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Being a comprehensive knowledge bases of cellular 
metabolism, Genome-scale metabolic models (GEMs) serve as 

mathematical tools for studying cellular flux states in various 

or-ganisms. However, analysis of large-scale GEMs, such as 

human models, still presents considerable challenges with 

respect to objective selection and reaction flux constraints. In 

this study, we introduce a model-based method, ComMet 
(Comparison of Metabolic states), for comprehensive analysis 

of large metabolic flux spaces and comparison of various 

metabolic states. ComMet allows (a) an in-depth 

characterisation of flux states achievable by GEMs, (b) com-
parison of flux spaces from several conditions of interest, (c) 
identification of metabolically distinct network modules and 

(d) visualisation of network modules as reaction and metabolic 

map. As a proof-of-principle, we employed ComMet to 

extract the biochemical differences in the human adipocyte 

network (iAdipocytes1809) arising due to unlimited/blocked 

uptake of branched-chain amino acids. Our study opens 

avenues for exploring several metabolic condi-tions of 
interest in both microbe and human models. ComMet is 

open-source and is available at

https://github.com/macsbio/commet.
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1 | INTRODUCTION

Metabolism plays a central role in maintaining cell functionality as it provides the energy and building blocks for
cellular growth. In humans, metabolic dysfunction is associated with a wide range of clinical conditions including obe-
sity, diabetes, neurodegenerative diseases, cancer and inborn errors of metabolism (Hotamisligil, 2006; Coller, 2014;
Saudubray et al., 2016). Therefore, systems-level understanding of human metabolism is pivotal to comprehending
phenotypic changes (in both normal and diseased states) and to develop prevention and treatment strategies.

Advancements in experimental and computational techniques have enabled the construction of genome-scale
metabolic models (GEMs) in the last two decades. GEMs are mathematical formulations of the complete set of
metabolic reactions taking place in a cell, tissue, organ or organism (Robinson and Nielsen, 2016). GEMs contain
extensive descriptions of molecular relationships between genes, reactions and metabolites. These comprehensive
knowledgebases enable prediction of reaction fluxes under varying environmental conditions thus contributing to
systems-level understanding of metabolism. GEMs have facilitated investigating various metabolic dysfunctions in
cancer (Folger et al., 2011; Agren et al., 2012; Yizhak et al., 2014, 2015), obesity (Mardinoglu et al., 2013) and non-
alcoholic fatty liver disease (Mardinoglu et al., 2014, 2017). Despite successful applications and advances in algorithms
(Lewis et al., 2012), conducting studieswith humanGEMs still requires certain assumptions and/or prerequisites which
are detailed below.

Flux Balance Analysis (FBA) (Orth et al., 2010), Elementary Flux Modes (EFM) analysis (Schuster and Hilgetag,
1994) and Flux Space Sampling (or Sampling) (Schellenberger and Palsson, 2008) are frequently used methods for
analysing GEMs. Given the cellular uptake rates of metabolites, FBA optimises an assumed objective (such as biomass
production) and estimates flux values for all reactions. However, the accuracy of FBA estimates predominantly de-
pends on two factors: (a) assumed objective and (b) precise description of media/nutrient levels. Due to the complex
nature of human cellular metabolism, selecting the objective function is not as straightforward as biomass production
and requires careful consideration of the underlying physiology. In addition, the absence of accurate public data from
human cell line studies (describing uptake/release rates of plasma metabolites) limits the applicability of FBA. Alterna-
tive to identifying a single optimal flux distribution, EFM analysis and Sampling characterise all the possible flux states
in the metabolic network. EFMs are non-decomposable steady-state pathways through a metabolic network. Owing
to the combinatorial explosion in the number of EFMs, identification of the complete set of EFMs is computationally
demanding (Klamt and Stelling, 2002), making it unsuitable for large GEMs. In addition, estimating the likelihood of
observing an EFM in a given phenotype is difficult (Güell et al., 2015) which further limits their practical applicability
on human GEMs. Sampling, on the other hand, provides a realistic alternative to EFMs in exploring the properties of
network states. Sampling identifies the feasible range as well as a probability distribution for every reaction flux in the
model by generating uniformly distributed random points in the flux space (a geometrical polytope containing the set
of feasible metabolic states). Most importantly, unlike FBA, Sampling does not require the specification of an objective
function. These methodological differences offer great benefits in using Sampling to assess metabolic differences in
various physiological states. However, most of the currently available algorithms for Sampling the human GEMs are
computationally intense.

In this study, we introduce ComMet (Comparison of Metabolic states), a method for comprehensive analysis and
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comparison of large metabolic flux spaces. ComMet provides a scalable and model-dependent framework that is
computationally feasible and independent of objective specification. The functionalities available in ComMet allow
in-depth characterisation of flux states achievable by GEMs followed by identification of metabolic differences be-
tween several conditions of interest. Characterisation of metabolic flux spaces involves identifying the key players
and predicting flux statistics of the reactions active in that metabolic state. This identification is achieved in ComMet
by combining two existing approaches. First, the iterative algorithm developed by Braunstein et al., (Braunstein et al.,
2017) gives an analytical approximation of the probability distribution of fluxes instead of describing this probability
distribution through sampling random points within the flux space. The flux predictions obtained through their ap-
proach are as accurate as conventional Sampling algorithms and involve very little processing times, making it suitable
even for large GEMs. Second, in an earlier study Barrett et al. (Barrett et al., 2009) demonstrated that applying Prin-
cipal Component Analysis (PCA) on a sampled flux space decomposes flux states into reaction sets whose variability
accounts for the variation in the flux space. Such a transformation extracts what are called “modules” (or biochemical
features characterising a given state) based on network-wide flux interactions and provides useful insights into the
underlying physiology.

The novelty of ComMet lies in its ability to investigate differences between various metabolic states such as pres-
ence/absence of obesity. Metabolic features distinguishing the different conditions are extracted through rigorous
optimisation of comparative strategies. The resulting distinctions are subsequently visualised in two network modes:
reaction map and metabolic map. We demonstrate the applicability of ComMet on a large GEM, the metabolic re-
construction of human adipocyte, iAdipocytes1809 (Mardinoglu et al., 2013). We highlight the differences in the flux
space of the adipocyte model arising due to presence or absence of branched-chain amino acids (BCAAs: leucine,
valine and isoleucine). Elevated BCAAs are considered as strong biomarkers for obesity and diabetes (Felig et al.,
1969; Newgard et al., 2009). Although a mechanistic explanation for the observed increased levels is currently un-
available, impaired BCAA catabolism in adipocytes has been hypothesised as a contributing factor (Herman et al.,
2010). By extracting biochemically interpretable adipocyte modules, ComMet was able to provide additional insights
into adipocyte-specific BCAAmetabolism. We validated predictions fromComMet by identifying molecular processes
that were functionally related to BCAA metabolism. Apart from this, we also highlight the utility of ComMet as a tool
for generating hypotheses that could potentially be tested in a laboratory setting.

2 | RESULTS

First, this section will briefly explain the workflow underlying ComMet which is followed by the description of mod-
ules identified from the adipocyte model (iAdipocytes1809 (Mardinoglu et al., 2013)). To demonstrate the value of
ComMet for distinguishing between metabolic conditions, two metabolic states of an adipocyte were simulated: an
unconstrained substrate uptake and blocked uptake of BCAAs. The simulated scenario demonstrates a proof of prin-
ciple of ComMet’s ability to investigate metabolic differences in various metabolic states.

2.1 | Development of the ComMet workflow

Starting with a GEM, ComMet describes an eight-step pipeline to analyse and compare metabolic flux spaces (Figure
1). All the preprocessing necessary for Sampling was performed in the first step (Figure 1, i). The second step involved
specification of constraints necessary for studying metabolic states of interest (Figure 1, ii). To identify the differences
between unconstrained and blocked uptake of BCAAs, two metabolic conditions were simulated: (a) Unconstrained
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substrate uptake (Figure 1, ii, green: where all the exchange metabolites, including the uptake of BCAAs, were kept
unlimited) and (b) Constrained substrate uptake, (Figure 1, ii, purple: where only the uptake of leucine, valine and
isoleucine were limited to zero). Specifying constraints for the metabolic states under study resulted in two condition-
specific flux spaces each of whichwere decomposed intomodules (sets of reactions having key contribution to the flux
space) in the followingmanner. Samplingwas carried out in both conditions (Figure 1, iii) using the algorithmdeveloped
by (Braunstein et al., 2017). Next, Principal Component Analysis (Figure 1, iv) and basis rotation (Figure 1, v) were
applied to each flux space using the approach described by (Barrett et al., 2009). Such a decomposition determined the
principal components (PCs or flux vectors) explaining the variation within each flux space. Subsequently, our analysis
followed two separate directions to (a) identify condition-specific modules and (b) compare metabolic conditions.

Essentially, the condition-specific modules contained sets of reactions whose fluxes contributed substantially in
determining the underlying metabolic state. A module was extracted from each rotated PC which contained the most
significant reactions within that vector (Figure 1, vii). The collection of modules from an individual flux space formed
the “global modules” of that metabolic condition. To facilitate interpretation of modules and to identify the interplay
between individual modules, the global modules were then visualised as reaction networks (Figure 1, viii). For compar-
ing the two simulated metabolic conditions, the rotated PCs obtained previously were then subjected to Independent
Component Analysis (ICA) which revealed vectors showing noticeable differences between the two conditions (Fig-
ure 1, vi). Finally, modules were extracted from these distinct flux vectors containing metabolic differences (Figure
1, vii) and were also visualised as a reaction map/network (Figure 1, viii). The entire analysis was carried out on a
workstation running Windows 10 with E5-1650 6-core 3.5 GHz CPU and 32 GB RAM. The processing time for each
step in ComMet’s pipeline is shown in Table S6.

2.2 | Flux Space Sampling

During preprocessing, blocked reactions were defined as the reactions that are incapable of carrying any flux under
the imposed conditions. The preprocessing step removed 2,043 blocked reactions thereby retaining 4,067 reactions.
The 4,067 reactions formed a 1608-dimensional flux space. Subsequently, the (Braunstein et al., 2017) algorithm
allowed exploring the probability distributions of reaction fluxes in both conditions. Mean and standard deviation of
flux distributions were obtained for every reaction. A histogram analysis was first performed to broadly understand
the impact of imposing constraints (Figure S1). The histograms ofmeans from both conditions (Figure S1A and B)were
unimodal and centred around 1mmol/gDW/h (millimoles per gram dry weight per hour, the unit of flux used in GEMs).
Both graphs were roughly symmetric with long tails extending till +/- 1000 mmol/gDW/h. The histogram of standard
deviations (Figure S1 C and D), on the other hand, were bimodal with a very large peak around 10 mmol/gDW/h and
a smaller peak at 550 mmol/gDW/h. The shape and spread of the corresponding histograms (Figure S1 A vs B and
Figure S1 C vs D) were notably similar between conditions. However, a closer inspection revealed differences.

In order to quantify the flux differences arising due to constraint imposition, next, a reaction-wise comparison of
flux statistics was carried out. Figure 2 shows that a majority of the means and standard deviations lie on or close
to, the identity line, suggesting a strong similarity in fluxes between the simulations. Deviations from the identity line
seemed to indicate that the flux distributions of only a few reactions were visibly affected by limiting BCAA uptake.
However, the mean fluxes were identical in only 412 reactions and the difference in means were between 0.01-10
mmol/gDW/h for 3,388 reactions. As detailed in Table S1, about 267 reactions showed a change inmean flux between
10-700mmol/gDW/h. It is important to note that, as expected, the mean fluxes of several reactions involved in BCAA
metabolism reduced to almost zero upon constraining BCAA uptake (black rectangle in Figure 2).
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F IGURE 1 Overview of the eight-step pipeline in ComMet to compare various metabolic states in genome-scale
metabolic models (GEMs). ComMet focuses on the flux space of an input GEM with M metabolites and R reactions.
Once the GEM is preprocessed (i), reaction flux constraints are specified to generate condition-specific flux spaces
((ii) green and purple). Both flux spaces are then decomposed into modules through Sampling (iii) followed by
Principal Component Analysis (iv) and basis rotation (v). The decomposed flux spaces can be studied individually or
compared using Independent Component Analysis (vi) by extracting modules from all or distinct flux vectors
respectively. Once the modules are extracted, they are visualised as a reaction network (vii-viii).
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F IGURE 2 Reaction-wise comparison of (a) means and (b) standard deviations between the unconstrained and
constrained simulations. The reactions involved in BCAA metabolism are highlighted in black rectangle.

2.3 | Reactions with significantly different flux statistics

In order to evaluate the statistical significance of the flux differences, z-scores were computed using the means and
standard deviations of reaction fluxes from both the conditions. Introduction of the constraint significantly affected
the probability distributions through 21 reactions in the network (p < 0.05). The changes in flux distribution of all
these reactions are shown using density plots (Figure 3, Figure S2 & Table S2). The shape of each distribution gives
information about the sensitivity of the solution space to the applied constraint. As evident from Figures 3 (i-iii) & S2 (i-
ix), in the constrained simulation, the flux distributions shifted to the left and spanned across a narrow range compared
to a broad range in their unconstrained counterpart. This shift implied a reduction in the fluxes and as expected, this
pattern was observed in several reactions in BCAA breakdown (Figures 3 (i-iii) & S2 (i-vi)). Additionally, the fluxes
through themitochondrial transport of intermediatemetabolites involved in this pathway (isoleucine, methylmalonate
and 3-methyl-2-oxobutyrate) also diminished (Fig S2, vii-ix). Application of the constraint also resulted in marginal
release of BCAAs (not shown) the potential sources of which includes breakdown of lipoproteins that is taken up from
the in silico media.

On the contrary, the flux distribution through ammonia exchange not only changed in shape, but also reversed
in reaction directionality. Under unlimited substrate uptake, our simulations indicated that ammonia is predominantly
taken up whereas ammonia is predominantly released on limiting BCAA uptake (Table S2). Interestingly, in the con-
strained simulation, the flux distribution through the reactions HMR_4437, HMR_4658 and HMR_3929 (Figure 3
iv-vi) retained the same shape and range as the unconstrained curve, but is shifted to the left on the negative axis.
This indicated an increase in fluxes and was observed in the reactions releasing ammonia through folate and histidine
metabolism, which could potentially contribute to the excess ammonia release.

Overall, the results of Sampling seem to suggest that the restriction of merely three metabolite uptakes can
affect the overall behaviour of the network, even in pathways whose connection to these metabolites is not obvious.
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However, this test inspected only the differences in individual reaction fluxes caused by the introduced metabolic
perturbation without considering any interactions between reactions. Therefore, we followed a PCA-based approach
to identify sets of interacting reactions contributing to the underlying metabolic states.

F IGURE 3 Flux distributions of 6 out of 21 reactions having significant differences in flux statistics (p < 0.05)
between the unconstrained and constrained simulations. The reaction IDs and chemical equations have been shown
above and below the plots respectively.

2.4 | Principal Components

During Sampling, a flux covariance matrix was also computed along with descriptive statistics of individual reaction
flux distributions. The rows and columns of the matrix were equal to the number of reactions (4,067x4,067). Essen-
tially, every column was a vector of covariance between the flux distributions of one reaction and all other reactions.
Performing PCA on this matrix resulted in PCs explaining variation within each flux space. Each PC was a flux vector
containing different values of loadings for all reactions. The graph in Figure 4 reports the percentage of cumula-
tive variance explained by the PCs in both flux spaces. 99.9% of the variation in the metabolic flux spaces were
explained by 519 and 516 PCs in the unconstrained and the constrained conditions respectively. The inset in Figure
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4 zooms into the first 10 PCs and shows that the highest absolute variance is: 3.03% in the unconstrained and 1.3%
in the constrained flux space. Individually, each of the remaining components explained less than 1% of the variation.
Nonetheless, these results clearly demonstrate a considerable dimensionality reduction from 1,608 to approximately
500 dimensions in both flux spaces. This reduction also implies that the metabolic state of the adipocyte network can
be largely set by regulating these 519 and 516 PCs respectively in the unconstrained and constrained flux spaces.
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F IGURE 4 Cumulative variance (%) explained by the principal components of flux spaces from both
unconstrained and constrained simulations and the inset zooms into the first 10 principal components.

2.5 | Basis Rotation

Next, applying a basis rotation on PCs allowed gaining a biochemically meaningful interpretation of the flux vectors
by condensing the loadings of 4,067 reactions within each PC into a few high-loading reactions. The reactions whose
loadings were at least half of the largest absolute loading value in a given flux vector were considered to be part
of the module. In other words, the variance explained by a component was driven by the high-loading reactions.
Every module contained distinct sets of reactions which had either positive or negative loading values. We would
like to reiterate that the collection of all the modules from an individual flux space formed the global modules of that
metabolic condition. Biochemically, it means that the reaction sets forming the global modules operate independently
to maintain metabolic homeostasis in the underlying condition.

2.6 | Global Modules In the adipocyte network: Unconstrained & Constrained

The global modules obtained from all the 519 modules in the unconstrained adipocyte network contained a total of
739 high-loading reactions. Although the reactions within a module were unique, some reactions were present in
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more than one module. In terms of size, the number of high-loading reactions in each module varied between 1 and
49. Constructing a reaction map from the reactions in the modules resulted in a reaction-reaction network (Figure S3
(A)). Each node represents a reaction and the connections indicate shared metabolites (either a reactant or a product).
This network contained 4,212 edges, one highly connected subset (488 reactions) and 142 unconnected reactions.
The network structure of the reactions from the global modules of the constrained adipocyte (Figure S3 (B)) was highly
comparable to that from the unconstrained model (Figure S3 (A)). The network in Figure S3 (B) had fewer reactions
(718) and edges (4,200). Just as seen in Figure S3 (A), this network also contained one highly connected subset (485
reactions) and 135 unconnected nodes. Both networks also contained small subsets of 2-4 reactions.

The connection between reactions and the modules was explored further by associating each reaction with its
involved module(s). As highlighted in Figure S3, the color of the nodes were mapped to the number of involved
modules. This interlinking revealed that 85-90% of the reactions were present in just one module. Only 12 reactions
were present in 3 to (maximum of) 5 modules in both the networks. The dominance of single module reactions
implied that very few reactions had a significant loading in multiple modules and most reactions contributed to only
one PC of the flux space. In a metabolic context, they were responsible for regulating only one aspect of the network
behaviour. Examining the biochemical processes (or subsystems) revealed that nearly half of the reactions in each
network were involved in extracellular and mitochondrial transport. These nodes were also responsible for the high
network connectivity. A list of all the 67 unique subsystems with the number of reactions in each is given in (Table S3
& S4).

2.7 | Identification of BCAA-specific modules

ICA originated in the field of signal processing for separating individual sources from a mixture of non-Gaussian sig-
nals. In our analysis, ICA enabled identification of the rotated PCs that were distinct between the conditions, thus,
contributing to the metabolic differences between the simulations. ICA was performed on the combined set of 1,035
rotated PCs from both conditions (519 and 516). An optimisation was carried out to address the algorithmic stochas-
ticity and to select the number of independent components (ICs or features to be estimated, N).

ICA identified 204 distinct features among which, 78 PCs were from unconstrained and 76 PCs from constrained
simulations. Module extraction followed by construction of a combined reaction map resulted in a network of 255
reactions (Figure 5). Colouring the nodes of the network by condition showed that 112 reactions were unique to
the unconstrained distinct modules (green nodes) whereas 86 reactions were present only in the distinct constrained
modules (violet nodes). 57 reactions were part of the distinct modules from both conditions (orange nodes). Grouping
the nodes by subsystem (as described in the model), revealed the involvement of 18 subsystems affected by the intro-
duced perturbation (Table S5). Addition of first neighbouring reactions from the original adipocyte model (that were
not part of distinct modules), shown in grey nodes, improved the connectivity between the subsystems and enabled
obtaining a more complete picture of the intracellular metabolism. As expected, both cytosolic and mitochondrial
BCAA breakdowns were affected by zero BCAA uptake and were observed only in the unconstrained modules. The
biochemical relationships between BCAA metabolism and the subsystems predicted in this study were checked for
consistency with existing knowledge and are detailed below.

2.7.1 | Comparison of ComMet predictions with existing knowledge

Bckdh knockdown
Knockdown of BCKDH (branched-chain alpha-ketoacid dehydrogenase, an enzyme in BCAA degradation) has been
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F IGURE 5 Combined reaction map/network of modules extracted from the 204 PCs that were biochemically
distinct between the unconstrained and constrained simulations. Nodes represent reaction and colours indicate the
condition: unconstrained (green), constrained (purple) and both (orange). Reactions are grouped by subsystems,
some of which are highlighted in blue underlay. Grey nodes are the first neighbours of the reactions in distinct
modules extracted from the adipocyte model. The reactions containing significantly changed fluxes are shown as
bigger nodes with a black outline. The NDEx link https://bit.ly/3gZJDig can be used to study the networks
interactively.

shown to reduce BCAA catabolic activity in several studies involving various biological systems (Green et al., 2015).
The blocked BCAA uptake simulated here resulted in a similar observation. Unsurprisingly, the biochemically distinct
modules showed an active BCAA metabolism only in the presence of BCAA uptake (Figures 5 & 6A).

Fatty acid metabolism
Through C-13 labelling studies, (Green et al., 2015) showed that the end products of mitochondrial BCAA catabolism
in adipocytes include succinyl-CoA and propionyl-CoA which are then metabolised via TCA cycle into lactate and
acetyl-CoA. These metabolites are then channeled towards Fatty acid (FA) metabolism. The distinct modules result-
ing from our simulations are in line with these experimental observations. Figure 5 reveals the presence of TCA
cycle, FA biosynthesis and subsystems related to FA metabolism such as Carnitine shuttle, Leukotriene metabolism,
Prostaglandin biosynthesis and Butanoate metabolism. Among both TCA cycle and FA metabolism, some reactions
were active only in case of unlimited BCAAs (notably, Leukotriene metabolism), indicating that these reactions are
more significant when BCAAs are available to the cell. On the other hand, the mean fluxes of reactions active in both
simulations showed an increase in Carnitine shuttle and a decrease in Prostaglandin biosynthesis upon limiting BCAA
uptake. Overall, the distinct modules suggest that FA metabolism is affected by BCAA availability in the adipocytes
(Figures 5 & 6D).

Carbon metabolism
With respect to carbonmetabolism, the distinct modules from both conditions contained reactions from the TCA cycle
but some cytosolic and mitochondrial reactions contained differences. Specifically, there were alternate routes for the

https://bit.ly/3gZJDig
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conversion of the pairs citrate–isocitrate and alpha-ketoglutarate–succinyl-CoA (Figure 6B). The reactions converting
citrate to isocitrate via cis-aconitate (HMR_4458, HMR_4589) were present onlywith no BCAAs, whereasHMR_4454
(cytosol) andHMR_4456 (mitochondria) were present in both states and hadmarginal differences in flux statistics. The
reactions converting alpha-ketoglutarate to succinyl-CoA via thiamin-PP (HMR_6413, HMR_4209) were active only
in presence of BCAAs while the route via lipoamide (HMR_5297 and HMR_6411) was active in both conditions. In-
terestingly, the mean fluxes in the lipoamide route showed an increase in absence of BCAAs. Although our analysis
did not identify this increase as statistically significant (p-values 0.78, 0.68 respectively), it predicts an increased flux
towards succinyl-CoA with no BCAA uptake. The differences in the flux profile and metabolic routes within the TCA
cycle (Figure 6B) suggests that the adipocytes could be compensating for the lack of BCAAs by the metabolism of
alternative substrates (such as other amino acids). Overall, the distinct modules indicate that the absence of BCAA
uptake affects both TCA cycle and Fatty acid metabolism. Our results emphasise the importance of TCA cycle and
the subsequent use of end-products in Fatty acid metabolism in adipocytes.

2.7.2 | Novel mechanisms predicted by ComMet

Amino acid metabolism:
Amino acids are metabolised by adipocytes and utilised for energy production through the TCA cycle with subsequent
usage in fatty acid metabolism. Uptake of arginine and proline from the in silico media followed by their metabolism
was exclusive to unlimited BCAAs. Whereas Tyrosine metabolism was observed only with no BCAAs (Figures 5 & 6C).
This profile suggests a close relationship between arginine, proline and BCAAs where adipocytes could be compen-
sating for the lack of BCAAs with tyrosine. On the other hand, the reactions metabolising glycine, threonine, serine,
phenylalanine and tryptophanwere present in both conditions which indicated that these pathwayswere less affected
by the imposed constraints. Decreased glycine secretion was reported in differentiated mice adipocytes cultured on
low BCAA levels (Green et al., 2015). In another study, Alves et al., (Alves et al., 2019) found that circulating glycine
levels were increased in obese rodents and these levels decreased when restricting dietary BCAA intake. In our anal-
ysis, mitochondrial breakdown of glycine to serine was predicted only with unlimited BCAAs, whereas both cytosolic
and mitochondrial breakdown was present with no BCAAs. Thus, the additional reactions metabolising glycine pro-
vide a possible explanation for glycine reduction in absence of BCAAs.

Metabolite exchanges with in silicomedia:
Several notable differences were observed between the simulations in the exchange profile of the adipocyte. The dis-
tinct modules indicate that the adipocytes take up triacylglycerols and pyruvate and release lactate in the presence of
BCAAs. Intriguingly, the adipocytes were predicted to take up additional sources of fatty acids (lipoproteins, chylomi-
crons) in the absence of BCAAs. Lipoproteins and chylomicrons are complex protein assemblies that transport fatty
acids around the body and their uptake under no BCAAs could potentially serve as an extracellular source of BCAAs.
Additionally, pantothenate (Vitamin B5) and ADP-glucose were taken up and estradiol-17-beta 3-glucuronide (a con-
jugate of estradiol), dopamine and hyaluronate were released in the absence of BCAA uptake. Ammonia exchange and
threonine release reactions were present in both simulations and the mean flux of threonine release was marginally
different between the simulations. However, under unlimited BCAA uptake, ammonia was taken up, whereas ammo-
nia was released on limiting BCAA uptake (as discussed under Sampling). Altogether, the metabolites describing the
changed exchange profile can be used to validate the predictions from our study.
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metabolism. The nodes in this network represent metabolites (circles) and reactions (squares) while the edges
correspond to reactants and products. Metabolite node colours indicate the intracellular location, mitochondria
(pink), cytosol (cream) and endoplasmic reticulum (grey). The colour scheme of the edges follows that of the
reactions in Figure 5.

2.8 | Distinct modules vs flux statistics

Finally, the results from the BCAA-specific modules were compared with those from Sampling alone. The 255 reac-
tions from the distinct modules (Figure 7A) and the 21 reactions with significantly changed fluxes (Figure 7B) have
been highlighted on the same plot that compared reaction-wise flux means (Figure 2A). Conversely, about 10 out of
these 21 reactions were also found in the distinct modules (Figure 5, bigger nodes with a black outline) which were
involved in BCAA metabolism and ammonia exchange. As seen from Figure 7, the number of reactions identified in
PCA-based analysis were substantially higher than the reactions with significantly changed flux statistics. The mean
fluxes of the reactions from distinct modules appear visually comparable and showed statistically insignificant dif-
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ferences between the simulations. Nonetheless, they revealed biologically meaningful connections between BCAA
breakdown and other subsystems (described above) that were not found from Sampling alone.

3 | DISCUSSION

In this paperwe present a novelmethod, ComMet, for in-depth characterisation of and comparison of distinctmetabolic
states, which has remained a challenge for largemetabolic networks. ComMet facilitates investigating severalmetabolic
states through rigorous optimisation of strategies for comparing metabolic states followed by intuitive network visual-
isation. Using ComMet, biologically interpretable modules associated with different metabolic states of the adipocyte
model (iAdipocytes1809) were extracted.

ComMet was first applied to explore adipocyte flux space and determine condition-specific modules. Principal
components of the individual flux spaces uncovered that the metabolic state of an adipocyte network can be set by
regulating 500 dimensions. The corresponding modules spanned across a wide array of subsystems thereby control-
ling various aspects of adipocyte functionality. Using BCAAs as an example, ComMet was then used for identifying
differences in adipocyte flux spaces arising from blocked uptake. Histograms of the flux statistics obtained from
Sampling provided a broad sense of the flux ranges in each condition. The similarity in shape and spread of the cor-
responding histograms (Figure S1 A vs B and Figure S1 C vs D) suggested a close correspondence in the overall flux
profile between conditions. However, subsequent reaction-wise comparison followed by evaluation of statistical sig-
nificance indicated otherwise. Identifying reactions with shifts in flux means and/or standard deviations provided a
general outline of affected metabolic pathways. Since metabolic reactions seldom act independently, the downstream
PCA-based analysis and meticulous comparison were vital in determining network-wide consequences of the intro-
duced perturbation. The observations from only comparing flux statistics failed to highlight metabolic pathways and
connections that were indicated in distinct modules and these pathways were even experimentally shown to be af-
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fected in other studies. Most notably, the connections between BCAA metabolism and TCA cycle and the differences
in metabolite exchanges, resulting from blocked BCAA uptake, were revealed in the distinct modules but not in Sam-
pling alone. Moreover, the changes in glycine breakdown profile predicted by the distinct modules, provide a possible
explanation for the reduction in extracellular glycine levels in adipocytes upon limiting BCAA uptake.

The highlight of this study lies not only in comparing metabolic states but also in successful integration of ap-
proaches to provide meaningful biological insights. The functionalities included in ComMet offer several advantages.
To begin with, the analysis presented here demonstrated an application of ICA in the context of flux spaces. ICA
is a useful technique for source separation and has found successful uses in the field of image analysis. Here, ICA
enabled distinguishing between flux vectors that are biochemically different in the compared metabolic states. De-
spite its stochasticity, incorporating ICA optimisation strategies strongly supports reproducibility and ensures data-
dependent parameter selection. Automated visualisation of modules as metabolic map and reaction map enabled
inferring network-wide consequences of the introduced perturbation thus, contributing to understanding the under-
lying biological processes. Finally, the computational feasibility offered by ComMet allows application even to human
models.

Extracting the biochemical differences from two simulated states of an adipocyte model opens avenues for ex-
tensive exploration of metabolic conditions. ComMet can not only be applied on diverse biological systems, ranging
from microbe to human models, but it also allows analysing any metabolic states of interest, for example, comparing
(a) metabolic shifts between healthy and cancer cells, or (b) metabolic capabilities of different members of gut mi-
crobiome, or (c) identifying metabolic differences between cell/tissue types, to name a few. Broadly, ComMet can be
employed in two independent scenarios: (1) model-based hypothesis generation or (2) data-driven analysis. As a proof
of principle, the first approach was demonstrated here on a human adipocyte GEM. The objective was to showcase
comprehensive analysis of large metabolic flux spaces irrespective of the challenges presented by GEMs for multicel-
lular organisms with respect to objective selection and model constraining. The model-based approach can also be
extended on a much greater scale by blocking multiple (or combinations of) uptake metabolites. Nevertheless, using
experimental data in place of simulated states follows a data-driven approach. When available, omics data can be
used to constrain flux spaces prior to the Simulation step in the presented workflow to study physiologically accurate
scenarios.

By showcasing the adipocyte modules that are affected by differences in BCAA update, we would like to empha-
sise the utility of ComMet as a tool for generating hypotheses which could be tested in a laboratory setting. Taken
together, we demonstrate that ComMet is a powerful tool for holistic understanding of cellular physiology in several
metabolic states.

4 | METHODS

ComMet is freely available at https://github.com/macsbio/commet. The entire analysis presented in the current study
was carried out in MATLAB R2017b (MATLAB, 2017) and all the networks were visualised using Cytoscape v3.7.2
(Shannon, 2003). The genome-scale metabolic reconstruction of human adipocyte, iAdipocytes1809 (Mardinoglu
et al., 2013), was used. The model was imported using the RAVEN toolbox (Wang et al., 2018) and it contained
1,809 genes, 6,110 reactions and 4,361 metabolites. Reactions releasing leucine, isoleucine and valine from cytosol
to extracellular space were added to the model.
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4.1 | Preprocessing

Prior to Sampling, first, a steady-state flux space was defined by imposing a default set of constraints on all the
reactions in the model. The bounds of all the reversible reactions were set to [-1,000 1,000] mmol/gDW/h and the
irreversible reactions to [0 1,000] mmol/gDW/h. Same rules were applied to the 151 exchange reactions in the model,
which were originally set to no uptake or efflux, depending on directionality. The model was then preprocessed by
removing all the blocked reactions (2,043, in this case), which were the reactions incapable of carrying any flux under
the imposed conditions. Using Flux Variability Analysis, the minimum and maximum steady-state flux ranges of the
remaining 4,067 reactions were then identified and subsequently used for Sampling.

4.2 | Additional constraints for simulating metabolic states

Starting with the preprocessedmodel, twometabolic states were simulated: (a) Unconstrained substrate uptake (same
as the preprocessed model) and (b) Constrained uptake of BCAAs. Setting both the upper and lower flux bounds of
BCAA exchange reactions (HMR_9039: isoleucine uptake, HMR_9040: leucine uptake, HMR_9046: valine uptake) to
zero resulted in the constrained model.

4.3 | Flux Space Sampling

AMATLAB implementation of the Expectation Propagation (EP) algorithm (Braunstein et al., 2017) that was available
with the original publication was downloaded and installed. EP Sampling was run with the following parameters
individually for each condition: (a) 1,000 as maximum number of iterations (b) 1e-5 as the precision accuracy and
(c) 1e8 as beta. Each EP run resulted in statistics of marginal distributions (means and variances) for each reaction
and a matrix describing covariances between all reaction flux distributions. The number of rows and columns in the
resulting covariance matrix was equal to the number of reactions (4,067) and this matrix was used for the downstream
PCA-based analysis.

4.4 | Differential flux statistics

The objective here was to obtain a Z-score (Ziflux) for each reaction, i, using means (E) and variances (Var) of flux
distributions (v) in both conditions (denoted by subscripts 1 and 2 in equation (1)). The Z-score was used to quantify
the significance of the change in each flux distribution between considered conditions (Bordel et al., 2010). It was
calculated as the difference between the means in each of the conditions divided by the square root of the sum of
variances in the respective conditions.

Z f l ux
i =

E2 (vi ) − E1 (vi )√
V ar2 (vi ) +V ar1 (vi )

(1)

These Z-scores were then transformed into probabilities of change using a cumulative Gaussian distribution. These
p-values represented the significance of change in fluxes between the conditions.
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4.5 | Principal Component Analysis and Basis Rotation

Eigenvectors and eigenvalues of the covariance matrix were calculated. The variance explained by each vector was
computed by normalising the eigenvalues. The number of vectors explaining 99.9% of the variancewas then identified
and all the non-zero loadings were rotated using varimax rotation. This step resulted in onematrix of reaction loadings
for each condition, where the rows represented reactions and the columns represented PCs.

4.6 | Module Extraction

The reactions whose loadings were within half of the maximal loading within each principal component were consid-
ered as part of the module (same as the criterion used in (Barrett et al., 2009) study). The number of reactions above
the defined threshold varied in each component. The set of reactions present in at least one module in a condition,
or the global modules, were identified and used for constructing the reaction network.

4.7 | Independent Component Analysis

For identifying BCAA-specific modules, the matrices containing reaction loadings from both conditions were concate-
nated. Next, a loading cut-off was calculated by summing the mean absolute deviation and median of the maximum
absolute loadings. This cut-off was used to identify and remove reactions with low loadings in all the PCs.

To identify the optimum number of ICs, first, a bootstrapping analysis was performed using the FastICA algorithm
implemented in icasso toolbox (Himberg and Hyvarinen, 2003). N ICs were computed in 100 iterations with random
initial conditions, where N = [2 to 100, in steps of 1]. pow3 nonlinearity and symmetrical approach were used for the
decomposition. Next, the consistency of the estimated ICs across iterations was assessed by plotting a stability profile
for each N using the BIODICA toolbox (Kairov et al., 2017a,b). Figure S4 (A) shows that, on average, the stability of the
clusters decreases with increasing N (grey lines). Next, 2-means clustering was used to group the stability measures
into two lines: one with uniform stability distribution (blue line) and the other with low stability distribution (red line).
The point of intersection of these two lines revealed the optimal number of IC as 17 (black vertical line).

Next, ICA was rerun with the identified optimum N (17) for 9000 iterations. To ensure reproducibility of the
estimated features, a random number was explicitly set for each iteration. The resulting kurtosis values for all the ICs
were examined and the features having kurtosis greater or equal to 1 and lesser or equal to -1 were extracted. The
plot of estimation frequency (the number of runs in which each feature was estimated as an IC, Figure S4 (B)) revealed
that less than 20 features were estimated in more than 50% of the iterations (Figure S4 (B), inset). These were too low
to extract modules describing meaningful biological differences (Figure S5). The top 20% of the features, indicated
by ones on the left of the cyan vertical line in Figure S4 (B), were selected for further analysis since the frequency
remained unchanged after 200 features. The selected features corresponded to 204 rotated-PCs that were distinct,
and thus, described the metabolic differences between the two simulated conditions. Modules were then extracted
from these rotated-PCs and the corresponding reactions were also visualised as a reaction network+.

4.8 | Reaction Networks

To construct a reaction map/network from the global modules, two text files were generated: one graph file and an
attributes file. The graph file described the connectivity between reactions and was built based on the connectivities
defined in the metabolic network. Two reactions were defined to be connected if they shared either a product or a
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reactant. The following ubiquitous metabolites were removed from the calculation of connectivity - CoA, ubiquinol,
ubiquinone, NH3, O2, H2O, H+, ATP, ADP, AMP, dADP, dATP, Pi, PPi, CTP, CDP, CMP, dCTP, dCDP, dCMP, UTP, UDP,
UMP, dUTP, dUDP, dUMP, GTP, GDP, GMP, dGTP, dGDP, dGMP, TTP, TDP, TMP, dTTP, dTDP, dTMP, NADH, NADPH,
NAD+, NADP+, FADH2, FAD, CO2, Na+, HCO3-. The attributes file, on the other hand, described features of reactions.
For each reaction, the following properties were identified: (1) the number of modules it is involved in, (2) list of all the
modules involved, (3) subsystem to which it belongs and (4) its chemical equation. The reaction tables were written
into semi-colon separated text files which were imported into Cytoscape for further investigation. In the case of the
distinct modules network, the reaction tables from both the conditions were merged prior to import. To construct
metabolic map, reactions from the distinct modules network belonging to subsystems of interest were extracted as
submodels and visualised using EFMviz (Sarathy et al., 2020). All the network operations were automated through
an R script (R v3.5.1) using the library, RCy3 (Ono et al., 2015). NDEx (Pratt et al., 2015) links for all the reaction
networks have been provided for further interactive exploration.
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