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ABSTRACT 

We examine closed-form approximations for the equilibrium Ca2+ concentration near a point Ca2+ source 

representing a Ca2+ channel, in the presence of a mobile Ca2+ buffer with 2:1 Ca2+ binding stoichiometry. 

We consider buffers with two Ca2+ binding sites activated in tandem and possessing distinct binding 

affinities and kinetics. This allows to model the impact on Ca2+ nanodomains of realistic endogenous Ca2+ 

buffers characterized by cooperative Ca2+ binding, such as calretinin. The approximations we present 

involve a combination or rational and exponential functions, whose parameters are constrained using the 

series interpolation method that we recently introduced for the case of 1:1 Ca2+ buffers. We conduct 

extensive parameter sensitivity analysis and show that the obtained closed-form approximations achieve 

reasonable qualitative accuracy for a wide range of buffer’s Ca2+ binding properties and other relevant 

model parameters. In particular, the accuracy of the newly derived approximants exceeds that of the rapid 

buffering approximation in large portions of the relevant parameter space.  

STATEMENT OF SIGNIFICANCE 

Closed-form approximations describing equilibrium distribution of Ca2+ in the vicinity of an open Ca2+ 

channel proved useful for the modeling of local Ca2+ signals underlying secretory vesicle exocytosis, muscle 

contraction and other cell processes. Such approximations provide an efficient method for estimating Ca2+ 

and buffer concentrations without computationally expensive numerical simulations. However, while most 

biological buffers have multiple Ca2+ binding sites, much of prior modeling work considered Ca2+ dynamics 

in the presence of Ca2+ buffers with a single Ca2+ binding site. Here we extend modeling work on 

equilibrium Ca2+ nanodomains to the case of Ca2+ buffers with two binding sites, allowing to gain deeper 

insight into the impact of more realistic Ca2+ buffers, including cooperative buffers, on cell Ca2+ dynamics.  

Keywords: calcium nanodomain, calcium buffer, stationary approximation, equilibrium approximation, 

rapid buffering approximation, calmodulin, calretinin 
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INTRODUCTION 

Accurate description of Ca2+ concentration ([Ca2+]) elevations formed near open Ca2+ channels, termed 

micro- or nano-domains, is crucial for the understanding of many fundamental cell processes such as 

synaptic neurotransmitter release, endocrine hormone release, and muscle contraction (1-5). This is 

particularly true in the case of chemical synaptic transmission, since the fusion (exocytosis) of a presynaptic 

neurotransmitter-filled vesicle can be triggered by the opening of just a few voltage-gated Ca2+ channels 

(5-10). The characteristic time of synaptic vesicle exocytosis is a fraction of 1 millisecond, while the 

relevant spatial scale is determined by the Ca2+ channel-vesicle separation, on the order of 10-100 nm (4, 

5, 10-15). Optical Ca2+ imaging is insufficient to track spatio-temporal Ca2+ dynamics on such fine temporal 

and spatial scales, and cannot be carried out without disturbing the Ca2+ signal that is being measured. This 

explains the key role that mathematical and computational modeling has played in the study of vesicle 

exocytosis, myocyte contraction, and other fundamental processes controlled by localized Ca2 elevations 

(13-20). The main technical challenge in such modeling stems from the interaction of Ca2+ with intracellular 

Ca2+ buffers, which bind most of Ca2+ ions upon their entry into the cytoplasm (12, 19). Buffered Ca2+ 

diffusion problem leads to a system of nonlinear partial differential equations, which requires computational 

modeling. One early insight gained from such computational studies is that [Ca2+] reaches a quasi-stationary 

steady state in the vicinity of an open Ca2+ channel very quickly, within 10-100 s, and this quasi-stationary 

Ca2+ nanodomain gradient collapses as quickly after channel closing (15-20). This suggested that 

equilibrium solutions to the Ca2+ reaction-diffusion equations achieve sufficient accuracy in modeling 

[Ca2+] as a function of distance from an open Ca2+ channel. Therefore, several closed-form equilibrium Ca2+ 

nanodomain approximations have been developed, most notably the excess buffer approximation (EBA), 

the rapid buffering approximation (RBA) and the linear approximation (LIN) (19, 21-31). These 

approximations proved useful in understanding the properties of Ca2+ nanodomains and their dependence 

on the properties of cell Ca2+ buffers, and provide a convenient and efficient tool for modeling studies (19, 

26, 32-36). More recently, we introduced two new methods for finding such analytic approximations, one 

of which is based on the variational approach, and the second method based on matching the coefficients 

of short-range Taylor series and long-range asymptotic series of the nanodomain [Ca2+] as a function of 

distance from the channel (37, 38). Here we present an extension of the latter approach, which we refer to 

as the series interpolation method, to the case of more complex buffers with two Ca2+ binding sites. This 

allows to model the impact of more realistic Ca2+ buffers, all of which have multiple binding sites. For 

example, many widely expressed Ca2+ buffers and sensors such as calretinin and calmodulin contain two 

EF-hand domains which cooperatively bind two Ca2+ ions, whereby the binding of the second Ca2+ ion 
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proceeds with much greater affinity once the first binding site is occupied (39-47). To date, only RBA has 

been extended to such realistic buffers, and it achieves sufficient accuracy only in restrictive parameter 

regimes corresponding to a very small ratio between the rates of diffusion and Ca2+ binding reactions (48). 

In this study we show that the series interpolation methods can be successfully extended to such buffers 

with more realistic Ca2+ binding properties, using simple ansätze combining exponential and rational 

functions, similar to those considered in (37) for the case of 1:1 buffers. We perform systematic parameter 

sensitivity analysis of the accuracy of the newly obtained approximants and demonstrate that they achieve 

significantly improved approximation accuracy as compared to RBA for a wide range of relevant parameter 

values, and capture the non-trivial dependence of the bound buffer concentration on the distance from the 

Ca2+ channel. 

METHODS 

We start with the description of the Ca2+ binding and unbinding reactions for buffer molecules with two 

binding sites, which we will refer to as two-to-one (2:1) buffers or complex buffers (41, 44, 48):  

                                             (1) 

Here B, B* and B** denote respectively the free, partially bound, and fully Ca2+-bound states of the buffer, 

and 1,2k  , 1,2k  are the Ca2+-buffer binding/unbinding rates for each buffer state. Following previous 

modelling work (25), we will consider a semi-infinite domain bounded by a flat plane representing the 

cytoplasmic membrane, which contains one or more Ca2+ channels. Further, we assume zero flux boundary 

condition for Ca2+ and buffer on the flat plane, so the reflection symmetry allows to extend the domain to 

infinite space, while doubling the current strength, which places the Ca2+ current sources inside the domain 

(24, 25, 31). Denoting free Ca2+ concentration as C, and time differentiation as t, we arrive at the following 

reaction-diffusion system for the concentrations of all reactants (48): 
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where the reaction terms are given by   
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In Eq. 2, the point channel-source strengths are 𝜎௞ = 𝐼஼௔,௞/(2𝐹) , where ICa,k are the amplitudes of 

individual open Ca2+ channels located at positions r
k 
, F is the Faraday constant, and NCa is the number of 

Ca2+ channels. As in the simple-buffer case (25, 26, 37, 38, 49, 50), there are two conservation laws for the 

total buffer and the total Ca2+ concentrations: 


t
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Since we are interested in equilibrium solutions, we obtain 
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Here we assume that buffer diffusivity does not change when binding Ca2+ ions, D
B
 D

B
*  D

B
**  (this 

constraint is relaxed in the derivation of RBA in Supporting Material 1). In this case the two conservation 

laws in Eq. 6 have the following solution (25, 26, 31, 37, 48-50): 
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 (7) 

where constants BT and CT are related to the total (bound plus free) buffer and Ca2+ concentrations 

respectively, infinitely far from channel: 
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Here X denote the concentrations of reactants X infinitely far from the channel, where reactions given by 

Eq. 3 are at equilibrium. Therefore, all background buffer state concentrations are uniquely determined by 

the background [Ca2+], C, through equilibrium relationships 
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where K1,2 are the affinities of the two reactions in Eqs. 1, 3, given by 1 1 1 2 2 2/ and / .K k k K k k       

We now restrict to the case of a single Ca2+ channel of source strength 𝜎 = 𝐼஼௔/(2𝐹)  at the origin, and 

look for spherically symmetric solutions, which turns Eq. 6 into a system of ODEs, with the spherically 

symmetric Laplacian given in terms of the distance from the Ca2+ channel, r=|r|: 2 2 2 /    r r r . 

We non-dimensionalize this problem using an approach analogous to the one we used for the simple 

buffer case in (37), which is a slightly modified version of the non-dimensionalization introduced by Smith 

et al. (25) and also used in (38, 48). Namely, we normalize Ca2+ and buffer concentrations by the affinity 

of the 2nd binding step and the background buffer concentration, respectively: 
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We also re-scale the spatial coordinate (r/𝐿 → r) using the scale parameter that depends on the strength of 

the Ca2+ current,   

L  / 2K2DC( ) .                                                        (11) 

This transforms Eqs. 6,7 to the form 
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where bT and cT are the non-dimensional versions of the integration constants given by Eq. 8, related to the 

total buffer and [Ca2+] infinitely far from the channel (note that in our non-dimensionalization b=1): 
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with dimensionless parameters 

1,2 1,22
1,2 1,2
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Along with c, parameters 1,2 and 1,2 completely specify the model system. Here 1,2 are the 

dimensionless mobilities of the two buffer states, which depend on buffering kinetics and Ca2+ current 

amplitude through the length scale L (Eq. 11). They quantify the ratio between the rate of diffusion and the 

rate of Ca2+ influx and binding. Parameters 1,2 quantify the overall buffering strength, and equal the product 

of the relative buffer mobility, DB / DC, and the two quantities characterizing buffering capacity at rest, 

2B/K1,2. For the sake of simplicity, we will also use the following cooperativity parameters, which 

characterize the difference between the affinities and kinetics of the buffer’s two distinct Ca2+-binding sites:  

     
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2

K
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, g 
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1


2
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k

2
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 . (15) 

In the case of calretinin and calmodulin, the binding properties have been experimentally estimated (41, 45, 

51), and the corresponding values of cooperativity parameters are given in Tables 4 and 5. These two Ca2+ 

buffer-sensors are characterized by highly cooperative Ca2+ binding, with  <<1. In the results shown below, 

we will use the cooperativity parameters given by Eq. 15 to replace some of the four parameter given by 

Eq. 14. Namely, we will specify our model using either {2, 2, , g } or {1, 2, , q}, where q=1/(1+1) 

is analogous to the parameter of the same name in the simple buffer case (37, 38).  

We now restrict our analysis to the case of zero background [Ca2+], relegating more general results 

to Supporting Material 1. With this simplification, c=cT=0 and b=bT=1, therefore Eq. 12 becomes 
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  (16) 

This system posed a challenge since it represents a non-linear and singular problem on an infinite domain. 

Further, most stationary approximations developed for the case of a simple 1:1 Ca2+ buffer cannot be 

extended to complex 2:1 Ca2+ buffers, with the exception of lowest-order RBA, which assumes that the 

reaction is at equilibrium in the entire domain (48). In Supporting Material 1 we derive RBA using the new 

non-dimensionalization presented above, slightly generalizing the expressions in (48). As is the case for a 

simple 1:1 Ca2+ buffer, RBA approximates the true solution very well within the parameter regime 1,2<<1 

(25). However, this fast buffering parameter regime has a complex interplay with the cooperativity 

condition  <<1. In fact, the accuracy in buffer concentration estimation is significantly reduced with 

increasing Ca2+ binding cooperativity, corresponding to decreasing . Reducing the unbinding rate ratio g 
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along with   partially rescues RBA accuracy (48). This high sensitivity of RBA accuracy to buffer 

parameters calls for the development of other approximants. In the results shown below, the accuracy of 

newly developed approximants will be compared and contrasted with that of the RBA.  

Note that the stoichiometric factors of 2 appearing in Eqs. 12-14, 16 could in principle be absorbed 

into the definitions of the reaction rate parameters. However, we retain them, since as was pointed out in 

(48),  this improves consistency with the non-dimensionalization for the simple 1:1 buffer case adopted in 

(25, 37, 38), allowing to recover the latter simpler model as 1 and g1. 

In all results shown below, closed-form approximations to solutions of Eq. 12 or Eq. 16 are 

compared to the numerical solutions computed using the relaxation method and cross-validated using the 

shooting method; for the relaxation method we used CalC (Calcium Calculator) software, version 7.9.6 

(http://www.calciumcalculator.org) (52).  

RESULTS 

Equilibrium Ca2+ nanodomain: power series interpolation method 

We begin by presenting the power series interpolation method developed recently for the case of 

simple buffers with one-to-one Ca2+ binding stoichiometry (37, 38), which we will now generalize to the 

case of 2:1 Ca2+ buffers with two binding sites. This method involves finding simple ansätze that interpolate 

between the solution’s Taylor series in powers of distance from the channel location, r, and the asymptotic 

power series expansion of the solution in terms of the reciprocal distance from the channel location, x=1/r. 

We will refer to these two series as the short-range (low-r) and long-range (high-r) series.  

We start with the non-dimensionalized form of the system for complex buffer, Eq. 16, and make a 

substitution U  (1 b) /  , and V  b** /    to slightly simplify these equations. Eliminating the partially-

bound buffer concentration variable using the buffer conservation law * **1 ( )b b b U V     , Eq. 16 

is transformed to 
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Next, we eliminate the Ca2+ concentration c using the Ca2+ conservation law in the last equation to obtain 
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This system has only a regular singularity at r=0 and does have a solution analytic at r=0, representing the 

physical nanodomain solution that we are seeking. Using the Frobenius-like approach we find the following 

Taylor series expansions in r for both U and V: 
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Parameters U0 and V0 are determined by the concentrations of free and fully bound buffer at the channel 

location, r=0; these values are finite and non-zero, but unknown a priori. Thus, U0 and V0 are important 

unknowns of the problem, to be determined by our approximation procedure. Because U0 and V0 are 

unknown, Eq. 19 only provides the relationships between the coefficients of these Taylor expansions, rather 

than coefficients themselves. For example, denoting the 1st-order Taylor coefficients in Eq. 19 as U1 and 

V1, we obtain the constraints U1=(U01)/1 and V1=(V0U0)/(22), which we will use to determine some 

of the free parameters of each approximant considered further below.  

In order to obtain the long-range asymptotic series expansion of the solution, we make a coordinate 

mapping x  1/ r , transforming Eq. 18 to the form 
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This system has a unique asymptotic power series expansion near x=0 satisfying boundary conditions at 

x0+ (i.e. r+), namely U(x=0+)=0, V(x=0+) =0. Up to terms of order x3, this asymptotic series expansion 

can be obtained by simply equating the right-hand sides of Eq. 20 to zero, which yields  
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where we introduced the parameter q  1/ (1 v
1
)  for the sake of simplicity. It is important to note that the 

leading term in the V(x) long-range expansion is of order O(x2), in contrast to U. This is intuitive, since V 

represents the double-bound buffer state, which decays faster than [Ca2+] or [B*] as [Ca2+]0 with x0+ 

(i.e. r+). Note however that this is not the case when background [Ca2+] is not zero; this more general 

case is considered in Supporting Material 1. Parenthetically, we also note that the right-hand sides of Eq. 

20 contain all reaction term, which RBA sets to zero. Therefore, given that the left-hand side of Eq. 20 is 

of asymptotic order O(x4), Eq. 21 must agree up to the given order O(x3) with RBA. 

We will now consider simple ansätze whose series expansions simultaneously match leading terms 

of the low-r (short-range) series and the low-x (long-range, high-r) series given by Eqs. 19, 21. Inspired by 

the simple buffer case (37), we seek ansätze for U and V  that combine Padé approximants (rational 

functions) and exponential functions. Below we list these ansätze for U and V, along with the corresponding 

short-range and long-range series representations. Our approximations are based on pair-wise combinations 

of these U and V ansätze, as summarized in Table 1. With a slight abuse of notation, we use the same 

function name (U or V) whether it is expressed as a function of distance r, or its reciprocal x: 

 Padé ansatz for U, containing one free parameter, A: 
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( )

2
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2
2 ( ) .
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 
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     

q q r r
U r O r

A r A A A

qx
U x q x Ax O x

Ax

   (22) 

 Exponential ansatz for U, which also depends on one free parameter A: 

 
( )

( ) ( )

/ 2
3

2

2

1 2
2 1 ( ) ,

2 6

2 .

  
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 



r Ae q r r
U r q O r

r A A A

U x qx O x

 (23) 

 Padé ansatz for V, which depends on two free parameters, b1 and b2: 
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2 2 3 4
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1 2

1
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( ) .
1
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        
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q x
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  (24) 
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 Exponential ansatz for V, which depends on one free parameter, s: 

 
( ) ( ) ( ) ( )
( ) ( )

2 2 2 2
2

2 2 3

1 exp 1 1
,

2 3

.

        
 



sr sr s
V r q q s r O r

r

V x q x O x

  (25) 

Name Ansatz in U Ansatz in V Params V accuracy 

PadéA 2q
U

A r



 

2

2
1 2

q
V

r b r b


 
 

N=3 

(A, b1, b2) 

O(r),  O(x3) 

PadéB O(r2),  O(x2) 

ExpPadéA /1
2




r Ae
U q

r
 

O(r),  O(x3) 

ExpPadéB O(r2),  O(x2) 

PadéExp 
2q

U
A r




 
( )2
2

1 1s re sr
V q

r

 
  

N=2 

(A, s) 

O(r),  O(x2) 

ExpExp 
/1

2



r Ae

U q
r

 O(r),  O(x2) 

Table 1.  List of all new approximants, including the ansätze for U and V and the number of terms in the short-range 

and long-range solution expansions (Eqs. 19, 21) matched by each ansatz. Note that all ansätze automatically match 

the term of order O(x) in U (U ~ 2qx) and the term of order O(x2) in V (V ~ q2x2). The free parameter in the U ansatz 

(α or A) is found by matching terms of order O(r), while the free parameters in the V ansatz are found by matching 

terms indicated in the last column. 

Note that all of these ansätze are analytic at r=0, and that in the limit r+ (x=1/r 0+), they 

automatically match the leading non-zero term in the asymptotic series expansion of the solution given by 

Eq. 21: U(x)= 2qx + O(x2), V(x)=q2x2 + O(x3). Additionally, all ansätze satisfy appropriate physical 

constraints. Namely, imposing the condition A > 0 guarantees that U is positive and monotonically 

decreasing to 0 as r + for each ansatz, and therefore b=1 at infinity, since U  (1 b) /  . This agrees 

with the observation that the free buffer concentration is increasing monotonically from b0>0 at the channel 

mouth to b=1 infinitely far from the channel. Further, V is also always positive given positive parameters 

b1, b2, and s, and is monotonically decreasing to V=0 as r +, therefore b**=0 at infinity (recall that 

V  b** /  ). This agrees with the fact that the fully bound buffer concentration is bounded and equals to 

zero infinitely far from the Ca2+ channel, where [Ca2+]=0. 

We match the free parameters in the above approximants following the same interpolation method 

as in the case of a simple 1:1 Ca2+ buffer (37, 38). Namely, the unknowns are U0 and V0 in Eq. 19, plus 
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either 2 or 3 parameters characterizing a particular approximant, as listed in Table 1. Therefore, 4 or 5 

constraints are needed to find these unknowns. The first 4 constraints are obtained by matching the first 

two terms (of order O(1) and O(r)) in the short-range series for both U and V, as given by Eq. 19. For the 

3-parameter approximants, the final 5th constraint is needed, which comes from matching one additional 

term in the short- or the long-range series, as specified in the last two columns of Table 1. One obtains an 

algebraic system of 4 or 5 equations for the ansatz parameters, which are readily solvable in closed form. 

Tables 2 and 3 show the exact expressions we obtain using this method for the free ansatz 

parameters in terms of the model parameters {1, 2, q, }, except for b2 and s defined by solutions of cubic 

equations shown in the last column of Table 3, whose roots are given in closed form in Appendix A. Once 

b=1U and b**=V are determined using these approximants, the partially bound buffer concentration b* 

and Ca2+ concentration c can then be determined from b and b** through the conservation laws in Eq. 16. 

We will now illustrate this series interpolation method more concretely using the ExpPadéA 

approximant as an example. This ansatz is formed by combing Eq. 23 for U and Eq. 24 for V. Then, as 

indicated in Table 1, we constrain the values of ansatz parameters using terms of orders O(1) and O(r) in 

Eq. 19 for both U and V, and term of order O(x3) in Eq. 21 for V (recall once again that all ansätze 

automatically match the term of order O(x) in U and the term of order O(x2) in V). Therefore, we obtain 5 

constraints for 5 unknowns (three parameters in ExpPadéA ansatz, plus U0 and V0): 
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  (26) 

The solution of this system is given in Tables 2-3. Note that the 3rd equation in this system leads to a 

quadratic equation for b2, whose solution is given in Table 3.  

Methods     U(r) Ansatz parameter 

PadéA, PadéB, PadéExp 
2 q

U
A r




 2 2
12A q q q      

ExpPadéA, ExpPadéB, ExpExp 
/1

2



r Ae

U q
r

 2 2
1    q q qA  

Table 2. Ansätze parameters for the free buffer variable U as functions of model parameters q, , 1, and 2.  
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Method Equations for ansatz parameters (Eqs. 24, 25) 

PadéA, ExpPadéA ( )1 2 1 2 1b q q q       ( )2 2
2 1

1
16

4
  b Aq A q b Aq  

PadéB 
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1
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2
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2
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b b
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Aq
 

( )2
21 1
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3 1

2 4
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  
     

 

q qb bq
b b

b qA
 

ExpPadéB 
( )2

21 1
2 2 22

2

12 3
3 1

2 2 4


  
     

 

q qb bq
b b

b qA
 

PadéExp, ExpExp ( )3 2
24 3 1 2 0s s q A     

Table 3. Ansätze parameters for the fully bound buffer variable V shown in Table 1, as functions of model parameters 

q, , 1,2 , and parameter A from the corresponding ansatz for U shown in Table 2. For PadéB, ExpPadéB, PadéExp 

and ExpExp, the value of b2 or s is given by the real positive root of the cubic equation shown in the last column, 

whose closed-form solutions are given in Appendix A.  

Accuracy in approximating buffer and Ca2+ concentrations  

As a crude demonstration of the performance of our new ansätze, Figure 1 shows our approximants 

for 4 select combinations of model parameters, with each column presenting the results for all concentration 

variables (b, b*, b**, and c), for a particular set of values of 2, 2, g, and , as labeled in the panel titles. The 

accurate numerical results are shown as thick grey curves. Since the expressions for the free buffer b 

(specified by U) are identical for PadéA, PadéB, and PadéExp approximants (see Table 2), the 

corresponding approximation is labeled as U-Padé, and shown as a single dashed green curve in the top 

panels of Fig. 1. Similarly, b approximants for ExpPadeA, ExpPadeB and ExpExp are also identical, and 

are labeled U-Exp and shown as a dashed magenta curves in the top panels. Only the best 5 approximants 

are shown for each parameter combination for variables b*, b**, and c in rows 2-4 of Figure 1 (out of a total 

number of 7 approximants combining the 6 ansätze in Table 1, plus RBA). 
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FIGURE 1. Approximations of equilibrium free buffer (top row), partially bound buffer (2nd row), fully bound 

buffer (3rd row) and Ca2+ concentrations (bottom row), as functions of distance from the Ca2+ channel, for 4 distinct 

choices of model parameters 2, 2, g, and  indicated in the panel titles. The distinct curves mark the series 

interpolants shown in Table 1: PadéA (green curves), PadéB (dashed green), ExpPadéA (magenta), ExpPadéB 

(dashed magenta), PadéExp (black), ExpExp (dashed black), and RBA (red). Since these approximants involve only 

2 distinct ansätze for the free buffer variable U (see Tables 1,2), the latter are labeled as U-Pade (dashed green) and 

U-Exp (dashed magenta) in panels A1, B1, C1, D1. Grey curves show the accurate numerical simulations. A subset 

of 5 best methods is shown for each parameter combination. The accuracy of some approximants is sufficiently high 

for the curves to completely overlap with the numerical solution on the given scale, and hence the difference between 

the curves is hard to resolve by eye. 
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As will be elucidated further below (see Figs. 3-6), the parameter regimes we selected in Fig. 1 are 

not optimal for the ansätze we introduce. Nevertheless, even for the chosen sub-optimal parameter 

combinations, a decent qualitative agreement with the accurate numerical solution is achieved by at least 

one of the ansätze, with higher accuracy achieved for the first two parameter combinations in Fig. 1A1-4, 

B1-4. We observe that RBA can compete with the newly presented approximants only when diffusivity 2 

is very small (Fig. 1C1-C4); therefore, RBA is not shown for the other three parameter choices. Note the 

difference in scales in the different panels of Fig. 1: some of the apparent large discrepancies for b* and b** 

involve relatively small absolute differences. The accuracy of several of the newly presented approximants 

is sufficiently high for the curves to completely overlap with the numerical simulations. Therefore, the 

series interpolation method achieves significant improvement of approximation accuracy for a wide range 

of model parameters, as compared to RBA.  

It is interesting to note that the partially-bound buffer concentration b* is not necessarily monotonic 

with respect to distance from the origin, unlike the free and fully-bound concentration variables. Despite 

the simple functional forms of our ansätze, they do in fact reproduce this non-monotonic behavior: see for 

instance the ExpPadéB approximant in Fig. 1C2,D2. 

Figure 1 shows that ExpPadéA, ExpPadéB, and ExpExp give more consistently accurate results, at 

least for the examined parameter sets. As in the simple buffer case, buffer approximations have the lowest 

accuracy near the channel, and the greatest accuracy far from the channel, since buffer concentrations at 

the channel location are unknown, while the long-range asymptotic behavior of the true solution is known, 

and given by Eq. 21. In contrast, the differences between distinct Ca2+ approximations and the numerical 

solution are shown on a logarithmic scale, and are more pronounced at intermediate distances from the 

channel, due to the dominance of the free source term 1/r near the channel, which is the same regardless of 

model parameters (Eq. 17). Note also that the [Ca2+] traces shown in the last row of Figure 1 are obtained 

using the Ca2+ conservation law (Eq. 17), based on inexact approximations for b and b**. Therefore, no 

direct physical constraints on Ca2+ are imposed by this procedure. For specific parameters regimes, this 

may result in negative values of [Ca2+] sufficiently far from the channel, where the corresponding true 

concentration values are positive but small. This indeed happens for very large values of buffering strength, 

1,2100. When this occurs, we use the RBA approximation (see Supporting Material 1) as a lower bound 

on Ca2+, since RBA becomes accurate sufficiently far from the channel for any model parameter values, as 

we noted above. Moreover, our extensive numerical investigation leads us to conjecture that RBA in fact 

represents a sub-solution (a pointwise lower bound) for the true [Ca2+]. This imposed truncation of [Ca2+] 
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from below using RBA helps us correct the errors in estimating Ca2+ at larger distances when buffering is 

very strong (see for instance Fig. 1C4). Even in cases where negative [Ca2+] values are replaced with RBA 

values, the accuracy of the new methods at closer distances are significantly improved compared to the 

RBA solution, as is the case for instance for the parameters in Fig. 1C4. 

Examining approximation behavior for several example parameters combinations is insufficient to 

unveil the complicated parameter-dependent accuracy of these approximations. Therefore, following prior 

work (25, 37, 38, 48), we will now systematically explore the parameter-dependence of the absolute 

deviation between the given approximation and the accurate numerical solution, using the following norm, 

similar but slightly different from the norm used in the case of simple buffer (37, 38): 
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( ) ( )
1

1.. 1..

3 5 /
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,

max max ,
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                 (27) 

The deviations are computed on a set of N =100 points spanning 5 orders of magnitude of distance r, from 

10-3 to 102, on a logarithmic scale. Therefore, apart from the normalization factor p in the denominator 

(explained below), these are effectively L1 norms weighted by 1/r, which requires a lower distance cut-off, 

set to rmin=103. The heavier weighting of short distances is justified by two reasons: (1) as we mentioned, 

our method has the greatest error at the channel location, and (2) the accuracy close to the channel is more 

important for actual biophysical modeling applications. We use the same error measure for approximating 

bound buffer state b** as for b. Given the difference in absolute magnitude of b** and b, we normalize by 

the maximal concentration p in the denominator of Eq. 27 to make it an even more stringent accuracy 

measure: as Fig. 1 illustrates, b** can be quite small in certain parameter regimes, as compared to the free 

buffer b, which always approaches 1 as r +. 

Since b* and c are uniquely determined by b and b** through the conservation law (Eq. 16), in all 

figures below we will examine the sum of errors for b and b** , instead of analyzing the different 

concentration fields individually. In Figure 2 we show a systematic comparison of the accuracy of the new 

approximants by plotting such sum of errors in b and b** for each approximant as a function of the buffering 

strength parameter 2 varying from 103 to 103, for three different fixed values of the buffer diffusivity 

parameter 2 (2=0.1, 2=1, or 2=10) and two combinations of cooperativity parameters (, g). To reveal 

the impact of Ca2+-binding cooperativity on approximant performance, one choice of (, g) values 

corresponds to a non-cooperative buffer (=g=1, bottom panels in Fig. 2), while the other choice 
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corresponds to a very cooperative buffer (=g=0.1, top panels in Fig. 2). Combining the error measures of 

b and b** allows us to infer a single best approximation for each given parameter combination. The error of 

RBA (red curves) is also included for the sake of comparison.  

 
FIGURE 2. Accuracy comparison of the series interpolant approximations for the equilibrium free and fully bound 

buffer concentrations: PadéA (green curves), PadéB (dashed green), ExpPadéA (magenta), Exp-PadéB (dashed 

magenta), PadéExp (black), and ExpExp (dashed black). RBA error is also plotted for comparison (red curves). All 

panels show the log10 of the sum of average errors of approximating concentrations of free buffer (b) and fully bound 

buffer (b**) computed using Eq. 27, as a function of buffering strength 2  ranging from 10-3 to 103, for 3 distinct 

choices of parameters 2,   and g, as indicated in panel labels. 

For most combinations of parameters examined in Figure 2, ExpPadéA, ExpPadéB, and ExpExp 

achieve the best accuracy compared to other approximants, which is consistent with the results show in 

Figure 1. For the non-cooperative case =g=1 (bottom row of panels in Fig. 2), for sufficiently large values 

of 2 and 2  the best approximating method is always ExpExp, and the average relative error is always 

below 10%, which is very good for such a simple approximation and such a stringent error measure. For 

the cooperative buffer case, =g=0.1 (top row in Fig. 2), the individual error curves are getting more tangled, 

and the choice of best method is somewhat more complicated, but in general ExpExp achieves superior 
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accuracy at smaller values of buffering strength 2. At larger values of 2, ExpPadéB becomes the best 

approximation method. Although RBA performs worse compared to other approximants for parameter 

conditions examined in Figure 2, the advantage of RBA for smaller values of 1,2 will be revealed in the 

results presented next.  

 

FIGURE 3. Comparison of parameter regions where a given approximant outperforms the rest in estimating the 

combined errors of free and fully bound buffer concentration approximations in the (2, 2) parameter plane, 

according to the error measure given by Eq. 27, with 6 different choices of cooperativity parameters  and g: (A) =g 
=0.1; (B)  =0.5, g =0.1; (C)  =1, g =0.1; (D)  =0.1, g =1; (E)  =0.5, g =1; (F) =g=1. Each color in A through F 

marks the parameter region of best performance for the following approximants: RBA (red), ExpPadéA (dark 

magenta), ExpPadéB (light magenta), and ExpExp (gray). Yellow and cyan symbols mark parameter point 

corresponding to simulations in Figure 1, where the free and fully bound buffer concentrations are plotted separately. 

Dashed lines mark the locations of parameter scans in Figure 2.  

Figure 3 summarizes and extends the results presented in Figure 2, labeling the best approximants 

for a wide range of buffer mobility 2 varying over 4 orders of magnitude, and buffering strength 2 varying 

over 6 orders of magnitude, for 6 fixed sets of cooperativity parameters  and g  corresponding to each of 

the 6 panels. The selection of best approximant in Figure 3 is based on the minimal sum of errors of b and 

b** approximations; the corresponding smallest error value is shown in Figure 4. As noted above, using this 
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combined error measure helps in determining the single best approximation method for a given set of model 

parameters, recalling that b* and c are uniquely determined by b and b** (Eq. 16). Note that we exclude 

PádeExp, PádeA and PádeB methods in this comprehensive comparison: even though there are parameter 

regions where these 3 methods outperform others, these parameter regions are relatively small, and the 

accuracy advantage is not very significant. Figure 3 shows that there is still a significant portion of 

parameter space where RBA outperforms our newly developed methods, but as expected, this only happens 

for sufficiently small values of 1,2. As Figure 4 shows, a qualitative accuracy within 10% is always 

guaranteed for all examined parameter combinations, and for some narrow parameter regimes the accuracy 

can be extremely high, with error reaching down to 0.025%. 

 

FIGURE 4. The smallest error in estimating the free and fully bound buffer concentrations in the (2, 2) parameter 

plane, according to the error measures given by Eq. 27, with  and g  fixed to 6 different choices, as in Figure 3. The 

gray-scales in A through F indicate the log10 of the sum of average errors of the free and the fully bound buffer 

approximations (Eq. 27). Darker shades represent better accuracy, according to the error bars to the right of each 

panel.  

Even though Ca2+ is uniquely determined from the buffer concentrations by the Ca2+ conservation 

law, it is still useful to look at the performance of different approximants in estimating [Ca2+] separately, 

since the latter is of obvious physical importance and has a different behavior as a function of distance from 
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the channel. As noted above, close to the channel location [Ca2+] is dominated by the source term, 1/r, 

therefore we will modify the buffer error norm, Eq. 27, by taking the logarithm of [Ca2+] (37, 38, 48):  

 
( ) ( )

1

3 5 /

1
ln ln ,

10 , 1, 2,... .



 

  

 


N

appr num appr n num n
n

n N
n

c c c r c r
N

r n N

 (28) 

We note that qualitatively this norm has the same behavior as the relative norm used in (25). Figure 5 labels 

the approximants which minimize this error in estimating [Ca2+], with the corresponding error value shown 

in Fig. 6, using the same parameter combinations as in Figs. 3 and 4. Figure 5 shows that for any particular 

set of model parameters, the optimal approximants for [Ca2+] can be different from the optimal buffer 

approximant shown in Fig. 3, despite the fact that [Ca2+] is directly calculated from buffer concentrations. 

As discussed above, [Ca2+] approximant performance is more sensitive to its accuracy at intermediate 

distances, in contrast to the buffer error measure, which is the greatest in the channel vicinity. Therefore, 

the error in Ca2+ estimation measures the accuracy of our approximants at intermediate distance from the 

channel, while the error in buffer estimation reveals the method accuracy proximal to the channel location. 

This fact can also be observed in Figure 1.  

 

FIGURE 5. Comparison of parameter regions where a given approximant outperforms the rest in estimating [Ca2+] 

in the (2, 2) parameter plane, according to the error measure given by Eq. 28, with  and g fixed to 6 different 

choices, as in Figure 3.  Each color in A through F marks the parameter region of best performance for the following 
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approximants: RBA (red), ExpPadéA (dark magenta), ExpPadéB (light magenta), PadéExp (black), and ExpExp 

(gray). Yellow and cyan symbols mark parameter points corresponding to simulations in Figure 1. 

 

FIGURE 6. The error in estimating [Ca2+] in the (2, 2) parameter plane, obtained using the best approximant 

shown in Figure 5 for each parameter point, with  and g fixed to 6 different choices, as in Figure 5. All parameter 

choices and panel layout are identical with Figures 3-5. The grayscale in all panels indicates the log10 of error value 

given by Eq. 28, as indicated in scale bars to the right of each panel. Darker shade represents better accuracy.  

Although PadéExp approximant is excluded from the comparisons shown in Figs. 5 and 6, it 

outperforms other methods in limited regions of parameter space corresponding to small 2 and either very 

large or very small 2; however, even in those narrow parameter regions, the advantage of PadéExp is not 

very significant. Finally, we note that the uneven boundaries between accuracy levels in Fig. 6 do not 

indicate a numerical artifact, but are a consequence of the complicated shape of the boundaries of optimal 

performance regions that are shown in Fig. 5. 

Finally, in order to evaluate whether our newly developed approximants achieve sufficient accuracy 

for parameters corresponding to real biological buffers, in Figure 7 we simulate the Ca2+ nanodomains in 

the presence of 100M of Ca2+ buffer with the properties of either calretinin or one of the two lobes of 

calmodulin, shown in Table 4. For calretinin, we use parameter values reported by Faas et al. (41), while 

for calmodulin, we use reaction parameters that were carefully compiled from multiple biochemical studies 
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by Ordyan et al. (51). As Figure 7 reveals, our newly developed method, ExpPadéA and ExpPadéB, work 

remarkably well for N-lobe or C-lobe of calmodulin: the curves for b, b**, and c corresponding to the 

approximations and the numerical simulations completely overlap at the chosen ordinate scale. For 

calretinin, ExpPadéB works the best, and demonstrates very reasonable accuracy. Although ExpPadéB fails 

to accurately describe the behavior of the single-bound calretinin concentration, it does accurately capture 

the order of magnitude of this concentration variable; further, note that the latter is much smaller than the 

free and fully bound buffer concentrations.  

 

Parameter 1k


 2k


 1K  2K  
2

1

K

K
   g



 2

1

k

k
 2 2 

Units (M ms)1 (M ms)1 M M 

CaR (coop. 22) 0.0018 0.31 28 0.068 2.410-3 0.42 1.610-3 294 

CaR (non-coop) 0.0073 -- 36 -- -- -- --  

CaM (N-lobe) 0.1 0.15 26.6 6.6 0.248 0.372 0.323 3.03 

CaM (C-lobe) 0.004 0.01 10 0.93 9.310-2 0.23 0.68 21.5 

Table 4. Ca2+ binding properties of strongly cooperative buffers calretinin (CR) and calmodulin (CaM), as reported 

in (41, 51). Each CR molecule contains 5 binding sites, consisting of two identical cooperative pairs of Ca2+-binding 

sites and one independent non-cooperative site. CaM molecule consists of two independent domains (lobes), each 

binding two Ca2+ ions in a cooperative manner. Values of 2 and 2 are calculated for Ca2+ current strength of ICa=0.4 

pA, total buffer concentrations of B
T
=100 M, buffer-Ca2+ mobility ratio of DB/DCa=0.1, and DCa=0.2m2/ms. 

Although the approximants we present do not allow to model the simultaneous impact of both lobes 

of calmodulin, since this would require generalizing our approach to buffer with 4 binding sites, the results 

obtained for the N-lobe alone are of value, since the N-lobe has much faster kinetics, and would reach a 

quasi-equilibrium state on short time scales compared to the much slower C lobe.  
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FIGURE 7. Approximation performance for the case of biological buffers, calmodulin N-lobe (A1-A4), 
calmodulin C-lobe (B1-B4), and calretinin (C1-C4), with parameters as in Table 4, corresponding to the 
current of ICa=0.4 pA, and total buffer concentration of 100 M. As in Figure 1, approximants of free 
buffer concentrations in panels (A1, B1, C1) are labeled as U-Exp and U-Padé (see Tables 1-2), while 
only the best approximations are shown for the other concentration variables: ExpPadéA (solid magenta 
curve), ExpPadéB (dashed magenta), PadéA (dashed green), and ExpExp (dashed black). Accurate 
numerical results are shown as thick gray curves.  

DISCUSSION 

We demonstrated that the series interpolation approach, first introduced for the case of 1:1 Ca2+ 

buffers in (38) and generalized in (37), can be extended to buffers with 2:1 Ca2+-binding stoichiometry, and 

we introduced several simple interpolants that combine rational and exponential functions. As summarized 

in Figures 3-6, and Figure S1 of the Supporting Material 1, these new approximants achieve reasonable 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.14.296582doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296582
http://creativecommons.org/licenses/by-nc/4.0/


 23 

accuracy in estimating equilibrium buffer and Ca2+ concentrations near an open Ca2+ channel in a wide 

range of relevant model parameters. Nevertheless, RBA, the only previously developed method for 2:1 

buffers, is still superior for certain extreme parameter conditions corresponding to very small values of non-

dimensional mobility parameters 1,2. Compared with RBA, the new approximation methods show more 

uniform error dependence for several orders of magnitude of the relevant dimensionless parameters 2, 2, 

g, and . As Figure 4 shows, with these new approximants the average combined error for the free and fully 

bound buffer concentrations is within 10% for all examined parameter combinations, and Fig. 6 

demonstrates similar maximal error in estimating Ca2+, albeit requiring truncation to ensure the physical 

constraints [Ca2+]>0 for large values of buffering strength. Figs. 3 and 5 illustrate that this accuracy level 

in the entire parameter range we considered is achieved with only 4 out of the total of 7 approximants, 

namely ExpPadéA, ExpPadéB, ExpExp, and RBA. Fig. 7 further shows that good qualitative agreement 

can be achieved even with more extreme model parameter values corresponding to calretinin or one of the 

two lobes of calmodulin, which correspond to parameter combinations shown in Tables 4 and 5.  

Several functional forms other than the ones shown in Eqs. 22-25 were considered, but are not 

presented here due to either insufficient performance or lack of closed-form solutions for parameters. 

However, given the simplicity of the interpolating approximants we presented, improved ansätze could 

potentially still be found. This is particularly likely for the case of non-zero background Ca2+ concentration 

examined in the Supporting Material 1: only the simplest lowest-order interpolating approximants were 

consider in the latter general case. 

Figs. 2-6 show that the accuracy profile of the approximants we introduced is highly non-trivial, 

with the error measure exhibiting large dips for certain parameter combinations. This is of potential interest 

and may reveal interesting properties of the underlying true solutions, deserving a careful investigation in 

the future.  

Of course, practical use of the proposed approximants requires an algorithm for the choice of a 

particular ansatz, given a particular set of model parameters, without knowing the exact solution. Figs. 3,5 

and Fig. S1 provide the basis for developing such an algorithm. Although the boundaries between parameter 

regions of best performance look complicated, a smaller subset of only three methods can allow one to 

develop a simple approximant selection algorithm, without sacrificing too much accuracy, as in the case of 

a 1:1 buffer (37). Here we note that, just like in the latter case, the relative accuracy comparisons of distinct 

algorithms summarized in Figs. 3-6, S1 depends on the particular norm that we have chosen for comparison 

to the true solution, given by Eqs. 27, 28.  
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There are many other directions for possible extensions and improvements of this work. For 

example, our approximants are only applicable to a single channel and a single buffer with two binding 

sites, whereas RBA allows an extension to an arbitrary number of channels and buffers (although the latter 

requires considerable increase in complexity). We note however that the methods we presented could be 

extended to the case of two distinct Ca2+ buffers with a single binding site each. We should also mention 

that we did not consider any Ca2+ sinks and the effect of finite channel pore radius. Including a linear 

homogeneous Ca2+ uptake mechanisms, along the lines of (49, 50), would greatly improve the utility of the 

developed approximations. Further, the utility of our approximants would be improved if one could find a 

method of estimating the method accuracy with respect to the chosen norms, without knowing the accurate 

numerical solution. For instance, one could examine whether barrier functions (sub- and super-solutions) 

could be used to establish the bounds on the approximant accuracy (54). Finally, the study of equilibrium 

concentration nanodomains assumes that the steady-state is established almost instantly and ignore the 

transient dynamics before the equilibrium is reached. However, this is not always the case (12). Therefore, 

the characteristic time needed to reach the steady state should be properly examined for a wide range of 

parameter values. Some related work on the time scale of the transients in reaction-diffusion systems can 

be found in (55). More generally, the fundamental mathematical analysis for the complex buffer case, along 

the lines of analysis in Appendix D of (37), is yet to be performed. For instance, we did not provide a 

rigorous proof that RBA is a sub-solution for [Ca2+] in this problem. Finally, we only considered the series 

interpolation method to the study of buffers with two binding sites. The feasibility of extending the 

variational method used in (37) is still an open question and could be addressed in future work. One should 

explore in particular the applicability of the multifunction variational method described in (53).  

More importantly, the newly developed approximants can be used to study in detail the parameter 

dependence of equilibrium concentrations of Ca2+ and distinct buffer states, which can be quite non-trivial 

for a buffer with two binding sites. For example, the results shown in Figure 1 already reveal an interesting 

non-monotonic dependence of single-bound buffer on the distance from the Ca2+ channel for some, but not 

all, model parameters. To our knowledge, this non-monotonic behavior has not been previously noted. 

Since most buffers have dual Ca2+ buffering and sensing roles, with partially and fully bound buffer having 

distinct affinities to downstream biochemical targets (39, 40, 47), this non-trivial property of the equilibrium 

solution may be of potential physiological significance, to be analyzed in detail. Non-trivial effects of 

cooperative Ca2+ binding by biological buffers with multiple Ca2+ binding sites has also been pointed out 

by prior modeling studies. For example, it has been shown that cooperative Ca2+ buffers decrease the 

facilitation of Ca2+ transients associated with buffers saturation (39, 44, 47), but may increase short-term 
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synaptic facilitation through the mechanism of buffer dislocation (56). This is directly related to the 

interesting fact that the buffering capacity of a cooperative Ca2+ buffer increases with increasing 

background Ca2+
  concentration, which may play an important homeostatic role (41, 44, 48). On longer time 

scales, Kubota and Waxham (46) showed the interesting “hand-off” of Ca2+ from the N-lobe to the C-lobe 

of calmodulin upon channel closing, and the intricate dependence of each lobe’s Ca2+ saturation on the Ca2+ 

influx amplitude and duration. More generally, cooperative Ca2+ binding by calmodulin and the resulting 

activation of downstream biochemical pathways plays important roles in the regulation of long-term 

synaptic plasticity and other fundamental cell processes (42-46, 51, 57-59). Deeper understanding of Ca2+ 

dynamics in the presence of cooperative buffers may also be important for an accurate interpretation of 

optogenetic measurements with genetically-encoded fluorescent Ca2+ dyes, which are formed by fusing a 

calmodulin molecule with a green fluorescent protein (60). All this underscores the importance of modeling 

and analysis of Ca2+ binding by buffers and sensors with multiple Ca2+ binding sites. 
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APPENDIX A: Approximation Parameters, Zero Background Ca2+ Concentration 

 

1. For PadéB and ExpPadéB approximation, matching the coefficients of the short- and long-range series 

expansions given by Eqs. leads to cubic systems for the ansatz parameter b2 shown in Table 3, with the 

following explicit solution:  

 2

F
b q Y G

G
    
 

. (29) 

a) For PadéB, the auxiliary quantities Y, G, F are determined by 

 

G  E2  F 3  E( )1/3

,

E  Y 3 YW  
2
X ,

F  Y 2 
2

3
W ,

X  A2 q 112
2
q1

24
,

Y 
5A 2

2
2 q( )

18
,

W  A2 1 2
2

12
,

  (30) 

where the value of ansatz parameter A is shown in Table 2.  

b) For ExpPadéB, the computation of b2 value is the same as above, except for the redefinition of the 

auxiliary quantity Y: 

 
( )25 3 2

18

 


A q
Y .  (31) 

2. For both PadéExp and ExpExp approximations, the explicit solution of ansatz parameter s has the 

same form: 

 s  G 
Y 2

G
Y . (32) 
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where the auxiliary quantities G and Y are determined by  

 

( )1/3
2 6

2

2

,

6
,

1
,

4

G E Y E

E Y Y
Aq

Y


  

 
  

 



  (33) 

and the value of constant A is given in Table 2.    

Supporting Material 2 contains simple code implementing these expressions using MATLAB functions 

(MathWorks, Inc). 
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