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Abstract 
 
Purpose 
 
Diffusion weighted MRI imaging (DWI) is often subject to low signal-to-noise ratios (SNRs) and artifacts. Recent 
work has produced software tools that can correct individual problems, but these tools have not been combined with 
each other and with quality assurance (QA). A single integrated pipeline is proposed to perform DWI preprocessing 
with a spectrum of tools and produce an intuitive QA document. 
 
Methods 
 
The proposed pipeline, built around the FSL, MRTrix3, and ANTs software packages, performs DWI denoising; 
inter-scan intensity normalization; susceptibility-, eddy current-, and motion-induced artifact correction; and slice-
wise signal drop-out imputation. To perform QA on the raw and preprocessed data and each preprocessing 
operation, the pipeline documents qualitative visualizations, quantitative plots, gradient verifications, and tensor 
goodness-of-fit and fractional anisotropy analyses.  
 
Results 
 
Raw DWI data were preprocessed and quality checked with the proposed pipeline and demonstrated improved 
SNRs; physiologic intensity ratios; corrected susceptibility-, eddy current-, and motion-induced artifacts; imputed 
signal-lost slices; and improved tensor fits. The pipeline identified incorrect gradient configurations and file-type 
conversion errors and was shown to be effective on externally available datasets.  
 
Conclusion 
 
The proposed pipeline is a single integrated pipeline that combines established diffusion preprocessing tools from 
major MRI-focused software packages with intuitive QA. 
 
Keywords 
 
diffusion weighted imaging, DTI, preprocessing, denoising, distortion correction, quality assurance 
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Introduction 
 
Diffusion weighted MRI imaging (DWI) is a powerful and noninvasive way of ascertaining the microstructural 
makeup of the brain (1). It forms the basis for many studies including those investigating autism (2,3), aging (4,5), 
multiple sclerosis (6,7), schizophrenia (8,9), and the structural human connectome (10) and has been increasingly 
used in context of neurosurgical planning and outcomes (11–14).  

However, DWI images are often subject to low signal-to-noise ratios (SNRs) and a multitude of artifacts 
(15). The echo planar imaging (EPI) acquisitions normally used to acquire DWI images can result in susceptibility- 
and eddy current-induced distortions as well as slice-wise signal drop-out (16). Imaging the brain repeatedly to 
acquire volumes along different gradient directions can result in long acquisition times and increased subject 
movement, causing significant inter-volume motion artifacts (16). Acquisitions with “prescan” turned on can result 
in different gain settings within a session, causing the intensities of different DWI scans to violate their expected 
physical relationships. Intensity distributions of the same shell should be roughly equivalent and those of larger 
shells should be lower than those of smaller shells (15). 

Unlike other MRI modalities, DWI image file formats must store gradient configurations (b-values and b-
vectors) in addition to voxel-wise intensities and coordinate space transformations. The scanner-based DICOM file 
format stores gradient information in the file header, but the processing-based NIFTI file format cannot. Thus, 
NIFTI files require separate “bval” and “bvec” text files to store this information. Converting DICOMs to NIFTIs 
can corrupt the data (17). For instance, some converters will reorder the volumes by shell or b-value while others 
do not. This can result in a mismatch between the NIFTI volumes and the gradients in the “bval” and “bvec” text 
files if the latter are not also reordered.  

These opportunities for distortion and corruption present significant problems for DWI analysis. Subject 
movement has been shown to produce phase errors (18) and affect model fitting (16,19). Noise has been identified 
as a source of bias for DWI microstructural scalar metrics and has been shown artificially inflate some metrics in 
context of diseases like acute ischemia (19,20). These artifacts have also been shown to bias tractography and 
subsequent structural connectivity analyses of the brain (21,22). Last, they have even been shown to reduce effect 
sizes and induce artificial group differences in DWI analyses (20,23). 

Fortunately, previous work in the field has resulted in many powerful tools across many software packages 
that can help correct these issues. MRTrix3’s dwidenoise performs Marchenko-Pastur PCA denoising on DWI 
images which has been shown to improve the quality of subsequent analyses (24–26). FSL’s topup corrects 
susceptibility-induced distortions (27,28). The Synb0-DisCo deep learning framework creates a synthetic b = 0 
s/mm2 volume of infinite bandwidth from T1 images for use with topup when the typically necessary 
complementary (i.e., forward and reverse or “blip-up and blip-down”) phase encoded DWI images are not otherwise 
available (29). FSL’s eddy corrects eddy current-induced distortions and motion artifacts, imputes slices with signal 
drop-out, and rotates gradients to better align them with DWI signals (30,31). Last, MRTrix3’s dwigradcheck 
determines optimal DWI gradient configurations, defined as the gradient axis order and sign permutation that yields 
the highest average whole-brain streamline length (32).  

The existence of these tools, however, does not ensure that all barriers to robust and artifact-free diffusion 
analyses have been removed. For instance, because these tools are primarily used separately, manipulation of data 
between software packages with different syntax standards, image spaces, and formatting expectations presents an 
additional opportunity for data corruption. Additionally, there will inevitably be instances when algorithms 
underperform, and these tools fail. Thus, the use of the preprocessing tools themselves presents an opportunity for 
data corruption. This suggests that optimal use of these tools would be in an integrated pipeline for reproducible 
preprocessing that not only applies the tools to the data but also provides a way to perform quality assurance (QA) 
on each tool in addition to the data itself. Considering the high dimensionality of DWI data even in a single 
acquisition, the pipeline’s QA process would necessarily need to be intuitive but still comprehensive. Last, due to 
the extreme diversity of diffusion representations, models, and analyses, such a preprocessing and QA pipeline 
would need to be generalizable and prepare DWI data for any arbitrary secondary analysis or modeling. 

Some solutions to this problem currently exist. One pipeline, built by Lauzon et al. in 2013, analyzes the 
quality of DWI data and details the results in an intuitive document for user review. However, it was designed prior 
to the release of many of these preprocessing tools and thus does not perform extensive distortion correction (33). 
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Another pipeline, DTIPrep, performs distortion correction with QA, but does not support susceptibility-induced 
distortion correction and requires users learn to use its custom QA software in order to understand its results (34). 
FSL's eddyqc performs QA on eddy (35) and details the results in an easily understandable output document but 
does not provide integration with or QA of other tools. More recently, the DESIGNER pipeline integrates many of 
these tools in a simple user interface but does not provide any QA (36), and the TORTOISE pipeline implements 
many of its own preprocessing steps but provides limited QA (37–39). Last, the QSIPrep pipeline offers extensive 
preprocessing and modeling options but does not offer a robust QA of the raw images, does not take advantage of 
the most modern deep learning distortion correction techniques (29), and exhibits reduced generalizability by 
performing secondary modeling and analyses within its own framework (40). 

Thus, we propose PreQual, a pipeline designed to fill this gap. By leveraging and combining powerful 
software tools from a variety of packages into a single pipeline, we produce preprocessed DWI outputs ready for 
arbitrary secondary analysis. Additionally, by calculating summary statistics, visualizing trends and image volumes, 
and interrogating a robust diffusion tensor imaging (DTI) model of the data, we perform dedicated qualitative and 
quantitative QA on each preprocessing step and on the raw input and preprocessed output data as a whole. Last, to 
comprehensively and intuitively report the QA results to users, the pipeline saves all intermediates and statistics for 
user investigation and culminates in a QA report in the common portable document format (PDF) with dedicated 
pages and fields for each preprocessing and QA operation. 
 
Methods 
 
We built PreQual around the MRTrix3 (41), FSL (42), and ANTs (43) software packages, MRI-focused tools 
popular in the field, in order to perform integrated preprocessing, artifact correction, and intuitive QA (Figure 1).  
 

 
Figure 1. Overview of the PreQual pipeline and QA document. By default, the pipeline takes as input raw DWI data, 
denoises them, normalizes their intensities, concatenates them, and corrects for artifacts to produce preprocessed DWI 
data ready for secondary analysis. If no complementary phase encoded images are supplied, PreQual uses Synb0-
DisCo and a T1 image to perform susceptibility-induced distortion correction. PreQual can also perform Gibbs de-
ringing, Rician correction, and B1 bias field correction if the user wishes. QA checks on each preprocessing step are 
performed. The pipeline fits the preprocessed DWI data to a tensor model with an iterative weighted least squares 
(IWLS) estimator to produce a DTI image. Together, the DWI and DTI data are interrogated in order to QA the 
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preprocessed DWI output of the pipeline. All QA processes are presented in the output report. All preprocessing steps 
except for image concatenation and artifact correction are optional and can be turned on or off per user preference. 

 
Raw DWI Inputs 
 
We take a series of raw DWI images as input into the pipeline along with a phase encoding axis and a configuration 
file. We expect the input images as NIFTI files, properly converted from DICOM files (Supporting Information 
Table S1). Specifically, we expect that all gradients have been reoriented into subject space and that reordering of 
image volumes did not occur. We find that the most reliable way of achieving this is with recent versions of the 
popular dcm2niix tool (17). Regarding input configurations, we envision the input images to be from the same 
acquisition session, phase encoded along the same axis, defined as the image dimension along which phase encoding 
occurred. In the configuration file, we require the user to input the directions along the axis in which the images 
were encoded and their corresponding readout times. The phase encoding schemes of each image (i.e., axis, 
direction, and readout time) are required for susceptibility-induced distortion correction with FSL’s topup (27,28).  

We note that the supplied phase encoding axis of the inputs may not always correctly correspond to the 
expected anatomical axis. For instance, DWI images phase encoded along the anterior to posterior axis and oriented 
radiologically (right-anterior-superior) or neurologically (left-anterior-superior) would be encoded along the second 
dimension. Yet, if the image is oriented differently and anterior to posterior phase encoding is expected, the user 
may need to indicate a different dimension for the phase encoding axis. Thus, for QA we check that the supplied 
axis and direction for each image translates to the expected anatomical axis and direction using each image’s 
coordinate transformation. We visualize triplanar slices of the raw data alongside these interpretations for users to 
verify the presence of susceptibility-induced distortions along the anatomical axes (Supporting Information Figure 
S1). 
 
Denoising 
 
We individually denoise each input image using the Marchenko-Pastur PCA technique as implemented in MRTrix3 
(24–26). For QA, we calculate the median intra-brain voxel-wise SNR for the non-diffusion weighted b = 0 s/mm2 
volumes and display it in the QA document (Supporting Information Figure S7). We define SNR in alignment with 
FSL’s eddy (Eq. 1) as the mean voxel-wise intensity divided by its standard deviation.  
 

 𝑆𝑁𝑅 =
𝜇!"#$%
𝜎!"#$%

 (1) 

 
When only one b = 0 s/mm2 volume is available, we report the SNR as “Not a Number”. This step is on by default 
but can disabled by users. In this instance, we still display the SNR as a method of QA. 
 
Normalization 
 
We correct for inter-scan gain differences between separate input image files that can arise when a scanner’s 
“prescan” setting is enabled. To achieve this, for the 𝑘th input image file, we take the average b = 0 s/mm2 volume, 
𝑉&, and mask the result with FSL’s brain extraction tool (bet) (44). We then determine a multiplicative scale factor, 
𝑠&, such that the histogram intersection, 𝐼, between the intra-mask intensity histogram, ℎ, of 𝑉& scaled by 𝑠& and 
that of the first image is maximized. When 𝑘 = 1, 𝑠' = 1. When 𝑘 > 1, we calculate 𝑠& by performing optimization 
on the negated problem (Eq. 2) with the downhill simplex algorithm with 10 initial guesses evenly spaced between 
0.5 and 1.5 (45). 
 

 𝑠& = argmin
(!

−𝐼5ℎ(𝑠&𝑉&), ℎ(𝑉')9 (2) 
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During each iteration of the algorithm, we calculate the histograms ℎ(𝑠&𝑉&) and ℎ(𝑉') with 1000 bins from 𝑎 to 𝑏 
where 𝑎 = min(𝑉', 𝑠&𝑉&), the minimum intra-mask intensity between the two average b = 0 s/mm2 volumes, and 𝑏 
is the corresponding maximum. To complete normalization, we intensity-scale all volumes, diffusion-weighted or 
otherwise, of the 𝑘th image by 𝑠& for all 𝑘. For QA, we report the calculated scale factors and plot of the average b 
= 0 s/mm2 intensity histograms of each image before and after normalization in the report (Supporting Information 
Figure S2). 
 We note that though prescan-induced gain changes can cause different scans to violate expected physical 
relationships, not all studies necessarily suffer from this. We only consider inter-scan normalization and thus do not 
interfere with intra-scan intensity relationships. As a result, for many multi-shell acquisitions, the intra-shell 
relationships are not modified because each shell is often contained in its own image file. Similarly, the inter-shell 
relationships in multi-shell acquisitions stored within one file are not modified. Some scanners provide explicit 
control for the prescan setting, so it is known that the scans already possess correct intensity relationships. In these 
cases, normalization could do more harm than good. Thus, we allow users to disable this step if needed, but still 
report the intensity histograms and the scale factors that would have been necessary for normalization for QA. 
 
Artifact Correction 
 
Following normalization, we concatenate the images and perform artifact correction. First, we correct susceptibility-
induced distortions using FSL’s topup (27,28). We generate the topup acquisition parameters file using the input 
phase encoding schemes provided and run topup on all the b = 0 s/mm2 volumes from all input scans. Typically, 
topup requires complementary phase encoded images. In the event that the user does not supply these, we use 
Synb0-DisCo to create a susceptibility-corrected synthetic b = 0 s/mm2 volume of infinite bandwidth for topup 
instead (29). When we run Synb0-DisCo, we require that the user input a T1 image of the same subject into the 
pipeline and visualize triplanar views of the T1 and synthetic b = 0 s/mm2 volume in the output QA document 
(Supporting Information Figure S3). 

Following topup, we use FSL’s eddy with a brain mask estimated by bet on the averaged topup output to 
correct for eddy current-induced distortions, inter-volume motion, and slice-wise signal drop-out (30,31). During 
this process, eddy also performs rotation of the gradients to best suit the DWI signals and is configured to estimate 
the voxel-wise SNR (Eq. 1) across b = 0 s/mm2 volumes and contrast-to-noise ratio (CNR) for each diffusion 
weighted shell. Eddy defines CNR as 𝜎)*/𝜎+$(,-./% or the voxel-wise standard deviation of the Gaussian process 
predicted by eddy divided by that of the residuals. A final brain mask is calculated with bet (44). This results in the 
pipeline’s final preprocessed DWI outputs. 

For QA of the artifact correction steps, we take a combined quantitative and qualitative approach. First, we 
use the final mask to calculate the median intra-mask SNR for b = 0 s/mm2 volumes and CNR for each diffusion 
weighted shell. We display these ratios alongside five central triplanar slices of each corresponding shell-wise 
averaged preprocessed volume (Supporting Information Figure S7). This provides a quantitative metric for SNR 
for the denoising step as well as qualitative verification of artifact correction. Additionally, we plot the eddy-
calculated inter-volume rotation, translation, and displacement and print their average values alongside a plot 
indicating the slices eddy imputed due to signal drop-out (Supporting Information Figure S5). 
 
Tensor Fitting 
 
We fit the preprocessed DWI volumes to a tensor model using the iterative weighted least squares (IWLS) estimator 
in MRTrix3 (46) and compute fractional anisotropy (FA) and mean diffusivity (MD) scalar maps (47). As DTI is 
not the most appropriate model for all DWI studies, we use the tensor data and scalar maps primarily to QA the 
preprocessed DWI data, but we make them available for secondary analysis if the user wishes. For QA, we visualize 
the tensor glyphs (Supporting Information Figure S8) as rendered in MRTrix3 (48) and five central triplanar slices 
of the FA and MD maps in the output document (Supporting Information Figure S9).  
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Gradient Analysis 
 
To see whether the raw DWI gradient directions are properly oriented, we determine their optimality. We define 
optimality as it is defined in MRTrix3: the permutation of gradient sign and axis order that produces the highest 
average whole-brain streamline length (32). Since this process depends on tractography and tractography is affected 
by distortions (21,22), we use the preprocessed DWI gradient directions output by eddy as surrogates for the raw 
gradients. This substitution will not impact the analysis because although eddy rotates gradients, it only performs 
minor adjustments and does not change the gradient sign or axis order. We plot the optimal preprocessed gradient 
permutation, the preprocessed gradient directions as output by eddy, and the original raw input gradient directions 
(Supporting Information Figure S6) in the output QA document. We also visualize triplanar slices of the tensor 
glyphs (Supporting Information Figure S8). We expect properly oriented gradients to be identifiable with this 
visualization, as the preprocessed and optimal gradients would overlap and produce physiologically oriented 
tensors. Additionally, plotting of the raw gradients provides an extra check that the preprocessed gradients contain 
only minor deviations and are acceptable surrogates for this analysis. 
 Many problems can result in improperly oriented gradients. As a result, we save the optimal gradients for 
user analysis, but we do not overwrite the gradients output by eddy in the outputs of the pipeline. The rationale for 
this is that we have empirically found that improperly oriented gradients are rarely the result of a pure sign or axis 
flip but are often due to a rotational bias and thus do not wish to confuse users into believing gradient errors have 
been completely resolved. If problems are identified, the input data need to be corrected and reprocessed. 
 
Fractional Anisotropy Analysis 
 
To quality check the preprocessed DWI data, we interrogate the calculated DTI model and compute the average FA 
value for all 48 white matter regions of interest (ROIs) defined by the Johns Hopkins ICBM DTI 81 white matter 
atlas (49–51). We deformably register the atlas to the subject’s FA image space using the ANTs software package 
(52) to isolate each region and its average FA value. For QA, we plot these values along with an overlay of the atlas 
on the subject’s FA map. The former allows users to verify regional FA congruence with expected physiologic 
values, and the latter allows users to check the registration process (Supporting Information Figure S10). As a 
heuristic, we expect the regional FA values to range from roughly 0.3 to 0.7 (53). 
 
Chi-Squared Analysis 
 
To investigate the adequacy of the preprocessed DWI data for secondary modeling, we measure the goodness-of-
fit of the tensor model with a modified pixel-wise chi-squared analysis as described by Lauzon et al. on the 
preprocessed DTI data (33). We constrain this analysis to the brain parenchyma in order to avoid analyzing tensors 
fit to background or CSF that would produce invalid chi-squared values. To mask the parenchyma, we erode the 
final mask calculated on the preprocessed DWI data with a radius of one voxel and remove the CSF. To identify 
the CSF, we calculate a CSF mask for each shell-wise averaged volume of the preprocessed DWI data with FSL’s 
fast tool (54). We then generate an overall CSF probability mask by performing a voxel-wise average across shells 
and setting a threshold at 15%. For each slice in each volume, we divide the intra-parenchyma sum squared error 
of tensor fit by the sum squared intensity of the slice to calculate the goodness-of-fit (33). For QA, we visualize the 
chi-squared values in the QA document (Supporting Information Figure S5).  
 
Mask Quality Assurance 
 
We quality check the mask used for eddy, the final preprocessed mask used for median SNR and CNR calculation, 
and the parenchyma mask used for the chi-squared analysis. We plot their contours on triplanar views of the first b 
= 0 s/mm2 volume of each raw input image and on that of the preprocessed DWI output (Supporting Information 
Figure S4). 
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Additional Pipeline Options and Considerations 
 
For preprocessing, we also include Gibbs de-ringing with the local subvoxel-shifts method after denoising (55), 
Rician correction with the method of moments that does not require phase data before intensity normalization 
(36,56), and N4 B1 bias field correction after artifact correction (57). Gibbs rings are artifacts located adjacent and 
parallel to high contrast interfaces due to the truncation of Fourier domain signals when reconstructing MRI images 
(55). Thus, to QA Gibbs de-ringing, we visualize triplanar slices of the averaged differences across all b = 0 s/mm2 
volumes before and after de-ringing looking for larger differences at high contrast interfaces (Supporting 
Information Figure S11). The construction of magnitude images from complex raw MRI data can result in noise 
taking on a Rician profile with positive bias, as opposed to a Gaussian one, especially with lower SNR as found in 
higher shells (36,58). Thus, to QA Rician correction, we plot the shell-wise intensity distributions within the brain 
before and after correction for each input image looking for decreased signal intensities with correction (Supporting 
Information Figure S11). B1 bias fields are low frequency spatially distributed intensity inhomogeneities that affect 
some MRI acquisitions. To QA N4 correction of these fields, we visualize triplanar slices of the estimated field and 
of the first b = 0 s/mm2 volume before and after correction (Supporting Information Figure S11). Additionally, we 
make running eddy without a brain mask an option because the brain extraction process can be unstable at times. 
Empirically we have found this produces minor differences in preprocessed outputs but allows preprocessing to 
generalize to cases with poor masking.  

For QA, tensor visualization can be difficult due to crowding of glyphs for high-resolution or up-sampled 
data. As such, we include the ability to visualize principal eigenvectors (Supporting Information Figure S11) instead 
of full tensors. While losing some information about the tensor fit, this allows users to still visualize gradient 
direction information. Last, in addition to displaying all summary statistics (SNR and CNR; average intervolume 
rotation, translation, and displacement; and regional FA) in the QA report (Supporting Information Figures S5, S7, 
and S10), we tabulate them in a comma separated value (CSV) file so that users can extract the information as 
needed (Supporting Information Figure S12). 
 
Study Overview: Characterization of Data 
 
We evaluate pipeline efficacy by running it on one of two DWI datasets acquired on a Philips 3T scanner at 
Vanderbilt University. The first dataset, Dataset A, was acquired on one subject scanned repeatedly on the same 
scanner over the course of three sessions, one session each consecutive day (59). Each session consisted of 6 sets 
of scans. Each set of scans consisted of one 3-direction b = 1000 s/mm2 image phase encoded in the anterior to 
posterior direction (APA), one 96-direction b = 1000 s/mm2 image phase encoded in the posterior to anterior 
direction (APP), one 96-direction b = 1500 s/mm2 APP image, one 96-direction b = 2000 s/mm2 APP image, one 
96-direction b = 2500 s/mm2 APP image, and one 96-direction b = 3000 s/mm2 APP image. The second dataset, 
Dataset B, was taken from another subject scanned once. It consists of a 6-direction b = 1000 s/mm2 APA image 
and one 60-direction b = 2000 s/mm2 APP image. All images were acquired with corresponding b = 0 s/mm2 
volumes and were deidentified and acquired only after informed consent under supervision of the project 
Institutional Review Board.  
 
Study Overview: Characterization of Pipeline 
 
We study the denoising step by calculating changes in SNR of DWI data preprocessed with and without denoising. 
We examine the normalization step by simulating inter-scan gain differences and observing how the pipeline 
corrects them. We investigate the artifact correction step by visualizing representative volumes before and after 
correction. We explore the gradient analysis by negating input gradients in the second dimension and visualizing 
how the pipeline identifies this simulated error. We demonstrate one use case of the FA analysis by shuffling the 
order of the input image volumes without shuffling their corresponding gradients to simulate a failed file-type 
conversion and observing how the pipeline identifies this. We leverage the chi-squared analysis to understand how 
the pipeline prepares DWI data for secondary modeling by performing the same tensor fit on the raw input data as 
is performed on the outputs and measuring the differences in goodness-of-fit.  
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We study the generalizability of PreQual by running it on one imaging session from each of three external 
datasets that contain isolated QA issues and investigate how the pipeline identifies them. The first is a session from 
the Human Connectome Project (HCP) Lifespan cohort (60). We have previously identified obvious susceptibility-
induced distortions in this session (29). The second is a session from the Autism Brain Imaging Data Exchange 
(ABIDE) II (2). We have previously identified motion-induced artifacts in this session. The third is a session from 
the Baltimore Longitudinal Study of Aging (BLSA) (61,62). We have previously identified DICOM to NIFTI 
conversion errors in this particular session that have resulted in improperly oriented gradients that have since been 
corrected (63). Last, we quantify the runtime of PreQual on three different configurations of Dataset B. 

For this study, we perform paired statistical comparisons without the assumption of normality. Thus, we 
use the non-parametric Wilcoxon signed-rank test for paired distributions to determine statistical significance and 
report all p-values without multiple comparisons correction (64).  
 
Results 
 
Denoising 
 
To study the impact of the denoising step, we ran PreQual on each session of Dataset A and combined the results 
for analysis. We calculated the median intra-mask pixel-wise SNR for each shell and display them in Figure 2. 
Qualitative visualization showed improved SNR for each diffusion weighted shell which were each shown to be 
statistically significant at p < 0.001 (Wilcoxon signed rank test).  
 

 
Figure 2. PreQual improves the signal-to-noise ratio (SNR) of diffusion images. (a) The shell-wise SNR for all 
diffusion weighted shells increased in the preprocessed DWI outputs of PreQual following Marchenko-Pastur PCA 
denoising of the input data as implemented in MRTrix3 compared to preprocessing without denoising (Wilcoxon 
signed rank test, p < 0.001). (b) Visualization of representative volumes at shells b = 1500 s/mm2 and b = 3000 s/mm2 
with gradient direction x = 0.002, y = 0.005, and z = 0.999 (best modeled as a unit vector going into the page as shown 
with the blue fletching) illustrates qualitatively improved SNR. 

 
Normalization 
 
To study the efficacy of the normalization step, we ran PreQual on Dataset B while simulating inter-scan gain 
changes. When different images have the same gain settings, we expect intensity distributions of larger shells to be 
lower than those of smaller shells and those of the same shell to be roughly equivalent (15). We use each volume’s 
median intra-mask intensity as a representative measure for its intensity distribution, and we intentionally violate 
both of these expectations by multiplying the b = 2000 s/mm2 image of Dataset B by four. This caused the median 
intensities of the b = 2000 s/mm2 volumes to be higher than those of the b = 1000 s/mm2 volumes (Figure 3b). It 
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also caused the median intensities of the b = 0 s/mm2 volumes to be different from each other (Figure 3a). We show 
that the expected relationships return after normalization with PreQual (Figures 3c and 3d). 
 

 
Figure 3. PreQual corrects physically impractical shell-wise intensity values in simulation. Two DWI images of the 
same session were used as input for this simulation. DWI 1 was a 6-direction b = 1000 s/mm2 image with an associated 
b = 0 s/mm2 volume, and DWI 2 was a 60-direction b = 2000 s/mm2 image with an associated b = 0 s/mm2 volume 
(only the first 6 volumes are shown for simplicity). DWI 2 was corrupted via global intensity-scaling by a factor of 4, 
emulating gain changes between scans of the same session. This resulted in physically impractical inter-shell intensity 
relationships. (a) Scans of the same shell (or b-value) are expected to have roughly the same intensity distributions, a 
phenomenon which is violated here in simulation. The b = 0 s/mm2 volumes are expected to have roughly the same 
median intensity. (b) Shell size and intensity are inversely related which is violated here in simulation. The b = 2000 
s/mm2 volumes are expected to have lower median intensity than the b = 1000 s/mm2 volumes. (c and d) The expected 
phenomena are observed after normalization with PreQual. 

 
Artifact Correction 
 
To study the effectiveness of susceptibility-, eddy current-, and motion-induced distortion correction and slice-wise 
signal drop-out imputation by PreQual, we ran the pipeline on both Datasets A and B and visualized representative 
inputs and outputs of each operation (Figures 4a, 4c, 4d, and 4e). We also ran PreQual on Dataset B with the b = 
1000 s/mm2 APA image omitted, thus destroying the necessary complementary phase encoded pair for topup and 
triggering Synb0-DisCo to run. We visualized the inputs and outputs of this operation as well (Figure 4b).  
Qualitative visualization demonstrated cases where artifact correction was needed as well as the improvement of 
the data with PreQual. 
 

 
Figure 4. PreQual performs artifact correction. (a) Susceptibility-induced distortions are corrected using FSL’s topup 
in conjunction with input complementary phase encoded images. Examples of this distortion before and after 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2020.09.14.260240doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.260240
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

correction with topup are shown in the red and blue bounding boxes, respectively. (b) If no complementary phase 
encoded images are available, PreQual uses Synb0-DisCo to generate a synthetic distortion-free b = 0 s/mm2 volume 
from a distorted one and a T1 image. The synthetic volume is used with topup to correct the image as a whole. The 
bounding boxes highlight an example of how Synb0-DisCo generates distortion-free regions (blue) by using distorted 
b = 0 s/mm2 information (red) and distortion-free T1 information (white). (c) Eddy current-induced inter-volume 
geometric distortions as highlighted between raw volumes 1 and 2 (red) are corrected with FSL’s eddy as shown 
between corrected volumes 1 and 2 (blue). (d) FSL’s eddy estimates and corrects for inter-volume motion. An example 
output in the PreQual QA report detailing this movement is shown. The overall average movement across volumes is 
shown in the legend parentheses. For displacement, legend entry “Abs.” is short for absolute, and “Rel.” is short for 
relative. (e) Eddy identifies slice-wise signal drop-out and imputes lost slices accordingly. An example output plot in 
the PreQual report details the affected slices. The corresponding raw volume with drop-out slices is shown highlighted 
in red and the imputed output of eddy is shown highlighted in blue. Note that the imputation improves data quality, 
but that the overall process is still quite motion-sensitive, explaining some of the remaining artifacts. 

 
Gradient Analysis 
 
We ran PreQual on Dataset B in two configurations. In the first configuration, the data were not corrupted. In the 
second, all gradients were negated in the second dimension. We visualize the resultant tensor glyphs in the splenium 
of the corpus callosum for both cases and show them to be oriented in physiologically probable and improbable 
orientations, respectively. We also visualize the optimal gradient tables as determined by PreQual for both cases 
and show them to be overlapping and non-overlapping with those output in the preprocessed DWI data, respectively. 
These two visualizations together allow us to correctly identify the case with improperly oriented gradients (Figure 
5). 
 

 
Figure 5. PreQual identifies improperly oriented gradient tables in simulation. The left side of the figure displays 
expected phenomenon. The optimal gradient configurations are identical to those in the preprocessed DWI output of 
PreQual. The unit gradient vectors are overlapping, and the tensors calculated from the preprocessed gradients are 
oriented in a physiologically probable manner, as shown in an axial slice through the splenium of the corpus callosum. 
The right side of the figure displays the identification of improperly oriented gradients. The preprocessed gradients 
do not overlap with the optimal ones and the tensor glyphs are oriented along the corpus callosum in a physiologically 
improbable manner. The raw input gradients are shown here to match what is reported in the QA report such that users 
can visualize rotational optimization made to input gradients during preprocessing. 

 
Fractional Anisotropy Analysis 
 
To demonstrate one use case for the FA analysis, we simulated a failed file-type conversion that led to the mismatch 
between image volumes and gradient tables. We took the b = 0 s/mm2 volume acquired at the beginning of the b = 
2000 s/mm2 APP scan of Dataset B out of its original position and placed in the middle of the sequence without 
reordering the corresponding gradients. We demonstrate that the average ROI-based FA exhibit an entirely different 
cross-region profile with this volume-to-gradient mismatch than without (Figure 6a). This is supported by 
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qualitative visualization of the FA maps (Figure 6b) and together result in the identification of faulty file-type 
conversions. 
 

 
Figure 6. PreQual identifies simulated faulty file-type conversions that lead to volume-to-gradient mismatch. Volume-
to-gradient mismatch was achieved by shuffling b = 0 s/mm2 volumes out of their original position in the DWI 
sequence without corresponding shuffling of gradient information. (a) The average FAs by white matter region are 
higher across all regions and exhibit an identifiably different cross-region profile with volume-to-gradient mismatch. 
(b) Qualitative examination of FA maps with and without mismatch provides additional verification.  

 
Chi-Squared Analysis 
 
We show a chi-squared goodness-of-fit analysis in Figure 7. We performed the analysis on Dataset B and measured 
the chi-squared values calculated on the raw images and on those preprocessed with PreQual. Since chi-squared is 
a measurement of error, the lower values in the data preprocessed with PreQual suggest improved tensor fitting of 
the data (p < 0.001, Wilcoxon signed rank test).  
 

 
Figure 7. PreQual improves tensor fitting of diffusion weighted images. (a) The modified pixel chi-squared for a 
multi-shell acquisition with and without PreQual applied are presented per slice per volume. (b) The distributions of 
the chi-squared values in (a) are presented and demonstrate improved goodness-of-fit with statistical significance 
(Wilcoxon signed rank test, p < 0.001). 
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External Verification 
 
We ran the pipeline on one imaging session from each of three externally available datasets, as shown in Figure 8, 
to demonstrate the generalizability of PreQual. We show visually apparent susceptibility-induced distortions 
corrected in the HCP Lifespan image (60), slice-wise signal drop-out imputed in the ABIDE II image (2), and 
improperly oriented gradients identified in the uncorrected BLSA image (61–63). The specific sessions used are 
detailed in Supporting Information Table S2, and the full QA documents generated by PreQual corresponding to 
these datasets are available in Supporting Information Figures S1 through S10. 
 

 
Figure 8. PreQual performs artifact correction and error identification on three externally available datasets. (a) For 
an HCP Lifespan image, PreQual corrected visually apparent susceptibility-induced distortions. The red and blue 
bounding boxes highlight corresponding regions before and after preprocessing by PreQual, respectively. (b) For an 
ABIDE II image, PreQual identified and corrected visually apparent slice-wise signal drop out. The red and blue 
bounding boxes highlight corresponding slices before and after preprocessing by PreQual, respectively. (c) For an 
uncorrected BLSA image, PreQual correctly identified improperly oriented gradients as have been previously 
documented and repaired via visualization of preprocessed gradients against optimal ones and visualization of tensor 
glyphs. 

 
Typical Runtimes 
 
We quantified the runtime of PreQual on three different configurations of Dataset B (Table 1), corresponding to 
three forms of susceptibility-induced distortion correction: no correction, correction informed by Synb0-DisCo, and 
correction with traditional complementary phase encoded inputs. On a workstation running 64-bit Ubuntu 18.04 
with 24 GB RAM and a 4-core 3.5 GHz Intel(R) Xeon(R) E5 processor with multithreading, we measured the 
runtimes to be 18 minutes and 12 seconds, 58 minutes and 47 seconds, and 48 minutes and 30 seconds, respectively. 
We find that under these conditions, susceptibility-induced distortion correction with FSL’s topup was the most 
time-demanding step. 
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Table 1. Typical runtimes of PreQual on three different configurations of Dataset B. 
 

Input Images Susceptibility-induced 
Distortion Correction Runtime 

• 60-direction b = 2000 s/mm2 APP image and 
associated b = 0 s/mm2 volume None 18m 12s 

• 60-direction b = 2000 s/mm2 APP image and 
associated b = 0 s/mm2 volume 

• T1 weighted image 

With a synthetic b = 0 s/mm2 
volume 58m 47s 

• 60-direction b = 2000 s/mm2 APP image and 
associated b = 0 s/mm2 volume 

• 6-direction b = 1000 s/mm2 APA image and 
associated b = 0 s/mm2 volume  

With complementary phase 
encoded b = 0 s/mm2 volumes 48m 30s 

 
Discussion and Conclusions 
 
We present PreQual, a single integrated pipeline for DWI preprocessing and QA. By leveraging tools across 
different software packages, we are able to reproducibly apply a multitude of different preprocessing techniques to 
DWI data. By leveraging qualitative and quantitative QA, we demonstrate that each step of the pipeline contributes 
to the quality of the data and helps produce outputs better prepared for secondary modeling. We show that an 
analysis of gradient orientations and ROI-based average FA can identify problems with the storage and conversion 
of DWI data. 

We envision the use of PreQual as a replacement for traditional DWI preprocessing and QA methods. 
Regarding preprocessing, a single pipeline reduces the need for data and software manipulation, simplifying the 
process and reducing the opportunity for errors and data corruption. Regarding QA, current approaches can be 
tedious. These include needing to open DWI images with specialized software, loop through the volumes manually, 
and look for artifacts and other errors; needing to hand-draw multiple ROIs for investigation; or needing to calculate 
and visualize model glyphs and scalar maps manually (15). Instead, we envision that all scans in a session can be 
run through PreQual with one command and visualization of the output QA report with a common PDF reader can 
provide an intuitive and efficient way for users to understand their data. 

We include Gibbs de-ringing, Rician correction, and N4 bias correction and their corresponding QA steps 
in this pipeline (Supporting Information Figure S11). However, the authors of the Gibbs de-ringing approach have 
indicated that it can be unstable for partial Fourier acquisitions (55), including many EPI acquisitions with which 
DWI data are acquired. We also find the process to be difficult to QA: even though the artifacts often are found at 
high contrast boundaries, the exact boundaries and slices can be inconsistent. Further, we find Rician correction 
with the method of moments difficult to QA as well: although intensities are expected to decrease by the standard 
deviation of noise (36), we find this to be difficult to intuitively quantify. Empirically, we also find it to minimally 
affect results (Supporting Information Figure S13). For N4 bias field correction, we have found empirically that the 
fields are often orders of magnitude smaller than the intensities in the images and thus find it to be largely 
unnecessary. As such, we leave these features off by default and do not characterize them significantly in this study. 
Additionally, we note that Synb0-DisCo was trained on DWI of healthy brains, and thus we do not recommend its 
use on data with lesions. 

A related QA tool, eddyqc (35), interrogates FSL’s eddy and provides a document that details the motion, 
slice-wise imputation, and other distortion-correction operations performed by FSL. With PreQual, we build on this 
by providing preprocessing tools from other software packages and a way to quality check other aspects of diffusion 
preprocessing in addition to distortion correction. We note that eddyqc can perform study-wise QA, something that 
PreQual was not explicitly designed to do. However, we save all information needed to do so in the pipeline’s 
outputs should the user require it (Supporting Information Figure S12). Related preprocessing tools, DESIGNER 
and TORTOISE, perform similar preprocessing steps with different implementations and achieve similar 
performance (Supporting Information Table S3 and Figure S13). These pipelines focus on preprocessing and robust 
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modeling, and thus we complement them by focusing on preprocessing and extensive QA to prepare data for 
arbitrary secondary modeling. 

All information presented in this manuscript was extracted directly from either pipeline outputs or from the 
QA documents. The pipeline was created with this design in mind in order to facilitate interrogation of the 
preprocessing steps for users to understand what is happening to their data. The only data reported here that are 
explicitly not reported in the PreQual document are the shell-wise SNRs for non-zero shells, as shown in Figure 2. 
Instead, in line with the eddyqc tool, we report the median intra-mask shell-wise CNR calculated by eddy in order 
to represent the ratio between the diffusion-induced signal variability and non-related signal variability as a measure 
of eddy’s success (35). 

PreQual was designed to be modular both internally and externally. Internally, each preprocessing step 
aside from artifact correction and image concatenation can be turned on or off with command line options. For 
instance, should users choose to not perform denoising or normalization, they can do so. In these scenarios when 
recommended options are turned off, the output document still reports the corresponding QA metrics, allowing 
users to identify potential noise or intensity issues, even without performing the corresponding preprocessing steps. 
PreQual is also designed to take additional parameters for FSL’s topup and eddy, should users want to use more 
advanced features, like slice-wise intra-volume motion correction (65) or dynamic susceptibility estimation (66).  

Externally, PreQual was designed to prepare DWI data for arbitrary secondary analysis. For instance, at 
high b-values non-Gaussian biases can affect the microstructural metrics made with tensors. In this case, a diffusion 
kurtosis imaging (DKI) model may be optimal for making inferences from the data. Similarly, TE dependent 
diffusion imaging acquisition schemes necessitate the fitting of relaxation metrics and are inadequately represented 
with tensors (67). In short, variation in acquisition schemes and experimental design necessarily require highly 
custom models on a study-by-study basis. Thus, it is not our goal to provide the best models for analysis. Instead, 
we intend to give all investigators the best starting point for any analysis. As such, we have selected robust 
preprocessing tools that work for a variety of acquisitions and a robust model, DTI, that, despite its flaws for some 
acquisition schemes, serves as a reproducible way of characterizing DWI data for QA purposes. In other words, 
although DTI may not be the best model for all DWI data, we expect that corrupt data unsuitable for secondary 
analysis would be identifiable with DTI. That being said, we include a warning when we detect b-values that may 
not be best suited for DTI modeling (i.e., less than 500 s/mm2 or greater than 1500 s/mm2) explaining that the DTI 
data generated by PreQual should be carefully reviewed prior to use for non-QA purposes. 

Last, though primarily designed for neuroimaging applications, we anticipate that this tool will be useful 
for other anatomies or phantoms as well. In these cases, we anticipate the likely failure of the mask generation or 
white matter region identification processes. However, we provide an option to run eddy without a mask, thus 
allowing preprocessing and distortion correction to run on other anatomies even if some of the QA processes do 
not. 

The PreQual source code, accompanying documentation, and a Singularity definition file for 
containerization have been made available to enable evaluation of the proposed pipeline at 
github.com/MASILab/PreQual.  
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