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Understanding the temperature dependence of carbon use efficiency (CUE) is critical for9

understanding microbial physiology, population dynamics, and community-level responses10

to changing environmental temperatures1,2. Currently, microbial CUE is widely assumed11

to decrease with temperature3,4. However, this assumption is based largely on community-12

level data, which are influenced by many confounding factors5, with little empirical evidence13

at the level of individual strains. Here, we experimentally characterise the CUE thermal14

response for a diverse set of environmental bacterial isolates. We find that contrary to15

current thinking, bacterial CUE typically responds either positively to temperature, or has16

no discernible temperature response, within biologically meaningful temperature ranges.17

Using a global data-synthesis, we show that our empirical results are generalisable across a18

much wider diversity of bacteria than have previously been tested. This systematic variation19

in the thermal responses of bacterial CUE stems from the fact that relative to respiration20

rates, bacterial population growth rates typically respond more strongly to temperature,21

and are also subject to weaker evolutionary constraints. Our results provide fundamental22

new insights into microbial physiology, and a basis for more accurately modelling the effects23

of shorter-term thermal fluctuations as well as longer-term climatic warming on microbial24

communities.25
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26

The efficiency with which bacterial populations convert organic carbon into biomass, generally termed27

Carbon Use Efficiency (CUE), is a key physiological measure that ultimately determines the rate at28

which whole microbial communities decompose organic matter and release CO2
1. Therefore, CUE is a29

key parameter in global carbon cycle models2,6, as well as models of soil biogeochemical processes3,7,830

and marine particle export9. CUE is typically quantified as the ratio of carbon allocated to biomass31

production relative to the total carbon assimilated1,10:32

CUE =
Growth rate

Growth rate + Respiration rate
. (1)33

The denominator of this quantity is the sum of rates of carbon allocation to growth and respiration,34

a common approximation where direct measurements of uptake are not feasible1,11,12,13. High CUE35

values imply increased biomass production (sequestration) relative to CO2 release due to respiration,36

and vice versa1. Microbial CUE varies with environmental conditions such as resource stoichiometry37

and availability11, and physical parameters such as pH and temperature13,14. CUE values reported from38

environmental samples are therefore generally much lower than may be expected from theoretical calcula-39

tions10, as microbial communities are very rarely operating under conditions for optimal growth efficiency.40

The response of microbial CUE to changes in environmental temperature is particularly important, both41

for understanding how microbial communities respond to spatial and temporal variation in temperature,42

as well as for predicting the effects of climate change on carbon cycling.43

Currently, models of organic matter decomposition typically assume a decrease in microbial CUE with44

temperature3,4,15. This is based on the premise that microbial respiration rate displays a stronger thermal45

sensitivity than growth rate1,4, implying that growth efficiency declines with temperature. However,46

results from empirical studies in both soil16,17 and aquatic systems1,14,18 are ambiguous, with studies47

variously finding decreases7, increases12, or little to no change in CUE with temperature19,20,21. Recent48

work at the level of single bacterial strains has also challenged this generalisation, finding variable CUE49

thermal responses between taxa13. However, most previous studies have focused on the CUE of whole50

microbial consortia in environmental samples, permitting limited mechanistic understanding of these51

responses. This is because temperature-driven community composition changes are expected to influence52

CUE22, and also because it is difficult to control for temperature-driven changes in nutrient availability53

in the medium5,19. This uncertainty about strain-level thermal responses of bacterial CUE severely limits54

our ability to understand responses of microbial populations to warming, and build mechanistic models55

of community-level responses.56

Here, we quantify CUE using laboratory experiments at the level of single strains for 29 aerobic57
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environmental bacterial isolates spanning 9 families within 3 phyla. We combine this with a data-58

synthesis of > 400 growth and respiration thermal performance curves spanning most major culturable59

bacterial phyla23, to uncover general patterns in the temperature-dependence of CUE.60

We first made precise the relationship between the thermal performance curve (TPC) of CUE and that61

of its underlying metabolic traits using a mathematical model (Methods). This model allows us to express62

the thermal sensitivity of CUE (its apparent activation energy, ECUE) as a function of the sensitivities63

of growth rate (µ) and respiration rate (R) (as activation energies Eµ and ER, respectively) within the64

population’s Operational Temperature Range (OTR) (Fig. 1A). ECUE therefore describes a population’s65

change in CUE with temperature across the OTR. Specifically, within the OTR, CUE decreases with66

temperature (negative ECUE) if the thermal sensitivity of respiration is greater than that of growth, and67

vice versa.68

We then estimated ER and Eµ for each of the 29 bacterial strains by fitting the thermal response of69

growth and respiration rate within its OTR to the Boltzmann-Arrhenius TPC model (eq. 4) (Methods).70

To characterise the TPCs of the two traits, we measured growth and respiration rates at the same time-71

point of (exponential) population growth, over the same timescale, overcoming a key limitation of many72

previous such studies (Methods). Across our dataset, we find that the majority of strains (21/29) display73

a non-significant response of CUE to temperature within their OTR (Figs. 1B & 2). Seven strains show a74

significant increase in CUE with temperature, while only one strain shows a significant decrease in CUE75

with temperature (Figs. 1B & 2, Supplementary Table S2). Furthermore, we find that strains showing a76

positive CUE thermal response tend to be those with lower CUE in general, whilst the opposite is true77

for high efficiency strains (linear regression, intercept = 0.44, slope = −0.76, F1,27 = 10.86, p = 0.0028,78

Fig. 2B). Although by eye there appears to be some curvature, a straight line is preferred by AIC over a79

polynomial using linear regression. These responses are taxonomically structured, with lower efficiency80

Proteobacteria showing positive temperature responses and higher efficiency Firmicutes tending towards81

negative CUE thermal responses. Also, although the thermal optima for growth (Tpk,µ) and respiration82

(Tpk,R) are highly correlated (Pearson’s r = 0.91), growth rates generally peak at lower temperatures than83

respiration rates (Tpk,µ < Tpk,R, paired t23 = 4.996, p < 0.001 Fig. 3A). This validates our assumption84

of a monotonic CUE thermal response within the OTR (Fig. 1).85
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Figure 1: The temperature dependence of carbon use efficiency A. Growth (orange) and res-
piration (blue) show a unimodal thermal performance curve (TPC) with temperature. The portion of
the TPC within the population’s operational temperature range (OTR)—the unshaded region—can be
modelled using the Boltzmann-Arrhenius (BA) equation (eq. 4 in Methods; model parameters labeled on
growth rate TPC). The upper limit of the OTR is defined by Tpk,µ, the temperature at which growth rate
peaks. The difference in BA equation parameters between growth and respiration determines the TPC
of CUE (red dashed line). B. The TPCs of the within-OTR CUE for each of 29 bacterial strains (up to 4
replicates at each temperature). The header for each plot gives the strain ID code (Supplementary Table
S1) and the bacterial genus. The red dashed line is the TPC of CUE within the OTR, calculated as the
median of the responses of 1000 bootstrapped fits of the TPCs of µ and R to the Boltzmann-Arrhenius
model (Methods). The red shaded area is the (bootstrapped) 95% confidence envelope around the CUE
TPC.
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Figure 2: The thermal sensitivity of CUE varies across bacterial taxa. A Median bootstrapped
ECUE with 95% confidence intervals (CIs), strains ordered by the directionality of their response, from
positive to negative, and coloured by phylum. Seven strains have a lower CI that falls above zero (black,
dashed line), indicating a positive CUE thermal sensitivity within the OTR. The majority of strains’
CIs include zero, indicating insignificant directionality (CUE TPC is thermally insensitive). A single
strain “40 RT 01” displayed a significantly negative thermal response for CUE. B There is a significant
negative relationship (linear regression p = 0.00275, black line with grey confidence envelope) between
the measured CUE for each strain, and its CUE thermal sensitivity (ECUE), i.e., less efficient strains are
able to increase their efficiency with temperature, while high efficiency strains cannot.

The expectation for a decreasing CUE response to temperature is based on the assumption that respi-86

ration is more sensitive to temperature (higher E) than growth. However, given our theoretical analysis,87

our empirical results imply higher sensitivity for growth in most cases (i.e., Eµ > ER; Fig 1). We in-88

vestigated this further using our paired growth and respiration rate TPC data. Comparing the ER and89

Eµ values across strains, we find that whilst the two are positively correlated (Pearson’s r = 0.432), on90

average, Eµ is significantly greater than ER (paired t28 = 2.513, p = 0.009, Fig. 3B). To determine the91

generality of our results, we next expanded our investigation of the difference between Eµ and ER using92

a synthesis of published data spanning a much wider diversity of bacteria23. We find strikingly similar93

differences in the shape of the distributions of Eµ and ER in our experimental (Fig. 3C) and literature94

data (Fig. 3D), and find the same pattern of Eµ > ER on average within the data-synthesis TPCs95

(median Eµ = 0.84, median ER = 0.66, Fig. 3D). Therefore, the CUE TPC is more likely to increase or96

be thermally insensitive, than decrease within the OTR across bacteria in general.97
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Figure 3: Variation in TPC parameters. A and B The relationship between growth rate and respi-
ration rate for Tpk and thermal sensitivity (E) respectively (1:1 lines shown). Datapoints are parameter
estimates extracted from fits to empirical data (n = 29). There are five fewer points for the Tpk compari-
son because one or both of the TPCs did not peak within the range of the data and thus Tpk could not be
compared (however the thermal sensitivity, E, can still be estimated for these). C Distribution of E for
growth rate and respiration rate in the experimental data. Red (growth rate) and blue (respiration rate)
dotted lines show median values (median Eµ = 0.71, median ER = 0.65). D Distribution of E for growth
rate and metabolic flux rates (proxies for respiration) from a data-synthesis of > 400 bacterial TPCs23

(median Eµ = 0.84, median ER = 0.66). Median E values in our experimentally-derived TPCs are lower
then those in the data-synthesis because the former were estimated by fitting the Boltzmann-Arrhenius
model and the latter using the Sharpe-Schoolfield model (Methods).

Our results yield a new understanding of the temperature dependence of microbial carbon use efficiency.98

Our study on 29 strains of environmentally isolated aerobic bacteria combined with our data-synthesis99

goes far beyond the scope of any previous culture-based studies into the temperature dependence of CUE100

and its underlying traits. We find that CUE typically responds either positively to temperature, or is101

invariant with temperature within the OTR (Fig. 2). Focusing on the OTR of each strain is key here,102

as this is the temperature range within which the population typically operates, and only in the case of103

extreme warming events would the CUE response beyond the OTR be relevant. This general pattern104

in the CUE temperature dependence arises due to growth rate being typically more thermally sensitive105

than respiration rate (Eµ > ER, Fig. 3B). Therefore, contrary to previous thinking, we conclude that106
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bacterial CUE generally increases or is invariant with temperature within strain-specific physiologically107

and ecologically meaningful temperature ranges.108

The fact that growth rates generally peak at lower temperatures than respiration rates (Tpk,µ < Tpk,R,109

Fig. 3A) is in agreement with previous empirical studies at community24, as well as strain levels across110

both aerobic25,26 and anaerobic27 bacteria. Although the mechanistic basis for this systematic pattern111

is unclear, recent work suggests that it may be driven by stronger thermal constraints acting on carbon112

uptake and allocation rates, relative to respiration1,28. There is very little evidence in previous studies113

for the differences in thermal sensitivity (E) of growth and respiration that we report here. Community114

respiration rates have in fact been reported to display higher thermal sensitivity than growth rate in115

aquatic systems14,18. However, it is difficult to disentangle the effect of nutrient limitation on growth116

versus respiration in community-level measurements of these rates, and it has been suggested that growth117

may be more nutrient limited than respiration in such settings5. Yet, a greater sensitivity of respiration118

relative to growth (and therefore, a negative response of CUE to temperature) is the assumption in most119

soil organic matter decomposition models3,4,15. Indeed, it is unclear why the growth and respiration120

responses should display differences in thermal sensitivity without the effects of nutrient limitation. If121

metabolic rate is a temperature dependent process, and biomass production is fueled by metabolism, it122

should follow that the temperature sensitivities of each should match29. However, although the responses123

of growth and respiration to temperature can be modelled on the basis of their responses being similar to124

a single rate-limiting enzymatic reaction30, these rates are in reality the end result of numerous complex125

biochemical and physiological processes, each with their own independent thermal sensitivities14,31. For126

aerobic heterotrophs, we may consider respiration rate to be equivalent to their “metabolic rate”, a127

process fundamentally dependent upon temperature31. Growth (or biomass production) however is a128

more emergent trait based on the fraction of metabolism allocated to it31. Given that the efficiency of129

allocation of carbon to growth varies with temperature in autotrophs28, a similar constraint may exist130

in heterotrophs.131

We found a narrower distribution of ER values than Eµ (Fig. 3C). The differences in the shape of132

the distributions of ER and Eµ in our empirical results were also reflected in the global data-synthesis133

(Fig. 3D), implying that this phenomenon may be generalisable across the full taxonomic diversity of134

bacteria. The greater variability of Eµ relative to ER indicates that the generally positive CUE thermal135

response is partly due to the ability of bacterial populations to modify their carbon uptake rate and136

allocation efficiency for a given, constrained respiration rate. This also indicates stronger evolutionary as137

well as acclimation constraints acting upon the thermal sensitivity of respiration (the more fundamental138

metabolic process) than growth rate (the more emergent process), which can take a wider range of values.139

Indeed, recent work has shown that Eµ can escape biophysical constraints and adapt to environmental140

7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296095
http://creativecommons.org/licenses/by/4.0/


conditions32,33.141

Theoretical calculations have placed maximum bacterial CUE at about 0.634,35, and similar values142

have been reported from pure culture experiments (CUE = 0.6-0.85)2,36,37. A recent metabolic modelling143

study predicts variation in maximum CUE between taxa, with a range of 0.22 to 0.98 across different144

bacteria, with an average of ∼0.6238. This theoretical variation is realised in the wide range of bacterial145

CUE values obtained from isolate experiments39. Generally lower CUE values are reported in natural146

systems than from isolate experiments39, from as low as 0.01 in the most dilute systems, to nearer 0.5147

in eutrophic systems10. The experimental data shown here fall very much within these ranges; for all148

recorded measurements across all experimental conditions, median CUE = 0.22, for only the maximal149

CUE values recorded from each strain, median CUE = 0.38 (see Supplementary Figure S2). We see a150

taxonomic divergence in these CUE measurements between the two main phyla in our empirical dataset,151

with Firmicutes tending towards high efficiency whilst Proteobacteria are generally less efficient (Figs.152

2 and S2). This is in agreement with recent work which suggests that closely related strains may have153

more similar CUE thermal responses than expected by chance (i.e. ECUE is phylogenetically heritable)13.154

Furthermore, Pold et al. 13 show that the Q10 of CUE is higher for more efficient taxa which is analogous155

to our result of a negative relationship between ECUE and maximum CUE. We find that this trade-off is156

well described as a linear relationship, with highly negative ECUE values not being found, suggesting a157

potential biological limit. Our results have extended this understanding through a more precise estimation158

and generalisation of variation in ECUE, via increased temperature measurements across strains adapted159

to a wider range of temperatures (Tpk,µ 22◦C - 57◦C).160

The overall magnitude of these CUE values are likely to be an over-estimate compared to the “real”161

growth efficiency calculated as the total carbon uptake allocated to growth. This is due to the implicit162

assumption of the commonly used CUE measure (Eqn. 2) that all carbon is allocated to either growth or163

respiration. In reality, there may be other avenues of carbon loss that are not visible to this experiment,164

such as excretion of metabolites. Whether this would cause a significant difference to these results of tem-165

perature dependent CUE would depend on whether excretion displays a pattern of temperature sensitivity166

distinct from respiration. The release of carbon by excretion is commonly assumed to be insignificant167

in models of bacterial growth40, however bacteria do excrete or leak metabolic by-products into the cul-168

ture medium1,40,41. In particular, with high levels of excess carbon in the substrate, some heterotrophic169

bacteria will excrete partially oxidised carbon into the environment in order to drain reducing power42.170

When nitrogen or phosphorous are the limiting nutrients and carbon levels are high, carbon excretion171

levels are high43. When carbon is the limiting nutrient however, levels of carbon excretion are much172

lower — Dauner et al. 43 report in the region of 3-6% of carbon uptake for B. subtilis. Our experimental173

data were derived from growth in the LB medium. This is a rich medium designed for exponential growth174
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under essentially nutrient-unlimited conditions. This was used to avoid the limitations of studies from175

natural systems, where nutrient limitation is likely to play a major role in the CUE response5. The most176

likely nutrient limiting growth in LB however is carbon44 and therefore excretion is expected to account177

for only a small percentage of carbon loss. The results shown here are thus a reliable quantification of178

the temperature dependence of CUE in the absence of nutrient limitation.179

Despite our empirical data being derived from lab experiments under nutrient saturated conditions,180

they represent a wide variety of strains isolated from environmental soil samples grown in a complex181

culture medium. Furthermore, we have extended these results to a data-synthesis spanning the entire182

taxonomic diversity of bacteria for which TPC data are available. Thus, our results are more generalisable,183

and applicable to real-world scenarios than previous culture-based experiments, which have tended to use184

lab-adapted strains grown on single carbon substrates, e.g. glucose. Our data are derived from cultures in185

exponential growth and therefore may provide a poor comparison to natural environments. These systems186

are often assumed to be at steady state, where CUE may be driven by maintenance metabolism of much187

lower turnover populations more generally. However, microbial systems may be more dynamic in nature,188

with repeated successional changes following environmental pertubations45. Furthermore, environments189

contain ‘hot-spots’ of microbial activity with much higher process rates than average conditions46, where190

exponential growth is relevant.191

In conclusion, we have shown that, in contrast to current thinking, the response of bacterial CUE to192

temperature is generally invariant or positive within a biologically and ecologically relevant temperature193

range. This suggests that bacterial taxa are more robust to temperature change than is currently thought.194

These findings are important both, for physiologists aiming to understand abiotic effects on bacterial195

growth efficiency, as well as for parameterising ecosystem models for environment-driven variation in196

microbial carbon sequestration and efflux. In particular, re-parameterising microbial CUE in ecosystem197

models as an insensitive or increasing rather than decreasing function of temperature will likely have a198

major effect on predictions for both short-term responses of microbial community fluxes to temperature199

fluctuations, as well as longer term responses to climate change).200

Methods201

Quantifying the temperature-dependence of CUE theoretically202

Here we make precise the relationship between the temperature-dependence of CUE and that of its underlying203

metabolic traits using a mathematical model. Consider a general equation for microbial population growth:204

1

C

dC

dt
= µ = εU ;
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where the change in population biomass, C, over time, t, (the growth rate, µ) is determined by the product205

of the carbon uptake rate, U , and an efficiency, ε. This is the nutrient unlimited version of a more general206

growth equation appropriate for measurement of exponential population growth28,47. Although there may be207

other sources of carbon loss to a growing bacterial population such as metabolite excretion, we assume that the208

majority of carbon uptake is allocated to growth and respiration, i.e. U ≈ R+ µ. Then, ε can be expressed as:209

ε =
µ

µ+R
= CUE. (2)210

This is the same CUE (carbon use efficiency) measure found throughout the bacterial literature1,2,4,11,35 (eq.211

1), but this simple derivation makes explicit that the measure is meaningful only in the exponential growth phase212

of a population: it is (approximately) the proportion of carbon taken up by the cell that is allocated to growth213

during the exponential growth phase of the population.214

Next, we consider how the TPC of CUE depends on TPCs of the underlying growth and respiration rates. The215

TPCs of a metabolic rate (B) can be adequately modelled by using a simplified Sharpe-Schoolfield equation30
216

obtained by dropping the low temperature inactivation and re-expressing the equation with Tpk as an explicit217

parameter23,33,48,49:218

B = B0
e

−E
k

·
(

1
T

− 1
Tref

)

1 + E
ED−E e

ED
k

(
1
Tpk

− 1
T

) (3)219

Here, T is temperature in Kelvin (K), B is a biological rate, B0 is the rate at a low reference temperature220

(Tref), E is the activation energy (eV), ED the deactivation energy that determines the rate of decline in the221

biological rate beyond the temperature of peak rate (Tpk), and k is the Boltzmann constant (8.617 × 10−5 eV222

K−1). The temperature-independent constant B0 includes the scaling effect of cell size, which we ignore here223

as cell size variation is not relevant for understanding the shape of the TPC of CUE (assuming cell size does224

not change significantly in the timescale over which CUE is measured). Substituting the full TPCs of µ and R225

defined using eq. 3 into eq. 2 can be used to quantify the CUE TPC, and can result in a large array of shapes226

depending upon the parameters of the µ and R TPCs (Supplementary Figure S3). However, the entire range of227

temperatures spanned by the TPCs of µ and R in eq. 3 are not biologically relevant because organisms generally228

live within their “Operational Temperature Range”(OTR), defined as the temperature range from some lower229

critical temperature (e.g., 0◦C) and the temperature of peak fitness µ (henceforth denoted by Tpk,µ)50,51 (the230

“Phase 1” range in Fig. 1A). Additional phases of the TPCs of µ, R and CUE can also be identified — the range231

between the temperature of peak µ and peak R and that beyond the peak of R (Phase 2 and 3 respectively in232

Fig. 1A) — but these are also not relevant here. Within this OTR the TPCs of µ and R can be modelled simply233

using the Boltzmann-Arrhenius function23,30,51,52, eq 4 (the numerator of eq. 2):234

B(T ) = B0e
−E
k
·
(

1
T

− 1
Tref

)
, (4)235

This assumes that neither growth nor respiration peak within the OTR. Indeed, growth cannot peak within236

the OTR by definition, as this is the range from the minimum growth temperature up to the peak growth237
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temperature51. Therefore to use the Boltzmann-Arrhenius function here, we must also assume that respiration238

generally peaks at higher temperatures than growth, as has previously been suggested1,24. This expectation is239

observed within our dataset of empirical TPCs (see supplementary information). Therefore within the OTR (the240

typically-experienced temperature range for a strain), we can define an expression for CUE by using Boltzmann-241

Arrhenius functions (eq. 4) for growth (µ) and respiration (R) respectively, to give:242

CUE =
µ0e

−Eµ
k

·
(

1
T

− 1
Tref

)

µ0e
−Eµ
kT

·
(

1
T

− 1
Tref

)
+R0e

−ER
kT

·
(

1
T

− 1
Tref

) . (5)243

The simplification of equation 5 yields a CUE function which is monotonic over the OTR, with a direction244

defined entirely by differences in Eµ and ER. If Eµ > ER, CUE rises with temperature over the OTR, if Eµ < ER,245

CUE declines with temperature across the OTR. This is the basis for previous theoretical expectations for the246

CUE temperature response1, here formalised as eq. 5. Specifically, we can approximate the denominator in eq.247

5 using a Taylor series expansion, to obtain the following approximation for CUE:248

CUE ≈ µ0e

(
−Eµ+

ERR0+Eµµ0
R0+µ0

)
·
(

1
T

− 1
Tref

)
R0 + µ0

. (6)249

This equation has the form of a Boltzmann-Arrhenius function with:250

B0 =
µ0

µ0 +R0
(7)251

and the apparent activation energy (a measure of thermal sensitivity of CUE) as252

ECUE = Eµ −
Eµµ0 + ERR0

µ0 +R0
. (8)253

Thus, the CUE TPC is necessarily monotonic within the OTR as long as Tpk,µ < Tpk,R (as is almost always254

the case; see Fig. 3).255

This expression can be used to determine the direction of the CUE thermal sensitivity within the OTR as256

follows. Recognising that the condition for CUE to decrease with temperature is ECUE < 0, we can rearrange eq257

8 as :258

Eµ <
Eµµ0 + ERR0

µ0 +R0

This simplifies to the condition259

Eµ < ER.

That is, within the OTR, CUE increases if ER < Eµ ( =⇒ ECUE > 0), decreases if ER > Eµ ( =⇒ ECUE < 0),260

and is insensitive to temperature if ER = Eµ( =⇒ ECUE = 0)261
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Quantifying the temperature dependence of CUE experimentally262

We used 29 strains of environmentally isolated aerobic bacteria from our laboratory culture collection (see sup-263

plementary table S1). These strains were isolated under a range of different temperatures for a species sorting264

experiment, aiming to reconstruct the wide diversity of bacterial temperature fitness present in soils. We experi-265

mentally quantified the TPC of CUE for these bacteria as follows.266

At each experimental temperature, frozen bacterial cultures were revived and grown to carrying capacity at the267

experimental temperature (acclimation period - to restrict influence of temperature stress on TPC, or equalise268

it across experimental points). Revived cultures were grown in LB medium in replicates of 4 and growth rate269

and respiration rate were measured during exponential growth using flow cytometry cell counts (growth) and270

MicroResp� (respiration). This was repeated across a range of temperatures spanning the full TPC for each271

isolate.272

From the flow cytometry measurements, estimates of carbon biomass in the cultures were made based on cell273

diameters53, and growth in the exponential phase calculated as:274

µ =
log(C1

C0
)

t
; (9)275

where C0 is the starting biomass, C1 is the final biomass and t is the duration of the experiment. MicroResp�276

was used to give a quantitative measure of the cumulative respired CO2 produced during the growth experiment54.277

From this, the per-capita respiration rate was calculated in terms of carbon mass, according to:278

R =
µRtot

C0eµt − C0
. (10)279

Here, Rtot is the total mass of carbon produced, C0 is the initial population biomass, µ is the previously280

calculated growth rate and t is the duration of the experiment (see supplementary material for full details of the281

derivation of eq 10). This measure of respiration rate is directly comparable to the specific growth rate, µ, and282

overcomes a problem shared by practically all previous empirical measurements of CUE. Specifically, for a given283

temperature, previous methods have often required growth rates to be measured at a different timescale, or at284

a different time point of population growth, than the measurement of respiration rate. This is because µ needs285

to be measured over time-period sufficiently long enough to allow changes in cell density to be detectable using286

optical methods, while respiration rate can be measured over much shorter timescales. The resulting difference287

in timescales of measurement permits a greater level of thermal acclimation of growth relative to respiration.288

Furthermore, in cases where these measurements have been made over a similar time-frame, respiration rates289

are often normalised only to the starting mass of the growing population, and neglect to include changes in290

the growing population size over time (e.g. Keiblinger et al. 11 , Créach et al. 55 , Warkentin et al. 56). Indeed,291

direct comparisons of the TPCs of growth and respiration that our methods allow have largely been lacking292

from the literature, making it difficult to link these processes to temperature-dependent CUE at the appropriate293

timescale57.294
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Calculating CUE from the experimental data295

Having measured the TPCs of growth and respiration rate, we then calculated the within-OTR TPC of CUE for296

each bacterial strain as follows. We first fit the Sharpe-Schoolfield model (eq. 3, Methods) to paired growth rate297

and respiration rate TPCs for each of the 29 strains of aerobic bacteria to determine the respective Tpk,µ and298

Tpk,R, and then fitted the Boltzmann-Arrhenius model (eq. 4) to the TPC from the rate at minimum temperature299

up to its Tpk. To fit eq. 4 to the temperature dependent growth and respiration rates to each of the 29 strains in300

our dataset, we used only those strains that had at least 3 datapoints in the temperature range lower than their301

Shape-Schoolfield calculated Tpk. We input these TPC parameters for µ and R (calculated from eq. 4) into eq.302

5 to calculate the CUE TPC, and and its corresponding ECUE using eq. 8. All analyses and model fitting were303

performed in R58, using the “minpack.lm” package for non-linear least squares fitting.304

Accounting for uncertainty in model fitting305

To account for uncertainty in the estimated TPCs (i.e., in the parameters B0 and E; eq. 4) in our tests of306

whether the emergent CUE responds significantly to temperature, we implemented a bootstrapping approach as307

follows. For each strain we re-sampled the data with replacement 1,000 times and re-fit the Boltzmann-Arrhenius308

model (eq. 4) to the sub-sampled growth and respiration dataset. As the data are paired (each CUE value309

is derived from a growth and a respiration measurement), we re-sampled growth and respiration paired points310

(rather than re-sampling growth and respiration separately), in order to account for their covariance. From each311

of the paired BA model fits we calculated ECUE according to eq. 8, obtaining a distribution of these values. We312

then calculated the 95% confidence interval for ECUE as the 2.5th and 97.5th percentiles of this distribution. We313

asked whether or not the CIs include zero, as a robust test to determine a thermal response significantly different314

from a temperature insensitive response (Fig. 2).315

In order to calculate a confidence envelope around each CUE TPC, we took the fitted parameters from the316

1,000 bootstrapped curves for each strain and interpolated CUE curves across the temperature range for plotting.317

At each temperature, we took the 2.5th and 97.5th percentiles of the CUE distribution as the upper and lower318

bounds of the 95% confidence envelope.319

Data-synthesis of bacterial thermal performance curves320

To understand our results in a broader context, we compared the thermal sensitivities of our empirically derived µ321

and R TPCs to those in our recent global data synthesis23. This data synthesis is primarily composed of growth322

rate TPCs (416 bacterial µ TPCs), but also contains 22 bacterial metabolic flux TPCs which we use as proxies for323

respiration rate TPCs. This is a taxonomically and functionally diverse dataset, spanning 13 bacterial phyla and324

practically the entire range of thermal niches inhabited by bacteria. Rather than re-analyse the raw data here,325

we directly take the Eµ and ER estimates provided and compare the distributions to those of our empirically326

derived TPCs. The data-synthesis calculates E directly from the Sharpe-Schoolfield model (eq. 3), whereas here327

we calculate E from the Boltzmann-Arrhenius function (eq. 4) fitted within the OTR. This is expected to cause a328

difference in the overall magnitude of E between datasets (lower E using Boltzmann-Arrhenius due to curvature329
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as trait values approach Tpk
51), however we emphasise this does not affect Eµ and ER comparisons within these330

datasets, nor the comparison of distributions between these datasets.331
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24. Pietikäinen, J., Pettersson, M. & B̊åath, E. Comparison of temperature effects on soil respiration and bacterial384

and fungal growth rates. FEMS Microbiology Ecology 52, 49–58 (2005).385

25. Christian, R. R. & Wiebe, W. J. The effects of temperature upon the reproduction and respiration of a386

marine obligate psychrophile. Canadian Journal of Microbiology 20, 1341–1345 (1974).387

26. Kusnetsov, J. M., Ottoila, E. & Martikainen, P. J. Growth, respiration and survival of Legionella pneumophila388

at high temperatures. Journal of Applied Bacteriology 81, 341–347 (1996).389

15

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 14, 2020. ; https://doi.org/10.1101/2020.09.14.296095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296095
http://creativecommons.org/licenses/by/4.0/


27. Knoblauch, C. & Jorgensen, B. B. Effect of temperature on sulphate reduction, growth rate and growth390

yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environmental Microbiology 1,391

457–467 (1999).392
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