw input data as is performed on the DWI outputs 
and measure the differences in goodness-of-fit. 
 
In addition, we study the generalizability of PreQual by running it on one imaging session from each of 
three externally available datasets: the Human Connectome Project (HCP) Lifespan cohort (44), the 
Autism Brain Imaging Data Exchange (ABIDE) II (2), and the Baltimore Longitudinal Study of Aging 
(BLSA) (45,46). Last, we quantify the runtime of PreQual on three different configurations of Dataset B. 
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Results 
 
Denoising 
 
To study the impact of the denoising step, we ran PreQual on each session of Dataset A and combined the 
results for analysis. We calculated the median intra-mask pixel-wise SNR for each shell and display them 
in Figure 2. Qualitative visualization showed improved SNR for each diffusion weighted shell which were 
each shown to be statistically significant at p < 0.001 (Wilcoxon signed rank test).  
 

 
Figure 2. PreQual improves the signal-to-noise ratio (SNR) of diffusion images. (a) The shell-wise SNR for all diffusion 
weighted shells increased in the preprocessed DWI outputs of PreQual following Marchenko-Pastur PCA denoising of the 
input data as implemented in MRTrix3 compared to preprocessing without denoising (Wilcoxon signed rank test, p < 0.001). 
(b) Visualization of representative volumes at shells b = 1500 s/mm2 and b = 3000 s/mm2 with gradient direction x = 0.002, y 
= 0.005, and z = 0.999 (best modeled as a unit vector going into the page as shown with the blue fletching) illustrates 
qualitatively improved SNR. 
 
Normalization 
 
To study the efficacy of the normalization step, we ran PreQual on Dataset B while simulating inter-scan 
gain changes. When different images have the same gain settings, we expect intensity distributions of 
larger shells to be lower than those of smaller shells and those of the same shell to be roughly equivalent 
(15). We use each volume’s median intra-mask intensity as a representative measure for its intensity 
distribution, and we intentionally violate both of these expectations by multiplying the b = 2000 s/mm2 
image of Dataset B by four. This caused the median intensities of the b = 2000 s/mm2 volumes to be higher 
than those of the b = 1000 s/mm2 volumes (Figure 3b). It also caused the median intensities of the b = 0 
s/mm2 volumes to be different from each other (Figure 3a). We show that the expected relationships return 
after normalization with PreQual (Figures 3c and 3d). 
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Figure 3. PreQual corrects physically impractical shell-wise intensity values in simulation. Two DWI images of the same 
session were used as input for this simulation. DWI 1 was a 6-direction b = 1000 s/mm2 image with an associated b = 0 s/mm2 
volume, and DWI 2 was a 60-direction b = 2000 s/mm2 image with an associated b = 0 s/mm2 volume (only the first 6 volumes 
are shown for simplicity). DWI 2 was corrupted via global intensity-scaling by a factor of 4, emulating gain changes between 
scans of the same session. This resulted in physically impractical inter-shell intensity relationships. (a) Scans of the same shell 
(or b-value) are expected to have roughly the same intensity distributions, a phenomenon which is violated here in simulation. 
The b = 0 s/mm2 volumes are expected to have roughly the same median intensity. (b) Shell size and intensity are inversely 
related which is violated here in simulation. The b = 2000 s/mm2 volumes are expected to have lower median intensity than the 
b = 1000 s/mm2 volumes. (c and d) The expected phenomena are observed after normalization with PreQual. 
 
Artifact Correction 
 
To study the effectiveness of susceptibility-, eddy current-, and motion-induced distortion correction and 
slice-wise signal drop-out imputation by PreQual, we ran the pipeline on both Datasets A and B and 
visualized representative inputs and outputs of each operation (Figures 4a, 4c, 4d, and 4e). We also ran 
PreQual on Dataset B with the b = 1000 s/mm2 APA image omitted, thus destroying the necessary 
complementary phase encoded pair for topup and triggering Synb0-DisCo to run. We visualized the inputs 
and outputs of this operation as well (Figure 4b).  Qualitative visualization demonstrated cases where 
artifact correction was needed as well as the improvement of the data with PreQual. 
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Figure 4. PreQual performs artifact correction. (a) Susceptibility-induced distortions are corrected using FSL’s topup in 
conjunction with input complementary (i.e., forward and reverse) phase encoded images. An example of this distortion before 
and after correction with topup is shown in the red and blue bounding boxes, respectively. (b) If no complementary phase 
encoded images are available, PreQual uses Synb0-DisCo to generate a synthetic distortion-free b = 0 s/mm2 volume from a 
distorted one and a T1 image. The synthetic volume is used with topup to correct the image as a whole. The bounding boxes 
highlight an example of how Synb0-DisCo generates distortion-free regions (blue) by using distorted b = 0 s/mm2 information 
(red) and distortion-free T1 information (white). (c) Eddy current-induced inter-volume geometric distortions as highlighted 
between raw volumes 1 and 2 (red) are corrected with FSL’s eddy as shown between corrected volumes 1 and 2 (blue). (d) 
FSL’s eddy estimates and corrects for inter-volume motion. An example output in the PreQual QA report detailing this 
movement is shown. The overall average movement across volumes is shown in the legend parentheses. For displacement, 
legend entry “Abs.” is short for absolute, and “Rel.” is short for relative. (e) Eddy identifies slice-wise signal drop-out and 
imputes lost slices accordingly. An example output plot in the PreQual report details the affected slices. The corresponding raw 
volume with drop-out slices is shown highlighted in red and the imputed output of eddy is shown highlighted in blue. Note that 
the imputation improves data quality, but that the overall process is still quite motion-sensitive, explaining some of the 
remaining artifacts. 
 
Gradient Analysis 
 
We ran PreQual on Dataset B in two configurations. In the first configuration, the data were not corrupted. 
In the second, all gradients were negated in the second dimension. We visualize the resultant tensor glyphs 
in the splenium of the corpus callosum for both cases and show them to be oriented in physiologically 
probable and improbable orientations, respectively. We also visualize the optimal gradient tables as 
determined by PreQual for both cases and show them to be overlapping and non-overlapping with those 
output in the preprocessed DWI data, respectively. These two visualizations together allow us to correctly 
identify the case with improperly oriented gradients (Figure 5). 
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Figure 5. PreQual identifies improperly oriented gradient tables in simulation. The left side of the figure displays expected 
phenomenon. The optimal gradient configurations are identical to those in the preprocessed DWI output of PreQual. The unit 
gradient vectors are overlapping, and the tensors calculated from the preprocessed gradients are oriented in a physiologically 
probable manner, as shown in an axial slice through the splenium of the corpus callosum. The right side of the figure displays 
the identification of improperly oriented gradients. The preprocessed gradients do not overlap with the optimal ones and the 
tensor glyphs are oriented along the corpus callosum in a physiologically improbable manner. The raw input gradients are 
shown here to match what is reported in the QA report such that users can visualize rotational optimization made to input 
gradients during preprocessing. 
 
Fractional Anisotropy Analysis 
 
To demonstrate one use case for the FA analysis, we simulated a failed file-type conversion that led to the 
mismatch between image volumes and gradient tables. We took the b = 0 s/mm2 volume acquired at the 
beginning of the b = 2000 s/mm2 APP scan of Dataset B out of its original position and placed in the 
middle of the sequence without reordering the corresponding gradients. We demonstrate that the average 
ROI-based FA exhibit an entirely different cross-region profile with this volume-to-gradient mismatch 
than without (Figure 6a). This is supported by qualitative visualization of the FA maps (Figure 6b) and 
together result in the identification of faulty file-type conversions. 
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Figure 6. PreQual identifies simulated faulty file-type conversions that lead to volume-to-gradient mismatch. Volume-to-
gradient mismatch was achieved by shuffling b = 0 s/mm2 volumes out of their original position in the DWI sequence without 
corresponding shuffling of gradient information. (a) The average FAs by white matter region are higher across all regions and 
exhibit an identifiably different cross-region profile with volume-to-gradient mismatch. (b) Qualitative examination of FA 
maps with and without mismatch provides additional verification.  
 
Chi-Squared Analysis 
 
We show a chi-squared goodness-of-fit analysis in Figure 7. We performed the analysis on Dataset B and 
measured the chi-squared values calculated on the raw images and on those processed with PreQual. Since 
chi-squared is a measurement of error, the lower values in the data processed with PreQual suggest 
improved tensor fitting of the data. This improvement was shown to be statistically significant at p < 0.001 
(Wilcoxon signed rank test).  
 

 
Figure 7. PreQual improves tensor fitting of diffusion weighted images. (a) The modified pixel chi-squared for a multi-shell 
acquisition with and without PreQual applied are presented per slice per volume. (b) The distributions of the chi-squared values 
in (a) are presented and demonstrate improved goodness-of-fit with statistical significance (Wilcoxon signed rank test, p < 
0.001). 
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External Verification 
 
We ran the pipeline on one imaging session from each of three externally available datasets, as shown in 
Figure 8, to demonstrate the generalizability of PreQual. We show visually apparent susceptibility-
induced distortions corrected in the HCP Lifespan (44) image, slice-wise signal drop-out imputed in the 
ABIDE II (2) image, and improperly oriented gradients identified in the BLSA (45,46) image, as have 
been previously found to exist in some uncorrected BLSA scans (47). The full QA documents generated 
by PreQual corresponding to these three datasets are available in the supplement. 
 

 
Figure 8. PreQual performs artifact correction and error identification on three externally available datasets. (a) For an HCP 
Lifespan image, PreQual corrected visually apparent susceptibility-induced distortions. The red and blue bounding boxes 
highlight corresponding regions before and after preprocessing by PreQual, respectively. (b) For an ABIDE II image, PreQual 
identified and corrected visually apparent slice-wise signal drop out. The red and blue bounding boxes highlight corresponding 
slices before and after preprocessing by PreQual, respectively. (c) For an uncorrected BLSA image, PreQual correctly identified 
improperly oriented gradients as have been previously documented and repaired (47) via visualization of preprocessed gradients 
against optimal ones and visualization of tensor glyphs.  
 
Typical Runtimes 
 
We quantified the runtime of PreQual on three different configurations of Dataset B (Table 1). 
 
Table 1. Typical runtimes of PreQual on three different configurations of Dataset B. 

Input Images Susceptibility-induced Distortion Correction Runtime 

• 60-direction b = 2000 s/mm2 APP None 18m 12s 

• 60-direction b = 2000 s/mm2 APP  
• T1 weighted  With a synthetic b = 0 s/mm2 volume 58m 47s 

• 60-direction b = 2000 s/mm2 APP 
• 6-direction b = 1000 s/mm2 APA   With a reverse phase encoded b = 0 s/mm2 volume 48m 30s 
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First, we ran the pipeline without susceptibility-induced distortion correction on only the 60-direction b = 
2000 s/mm2 APP image and its associated b = 0 s/mm2 volume. Second, we ran it with susceptibility-
induced distortion correction informed by Synb0-DisCo on the same image and a T1 weighted image. 
Last, we ran it with traditional susceptibility-induced distortion correction on the 6-direction b = 1000 
s/mm2 APA image, the 60-direction b = 2000 s/mm2 APP image, and their associated b = 0 s/mm2 
volumes. We measured the runtimes to be 18 minutes and 12 seconds, 58 minutes and 47 seconds, and 48 
minutes and 30 seconds, respectively. Processing was performed on a desktop computer running 64-bit 
Ubuntu 18.04 with 24 GB RAM and a 4-core 3.5 GHz Intel(R) Xeon(R) E5 processor with multithreading. 
We find that under these conditions, the susceptibility-induced distortion correction step with FSL’s topup 
was the most time-demanding step. 
 
Discussion and Conclusions 
 
Here, we present PreQual, a single integrated pipeline for DWI preprocessing and QA. We show that by 
leveraging tools across different software packages, we are able to apply a multitude of different 
preprocessing techniques to DWI data. We demonstrate that each individual step of the pipeline 
contributes to the quality of the output data and that the pipeline as a whole produces data that can be 
better fit to a tensor model for subsequent analysis. We show that QA documentation, both quantitative 
and qualitative, can be used to demonstrate how raw DWI data is improved with these preprocessing steps. 
Last, we show that an analysis of gradient orientations and ROI-based average FA can identify problems 
with the storage and conversion of DWI data. 
 
We envision the use of PreQual as a replacement for traditional DWI preprocessing and QA methods. 
Regarding preprocessing, a single pipeline reduces the need for data and software manipulation and thus 
reduces the opportunity for errors and data corruption. In addition, it simplifies the process as a whole. 
Regarding QA, current methods can be tedious. These include needing to open individual DWI images 
with specialized software and needing to loop through the individual volumes manually, looking for 
artifacts and other errors. Other approaches include needing to hand-draw multiple ROIs for investigation 
and needing to calculate and visualize tensors glyphs and scalar maps manually (15). Instead, we envision 
that all scans in a session can be run through PreQual and visualization of the output QA report with a 
common PDF reader can provide an intuitive way for users to understand their data. This approach is 
centered around the QA document detailing each preprocessing step and the data as a whole. For instance, 
we display calculated SNR and CNR, intensity distributions, summary motion and slice imputation 
statistics, gradient and ROI-based FA visualizations, and chi-squared measures of tensor fits, providing 
thorough quantitative documentation. In addition, our approach displays a multitude of raw and 
preprocessed triplanar slices, FA and MD maps, tensor glyphs, and mask contours to allow users to 
qualitatively understand their data. Our intention is that users can preprocess their data with one command 
and perform QA by visualization of the output document as opposed to relying on traditional, often 
tedious, methods. 
 
A related QA tool, eddyqc (29), exists to interrogate FSL’s eddy. It provides a document that details the 
motion, slice-wise imputation, and other distortion-correction operations performed by FSL. With 
PreQual, we build on this by providing preprocessing tools from other software packages and a way to 
quality check other aspects of diffusion preprocessing in addition to distortion correction. We note that 
eddyqc can perform study-wise QA, something that PreQual was not explicitly designed to do. However, 
we save all information needed to do so in the pipeline’s outputs should the user require it. 
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All information presented in this manuscript was extracted directly from either pipeline outputs or from 
the QA documents. The pipeline was created with this design in mind in order to facilitate interrogation 
of the preprocessing steps for users to understand what is happening to their data. The only data reported 
here that are explicitly not reported in the PreQual document are the shell-wise SNRs for non-zero shells, 
as shown in Figure 2. Instead, in line with the eddyqc tool, we report the median intra-mask shell-wise 
CNR calculated by eddy in order to represent the ratio between the diffusion-induced signal variability 
and non-related signal variability as a measure of eddy’s success (29). 
 
Last, PreQual was designed to be modular: each preprocessing step aside from artifact correction and 
tensor fitting can be turned off with command line options. For instance, should users choose to not 
perform denoising or normalization, they can do so. In these scenarios, the QA document still reports the 
corresponding QA metrics, like SNR and the b = 0 s/mm2 intensity distributions and calculated scale 
factors that would have been necessary for normalization. Thus, users can still use PreQual to identify 
potential noise or intensity issues with their data, even without performing the corresponding 
preprocessing steps. PreQual is also designed to take additional parameters for FSL’s topup and eddy, 
should users want to use more advanced features, like slice-wise intra-volume motion correction (48) or 
dynamic susceptibility estimation (49). 
 
The PreQual source code, accompanying documentation, and a Singularity definition file for 
containerization have been made available to enable evaluation of the proposed pipeline at 
github.com/MASILab/PreQual.  
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