Title: Deep learning for time series classification in ecology

Authors: César Capinha¹, Ana Ceia-Hasse², Andrew M. Kramer³, Christiaan Meijer⁴

¹Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território - IGOT, Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal.

²Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira 100, 1349-008 Lisbon, Portugal.

³Department of Integrative Biology, University of South Florida, Tampa, Florida, USA.

⁴Netherlands eScience Center, Science Park 140, 1098 XG Amsterdam, the Netherlands

Correspondence author: César Capinha | E-mail: cesarcapinha@campus.ul.pt

Running headline: Classify time series with deep learning
Abstract

1. Time series classification consists of assigning time series into one of two or more predefined classes. This procedure plays a role in a vast number of ecological classification tasks, including species identification, animal behaviour analysis, predictive mapping, or the detection of critical transitions in ecological systems. In ecology, the usual approach to time series classification consists of transforming the time series into static predictors and then using these in conventional statistical or machine learning models. However, recent deep learning approaches now enable the classification using the raw time series data, avoiding the need for domain expertise, eliminating subjective and resource-consuming data transformation procedures, and potentially improving classification results.

2. We here introduce ecologists to time series classification using deep learning models. We describe some of the deep learning architectures relevant for time series classification and show how these architectures and their hyper-parameters can be tested and used for the classification problem at hand. We illustrate the approach using three case studies from distinct ecological subdisciplines: i) species identification from wingbeat spectrograms; ii) species distribution modelling from time series of climatic variables and iii) the classification of phenological phases from continuous meteorological data.

3. The deep learning approach delivered ecologically robust and high performing classifications for the three case studies. The results obtained also allowed us to point future research directions and highlight current limitations.
4. We demonstrate the high potential and wide applicability of deep learning for time series classification in ecology. We recommend this approach be considered as an alternative to commonly used techniques requiring the transformation of time series data.

Keywords: AutoML; Classification; Data-driven; Deep learning; Scalability; Sequential data; Time series

Introduction

The recent increase in affordability, capacity, and autonomy of sensor-based technologies (Peters et al., 2014; Bush et al., 2017), as well as an increasing number of contributions from citizen scientists and the establishment of international research networks (Hurlbert & Liang, 2012; Bush et al., 2017) is allowing an unprecedented access to time series of interest for ecological research (Reichstein et al., 2019). A common aim of ecologists using these data concerns assigning them into predefined classes, such as ecological states or biological entities. Typical examples include the recognition of bird species from sound recordings (e.g., Priyadarshani, Marsland, Juodakis, Castro, & Listanti 2020), the distinction between phases in the annual life cycle of plants (i.e., ‘phenophases’) from spectral time series (Melaas, Friedl, & Zhu 2013), or the recognition of behavioural states from animal movement data (Shamoun-Baranes, Bouten, van Loon, Meijer, & Camphuysen 2016). Many other examples exist, with scopes of application that range from the molecular level (Jaakkola, Diekhans, & Haussler 2000) to the global scale (e.g., Schneider, Friedl, & Potere 2010).
The assignment of time series into one of two or more predefined classes (hereafter referred to as ‘time series classification’; Keogh and Kasetty 2003) can be performed using a variety of different approaches, ranging from manual, expert-based, classification (Priyadarshani et al., 2020) to fully automated procedures (see Bagnall, Lines, Bostrom, Large, & Keogh 2017 for examples). In ecology, time series classification is generally approached by processing the time series data into a new set of ‘static’ variables – using hand-designed transformations, or techniques such as Fourier or wavelet transforms – and then using these variables as predictors in ‘classical’ classification algorithms, such as logistic or multinomial regressions or random forests (e.g., Reside, VanDerWal, Kutt, & Perkins 2010; Shamoun-Baranes et al., 2016; Dyderski, Paź, Frelich, & Jagodziński 2017; Capinha, 2019; Priyadarshani et al., 2020). In machine learning terminology, this approach is known as ‘feature-based’, where the ‘features’ are the variables that are extracted from the time series.

Despite the wide adoption of feature-based approaches, important limitations still undermine their predictive performance and scalability. A key constraint concerns the need for domain-specific knowledge about the phenomenon that is being classified in order to obtain ‘optimal’ sets of features. While this may not seem limiting, considering the ever-growing body of knowledge in the ecological literature, in reality few, if any, ecological phenomena are fully understood (Currie, 2019). This inherently limits and casts doubt about the optimality of human-mediated selections of ‘relevant’ predictors of their behaviour. This limitation can be illustrated for species distribution modelling, a popular field among ecological modellers. These models often rely on readily available sets of predictors that summarize long-term climate averages and variability, (e.g., the BIOCLIM variables; Booth, Nix, Busby, &
Hutchinson 2014), despite recognition that species distributions can also respond to short-term meteorological variation (e.g., Reside et al., 2010). Accordingly, these common predictors cannot guarantee a comprehensive representation of the role of climate in determining the distribution of species. Additionally, scaling modelling frameworks can result in reliance on pre-processed predictors because performing species-specific feature extraction could be prohibitively costly, in terms of human and time resources, when modelling the distribution of hundreds of species.

Here we discuss and demonstrate the use of supervised deep learning models for time series classification. Deep learning models are a set of recent, complex architectures of artificial neural networks (LeCun, Bengio, & Hinton 2015; Christin et al., 2019), which have enabled significant advances of performance in highly complex tasks, particularly image recognition (LeCun et al., 2015) – including in ecology (e.g., Christin, Hervet, & Lecomte 2019; Ferreira et al., in press). Recently, the usefulness of these models for time series classification has been highlighted (Wang, Yan, & Oates 2017; Fawaz, Forestier, Weber, Idoumghar, & Muller 2019). However, their adoption for this purpose in ecology remains limited (see Sethi et al. 2020, for an exception). A difference between deep learning models and feature-based approaches is that deep learning models work directly with the raw time series. The identification of relevant features in the time series is performed by the model itself and is guided by the contribution that the features have in distinguishing the classes. Accordingly, a promise of these models is that they may capture relevant information that would be missed if relying on subjective sets of static features, improving predictive performances. Additionally,
because there is no need of human intervention in feature extraction, deep learning models allow a full, end-to-end, automation of computational workflows.

We explain deep neural networks and describe some of the modelling architectures more relevant in the context of classifying time series. Next, we demonstrate the application of deep learning models for time series classification using three case studies. First, we perform species identification based on recordings of insect wing flap movements, second, we predict the potential distribution of a vulnerable mammal species using time series of monthly climate data, and third we predict the seasonal patterns of fruiting of a mushroom species, based on meteorological time series. We implement all models using ‘mcfly’ (van Kuppevelt et al., 2020), a Python package aimed at time series classification for non-experts in deep learning, and which should be accessible to the generality of ecological modelers.

Materials and Methods

Deep neural networks for time series classification

Artificial neural networks (ANN) are algorithms inspired by how biological nervous systems process information. These models are often conceptualised in terms of nodes (or ‘neurons’) and weighted links. A basic ANN architecture includes a first layer of nodes, representing the input data, a second (‘hidden’) layer with nodes performing data aggregation followed by nonlinear transformation, and a final (‘output’) layer where the predicted values are computed. The nodes in each layer are connected to the nodes in the next layer through weighted links. Function fitting in ANNs proceeds by iteratively adjusting the weights of links between the layers. An important notion is the ‘epoch’, which refers to when the entire
training dataset is passed forward and backward across the network one time. During each epoch, the weights are updated to improve the network’s predictions, given the information fed to the input layer. For more details on ANNs see, among others, LeCun et al. (2015) and references therein.

‘Deep’ neural networks refer broadly to ANN architectures that are capable of training large numbers of hidden layers and neurons (LeCun et al., 2015). This capacity determines the level of abstraction that the models can attain in representing the input data. Models with more hidden layers can capture more complex patterns and achieve a deeper hierarchy of features. In other words, shallow models tend to capture ‘basic’ patterns (e.g., a ‘spike’ in a specific time step), while deeper models are able to ‘learn’ more complex abstractions (e.g., spikes combined with a reduced long-term variability).

Unlike commonly believed, deep learning models do not always require large amounts of data for training. For instance, some of these models can provide competitive classification results with as low as 50 samples (Fawaz et al., 2019).

Many deep learning architectures can be used for time series classification (Wang et al., 2017; Fawaz et al., 2019). These architectures differ in the number of layers, and the mathematical functions the layers perform, as well as in the way information flows between them. Below we provide a description of four architectures used for time series classification: Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Residual Networks (ResNet) and Inception Time Networks (InceptionTime). These architectures were
chosen because they are widely adopted for time series classification and because they are available in mcfly (the software we use here for model implementation; van Kuppevelt et al., 2020).

Convolutional Neural Networks

Convolutional neural networks (CNN) are an influential class of deep neural networks. These networks have been mainly applied for pattern recognition in image data (e.g., Christin et al., 2019; Ferreira et al., in press), but effective examples of their application for time series classification have been recently published (e.g., Zhao Lu, Chen, Liu, & Wu 2017). A key component of CNNs are the so-called convolutional layers (LeCun et al., 2015). These layers extract local features from the raw time series by applying ‘filters’. Each filter determines if a given pattern (e.g., ‘a spike’) occurs in the data and in what regions. These layers are often followed by rectified linear unit (ReLU) (or a similarly shaped function) and ‘pooling’ layers. The ReLU layers transform the summed weighted input from nodes in the convolutional layer into outputs that range from 0 to $+\infty$, while pooling layers reduce the dimensionality of outputs from the ReLU layer. CNNs often layer multiple instances of convolution, ReLU and pooling layers in a sequence, to build a hierarchy of increasingly abstract features. This sequence of layers is usually followed by a fully connected (or ‘dense’) layer, where each node is connected to all nodes in adjacent layers, and where classification outputs are calculated.

Recurrent Neural Networks
Recurrent neural networks (RNNs) are specifically designed for sequence-type input data, such as time series (LeCun et al., 2015; Fawaz et al., 2019). These models are defined by inclusion of feedback loops, where the output of a layer is added to the next input and fed back into the same layer. This allows RNNs to characterize sequential patterns in the input data, but their ability to capture long term dependencies is limited due to the RNN’s tendency to prioritize signals in the short term while failing to learn long term signals (i.e., the ‘vanishing gradient problem’; Bengio, Simard, & Frasconi 1994). To overcome this problem several adaptations to the simple RNN architecture have been proposed, the most popular of which being the use of gating units, such as ‘Long Short Term Memory’ (LSTM) and ‘Gated Recurrent Units’ (GRU) (Chung, Gulcehre, Cho, & Bengio 2014). Gating is a technique that helps the networks decide to either forget the current input or to remember it for future time steps, hence effectively improving the modelling of long-term dependencies (Chung et al., 2014).

Residual Networks

Residual networks (ResNet) are recently proposed in the context of image recognition (He, Zhang, Ren, & Sun 2016). Basically, these networks introduce a new type of component, the ‘Residual Block’, to CNN-type models. The aim of these blocks is to allow the training of deeper models (i.e., having more hidden layers). In theory, deeper models should improve classification performances, as they allow higher levels of data abstraction. However, in practice the performances may not improve, among other things, due to the vanishing gradient problem (see above). The use of residual blocks aims to address this by forwarding the output of layers directly into layers that are several levels deeper (e.g., 2–3 layers ahead).
Recently, this architecture has been applied for time series classification (Wang et al., 2017), often performing very well (Fawaz et al., 2019).

Inception Time Networks

Inception time networks are a very recent type of architecture, proposed specifically for time series classification (Fawaz et al., 2019). This network is an ensemble of CNN models having ResNet-type components and modules called ‘inceptions’. Inception modules ‘rework’ how convolution layers act in the networks, so that instead of being stacked sequentially, they are ordered to work on the same level in parallel. This approach allows the application of multiple filters with highly varying temporal lengths working on the same input time series. In comparison to sequential convolutional layers (as in ‘simple’ CNN) this lowers processing costs and reduces the risk of fitting noise in the data (i.e., overfitting) (Fawaz et al., 2019).

The mcfly Python library

Deep learning models can be implemented using several programming languages and specialised libraries (see Christin et al., 2019 for a review). Here, we use mcfly, a Python package for time series classification using deep learning (van Kuppevelt et al., 2020). This package is aimed at non-experts and it should be easy to use for ‘mid-level’ ecological modellers. Mcfly also delivers a standardized workflow that ‘generates’ distinct, ready-to-train models and tests which is best suited for the classification task. This assists non-experts in deep learning in identifying a suitable modelling architecture and implementing the model from scratch (Christin et al., 2019).
Mcfly utilizes TensorFlow (www.tensorflow.org) an extensively adopted machine learning library, it can make use of (but does not require) dedicated hardware (such as Graphical Processing Units: ‘GPUs’), works with both univariate and multivariate time series (‘single channel’ and ‘multichannel data’, in machine learning terminology) and includes procedures for inspecting and visualizing the parameters of trained models. In its current version (v.3.0) mcfly generates CNN, Deep convolutional LSTM (‘DeepConvLSTM’; an architecture composed of convolutional and LSTM recurrent layers), ResNet and InceptionTime architectures. Specific details about the components and structure of each architecture are given in van Kuppevelt et al. (2020).

Model selection in mcfly proceeds by generating a set of candidate models with architectures and hyperparameters (e.g., number of layers; learning rate) selected at random from a prespecified range of values (see Figure 1). Each candidate model is trained using a small subset of the data (data partition \(A_t \); Figure 1) during a small number of epochs. After training, the performance of the candidate models is compared using a left-out validation data set (\(A_v \); Figure 1). The selected candidate model (usually the best performing among candidates) is then trained on the full training data (\(B_t \); Figure 1). In this step it is required to identify an optimal number of training epochs, to avoid under- or overfitting of the model. A model trained too few epochs will not capture all relevant patterns in the data, reducing predictive performance. A model trained for an excessive number of epochs might overfit, reducing its generality and ability to classify new data. There is no definitive way to identify an optimal number of training epochs, but one practical approach is through monitoring the model’s validation performance (i.e., using holdout data partition \(B_v \); Figure 1). The
‘optimal’ number of training epochs is the one that provides the best validation performance. Finally, the performance of the model having an ‘optimal’ number of training epochs is evaluated using a ‘final’ test data set (T; Figure 1), providing the best estimate of the predictive performance of the model.

For the three case studies below, we used the same model generation and selection strategy. We had mcfly generate 20 candidate models, five for each architecture type. These models were trained during 4 epochs (using A_t). The candidate model achieving highest performance in predicting the classes of the validation data (A_{v}) was then trained on the full training data set (B_t). For each epoch we measured training performance, as provided by mcfly (which uses the accuracy metric i.e., ‘the proportion of cases correctly classified’). The classification performance on the validation data (B_{v}) was measured using the area under the receiver operating characteristic curve (AUC), a metric that is not affected by differences in the prevalence of classes and is widely used in ecology (e.g., Dyderski et al., 2017).

To identify an ‘optimal’ number of training epochs, we examined the progression of validation performance (B_{v}). Models can be trained for an infinite number of epochs, so here we stopped training if no increase in validation performance was observed after 25 epochs (other thresholds could be considered, according to time resources available). Finally, the model trained with the number of epochs showing highest AUC in predicting B_{v} was used to classify the test data (data set T), with performance measured using AUC.
We recorded processing time of all models from the onset of training of candidate models to the last training epoch evaluated for the selected model. This was done on two distinct systems: a ‘desktop PC’ with an Intel i7 4-Core (3.40GHz) processor and 8GB RAM and a ‘high-end workstation’ with an AMD Ryzen 9 12-Core (3.80 GHz) processor, 64 GB RAM and an NVidia RTX 2060 GPU. Because CPU- and GPU-based TensorFlow generate distinct random hyperparameters, modelling results will differ between the two computer systems. We report results and processing times for the desktop PC system. For the workstation we report processing time only. We emphasize that the timings recorded in the two systems are not directly comparable as they correspond to distinct modelling routes.

It is important to bear in mind that the modelling strategy described aims at general applicability and further tailoring for specific classification tasks could be beneficial. For instance, with a priori knowledge that a specific architecture, say CNN, is best suited for the classification task at hand (see discussion section), the selection could be adjusted to generate only CNN-type candidate models. Further information about fine-tuning of mcfly model generation and selection can be found in van Kuppevelt et al. (2020).

Case study 1: Species identification

In this case study we predict the identity of three insect species: the olive fruit fly (Bactrocera oleae), the western honey bee (Apis mellifera), and the black fig fly (Lonchaea aristella) using wingbeat spectrograms (frequency series of amplitude values; Potamitis, Rigakis, & Fysarakis 2015). B. oleae is an olive fruit fly pest, which if left unmanaged can lead to large economic costs worldwide (Potamitis et al., 2015). The wingbeat spectrum characteristics of
these three species allow us to exemplify an ‘easy’ classification case and a ‘difficult’
classification case: while in *A. mellifera* harmonics partially overlap with those of *B. oleae*,
these species show differences in frequencies - including the fundamental frequency - and
thus constitute the ‘easy’ classification case; in contrast, *L. aristella* has a wingbeat spectrum
that completely overlaps with that of *B. oleae*, representing the ‘difficult’ classification case.

We thus have three classes, each corresponding to a species ‘positive’ identity. The data are
balanced (i.e. the number of samples per class is similar) and consist of 230 samples for *B.
oleae*, 205 for *A. mellifera*, and 252 for *L. aristella*.

Species were identified (classified) according to their wingbeat spectrograms, which consist
of frequency series of amplitudes (the predictor variable) obtained from Potamitis et al.
(2015). A sample was composed of a total of 256 steps (frequencies), each step
corresponding to an amplitude value for a frequency. This case study illustrates the use of
these models using only one predictor variable (i.e., a single time series).

The records of species identity data and predictor variable (amplitude per frequency) were
split into: data for training candidate models (~50%; Ar), data for validating candidate models
(~20%; Av), data for training the selected model (~70%; Br; resulting from merging the two
previous data sets), validation data for determining the number of epochs for training the
selected model (~15%; Bv) and test data for final assessment of classification performance
(~15%; T in Fig. 1).
Case study 2: Species distribution model

In this case study we predict the potential distribution of the Iberian Desman (*Galemys pyrenaicus*) using time series of environmental data. The Iberian Desman is a vulnerable semi-aquatic species, endemic to the Iberian Peninsula and the Pyrenean Mountains. We collected distribution records from the Portuguese and Spanish atlases of mammals (Palomo, Gisbert, & Blanco 2007; Bencatel, Álvares, Moura, & Barbosa 2017). The data consists of 6141 UTM grid cells of 10×10 km, of which 659 record the species presence (class ‘Presence’) and 5482 its absence (class ‘Absence’).

The environmental conditions in each cell were characterized using four variables: 1) maximum temperature; 2) minimum temperature, 3) accumulated precipitation, and 4) altitude. The first three variables consist of time series of monthly values collected from CHELSA (Karger et al., 2017) spanning 1989 to 2013, totalling 300 time steps. The fourth variable was from Fick and Hijmans (2017) and corresponds to temporally invariant values of altitude (demonstrating inclusion of temporally static predictors), coded as a time series.

Species distribution data and predictors were split similarly as above with different proportions: a) $A_t \sim 35\%$, b) $A_v \sim 35\%$, c) $B_t \sim 70\%$; resulting from merging A_t and A_v, d) $B_v \sim 15\%$, and e) test data set $T \sim 15\%$. The low percentage of data used for training the candidate models in comparison to case study 1 aims to reduce computer processing time, given larger data volume.
The training and internal validation of deep learning models are sensitive to class imbalance (i.e., when one or several classes have a much higher number of samples). Strong class imbalance can bias models towards the prediction of majority classes (Menardi & Torelli, 2014) and reduces the reliability of performance metrics such as accuracy *sensu stricto* (i.e., the proportion of correct predictions to the total number of samples), which is used for the automated selection of candidate models in mcfly (van Kuppevelt et al., 2020). Accordingly, we balanced our data by randomly duplicating presence records and deleting absence records until a balance of ~50:50 is obtained, which was executed using the ROSE package (Lunardon, Menardi, & Torelli 2014) for R (R Core Team, 2020). This was done for the data sets that mcfly uses for internal assessment of accuracy *s.s.* (At, Av and Bt, Figure 1). Data partitioning was performed prior to balancing, to avoid inclusion of replicated cases of the same data across multiple partitions. The remaining data sets (i.e., Bv and T) were not balanced.

Case study 3: Phenological prediction

In this case study we predict the timing of fruiting of the Parasol mushroom (*Macrolepiota procera*) across Europe. This species produces fruiting bodies valued for human consumption (Capinha 2019) and predicting their emergence could be useful for managing human pressure on the species and its habitats. Data is from Capinha (2019), a study employing a feature-based approach to achieve an equivalent aim. The data have two classes. One class (‘fruiting’) corresponds to locations and dates of observation of fruiting bodies of the species (from 2009 to 2015). The second class corresponds to ‘temporal pseudo-absences’, which are records in the same locations of the observation records, but with dates selected at random.
along the temporal range of the study (Capinha 2019). The aim of the classification is to distinguish the meteorological conditions associated with the observation of fruiting bodies of the species from the range of meteorological conditions that are available to it.

We characterized each record using four time series: 1) mean daily temperature for the preceding 365 days, 2) daily total precipitation for the preceding 365 days, 3) latitude and 4) longitude. Time series of temperature and precipitation were extracted from the daily AGRI4CAST maps (http://agri4cast.jrc.ec.europa.eu/), at a cell resolution of 25x25 km. Geographical coordinates were coded as temporally invariant time series.

Records from 2009 to 2014 were randomly partitioned into: A_t: 15%, A_v: 70%, B_v: 15% and B_t: 85% (merging A_t and A_v). Data for the year 2015 was used to evaluate the predictive performance of the final model (T), allowing comparison with the performance results achieved in Capinha (2019).

To increase the representation of the meteorological conditions occurring in the location of each observation record, the data consists of 15 pseudo-absence records per each observation record (Capinha, 2019). Similarly to the previous case study, we corrected for class imbalance by balancing the number of samples in each class using a random deletion and duplication approach (Lunardon et al., 2014). This balancing was performed for data sets A_t, A_v and B_t. Data sets B_v and T remained unchanged.

Results
Species identification

The candidate model with greatest ability to distinguish between the spectrograms of the three insect wingbeats had an InceptionTime architecture (accuracy = 0.85; model number 15; Figure 2b). On the training data set this model showed a progressively increasing training accuracy with number of epochs (Figure 2c). However, its evaluation against left-out data (Bv data set; Figure 1) showed that best performances were found mainly between training epoch ~30 and ~50 (‘validation AUC’; Figure 2c), followed by little change. The highest validation performance was obtained after 47 training epochs. On the test data (T; Figure 1), this model achieved an average AUC of 0.96, resulting from an AUC of 1 in classifying between B. oleae and A. mellifera, an AUC of 0.88 in classifying between B. oleae and L. aristella and an AUC of 1 in classifying between A. mellifera and L. aristella. Computer processing time, from the onset of candidate model training to the 72nd training epoch of the selected model, took 26 minutes on a desktop PC. On the high-end workstation, a distinct modelling event took 3 minutes.

Species distribution model

The best performing candidate model for this case study had a CNN-type architecture (model number 4; Figure 3b), reaching 0.82 of validation accuracy. On the full training data set, the model showed a slowly increasing trend of training accuracy with number of epochs (Figure 3c). However, left-out validation data (Bv) showed a decreasing trend of performance after the ~60th epoch (‘validation AUC’; Figure 3c), with highest performing classification at the 56th training epoch. The model trained with this number of epochs achieved an AUC of 0.95 on the final test data (T). Most of northern Iberian Peninsula was predicted as suitable to the
Iberian Desman, particularly the high mountainous areas (Figure 3e). Computer processing time took 2 hours and 49 minutes on a desktop PC. A distinct modelling event on the high-end workstation took 19 minutes.

Phenological prediction

For this case study, the selected candidate model had an InceptionTime-type of architecture (model number 2; Figure 4a), achieving 0.81 validation accuracy. This model rapidly increased in training accuracy, but its classification performance measured with external data increased only up to the 5th epoch (Figure 4b). The model trained for 5 epochs achieved an AUC of 0.91 on the final test data. The predicted probabilities of fruiting for an example site (Figure 4c) show the ability of the model to capturing seasonal variation, with higher probabilities generally being predicted for the Autumn season, but with important inter-annual differences. Computer processing time took 10 hours and 23 minutes on a desktop PC. On a high-end workstation a distinct modelling event took 18 minutes.

Discussion

Deep artificial neural networks are a flexible modelling technique with notable success in a range of scientific fields (LeCun et al., 2015). In ecology, the adoption of these models is still in its infancy and has been mainly directed towards image recognition (Christin et al., 2019; Ferreira et al., 2020). We here introduce the use of deep learning models for time series classification and demonstrate how these models can be implemented and evaluated for distinct tasks across subfields of ecology.
Our case studies demonstrate the versatility and potential of deep learning for time series classification. In the first case study, an InceptionTime model performed well in distinguishing insect species based on spectrograms of their wingbeats. Given the use of different data partition strategies and performance metrics, the performance measured for this model is not fully comparable to those obtained by Potamitis et al. (2015) – who classified the same data using distance and feature based approaches. However, our study more accurately identified the honeybee, suggesting its superior classification ability. In the case of the Iberian desman the predictions from a CNN model also achieved a very high performance, and the predicted spatial patterns are congruent with the known distribution of the species and with existing predictions from ‘classic’ feature-based approaches (Barbosa, Real, & Vargas 2011). Finally, an InceptionTime model projected ecologically plausible patterns of fruiting seasonality for *Macrolepiota procera*, with performance equaling that obtained by Capinha (2019) (i.e., an AUC of 0.91 on predictions of fruiting in 2015). Unlike the raw time series used by deep learning models, Capinha (2019) used a large set (n=40) of hand-crafted features reliant on domain-expertise (e.g., growing degree days).

Despite the valuable results described above, the advantages of deep learning models for time series classification in ecology can only be fully appreciated with wider testing, including different classification tasks and data settings. The benchmarking of classification performances against traditional modelling approaches and the identification of factors associated with performance differences (e.g., degree of a priori ecological knowledge; complexity of the phenomena; volume of training data, etc.) will be of paramount importance. Research efforts should attempt to identify the deep learning architectures and
hyperparameters that are best suited for specific ecological phenomena and data types. Thus far, classification performances from distinct deep learning typologies were compared using time series data coming from multiple domains (e.g., Fawaz et al., 2019), and the relevance of these results to ecology remains uncertain.

A distinctive feature of deep learning approaches is that they allow classifying phenomena directly from raw time series data. For ecologists, this ability should be seen not merely as a methodological particularity, but as a conceptual and operational upgrade from traditional modelling approaches. On one hand, the use of time series data as predictors positively forces ecologists to consider the temporal component of the analysed phenomena (Wolkovich, Cook, McLauchlan, & Davies 2014) and, on the other, it relieves them from subjective decisions about the temporal extent to summarize in static predictors. This reorientation in thinking was, perhaps, best illustrated by using time series – instead of the usual time-averaged variables – for predicting the potential distribution of a species. This ‘fully’ temporally explicit approach can be exploited for virtually any ecological or biological entity or state, as long as the putative drivers have a temporal representation. Further, the usage of time series data by deep learning models matches the increasing number of high frequency streams of digital data coming from distinct sources (e.g., satellite sensors, meteorological stations). The direct integration of these data into the models eliminates the need for resource consuming feature extraction procedures and is well-suited for operational frameworks aimed at short-term forecasting (e.g., of algal blooms or disease vector abundances), allowing a rapid detection of situations of concern.
As for any modelling approach, deep learning models have limitations. Two obstacles are particularly prominent: the interpretability of models and computational demand. Limitations to the interpretation of deep learning models have been well described in the literature (e.g., Reichstein et al., 2019), however, they are caused mainly by a lack of available tools. Very recently important efforts towards the interpretability of deep learning models have been made (e.g., Siddiqui, Mercier, Munir, Dengel, & Ahmed 2019) and given the fast pace of deep learning research, we expect that soon deep learning models will be no harder to interpret than many traditional machine learning models. The challenges arising from computational demand are harder to solve. Here we showed that ‘typical’ classification tasks can take several hours to run on a standard desktop computer. Additionally, the computational expensiveness of deep learning is expected to grow in the future (Thompson, Greenewald, Lee, & Manso, 2020). To face this challenge, ecologists will likely have to move in the same direction as their fellow computer scientists and embrace faster hardware (e.g., GPUs, ‘tensor processing units’ and large-resourced cloud computing services) and scalable model implementations (e.g., distributed computing).

In conclusion, we suggest that the use of deep learning for classifying ecological time series could bring considerable improvements over conventional approaches. Software tools now exist that allow overcoming the implementation barrier for non-experts and state-of-the-art classification results seem a reasonable expectation for several tasks. However, only with extensive testing can the value of this approach be fully recognized. Those willing to venture through this modelling route could use the data and code we provide as a starting point.
Acknowledgments

CC and ACH were supported by Portuguese National Funds through Fundação para a Ciência e a Tecnologia (CC: CEECIND/02037/2017, UIDB/00295/2020 and UIDP/00295/2020; ACH: PTDC/SAU-PUB/30089/2017 and GHTM UID/Multi/04413/2013).

Author Contributions

CC conceived the ideas and designed methodology; CC and ACH collected and analysed the data; CC led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Data Availability

Data and code for this study are available from: https://doi.org/10.5281/zenodo.4017750

References

Figures

Figure 1. Schematic of data partitions and modelling workflow used by the ‘mcfly’ Python package for time series classification.
Figure 2. Data and results of deep learning models classifying insect species from wingbeat spectrograms. (a) Example wingbeat spectrograms for each species. (b) Validation accuracy for candidate deep learning models. (c) Training and validation curves of the selected model along time (highest validation performance is marked with a diamond symbol).
Figure 3. Data and results of deep learning models classifying environmental suitability for the Iberian desman. (a) Presence and absence data of the species. (b) Example of time series used as predictors. (c) Validation accuracy for candidate deep learning models. (d) Training and validation curves of the selected model along time. The diamond symbol marks the highest validation performance. (e) Environmental suitability predicted by the selected model.
Figure 4. Data and results of deep learning models classifying the fruiting phenology of the parasol mushroom based on meteorological variation. (a) Validation accuracy for candidate deep learning models. (b) Training and validation curves of the selected model along time (the diamond symbol marks the highest validation performance). (c) Patterns of fruiting seasonality predicted by the selected model for an example location.