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Abstract

Acoustic signaling by fishes has been recognized for millennia, but is typically regarded as
comparatively rare within ray-finned fishes; as such, it has yet to be integrated into broader
concepts of vertebrate evolution. We map the most comprehensive data set of volitional sound
production of ray-finned fishes (Actinopterygii) yet assembled onto a family level phylogeny of
the group, a clade representing more than half of extant vertebrate species. Our choice of family-
level rather than species-level analysis allows broad investigation of sonifery within
actinopterygians and provides a conservative estimate of the distribution and ancestry of a
character that is likely far more widespread than currently known. The results show that families
with members exhibiting soniferous behavior contain nearly two-thirds of actinopterygian
species, with potentially more than 20,000 species using acoustic communication. Sonic fish
families also contain more extant species than those without sounds. Evolutionary analysis
shows that sound production is an ancient behavior because it is present in a clade that
originating circa 340 Ma, much earlier than any evidence for sound production within tetrapods.
Ancestral state reconstruction indicates that sound production is not ancestral for
actinopterygians; instead, it independently evolved at least 27 times, compared to six within
tetrapods. This likely represents an underestimate for actinopterygians that will change as
sonifery is recognized in ever more species of actinopterygians. Several important ecological
factors are significantly correlated with sonifery — including physical attributes of the
environment, predation by members of other vertebrate clades, and reproductive tactics — further
demonstrating the broader importance of sound production in the life history evolution of fishes.

These findings offer a new perspective on the role of sound production and acoustic
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communication during the evolution of Actinopterygii, a clade containing more than 34,000

species of extant vertebrates.

Keywords: acoustic communication, sound production, convergent evolution, Actinopterygii,

key innovation
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Introduction
While spoken language is regarded as a uniquely human attribute, the use of sound as a
vertebrate communication channel also occurs in other terrestrial species and marine mammals
(Bradbury and Vehrencamp 2011, Ladich and Winkler 2017). Less well known is its prevalence
among fishes, despite multiple early descriptions of anatomy, physiology or behavior (Dufossé
1874, Tower 1908), including von Frisch’s comments on its widespread distribution as early as
1938:
It may well be asked for what purpose fishes are able to hear so well in silent water. ...
We know many species of sound-producing fish. There may be many more species of
sound-producing fishes not yet known. ... [and] much to discover in the future about the
language of fishes. (von Frisch 1938)
Since then, a growing body of evidence shows the importance of volitional sound production in
social communication and reproduction especially among ray-finned fishes (Actinopterygii)
(Ladich 2015), a group that includes more than half of extant vertebrate diversity. Together with
Sarcopterygii (coelacanths, lungfishes, and tetrapods, which includes amphibians, reptiles, birds,
and mammals), Actinopterygii is one of two extant radiations of bony vertebrates(Nelson et al.
2016). Although there is evidence for soniferous behavior in 800-1000 species of
actinopterygians (Ladich 2015, Ladich et al. 2006) and numerous studies of neural and hormonal
mechanisms that are similar to those of tetrapods (Bass 2014, Zhang and Ghazanfar 2020), more
widespread recognition of acoustic behavior among fishes and its integration into broader
concepts of vertebrate evolution are still lacking. This is, in part, because sound production is not
externally obvious in fishes, nor can those sounds be easily detected underwater without

specialized technology (Mann et al. 2016).
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A recent study on the evolution of acoustic communication focused on tetrapods,
recognized the important need for a comparable study of fishes (Chen and Wiens 2020). Using
evolutionary modelling, combined with the most recent comprehensive phylogeny, we show that
volitional sound production is ancestral for several speciose radiations that together comprise
nearly two-thirds of the 34,000 valid extant species of actinopterygians (Fricke et al. 2020). We
also show that sound production has evolved at least 27 times among actinopterygians, including
the basal clade that diverged in the Carboniferous Period (~340 Ma). Thus, actinopterygian
sonifery is likely an ancient communication mode that originated earlier than estimates for the
origin of acoustic communication in tetrapods where it is proposed to have evolved six times
(Chen and Wiens 2020). Nocturnality was identified as the one ecological factor contributing to
the evolution of acoustic communication among tetrapods (Chen and Wiens 2020). We show that
actinopterygian families with soniferous species are correlated with multiple ecological factors,
including reproductive and mating tactics, trophic levels and complexity of habitats that vary in
depth, substrate composition, and salinity.

In aggregate, our evidence strongly supports the hypothesis that, like tetrapods, acoustic
communication is an ancient but also convergently evolved innovation across actinopterygian
fishes. Unlike tetrapods, we find that actinopterygian soniferous behavior is associated with a
broad range of abiotic and biotic factors, which may explain its repeated and independent
evolution nearly 30 times in clades that include many of the most species-rich groups. The
demonstration of repeated evolution of acoustic communication in tetrapods and now in ray-
finned fishes highlights the strong selection pressure favoring this signaling modality across

vertebrates.
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96  Materials and Methods
97 We operationally define acoustic signaling, or soniferous behavior (we use these terms
98 interchangeably) as volitional sound production associated with acoustic communication rather
99  than by-products of feeding or locomotion. Like Chen and Wiens (2020), we score the presence
100  or absence of soniferous behavior at a family level, in this case for valid extant species of
101  actinopterygians in 461 families represented by species in Rabosky et al. (2018) with the
102 assumption that sonifery is conserved and characteristic at the family level (Fricke et al. 2018).
103 We use three lines of evidence from one or more reports to demonstrate the presence of
104  soniferous behavior in 167 of the 461 families in our analysis (Fig. S1, Tables S1, S2): 1)
105  quantitative or pictorial documentation of acoustic recordings (107 families); 2) the presence of
106  specialized morphology strongly predictive of sonic ability (Fine and Parmentier 2015) (26
107  families); or 3) qualitative descriptions of sounds strongly predictive of sonic ability and
108  behaviorally-relevant acoustic signals (Hubbs 1920, von Frisch 1938) (34 families). To be
109  conservative, we code as 0 (silent) all families lacking such evidence.
110 Data on fish sound production were obtained from journals, technical reports, conference
111 proceedings, theses, and books (Table S1). We mapped the presence (= 1) or absence (i.e. silent,
112 =0) of soniferous behavior onto Rabosky et al.’s (2018) recent phylogeny of Actinopterygii that
113 includes species from 461 families (Fig. S1, Table S1). Species included in the phylogeny by
114  Rabosky et al. (2018) were assigned to families using Catalog of Fishes (Fricke et al. 2018).
115  Since Rabosky et al. (2018), new species have been described and familial designations changed
116  (Fricke et al. 2020). We note that four families in our analyses (Abyssocottidae, Comephoridae,
117  Cynolebiidae, Hapalogenyidae) were merged into other families, and approximately 14 new

118  families were recognized (Fricke et al. 2020).
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We scored the presence or absence of soniferous behavior as a binary character (Table
S2). Ancestral states were calculated using stochastic character mapping with the make.simmap
function in the phytools (Revell 2012) package for R, with 1,000 MCMC generations, sampling
every 100 generations. Root node values and transition rates were calculated by simulation and
posterior probabilities were mapped using the densityMap function in phytools (Revell 2012)
(Figs 1, 2). Phylogenetic signal was calculated using the D statistic (Fritz and Purvis 2010) with
the caper R package (Orme et al. 2013).

Ecological attributes for all 461 families were downloaded from FishBase(Froese and
Pauly 2019) using rfishbase 3.04 R package (Boettiger et al. 2012) (see SI Appendix, Table S2
for complete data). Ecological parameters predictive of soniferous behavior were determined
using logistic regression with a phylogenetic generalized linear model (Ives and Garland 2010)
in phylolm 2.6 R package (Ho and Ané 2014). Since we tested several models for each set of
parameters, we used Bonferroni correction to reduce Type I error (Rice 1989). Data on species

number per family are from the Eschmeyer Catalog of Fishes (Fricke et al. 2020).

Results

Ancestral States. Stochastic character mapping simulates the distribution of a character along
branches of a phylogeny (Bollback 2006, Revell 2012) and summaries of many simulations (N =
1000 in this study) are used to compute probabilities of a character being ancestral at nodes.
Figure 1 reconstructs ancestral states of soniferous behavior across actinopterygian phylogeny,
showing the probabilities of soniferous behavior being ancestral, ranging from 0% (silent) to

100% (soniferous); Table 1 presents probability values at key nodes.
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Although sonifery occurs in the three extant clades of non-teleostean actinopterygians
(Polypteriformes, Acipenseriformes, and Holostei) (Fig. 1), this reconstruction reveals that
soniferous behavior is unlikely ancestral for Actinopterygii (29.4% probability). Teleostei, which
comprises > 99.8% of actinopterygian species, also has low support (15.2% probability) that
soniferous behavior is the ancestral state. Likewise, Osteoglossomorpha, an early diverging clade
of teleosts, contains several soniferous families, but only a 25.5% probability that soniferous
behavior is ancestral. Otocephala, a speciose subclade of actinopterygians exhibiting
morphological adaptations to enhance hearing (Braun and Grande 2008), has an even lower
probability that soniferous behavior is ancestral, 9.6%. Ostariophysi, a large subgroup of
otocephalans well known for the Weberian apparatus (chain of bony elements that enhance
hearing), has the lowest value among the groups analyzed that soniferous behavior is ancestral,
8.5%. A second large subclade of Teleostei, Euteleostei, includes two-thirds of living fish
species, but here, too, there is little support that soniferous behavior is ancestral, 9.6%.

We find much stronger support for soniferous behavior as a character at the base of some
key nodes. Siluroidei, a subclade of catfishes, and Curimatoidea, a subclade of characins, have
96.7% and 67% probabilities, respectively, that soniferous behavior is ancestral (Figs. 1, 2a.
Acanthomorpha, which includes 85% of fish species in marine habitats (Wainwright and Longo
2017), has a low probability (31.4%) sonifery is ancestral. However, two of its subclades,
Eupercaria (e.g., “surgeonfish”, “drums”, “grunts”, scorpaenoids) and Anabantaria + Carangaria
+ Ovalentaria (e.g., gouramis [Osphronemidae], jacks [Carangidae], cichlids [Cichlidae]) have
88.6% and 64.1% probabilities, respectively (Fig. 2b, ¢). An even higher probability value,
97.5%, supports soniferous behavior as ancestral for a crown group within Eupercaria,

Hexagrammidae (greenlings) + Zoarcoidei (e.g., wolffishes) + Cottoidei (e.g., sculpin) (Fig. 2b).
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In aggregate, our results indicate that acoustic signaling, or soniferous behavior, has a
high probability (>75%) of being ancestral for at least 27 nodes across Actinopterygii (Fig. S2).
We interpret this as evidence of widespread, independent evolution of volitional sound

production.

Phylogenetic signal. Patterns of ancestral states alone do not predict evolutionary processes
underlying character evolution, making it necessary to evaluate phylogenetic signal (Blomberg et
al. 2003). We use the D statistic for binary characters (Chen and Wiens 2020, Fritz and Purvis
2010), in this case soniferous or silent, to calculate phylogenetic signal. For each clade, we
computed D and the probability that character evolution results from Brownian phylogenetic
structure, which can be visualized by the proximity of the clade’s observed D-value to the center
of the distribution of simulated D-values assuming Brownian evolutionary processes (Fig. S3).
Where D is > 0.0, the evolution of soniferous behavior is phylogenetically random and not
conserved within a group. Where D is close to or < 0.0, evolution of soniferous behavior results
primarily from Brownian evolutionary processes and phylogenetic structure, and is conserved
within a group.

Actinopterygii and Teleostei have D values of 0.404 and 0.368, respectively (see Table 1
for all D values). The next set of large clades, Otocephala, Ostariophysi and Euteleostei, have D
values of 0.328, 0.208, and 0.200, respectively. These values indicate that soniferous behavior is
not conserved within these groups, in agreement with the relatively low to intermediate
probabilities that it is ancestral for these groups (8.5% - 29.4%; Table 1). For Siluroidei, a large
subclade of Otocephala, D is -0.469, consistent with the high probability that this character is

ancestral for Otocephala (96.7%, Table 1).
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Acanthomorpha has D = 0.270, in agreement with the relatively low probability that
sonifery is ancestral for this group (Table 1). However, within Acanthomorpha, several nested
groups show negative D values or values very close to 0.0, in agreement with the high
probabilities that soniferous behavior is ancestral for these groups (Table 1). This includes two
large acanthomorph clades, Eupercaria and Anabantaria + Carangaria + Ovalentaria, with D
values of -0.066 and 0.075, respectively. Within Eupercaria, Hexagrammidae + Zoarcoidei +
Cottoidei, D =-0.676. The two smallest subclades studied, Osteoglossomorpha and
Curimatoidea, have D values of 1.680 and -31.388, respectively, that agree with low
(Osteoglossomorpha) and high (Curimatoidea) probabilities sonifery is ancestral for these groups

(Table 1).

Hearing specializations. Novel auditory morphologies, generally referred to as hearing
specializations, e.g., the Weberian apparatus or swim bladder extensions contacting the otic
capsule, may have evolved 20 times within Teleostei (Braun and Grande 2008). Families with
these adaptations (Braun and Grande 2008, Colleye et al. 2019, Radford et al. 2013) (Table S2),
62 of 119, are highly correlated with soniferous behavior (phylogenetic logistic regression; P =

0.004).

Habitat Complexity. Actinopterygian families with soniferous taxa live in habitats that vary in
complexity depending on one or more of the following: water salinity, depth and substrate
composition (Boettiger et al. 2012, Froese and Pauly 2019) (Table S2). Freshwater and brackish
water are more likely than marine habitats to have families with soniferous taxa (P < 0.000, <

0.000, > 0.05, respectively; values here and below based on logistic regression with a

10
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phylogenetic generalized linear model(Ives and Garland 2010) after Bonferroni correction).
Marine families in shallow intertidal (< 5 m depth) and neritic (< 200 m depth) zones are more
likely to have soniferous taxa (P < 0.000) than families with oceanic (i.e. marine pelagic) fishes
(P > 0.05). Within families with freshwater species, there is no significant correlation of
soniferous behavior with depth (littoral zone, sublittoral zone, caves; P values > 0.05). Habitats
with coarse (P = 0.008), but not fine (P > 0.05), sediment are also more likely to have families
with soniferous taxa. Soniferous families are not more likely to live in any one particular climate
(polar, temperate, boreal, tropical, subtropical; P values > 0.05).

Grosberg et al. (2012) consider the complexity of freshwater and marine environments,
and how more structurally complex habitats are associated with higher biodiversity. Of the 27
independent evolutionary events of soniferous behavior we describe (Fig. S2, Table S3), 18
clades are primarily freshwater, and nine are either marine, anadromous, or mixed. With the
exception of Myctophidae, 26 of the 27 clades live in shallow waters or demersal/benthic

habitats.

Feeding and Reproductive Ecologies. Actinopterygian families exhibiting acoustic signaling
are associated with several other behavioral phenotypes (Table S2). Marine families with grazing
species are more likely to contain soniferous taxa (P =0.011), as are families with mating tactics
and reproductive modes ranging from batch spawning (P < 0.0001) and internal fertilization (P =
0.005), to nest guarding (P = 0.001), parental care (P = 0.004) and alternative reproductive
tactics (17 of 23 families identified by Mank and Avise (2006); P < 0.0001). Families showing
sex reversal (protogyny, protandry, hermaphroditism) are not more likely to contain soniferous

taxa (P > 0.05). Consistent with field observations, actinopterygian families with soniferous taxa

11
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are significant prey for birds (Elliott et al. 2003) and elasmobranchs (Navia et al. 2007) (P =
0.002, 0.001, respectively; cetaceans (McCabe et al. 2010) and pinnipeds(Lance and Jeffries

2009) are known predators, but P values > 0.05).

Discussion

Although actinopterygian fishes have long been known capable of volitional sound production
(Popper and Casper 2011), few studies integrate their acoustic communication ability into a
broad evolutionary context across bony vertebrates (Bass et al. 2015, Fine and Parmentier 2015).
We show evidence for soniferous behavior in 167 families, containing nearly two-thirds of the
estimated 34,000 valid extant species of actinopterygians (Figs. 1, 2; Tables S1, S2).
Actinopterygians independently evolved soniferous ability at least 27 times (Fig. S2, Table S3).
To our knowledge, all species studied to date that are capable of volitional sound production
have been shown to use sound in a signaling context to either conspecific or heterospecific
individuals (Ladich 2015, Ladich et al. 2006). Consequently, sound production is likely an
important communication modality in most actinopterygian species. This includes two species of
polypterids (Ladich and Tadler 1988), members of a family that diverged from the
actinopterygian stem circa 340 Ma during the Carboniferous Period (Giles et al. 2017). This
suggests that acoustic communication in actinopterygians may have similarly ancient origins,
predating its emergence within tetrapods, which occurred circa 100-200 Ma (Chen and Wiens
2020). We further show significant correlations between families with soniferous species and
diverse freshwater and marine habitats, predation by birds and elasmobranchs, and many

reproductive and mating tactics. In parallel with recent findings for tetrapods(Chen and Wiens

12
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2020), our results indicate strong selection to exploit acoustic signaling for communication and

ecological success across vertebrate evolution.

Pattern and process. Within Actinopterygii, soniferous behavior occurs across the most speciose
clades and has evolved independently at least 27 times, compared to only six within tetrapods
(Chen and Wiens 2020). This high frequency of convergent evolution suggests that “the interplay
of historical contingency and natural selection” (Blount et al. 2018) has a prominent role in the
evolution of vertebrate acoustic communication behavior. A comparable degree of convergent
evolution among actinopterygians is reported for alternative reproductive tactics (Mank and
Avise 2006), suggesting that extensive convergence may be an evolutionary attribute of
behavioral and reproductive ecology as well as other characters in actinopterygians (e.g., venom
(Smith and Wheeler 2006), restricted gill openings (Farina et al. 2015), vertebrae (Ward and
Brainerd 2007), adipose fins (Stewart et al. 2014), migratory behavior (Burns and Bloom 2020),
bioluminescence (Davis et al. 2014)).

The presence and absence of soniferous behavior among actinopterygians likely includes
secondary loss, suggested elsewhere to drive speciation (Miles and Fuxjager 2019). Within
speciose clades where sonifery has a high probability of being ancestral (Siluroidei, Eupercaria,
Anabantaria + Carangaria + Ovalentaria, Hexagrammidae + Zoarcoidei + Cottoidei), non-
soniferous clades may have secondarily lost this character. Hexagrammidae + Zoarcoidei +
Cottoidei have 97.9% probability that sound production is ancestral, and a very low D value (-
0.676, Table 1, Fig. 2b). Within this group, Cottoidei comprises an estimated 850 species
(compared to 9 hexagrammid and 405 zoarcoid species) with a very high probability that

soniferous behavior is ancestral (98.8%). This correlates with a low D value (-0.330), suggesting

13
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that the evolution of soniferous behavior within Cottoidei results primarily from Brownian
evolutionary processes. Fish and Mowbray (1970) comment on the absence of sound production
in Zoarcidae [their Zoarchidae]. If further research provides conclusive evidence for absence,
then our tree (Fig. 2¢) likely indicates secondary loss. Other places to investigate potential loss of
soniferous capacity are between sister groups where one is coded as silent (e.g., Lophiiformes)
and the other is soniferous (Tetraodontiformes; Fig. 2c). A particularly fascinating case of
secondary loss concerns catfishes in the genus Synodontis; some species are only soniferous and
others only weakly electric (Boyle et al. 2014). Weakly electric Synodontis have reduced sonic
muscle characters, but share characters with myogenic electric organs (Kéver et al. 2020).
Further demonstration of the loss of sonifery would support the hypothesis that losses can be as
important in generating diversity as gains of complexity (Miles and Fuxjager 2019).

Together, D values show soniferous behavior is highly conserved (low D) in some
lineages, but less in others (high D). Comparisons of ancestral state probabilities and D values
show that clades with a higher probability of soniferous ability in the common ancestor also tend
to have lower D values (Table 1, Fig. 3a), indicating that when it is ancestral, it has a higher
probability of being conserved within a clade. This relationship becomes even clearer when
plotting ancestral state probabilities against the probability that phylogenetic signal results from
Brownian phylogenetic structure (Fig. 3b). It may intuitively follow that an ancestral trait is more
likely to be conserved, but these two metrics are independently derived.

Plotting the relationship between ancestral state estimation and phylogenetic signal may
indicate a broader conceptual link between pattern (ancestral states) and process (phylogenetic
signal) in character evolution (Fig. 3b). Some cases deviate from this relationship. For example,

it is unlikely that soniferous behavior is ancestral for Ostariophysi, yet the character is relatively
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conserved within this clade. Exceptions indicate that the relationship is not necessitated
mathematically, but instead is governed by evolutionary principles. Characters that vary
enormously in phylogenetic signal throughout lineages and are characterized by repeated gains
and losses, such as soniferous behavior, may be more likely to exhibit a relationship between

ancestral state and phylogenetic signal.

Ecological success. Our results provide compelling evidence that soniferous evolution contributes
to ecological success in many actinopterygian clades, as it does in tetrapods and insects (Miles et
al. 2018, Wilkins et al. 2013). For example, we can now add soniferous behavior to the suite of
traits considered as evolutionary drivers in Acanthomorpha, which account for 85% of fish
species in marine habitats (Wainwright and Longo 2017), because many soniferous species
belong to basal acanthomorph groups, e.g., Beryciformes, Ophidiiformes, and Gadiformes (Fig.
1). Soniferous behavior may be a convergent evolutionary innovation contributing to ecological
success in rapidly evolving and speciose subclades of actinopterygians for which sonifery is
ancestral. For example, Eupercaria and Siluroidei are nested within rapidly evolving lineages in
Actinopterygii (Table 1) (Alfaro et al. 2009), and it is intriguing to hypothesize that sonifery may
promote diversification through sexual selection. This also appears to be the case for soniferous
tetrapods, including birds and eutherian mammals (Alfaro et al. 2009, Chen and Wiens 2020).
Molecular phylogenetic support for Curimatoidea, a clade recently recognized (Arcila et al.
2017, Betancur-R. et al. 2019) within Characiformes (Figs 1, 2), is bolstered by our evidence that
soniferous behavior is ancestral for this clade. Intriguingly, the relationship between repeated

evolution of soniferous behavior in clades that live in shallow water or structurally complex or
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fragmented habitats where diversification is more likely to occur (Grosberg et al. 2012), suggests
a strong selection for acoustic communication within biodiverse communities.

Urick (1975) points out at the very beginning of his classic text, Principles of Underwater
Sound, that water is an excellent medium for sound transmission compared to other modalities:

Of all the forms of radiation ... sound travels through the sea the best. In the turbid,

saline water of the sea, both light and radio waves are attenuated to a far greater degree

than is that form of mechanical energy known as sound. (Urick 1975)
The relationship between physical sound transmission in an aquatic medium with acoustic
communication has previously been identified as promoting this modality in underwater habitats
(Grosberg et al. 2012, Wilkins et al. 2013). Our analyses show that sonifery is correlated with
families living in fresh or brackish waters, marine intertidal or neritic zones, and habitats with
coarse as opposed to fine sediment bottoms. Salinity, water depth and substrate composition are
all physical properties of the environment that impact acoustic properties (Forrest et al. 1993,
Urick 1975). For example, transmission loss due to absorption (“conversion of acoustic energy
into heat”; Urick 1975) is greater in seawater and shallow water. Sound speed is greater in
bottoms with coarse substrates, but unpredictable in shallow water because of salinity, currents
and changes in temperature at the surface. To more completely understand how physical
properties of the environment combine to impact acoustic communication, direct measurements
are needed in a range of habitats (Bass and Clark 2003, Lugli 2015).

We report a correlation between families exhibiting soniferous behavior and hearing
specializations that enhance sound detection. This enhances the efficacy of other physiological
mechanisms for audio-vocal coupling that support acoustic communication. Actinopterygians

share with tetrapods (and insects) two hallmarks of audio-vocal coupling: auditory encoding of
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the spectral and temporal properties of conspecific and heterospecific vocalizations (Bass et al.
2005, Rohmann et al. 2013), and a central vocal corollary discharge, whereby vocal pattern
generator neurons inform auditory neurons about the spectral and temporal attributes of one’s
own vocalizations (Chagnaud and Bass 2013).

Perhaps the most compelling evidence that acoustic signaling behavior contributes to
ecological success within Actinopterygii is the evidence we present of its association with
alternative mating tactics and multiple modes of reproduction, including nest guarding, batch
spawning, internal fertilization, and parental care. These findings point to many taxa of
soniferous actinopterygians as providing new testing grounds for investigating the influence of
sexual and ecological selection, and drift on the evolution of acoustic communication systems
(Amorim et al. 2018, Bose et al. 2018, Emlen and Oring 1977, Lee and Bass 2006, Myrberg and

Riggio 1985, Wilkins et al. 2013).

Concluding Comments. The remarkable ecological, behavioral, and morphological diversity of
actinopterygian fishes provides opportunities to test evolutionary trajectories, constraints or roles
of acoustic communication. Because several key functional innovations have been associated
with diversification and evolutionary success in actinopterygians (e.g., acanthomorphs;
Wainwright and Longo 2017), we argue that sound production and acoustic signaling may be
similar key innovations in actinopterygian evolution. In a broader sense, and together with recent
demonstrations of acoustic communication in tetrapods (Chen and Wiens 2020), our findings

highlight the important role that acoustic communication has played in the history of vertebrates.
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Table 1. Probabilities sound production is ancestral state, and phylogenetic signal for
Actinopterygii (ray-finned fishes) and some of its sub-clades.
Clade Number | Estimated | Probability Phylogenetic Signal
of Extant | Number | Soniferous D Probability of
Families | of Valid | Behavior is | statistic Brownian
in Figure Extant Ancestral Phylogenetic
2 Species! | to Clade*? Structure?
Actinopterygii 461 34,030 29.4% 0.404 0.037
Teleostei 456 33,970 15.2% 0.368 0.057
Osteoglossomorpha 6 250 25.5% 1.680 0.165
Otocephala 96 11,720 9.6% 0.328 0.288
Ostariophysi 88 11,160 8.5% 0.208 0.400
Curimatoidea 6 420 67.0% -31.388 0.809
Siluroidei 30 2,340 96.7% -0.469 0.609
Euteleostei 333 20,930 9.6% 0.200 0.231
Acanthomorpha 298 19,470 31.4% 0.270 0.164
Eupercaria 142 6,970 88.6% -0.066 0.589
Anabantaria + 81 7,300 64.1% 0.075 0.489
Carangaria + Ovalentaria
Hexagrammidae + 25 1,280 97.9% -0.676 0.760
Zoarcoidei + Cottoidei
Cottoideti 11 850 98.8% -0.330 0.644

I Rounded to nearest 10 based on 04 April 2020 download of (Fricke et al. 2020).

2 Probabilities for ancestral state and Brownian phylogenetic structure are represented differently

to help distinguish them.

3 Node percentages summarize 1000 stochastic character mapping simulations.
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Figure Legends

Fig. 1. Family-level phylogenetic tree of actinopterygians depicting evolution of soniferous
behavior. Shown here are posterior probabilities from ancestral state reconstruction using
stochastic character mapping. Probability is represented as a gradient, where blue indicates a
high probability and red a low probability of soniferous behavior, and yellow is equivocal. Tree
is pruned from species-level phylogeny of Rabosky et al.(Rabosky et al. 2018) to family-level

here.

Fig. 2. Posterior probability soniferous behavior within major actinopterygian clades. (a)
Otocephala, (b) Anabantaria + Carangaria + Ovalentaria, and (¢) Eupercaria. For phylogenetic
trees showing the ancestral state estimation and associated evolutionary probabilities of sound
production being ancestral by stochastic character mapping, probability is represented as a
gradient where blue indicates high and red is low probability of sound production; yellow is

equivocal.

Fig. 3. Phylogenetic signal versus ancestral state estimation for evolution of actinopterygian
soniferous behavior. (a) D statistic value (Fritz and Purvis 2010) versus ancestral state estimate
(using stochastic character mapping) probability that soniferous behavior is ancestral for a clade.
(b) Probability of Brownian phylogenetic structure (modelled from D statistic) versus stochastic
character mapping probability soniferous behavior is ancestral for a clade. Values for D statistic,
probability of Brownian structure, and ancestral state probabilities are listed in Table 1. Only
clades with >25 families are used, since inference of D is limited for clades with <25 taxa (Fritz

and Purvis 2010).
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Supplementary Information

Fig. S1. Soniferous behavior mapped onto phylogenetic tree of actinopterygian families.
Tree shows three different lines of evidence for soniferous behavior used here and its
phylogenetic distribution. Tree is pruned from species-level phylogeny of Rabosky et al. (2018)
to family-level here. Some clades recovered using genomic (Betancur-R et al. 2017; Near et al.
2012; Rabosky et al. 2018) and transcriptomic data (Hughes et al. 2018) are supported by well-
accepted, anatomical synapomorphies, but others such as Ovalentaria (Hughes et al. 2018) are

not.

Fig. S2. Count of occurrences of the evolution of sonifery. Independent origins of soniferous

behavior in actinopterygian fishes, inferred from node values calculated in Fig. 1.

Fig. S3. Observed D-values for each clade. The observed D-values (vertical lines) indicate the
strength of phylogenetic signal, based on their value relative to the distribution of simulated D-
values assuming Brownian evolutionary processes (histograms) for each clade. Values that fall
closer to the center of the distribution indicate higher phylogenetic signal within a clade. Some
observed D-values were closer to (although not near the center of) the simulated distribution
based on models of random character evolution with respect to phylogeny (red histograms in

upper right plot).
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Table S1. Evidence for sound production in actinopterygian families. Levels of evidence are
coded as audio recordings (1), morphological inference (2), or qualitative observations (3).

Representative references are included to support evidence of sound production. Families are
arranged in sequence following their phylogenetic placement in Figure 1, arranged clockwise.

Number Higher Taxonomy | Family Sonic Representative
Evidence References

1. Cladistia Polypteridae 1 (Ladich and
Tadler 1988)

2. Chondrostei Acipenseridae 1 (Johnston and
Phillips 2003)

3. Amiiformes Amiidae 3 (Filleborn 1894)

4. Elopomorpha Megalopidae 1 (Fish and
Mowbray 1970)

5. Elopomorpha Elopidae 1 (Fish and
Mowbray 1970)

6. Elopomorpha Albulidae 1 (Fish and
Mowbray 1970)

7. Elopomorpha Anguillidae 1 (Fish et al. 1952)

8. Elopomorpha Congridae 3 (Moulton 1963)

0. Osteoglossomorpha | Arapaimidae 1 (Olsen 2014)

10. Osteoglossomorpha | Osteoglossidae 2 (Sorensen 1894-
1895)

11. Osteoglossomorpha | Notopteridae 3 (Greenwood
1963)

12. Osteoglossomorpha | Mormyridae 1 (Crawtord et al.
1997)

13. Clupeiformes Engraulidae 1 (Kuznetsov and
Kuznetsov 2012)

14. Clupeiformes Clupeidae 1 (Fish et al. 1952;
Wilson et al.
2004)

15. Characiformes Parodontidae 2 (Moreira et al.
2019)

16. Characiformes Hemiodontidae 2 (Netto-Ferreira
and Moreira
2019)

17. Characiformes Serrasalmidae 1 (Millot et al.
2011)

18. Characiformes Anostomidae 3 (Reynalte-Tataje
etal. 2013)

19. Characiformes Prochilodontidae 1 (Godinho et al.
2017)

20. Characiformes Curimatidae 1 (Borie et al. 2019)

21. Characiformes Gasteropelecidae 3 (Weitzman 1954)

22. Characiformes Characidae 1 (Meschkat 1957)
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23. Siluriformes Callichthyidae (Kaatz and Lobel
1999)

24. Siluriformes Loricariidae (Heyd and
Pfeiffer 2000)

25. Siluriformes Aspredinidae (Kaatz and
Stewart 2012)

26. Siluriformes Auchenipteridae (Kaatz and
Stewart 2012)

27. Siluriformes Doradidae (Ladich 2001)

28. Siluriformes Heteropneustidae (Kaatz et al.
2010)

29. Siluriformes Clariidae (Goel 1966)

30. Siluriformes Chacidae (Kaatz et al.
2010)

31. Siluriformes Siluridae (Moulton 1963)

32. Siluriformes Horabagridae (Kaatz et al.
2010)

33. Siluriformes Bagridae (Heyd and
Pfeiffer 2000)

34, Siluriformes Sisoridae (de Pinna 1996;
Mahajan 1963)

35. Siluriformes Plotosidae (Burgess 1989)

36. Siluriformes Pangasiidae (Marshall 1966;
Sorensen 1890)

37. Siluriformes Cranoglanididae (Diogo et al.
2002)

38. Siluriformes Ictaluridae (Fine et al. 1997)

39. Siluriformes Ariidae (Breder 1968)

40. Siluriformes Pseudopimelodidae (Kaatz and
Stewart 2012)

41. Siluriformes Pimelodidae (Kaatz and
Stewart 2012)

42. Siluriformes Schilbeidae (Mo 1991)

43. Siluriformes Heptapteridae (Heyd and
Pfeiffer 2000;
Schachner and
Schaller 1981)

44. Siluriformes Claroteidae (Kaatz et al. 2010;
Skelton and
Skelton 1993)

45. Siluriformes Malapteruridae (Howes 1985;
Sorensen 1894-
1895)

46. Siluriformes Mochokidae (Kaatz and
Stewart 2012)
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47. Cypriniformes Catostomidae 1 (Straight et al.
2014)

48. Cypriniformes Cobitidae 1 (Rigley and
Marshall 1971)

49. Cypriniformes Balitoridae 3 (Dufossé 1874)

50. Cypriniformes Nemacheilidae 3 (Dufossé 1874)

51. Cypriniformes Cyprinidae 1 (Winn and Stout
1960)

52. Cypriniformes Gobionidae 1 (Scholz and
Ladich 2006)

53. Cypriniformes Leuciscidae 1 (Johnston and
Vives 2003;
Protasov 1965)

54. Protacanthopterygii | Salmonidae 1 (Johnson et al.
2017; Neproshin
1972; Neproshin
1974)

55. Osmeriformes Osmeridae 1 (Neproshin et al.
1980)

56. Myctophidae 1 (McCauley and
Cato 2016)

57. Percopsiformes Aphredoderidae 3 (Abbott 1877)

58. Zeiformes Zeidae 1 (Onuki and
Somiya 2004)

59. Gadiformes Moridae 1 (Marshall 1967;
Tavolga 1964)

60. Gadiformes Phycidae 1 (Fish and
Mowbray 1970)

61. Gadiformes Lotidae 1 (Hawkins and
Rasmussen 1978;
Rountree and
Juanes 2010)

62. Gadiformes Gadidae 1 (Fish et al. 1952)

63. Gadiformes Merlucciidae 1 (Fish 1954)

64. Gadiformes Macrouridae 2 (Marshall 1965)

65. Lampriformes Veliferidae 2 (Walters 1960)

66. Holocentriformes Holocentridae 1 (Bright and
Sartori 1972;
Moulton 1958)

67. Trachichthyiformes | Trachichthyidae 2 (Shimizu 1977)

68. Trachichthyiformes | Monocentridae 1 (Onuki et al.
2010)

69. Ophidiiformes Dinematichthyidae 1 (Campagna 1973;
Howes 1992)

70. Ophidiiformes Bythitidae 1 (Campagna 1973)
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71. Ophidiiformes Carapidae (Parmentier et al.
2003)

72. Ophidiiformes Ophidiidae (Courtenay and
McKittrick 1970;
Parmentier et al.
2010)

73. Batrichoidiformes Batrachoididae (Fish et al. 1952)

74. Eupercaria Scaridae (Tricas and Boyle
2014)

75. Eupercaria Labridae (Fish et al. 1952)

76. Eupercaria Glaucosomatidae (Mok et al. 2011;
Parsons et al.
2013)

77. Eupercaria Pempheridae (Takayama et al.
2003)

78. Eupercaria Triodontidae (Breder and Clark
1947)

79. Eupercaria Ostraciidae (Fish and
Mowbray 1970;
Lobel 1996)

80. Eupercaria Triacanthidae (Breder and Clark
1947; Bridge
1904)

81. Eupercaria Balistidae (Fish et al. 1952;
Salmon et al.
1968)

82. Eupercaria Monacanthidae (Fish et al. 1952)

83. Eupercaria Molidae (Fish and
Mowbray 1970)

84. Eupercaria Diodontidae (Fish et al. 1952)

85. Eupercaria Tetraodontidae (Fish et al. 1952)

86. Eupercaria Priacanthidae (Salmon and
Winn 1966)

87. Eupercaria Caproidae (Bridge 1904;
Fish 1948;
Sorensen 1894-
1895)

88. Eupercaria Ephippidae (Fish et al. 1952)

89. Eupercaria Zanclidae (Tricas and Boyle
2014)

90. Eupercaria Acanthuridae (Fish and
Mowbray 1970)

91. Eupercaria Sciaenidae (Tower 1908)

92. Eupercaria Lethrinidae (Moulton 1964)

93. Eupercaria Sparidae (Fish et al. 1952)
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94, Eupercaria Leiognathidae 3 (Fish 1948;
Uchida 1934)

95. Eupercaria Chaetodontidae 1 (Tricas and Boyle
2015)

96. Eupercaria Pomacanthidae 1 (Fish and
Mowbray 1970;
Moyer et al.
1983)

97. Eupercaria Lutjanidae 3 (Fish and
Mowbray 1970)

98. Eupercaria Caesionidae 3 (Yokoyama et al.
1994)

99. Eupercaria Haemulidae 1 (Burkenroad
1930)

100. Eupercaria Moronidae 3 (Fish 1954; Fish
et al. 1952; Fish
and Mowbray
1970)

101. Eupercaria Sillaginidae 1 (McKay 1985;
Walls 1964)

102. Eupercaria Gerreidae 3 (Fish and
Mowbray 1970)

103. Eupercaria Uranoscopidae 3 (Mikhailenko
1973)

104. Eupercaria Polyprionidae 1 (Clark and Allen
2018)

105. Eupercaria Kyphosidae 1 (Fish and
Mowbray 1970)

106. Eupercaria Terapontidae 1 (Dorai Raj 1960)

107. Eupercaria Enoplosidae 3 (Graham 1992)

108. Eupercaria Latridae 3 (Castelnau 1872)

109. Eupercaria Centrarchidae 1 (Gerald 1971)

110. Eupercaria Neosebastidae 2 (Hallacher 1974;
Ishida 1994;
Matsubara 1943)

111. Eupercaria Percidae 1 (Johnston and
Johnson 2000)

112. Eupercaria Serranidae 1 (Fish et al. 1952)

113. Eupercaria Normanichthyidae 2 (Yabe and Uyeno
1996)

114. Eupercaria Apistidae 2 (Imamura 2004)

115. Eupercaria Aploactinidae 1 (Matsubara 1943;
Walls 1964)

116. Eupercaria Tetrarogidae 1 (Walls 1964)

117. Eupercaria Synanceiidae 1 (Imamura 2004;
Walls 1964)
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118. Eupercaria Setarchidae (Imamura and
Yabe 2002; Ishida
1994)

119. Eupercaria Scorpaenidae (Fish and
Mowbray 1970;
Hallacher 1974)

120. Eupercaria Sebastidae (Sirovi¢ and
Demer 2009)

121. Eupercaria Peristediidae (Evans 1969;
Evans 1970)

122, Eupercaria Triglidae (Fish et al. 1952)

123. Eupercaria Anoplopomatidae (Riera et al. 2020)

124. Eupercaria Gasterosteidae (Bridge 1904;
Fish 1954)

125. Eupercaria Hexagrammidae (Yamato et al.
2018)

126. Eupercaria Anarhichadidae (Sorensen 1884;
1894-1895)

127. Eupercaria Cyclopteridae (Fish and
Mowbray 1970)

128. Eupercaria Liparidae (Hallacher 1974)

129. Eupercaria Rhamphocottidae (Imamura and
Yabe 2002; Yabe
1985)

130. Eupercaria Hemitripteridae (Fish and
Mowbray 1970)

131. Eupercaria Agonidae (Imamura and
Yabe 2002; Yabe
1985)

132. Eupercaria Cottidae (Barber and
Mowbray 1956;
Fish et al. 1952)

133. Eupercaria Psychrolutidae (Hallacher 1974;
Yabe 1985)

134. Pelagiaria Pomatomidae (Fish and
Mowbray 1970)

135. Pelagiaria Trichiuridae (Moulton 1963)

136. Pelagiaria Stromateidae (Fish et al. 1952)

137. Pelagiaria Scombridae (Fish and
Mowbray 1970)

138. Sygnatharia Dactylopteridae (Fish and
Mowbray 1970)

139. Sygnatharia Mullidae (Fish and
Mowbray 1970)

140. Sygnatharia Aulostomidae (Bright 1972)
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141. Sygnatharia Centriscidae 3 (Knudsen et al.
1948)

142, Sygnatharia Syngnathidae 1 (Fish 1953)

143. Gobiaria Apogonidae 3 (Kuwamura 1985)

144, Gobiaria Odontobutidae 1 (Horvatic¢ et al.
2019)

145. Gobiaria Gobiidae 1 (Protasov et al.
1965)

146. Anabantaria Mastacembelidae 3 (Sorensen 1894-
1895)

147. Anabantaria Channidae 2 (Sorensen 1894-
1895)

148. Anabantaria Anabantidae 3 (Kratochvil 1985)

149. Anabantaria Osphronemidae 1 (Ladich et al.
1992)

150. Carangaria Polynemidae 1 (Fish and
Mowbray 1970)

151. Carangaria Carangidae 1 (Fish et al. 1952;
Moulton 1960;
Taylor and
Mansueti 1960)

152. Carangaria Centropomidae 1 (Fish and
Mowbray 1970)

153. Carangaria Sphyraenidae 1 (Fish and
Mowbray 1970)

154. Carangaria Scophthalmidae 3 (Fish and
Mowbray 1970;
Lagardere et al.
2004)

155. Carangaria Pleuronectidae 1 (Fish et al. 1952)

156. Ovalentaria Mugilidae 1 (Barros 1993)

157. Ovalentaria Pomacentridae 1 (Avidor 1974;
Myrberg 1972;
Spanier 1979)

158. Ovalentaria Blenniidae 1 (Tavolga 1958)

159. Ovalentaria Polycentridae 3 (Barlow 1967)

160. Ovalentaria Cichlidae 1 (Myrberg et al.
1965)

161. Ovalentaria Adrianichthyidae 1 (Kang et al. 2017)

162. Ovalentaria Belonidae 3 (Dufossé 1874)

163. Ovalentaria Scomberesocidae 1 (Protasov 1965)

164. Ovalentaria Hemiramphidae 3 (Burkenroad
1931)

165. Ovalentaria Cynolebiidae 2 (Costa 2009;
Costa et al. 2010)
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165. Ovalentaria Fundulidae 1 (Drewry 1962)
166. Ovalentaria Cyprinodontidae 1 (Johnson 2000)
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Table S2. (separate excel file) Aggregated data for 461 families considered in this analysis.
Showing soniferous behaviors, valid extant species, male alternative reproductive tactics (Mank
and Avise 2006), ecological data aggregated from FishBase (Boettiger et al. 2012; Froese and
Pauly 2019), including occurrence of families as a function of latitude, salinity, bottom type,
habitat, trophic ecology, and reproductive mode.

Nocturnality is strongly correlated with the evolution of acoustic communication within
tetrapods (Chen and Wiens 2020). We considered including nocturnality as part of this analysis.
Although there are many examples of robust nocturnal chorusing by actinopterygians (Feng and
Bass 2016; Mann and Jarvis 2004; McCauley and Cato 2016; Rice et al. 2017), there are no
comprehensive analyses of photoperiod-related activity patterns for the soniferous families that
are the basis of our study. Assessment of nocturnality in fishes is complicated by potential
sampling biases (Dornburg et al. 2017), including seasonal and diel shifts in soniferous and other
behaviors coupled to peak times of spawning and reproduction (Feng and Bass 2016; Mann and

Jarvis 2004; McCauley and Cato 2016; Rice et al. 2017).
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635  Table S3. Clades with independent evolution of sonifery in actinopterygian fishes and
636  associated habitats. Nodes on the phylogenetic tree are labelled in Supplementary Figure 2.

637  Habitat data are from FishBase (Froese and Pauly 2019)

Clade Marine/Freshwater | Habitat
Polypteridae Freshwater Demersal
Acipenseridae Anadromous Demersal spawning and feeding
Amiidae Freshwater Demersal
Megalopidae+Elopidae Marine Demersal
Albulidae Marine Demersal
Anguillidae Anadromous Demersal in Freshwater
Congridae Marine Demersal
Arapaimidae+Mormyridae+ Freshwater Rivers
Gymnarchidae+Notopteridae
+Osteoglossidae
Engraulidae Marine Some demersal, some pelagic
Clupeidae Marine Some demersal, some pelagic
Curimatoidea Freshwater Rivers
Gasteropelecidae Freshwater Rivers
Characidae Freshwater Demersal
Siluroideti Mostly Freshwater, Mostly benthic or demersal
some marine
Catostomidae Freshwater Demersal
Cobitidae Freshwater Demersal
Balitoridae Freshwater Demersal
Nemacheilidae Freshwater Demersal
Cyprinidae Freshwater Many with demersal spawning and
feeding

Gobionidae Freshwater Rivers, some demersal
Leuciscidae Freshwater Rivers
Salmonidae Anadromous Demersal spawning
Osmeridae Anadromous Demersal and pelagic
Myctophidae Marine Bathypelagic
Aphredoderidae Freshwater Demersal spawning
Zeidae Marine Demersal
Gadiformes Mostly marine Demersal
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