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Abstract: 1 

Objective quantification of animal behavior is crucial to understanding the relationship 2 

between brain activity and behavior. For rodents, this has remained a challenge due to the high-3 

dimensionality and large temporal variability of their behavioral features. Inspired by the natural 4 

structure of animal behavior, the present study uses a parallel, multi-stage approach to decompose 5 

motion features and generate an objective metric for mapping rodent behavior into the animal’s 6 

feature space. Incorporating a three-dimensional (3D) motion-capture system and unsupervised 7 

clustering into this approach, we developed a framework that can automatically identify animal 8 

behavioral phenotypes from experimental monitoring. We demonstrate the efficacy of our framework 9 

by generating an “autistic-like behavior space” that can robustly characterize a transgenic mouse 10 

disease model based on motor activity without human supervision. Our results suggest that our 11 

framework features a broad range of applications, including animal disease model phenotyping and 12 

the modeling of relationships between neural circuits and behavior.  13 

Key Words: Behavioral mapping; 3D motion capture; Computational ethology; Unsupervised 14 

learning; Behavior phenotyping. 15 

Introduction:  16 

A fundamental issue in modern neuroscience research is linking specific neural circuit 17 

activity to its corresponding behavior [1–3]. In rodent model-based neural circuit studies, cutting-edge 18 
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neural population activity recording and cell-specific neural circuit manipulating techniques provide 1 

us unprecedented opportunities to deeply gain insight into the mechanisms of neural-behavioral 2 

encoding and generation [4,5]. Meanwhile, automated and high-throughput quantification and 3 

description of animal behavior are becoming increasingly popular [6,7]. The recent emergence of 4 

automated animal pose estimation toolboxes has dramatically facilitated body parts tracking [8–10], 5 

specific well-defined behaviors (e.g., grooming, locomotion) can thus be detected based on body 6 

features with supervised approaches [11]. However, most naturalistic rodent behaviors are highly 7 

complex and variable; The labor-intensive, repetitive and biased manual labeling is insufficient to 8 

produce high-quality training sets [12,13]. Therefore, how to identify and categorize these un-9 

predefined behavior remains a challenging task.  10 

Existing studies on lower animals such as flies [14,15], zebrafishes [16–18] and C. elegans 11 

[19–22] have used unsupervised strategies and multivariate analysis to segment behavioral modules. 12 

These leveraged approaches have applied to behavior structure uncovering and modeling [19,23,24], 13 

neural circuits dissecting [25–27], and brain-wide neural-behavioral mapping [15,28]. However, the 14 

application of this strategy to the study of mammals has been obstructed by two problems. First, 15 

mammalian behavior is relatively more dynamic and high-dimensional. Dozens of degrees of freedom 16 

(DoF) [29] and complex 3D characteristics result in the high variability of mammalian behavior on a 17 

temporal scale. To define the start and end boundaries to segment continuous data into behavioral 18 

sequences, many machine learning-based open-source toolboxes [30] and commercial software did 19 

excellent works in feature engineering. They first compute per-frame features that refer to position, 20 

velocity, or appearance-based features. The sliding windows technology then converts them into 21 

window features to reflect the temporal context [11,31]. Although these approaches effectively 22 

identify specific behaviors, behavior recognition becomes problematic when the dynamics of 23 

particular behaviors cannot be represented by window features. Furthermore, mammalian behavior is 24 

highly variable. Even for similar behaviors, the duration and composition postural sequences vary. 25 

The apparently simple action of recognizing behavior actually corresponds to the extraction of shared 26 

high-level features from low-level vision data [32]. A recently developed toolbox called MoSeq [33] 27 

assumed that the behavioral modules can be modeled as an autoregressive hidden Markov model 28 

(AR-HMM). Thus, the variability of behavior can be reduced by inferring a specific number of hidden 29 

states.  30 

The present study incorporates a 3D motion-capture system into a general-purpose framework 31 

to decompose animal behavior into metrizable behavioral modules. Informed by the natural structure 32 

of animal behavior reported in previous theoretical studies, our framework uses a two-stage (pose and 33 

movement) behavior decomposition to reduce variation. We characterize motion dynamics by 34 

applying the dynamic time alignment kernel (DTAK) method, which generates an objective metric to 35 

measure the similarity between movement sequences. Combined with locomotion information, this 36 
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metric constructs a feature space of naturalistic behavior. We then apply this framework to the 1 

discovery of behavior modules by implementing unsupervised clustering and demonstrate that this 2 

framework can assess the spontaneous behavior of a transgenic animal disease model. Hence, by 3 

mapping mouse behavior into a feature space without human supervision, we show that this approach 4 

can reveal the behavioral signature of animals with different genotypes.  5 

Results: 6 

 Framework of the Unsupervised Animal Movement Analysis 7 

Our framework first requires the preparation of the animal postural feature data (Fig. 1A). 8 

These data can be continuous body parts trajectories that comprehensively capture the motion of the 9 

animal’s limbs and torso. Theoretically, the natural characteristics of animal movement involve 10 

locomotion and non-locomotor movement (NM) [34–36]. Locomotion can be represented by velocity-11 

based parameters. NM is manifested by movement of the limbs or organs without movement of the 12 

torso and is controlled by dozens of DoF. Hence, we adopted a parallel motion decomposition 13 

strategy to extract features from these time-series data independently (Fig. 1B, C). A two-stage 14 

dynamic temporal decomposition algorithm is applied to the centralized animal skeleton postural data 15 

to obtain the NM space. Finally, together with the additional velocity-based locomotion dimension, 16 

unsupervised clustering is used to reveal the structure of the rodent’s behavior.  17 

Our framework has two main features. First, it addresses the multi-time scale of animal 18 

behavior[37]. Animal behavior is self-organized into a multi-scale hierarchical structure from the 19 

bottom up, including poses, movements, and ethograms. [38,39]. The poses and movements are low- 20 

and intermediate-level elements [32], while higher-level ethograms are stereotyped patterns composed 21 

of movements that adhere to inherent transfer rules in certain semantic environments [40]. Our two-22 

stage pose and movement decomposition focuses on extracting the NM features of the first two layers. 23 

Second, our framework emphasizes the dynamic and temporal variability of behavior. The most 24 

critical aspect of unsupervised approaches is to define an appropriate metric for quantifying the 25 

relationship between samples. However, the duration and speed of NM segments of the same cluster 26 

may differ. To address this, we used a model-free approach called DTAK as a metric to measure the 27 

similarity between the NM segments and thus equip the model to automatically search repeatable NM 28 

sequences. We then apply the uniform manifold approximation and projection (UMAP) [41] 29 

algorithm to visualize high-dimensional NM representations. After combining the locomotion 30 

dimension with NM space [Fig. 1C], we adopted hierarchical clustering to re-cluster the components 31 

and map the behavior’s spatial structure [Fig. 1D].  32 

Colleting Mouse Motion Data with a 3D Multi-view Motion Capture System  33 
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To fully characterize the kinematics of free-moving animals, we developed a 3D multi-view 1 

motion capture system (Fig. 2A, B). This system integrates the behavioral apparatus (Supp. Fig. S1), 2 

camera calibration (Supp. Fig. S3, 4), multi-view video stream acquisition, pose estimation (Supp. Fig. 3 

S5) [8], and 3D skeletal reconstruction [42]. We collected the naturalistic behavioral data of free-4 

moving mice in a featureless circular open-field (Fig. S1, Video 1). We analyzed the mouse skeleton 5 

as 16 parts (Fig. 2C) to capture the movements of the rodent’s head, torso, paws, and tail, and the 6 

following motion quantification did not involve the motion features of two parts of the tail (). The 7 

data obtained from tracking representative mouse poses tracking (Fig. 1D) includes the 3D 8 

coordinates (x, y, and z) of the body parts, which reveal that the high-dimensional trajectory series 9 

exhibits periodic patterns within a specific time scale. On the trajectory, there are pattern switches 10 

between these segments. To evaluate the quality of the 3D skeletal data, we checked the DeepLabCut 11 

(DLC) tracking likelihood in the 12×4 videos (0.9807±0.1224, Fig. 5). After artifact detection and 12 

correction, we calculated the overall reconstruction quality (0.9981±0.0010, Fig. 2D, Fig. S6A) to 13 

ensure that the data were qualified for downstream analysis. 14 

Decomposing Non-Locomotor Movements with Dynamic Time Alignment Kernel  15 

Conceptually, behavior adheres to a bottom-up hierarchical architecture (Fig 3A) [38,39], and 16 

research has focused on elucidating behavioral component sequences contained in stimuli-related 17 

ethograms [43]. The purpose of the two-stage NM decomposition is to bridge the low-level vision 18 

features (postural time-series) to high-level behavioral features (ethograms). The first stage of the 19 

decomposition involves extracting postural representations from postural feature data. Since the 20 

definition of NM does not involve the animal’s location or orientation, we pre-processed these data 21 

through center alignment and rotation transformation (Supp. Fig. 6). The continuous sampling of 22 

animal poses is usually subject to redundancy attributable to neighboring poses of varying similarity 23 

[44]. Therefore, for computational efficiency, we adopted a temporal reduction algorithm to merge the 24 

adjacent similar poses as postural representations in a local time range. 25 

In the second stage, NM modules are detected from temporal reduced postural representations. 26 

Unlike the static property of poses, mammalian movements have high dimensionality and large 27 

temporal variability [45]: e.g., the contents, phases, and durations of the three pose sequences were 28 

not the same (Fig 3A). Hence, we adopted a model-free approach to dynamically perform temporal 29 

aligning and cluster the temporally reduced postural representation data (Fig. 3B) [46]. This problem 30 

is equivalent to providing a d-dimensional time-series � �  ���� of animal postural representations 31 

with n frames. Our task decomposes X into m NM segments, each of which belongs to one of the 32 

corresponding k behavioral clusters. This method detects the change point by minimizing the error 33 

across segments; therefore, dynamic temporal segmentation becomes a problem of energy 34 

minimization. To model the temporal variability and provide a suitable metric for evaluating the 35 
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differences between NM segments, we used the DTAK method, which extends from dynamic time 1 

warping (DTW), to measure the similarity between time sequences and construct an energy equation 2 

(objective function) for optimization. The relationship between each pair of segments was calculated 3 

with the kernel similarity matrix K (Fig. 3C). DTAK was the used to compute the normalized 4 

similarity value of K and generate the paired-wise segment kernel matrix T (Fig. 3D). 5 

Because dynamic temporal segmentation is a non-convex optimization problem whose 6 

solution is very sensitive to initial conditions, this approach begins with a coarse segmentation 7 

process based on the spectral clustering method, which combines the kernel k-means clustering 8 

algorithms. To define the time scale of segmentation, the algorithm sets the maximum and minimum 9 

lengths ����� , ����
�  to constrain the length of the behavioral component. For the optimization 10 

process, a dynamic programming (DP)-based algorithm is employed to perform coordinate descent 11 

and minimize energy. For each iteration, the algorithm updates the segmentation boundary and 12 

segment kernel matrix until the decomposition reaches the optimal value (Fig. 3E, F). The final 13 

segment kernel matrix represents the optimal spatial relationship between these NM segments, which 14 

can be further mapped into its feature space in tandem with dimension reduction.  15 

We demonstrate the pipeline of this two-stage behavior decomposition (Fig. 3H) in a 16 

representative 300-s sample of mouse skeletal data. The raw skeletal traces were segmented into NM 17 

slices of an average duration of 0.89 ± 0.29 s. In these segments, a few long-lasting movements 18 

occurred continuously, while most others were intermittent (Fig. 3G). The trajectories of these 19 

movement slices can reflect the actual kinematics of the behaving animal. For instance, when the 20 

animal is immobile, all of its body parts are still; when the animal is walking, its limbs show rapid 21 

periodic oscillations. Consistent with our observations, the movements corresponding to the other two 22 

opposite NMs, left and right turning, tended to follow opposite trajectories. These preliminarily 23 

results demonstrated that DTAK can be used for the decomposition and mapping of NMs. 24 

Mapping Mouse Movements with Low-Dimensional Embeddings and Unsupervised 25 

Clustering 26 

We validated our framework in a single-session experiment with free-moving mouse 27 

behavioral data collected with the 3D motion capture system. First, the two-stage behavioral 28 

decomposition strategy decomposed the 15-minute experimental data into 936 NM bouts (Video 2). A 29 

936×936 segment kernel matrix was then constructed using the DTAK metric. This segment kernel 30 

matrix could flexibly represent the relationship and provide insight into the relationships between 31 

each behavioral component sequence in their feature space. For visualization purposes, we adopted an 32 

algorithm called UMAP that can preserve both the local and global structure of the dataset and 33 

provide 2D embeddings of these NM segments. In addition, in our parallel feature fusion framework, 34 

the factor of an animal’s interaction with the environment – i.e., velocity – is considered an 35 
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independent dimension. Together with 2D NM embedding, they construct a spatio-temporal 1 

representation of movements (Fig. 4A). 2 

We used an unsupervised clustering algorithm to verify the spatio-temporal representation of 3 

animal behavior and identify the movement phenotypes. First, we determined the number of 4 

behavioral phenotypes of this dataset. Using the Bayesian Information Criterion (BIC) [47] to model 5 

the structure of the data and combining the model with the practical situation of the sample 6 

distribution in 3D space, the optimal cluster number was determined to be 11 (Supp. Fig. 9). We then 7 

recalculated the similarity matrices in the new feature space (Fig. 4B) and aggregated them using a 8 

hierarchical clustering method. Finally, we cut the original video into clips of 0.963 ± 0.497 s and 9 

manually labeled them according to the behavior of the rodents in the clip: running, trotting, stepping, 10 

diving, sniffing, rising, right turning, up stretching, falling, left turning, and walking (Supp. 11 

Behavioral phenotypes definition). The locomotion types of running, trotting, stepping, and walking 12 

accounted for 20.6% of the total activities, indicating that animals spent most of the time in the NM 13 

stage (Fig. 4C). 14 

Although we phenotyped all the clips of the entire video, it was difficult to label the behaviors 15 

of the rodents with only 11 definitions. Further, there are various heterogeneous transition stages 16 

between bouts of stereotyped movements [12,14,36]. Therefore, we evaluated them by calculating the 17 

intra-cluster and inter-cluster correlation coefficients (intra-CC and inter-CC, respectively; Fig. 4D, 18 

Fig. 5B). Our results showed that running, up stretching and left turning have higher intra-CC and 19 

lower inter-CC, while walking and sniffing have both higher intra-CC and higher inter-CC. This is 20 

because walking and sniffing co-occur with other movements [2], such as diving and turning, 21 

respectively. Finally, to evaluate the overall clustering quality, we integrated these two parameters 22 

and defined the Clustering Quality Index (CQI, Fig. 4E), which helped to determine the 23 

stereotyped/non-stereotyped movements. 24 

Kinematic Validation of Mouse Behavioral Phenotypes 25 

 DTAK is an abstract extraction of animal motions that aims to simplify the complex 26 

temporal dynamics of behavior. Hence, we further elucidated whether the spatial kinematics of the 27 

original postural time-series of the behavioral phenotypes identified with this framework were 28 

homogeneous. Manually inspecting the position, moving, bending, and other characteristics of the 29 

mouse limbs and trunk of the video clips of each phenotype group (Video 3), we found reliable 30 

homogeneity for clips with high CQIs (CQI>0.75). We examined the average skeleton of all frames 31 

for each movement cluster (Fig. 5A). While some movements could be clearly recognized (e.g., left 32 

and right turning, and up stretching), the differences between movements with similar postures 33 

(running, trotting, walking, etc.) were not. However, as such unclear differences should be reflected in 34 

the moving intensity (MI) of the body parts, we computed the MI of all body parts during movement. 35 
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The data show that the horizontal MI components of running and trotting are the highest, followed by 1 

stepping and walking. Vertical MI components (e.g., up stretching, rising, and falling) feature richer 2 

detail; we attribute their high overall vertical MI to the movement of the nose and front claws (Fig. 3 

5A, C, D, E). This approach of creating portraits for each type of movement provides further support 4 

for the efficacy of our framework in the decomposition of animal behavior. The movement lineage 5 

analysis revealed that similar movements were arranged were closely, such as running and trotting. 6 

Interestingly, falling and left turning were on close clades. Review of the video clips of these two 7 

groups demonstrated that 37.18% of the movements in this group occurred simultaneously with left 8 

turning (28.85% for right turning). A similar phenomenon occurred in the clades of diving and 9 

sniffing due to the co-occurrence of these behaviors. The linear regression of these two pairs of clades 10 

showed that both intra-CC and inter-CC were relatively high (Fig. 5B), suggesting several 11 

concomitant descriptions of animal behavior. These clustering results occurred because these 12 

movements show more characteristics of the current class.  13 

Identification of the Behavioral Signatures of the Mouse Disease Model 14 

Animal disease models play an increasingly critical role in expanding understanding of the 15 

mechanisms of human diseases and novel therapeutic development [48–50]. Behavioral phenotyping 16 

provides a noninvasive approach to the assessment of neuropsychiatric disorders in animal models. 17 

By only evaluating spontaneous behavior without any induced conditions, we demonstrate the 18 

usability and unbiased character of our framework for animal phenotyping. We collected data from 12 19 

mice (Fig. 6A, nKO=6, nWT=6) with our 3D motion capture system and subjected them to routine 20 

velocity and anxiety index analyses (Fig. 6B-E). In agreement with prior research, we found a 21 

significant difference between the average velocities of the two groups.  22 

 We clustered the behavioral components of the 12 animals and obtained 41 behavioral 23 

phenotypes (Fig. 6F, Supp. Fig. 8,9). Compared with the single-session experiment, the group 24 

analysis revealed diverse behavioral types. We found that KO (Shank3B Knock-out, Shank3B-/-) mice 25 

spent a significantly higher proportion of their time engaging in two of the movements (Fig. 6G). We 26 

manually reviewed the video clips of these two types and annotated them as self-grooming and 27 

hunching. In previous studies [51–53], self-grooming has been widely reported in Shank3B-/- mice. 28 

This is partly attributable to self-grooming being a long-lasting movement (7.13±7.81 s) and thus 29 

easily recognized by human observation or software (Fig. 6I). Interestingly, although hunching has 30 

only previously been reported in a few related studies [54–56], our framework frequently detected 31 

hunching movements in KO mice. This novel finding can be attributed to the duration of a single 32 

continuous hunching movement being too short to be noticed (1.47±0.31) as well as to the similarity 33 

between the kinematics of hunching and rearing. We proved that these two types of movements 34 

belong to distinct behavioral phenotypes. Specifically, during hunching, mice maintain an arcuate 35 
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spine angle, while rearing is characterized by a stronger, wider range of necks and head motions (Fig. 1 

J-N). This ability to identify short-term and fine behavioral modules is one of the advantages of our 2 

framework (Fig. 6H).  3 

Finally, we determined whether the animal types could be identified simply by the 4 

proportions of time spent engaging in different behaviors. In fact, when assessing behavior, 5 

considering each behavioral component as a dimension may affect the outcome of the animal 6 

phenotype. Therefore, we used UMAP to perform dimensionality reduction of the 41-dimensional 7 

behavioral proportion data of all movement types. As expected, the two genotypes of animals were 8 

well separated in the low-dimensional space (Fig. 6E), even though there were large amounts of 9 

baseline movements with no significant difference. We defined these two types as “autistic-like 10 

behavior space.” Hence, our findings indicate the potential use of our framework to identify disease 11 

models automatically.  12 

Discussion 13 

The current study presents a framework for discovering quantifiable behavioral modules from 14 

high-dimensional postural time-series by combining dynamic temporal decomposition and 15 

unsupervised clustering. Behavior decomposition adopts a parallel, two-stage approach to extract 16 

animal motion features in accordance with the natural structure of animal behavior. We used DTAK 17 

to measure the similarity between behavioral modules and applied further low-dimensionality 18 

embedding to represent the behavior’s underlying feature space. The unsupervised clustering 19 

identified behavioral phenotypes from the feature space and helped to automatically assess the 20 

behavioral experiment data. In addition, the clustering step could quickly generate large amounts of 21 

distinct unlabeled behavior groups. By manually assigning annotations to each group, our framework 22 

will potentially facilitate semi-supervised behavior recognition.  23 

Our framework has two main advantages. First, our approach of tracking multiple body parts 24 

and acquiring 3D reconstruction data achieves better performance than similar recently reported 25 

rodent behavioral recognition frameworks [11,57]. The high signal-to-noise ratio of the data yielded 26 

by the present method avoids animal body occlusion and view-angle bias in single-camera top-view 27 

monitoring. More importantly, our behavior decomposition framework emphasizes the extraction of 28 

the temporal dynamics of movements. Without making model assumptions, similar movements with 29 

various time durations and temporal variability can be efficiently represented by the self-similarity 30 

matrix. We proved that this similarity matrix is a reliable objective metric by evaluating the 31 

consistency of clustered behavior phenotypes. We further performed dimension reduction to visualize 32 

the behavioral map, which facilitates exploring the evolution of movement sequences of higher-order 33 

behavior and behavioral state transition caused by neural activity. For example, innate defensive 34 

behavior is considered to consist of three specific movement phases [40,58], but data supporting this 35 
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idea is lacking. Hence, our future work will focus on modeling the transition patterns of innate 1 

behavior based on the behavioral map. 2 

Comprehensive and unbiased behavioral phenotyping is becoming a powerful approach to the 3 

study of behavioral abnormalities in animal models of neuropsychiatric disorders. In this study, we 4 

demonstrate its application to the monitoring of Shank3 mutant mice that show autistic-like behaviors. 5 

Our framework helped to reveal that Shank3B-/- engage in two types of spontaneous behaviors 6 

significantly more often than WT mice; While grooming has been extensively observed in murine 7 

models of restricted, repetitive behavior, short-term hunching behavior has not. Previous studies 8 

[51,52] mentioned that the rearing behavior of Shank3 mice also differs from that of WT mice; 9 

however, because hunching is kinematically similar to rearing, it is difficult to distinguish these two 10 

types by human observation or algorithms. Our 3D and sub-second methods will help to identify new 11 

behavioral biomarkers and advance understanding of the neural circuit mechanisms underlying 12 

behavioral changes caused by genetic mutations. In addition, large animals such as non-human 13 

primates, dogs, and pigs have recently emerged as valuable models for studying neurological 14 

dysfunctions [49,50]. Our general-purpose framework further benefits from the significant advantage 15 

of being able to capture and analyze large animal movements, which have more complex 3D 16 

characteristics and temporal dynamics. 17 

The dynamic, high-dimensional, and multi-scale characteristics of behavior can be attributed 18 

to similar properties of the nervous system produces it. While the most advanced large-scale 19 

neuroimaging and high spatiotemporal resolution electrophysiological techniques allow researchers to 20 

elucidate the details of the firing timing of all neurons and neurofunctional connections at all scales, 21 

they cannot inform the mapping of the neural-behavioral relationship without quantifying behavior at 22 

the corresponding level. In other words, to understand the precise temporal relationship between 23 

neural activity and behavior, neural-behavioral mapping requires the complete characterization of 24 

behavior dynamics and how neural activity and behavior sequences co-evolve over time. Further, 25 

hierarchically measuring behavior at multiple scales may potentially reveal the mechanisms of 26 

hierarchical sensorimotor processing. Our framework and further technical optimization may, 27 

therefore, contribute to resolving the relationships between complex neural circuitry and behavior.   28 
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 7 

Figure Legends 8 

Figure 1 | Spatio-temporal decomposition framework for animal behavior analysis. A. Data 9 

preparation: 1) image streams captured from four cameras with different 2D views; 2) animal body 10 

parts are tracked to generates separate 2D skeletal trajectories (color-coded traces); 3) reconstructing 11 

3D body skeleton by integrating these four data streams. B. Two-stage NM decomposition to generate 12 

the feature space: 1) pose decomposition groups continuous skeleton postural data into discrete 13 

postural sequences; 2) NM decomposition (two high-lighted [green and orange] blocks represent two 14 

NMs decomposed from the postural sequences; 3) NM sequences mapped to their 2D features space 15 

(right), where each dot on the 3D axis corresponds to the NM block on the left. C. Calculation of 16 

locomotion dimension. The continuous velocity of the behaving animal is first calculated, then 17 

average the velocity of each segment obtained in the NM decomposition step. D. 3D scatter plot 18 

represents the combined NM and locomotion feature space. All the movements are clustered into 19 

three types (red, green, and orange dots) with the unsupervised approach.  20 

 21 

Figure 2 | Collecting animal behavior trajectories via a 3D motion capture system. A. Pipeline of 22 

3D animal skeletal reconstruction. B. center, schematic diagram of recording animal behavior with 23 

four synchronized cameras; corners, frames captured by the cameras with the DLC labels (left) and 24 

the corresponding reconstructed skeletons (right). C. Left: 16 key body parts include the nose, left ear, 25 

right ear, neck, left front limb, right front limb, left hind limb, right hind limb, left front claw, right 26 

front claw, left hind claw, right hind claw, back, root tail, middle tail, and tip tail. Right: 27 

representative mouse body tracking trace data collected over 100 s showing 48 data vectors obtained 28 

by DLC for each body part (indicated with a color-coded dot) encoded by x, y, and z coordinates. For 29 

visualization purposes, mean normalization is applied to each trace. D. 3D reconstruction quality 30 

assessment: 1-best quality, 0-worst quality. The quality of the data obtained from the 12 mice 31 

averaged at 0.9981±0.001.  32 

 33 

Figure 3 | Dynamic temporal decomposition of multi-scale hierarchical behavior. A. Illustration 34 

of the three-layer bottom-up architecture for behavior. Top: The color-coded bars indicate the types of 35 
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behavior components in the corresponding time period at that layer; each upper layer component is 1 

composed of the sequence of the lower layer. The instance of “approaching” is at the ethogram level 2 

which is composed of three movement level sequences, and each movement sequence includes a set 3 

of postural representations. B. Representative animal postural trajectories (black traces) with two 4 

selected similar NM segments S1 and S2 (orange bars masked). C. Discrete postural sequences S’1 5 

(12 points) and S’2 (13 points) were decomposed from S1 and S2 and used to calculate their similarity 6 

kernel matrix K. D. Segment kernel matrix T calculated with DTAK. Each pixel on the matrix 7 

represents the normalized similarity value of the K for a pair of segments at the ith row and the jth 8 

column (e.g., the pixel in the black box indicates the final similarity of S1 and S2). E. NM segments 9 

decomposed from the postural trajectories shown in B and their color-coded labels. Segments with the 10 

same color indicate that they belong to the same types due to their higher similarity. F. Optimization 11 

process of dynamic temporal decomposition. Objective Value (OV) error decreases with each 12 

iteration until the termination condition is reached (maximum number of iterations or OV converges). 13 

G. Top, representative 300-s skeletal traces, where the trace slices highlighted in colors corresponding 14 

to the four types of typical NMs (left turn, immobile, walk, right turn). Bottom, magnification of 15 

representative traces of these four movement types. H. Workflow of the two-stage behavioral 16 

decomposition. 17 

 18 

Figure 4 | Identify movement phenotypes on single experimental data. A. Spatio-temporal feature 19 

space of behavioral components. Each dot on the 3D scatter plot represents a movement bout (n = 935 20 

bouts). The 11 different colors indicate the corresponding to 11 movement types. B. Upper, 21 

recalculated paired-wise similarity matrix, and they were rearranged with a dendrogram (lower). Each 22 

pixel on the matrix represents the normalized similarity value of a pair of movement bouts at the ith 23 

row and the jth column. The color-coded bars indicate the labels of clustered movement (middle). C. 24 

Fractions of movement bouts number. D. Intra-CC (color-coded) and inter-CC (grey dots) of each 25 

movement group. The dots on each violin plot represents their intra-CC or inter-CC, and dots number 26 

in a pair of violin plot in each group are the same (Intra-CC: 0.91±0.07; Inter-CC: 0.29±0.19). E. 27 

Cumulative Distribution Function of CQI of the movement clusters. The clusters represented by the 28 

curves on the right side have better clustering qualities, and their corresponding movements are more 29 

stereotyped. F. The histogram of the duration of all movements (0.963±0.497s).  30 

 31 

Figure 5 | Visualization and quantification of behavioral kinematics. A. Average-skeleton of all 32 

frames within each movement phenotype. B. Linear regression plot of movement phenotypes. The 33 

horizontal-axis represents the target, and the vertical-axis represents the reference. The color-coded 34 

and gray dots correspond to the intra- and inter-cluster correlation coefficients, respectively. C. Box 35 
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plot of normalized MI of movement groups. Red boxes: horizontal MI; Blue boxes: vertical MI. D, E. 1 

Horizontal and vertical MI of each body part.  2 

 3 

Figure 6 | Spontaneous behavior analysis reveals autistic-like behaviors on shank3B knock-out 4 

mice. A. PCR genotyping for Shank3B+/+ (Wild Type, WT), Shank3B-/- (Shank3B KO) mice. B-E. 5 

Box plot of mean velocity (upper left), mean anxiety index (upper right), maximum velocity (lower 6 

left), and locomotion (lower right) of the two groups of animals (red: KO, n=6, blue: WT, n=6; 7 

Statistics: unpaired T-test for mean velocity, Mann-Whitney test for mean anxiety index; ***P<0.001), 8 

values are represented as mean±std. F. Upper: recalculated paired-wise similarity matrix. The 9 

movement bouts of all of the 12 involved mice were grouped (n = 9495) and were rearranged with 10 

dendrogram (lower). Each pixel on the matrix represents the normalized similarity value of a pair of 11 

movement bouts at the ith row and the jth column. The color-coded bars (41 clusters) indicate the 12 

movements being clustered (middle); G. Comparison of the proportion of movement types between 13 

KO mice and WT mice. The bold traces and shadows indicate the mean±sem. Fractions of each group 14 

and light color traces are the fractions of all 12 mice (red: KO, n=6, blue: WT, n=6). Middle color-15 

coded labels and dendrogram correspond to B. Two movements differed significantly between the 16 

two groups: hunching: KO 5.56±3.84%, WT 1.07±0.68%; self-grooming: KO 3.16±1.12%, WT 17 

2.31±1.15%. ****P<0001, **P<0.01 by two-way ANOVA with Holm–Sidak post-hoc test. H. Low-18 

dimensional representation of the two animal groups (red: KO, n=6, blue: WT, n=6). The 12 dots in 19 

3D space were dimensionally reduced from 41-dimensional movement fractions, and they are well 20 

separated. I. Ethograms of the two significant movements (orange: self-grooming, green: hunching). 21 

J-N. Kinematic comparison of rearing and hunching (upper row refers rearing; lower row refers to 22 

hunching). J. Average-skeletons of all frames and normalized activity intensity (side view) of rearing 23 

and hunching. K. Spine lines (the lines connecting the neck, back, and tail root) extracted from all 24 

frames (rearing: 9854 frames, hunching: 15359 frames) in movement types. For visualization 25 

purposes, only 1% of spine lines are shown in the figure (rearing: 985/9854, hunching: 1535/15359). 26 

Black lines refer to the averaged spine line of the hunching and rearing; L. Histograms of the spine 27 

angles (angle between three body parts). During rearing, the spine angles of the animals swing, and 28 

the average spine angle is straight (181.49±15.48°). By contrast, the spine angles of the rodents during 29 

hunching are consistently arcuate (168.74±11.19°). M. Box plot of spine angles of the two movement 30 

types. N. Box plot of normalized MI of the three body parts involved. 31 

 32 
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